Searched for: faculty%3A%22Electrical%255C%252BEngineering%252C%255C%252BMathematics%255C%252Band%255C%252BComputer%255C%252BScience%22
(1 - 3 of 3)
document
Jönsthövel, T.B. (author)
Simulations with composite materials often involve large jumps in the coefficients of the underlying stiffness matrix. These jumps can introduce unfavorable eigenvalues in the spectrum of the stiffness matrix. We show that the rigid body modes; the translations and rotations, of the disjunct rigid bodies in the composite material correspond to...
doctoral thesis 2012
document
Tang, J.M. (author), MacLachlan, S.P. (author), Nabben, R. (author), Vuik, C. (author)
It is well known that two-level and multilevel preconditioned conjugate gradient (PCG) methods provide efficient techniques for solving large and sparse linear systems whose coefficient matrices are symmetric and positive definite. A two-level PCG method combines a traditional (one-level) preconditioner, such as incomplete Cholesky, with a...
journal article 2010
document
Tang, J.M. (author)
The Preconditioned Conjugate Gradient (PCG) method is one of the most popular iterative methods for solving large linear systems with a symmetric and positive semi-definite coefficient matrix. However, if the preconditioned coefficient matrix is ill-conditioned, the convergence of the PCG method typically deteriorates. Instead, a two-level PCG...
doctoral thesis 2008