Searched for: department%3A%22Structural%255C%252BEngineering%22
(1 - 10 of 10)
document
Tziviloglou, E. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, E. (author)
The innovative technology of self-healing concrete allows the material to repair the open micro-cracks that can endanger the structure’s durability, due to ingress of aggressive liquids. Various concepts of self-healing concrete use encapsulation techniques, in order to immobilize and protect the healing agent during mixing and setting. In this...
conference paper 2015
document
Palin, D. (author), Thijssen, A. (author), Wiktor, V. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Ordinary Portland cement (OPC) mortar specimens submerged in sea-water were analysed through environmental scanning electron microscopy (ESEM) in back scattered electron (BSE) mode and nano-scratching. Results from both sets of analysis show the presence of distinct phases associated with aragonite, brucite and cement paste. Phases associated...
conference paper 2015
document
Wiktor, V. (author), Jonkers, H.M. (author)
Biodeposition, a method by which calcium carbonate (CaCO3) precipitation is induced by bacteria, has been proposed as an interesting approach to protect building materials. The liquid-based system presented in this paper aims at the sealing of cracks and decrease of the porosity due to the production of a calcium-based biomineral. In this system...
conference paper 2015
document
Wiktor, V.A.C. (author), Jonkers, H.M. (author)
This paper focuses particularly on the ageing of concrete due to micro-crack formation or freeze/thaw which results in an increased permeability of the concrete. The bacteria-based repair system presented in this paper aims at recovering the concrete permeability thanks to bacteria-induced calcium carbonate precipitation inside cracks/porosity....
conference paper 2014
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
document
Wiktor, V.A.C. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
document
Palin, D. (author), Wiktor, V. (author), Jonkers, H.M. (author)
Marine concrete structures are exposed to one of the most hostile of natural environments. Many physical and chemical phenomena are usually interdependent and mutually reinforcing in the deterioration of marine exposed concrete: expansion and microcracking due to physical effects increases concrete permeability paving the way for harmful...
conference paper 2013
document
Wiktor, V.A.C. (author), Jonkers, H.M. (author)
conference paper 2012
document
Wiktor, V.A.C. (author), Jonkers, H.M. (author)
conference paper 2012
document
Wiktor, V.A.C. (author), Jonkers, H.M. (author)
conference paper 2011
Searched for: department%3A%22Structural%255C%252BEngineering%22
(1 - 10 of 10)