Searched for: subject%3A%22Cell%255C%252BBE%22
(1 - 3 of 3)
document
Maljaars, J.M. (author), Richardson, Chris N. (author), Sime, Nathan (author)
This paper introduces LEOPART, an add-on for the open-source finite element software library FENICS to seamlessly integrate Lagrangian particle functionality with (Eulerian) mesh-based finite element (FE) approaches. LEOPART- which is so much as to say: ‘Lagrangian–Eulerian on Particles’ - contains tools for efficient, accurate and scalable...
journal article 2021
document
Maljaars, J.M. (author), Labeur, R.J. (author), Trask, Nathaniel (author), Sulsky, Deborah (author)
By combining concepts from particle-in-cell (PIC) and hybridized discontinuous Galerkin (HDG) methods, we present a particle–mesh scheme for flow and transport problems which allows for diffusion-free advection while satisfying mass and momentum conservation – locally and globally – and extending to high-order spatial accuracy. This is achieved...
journal article 2019
document
Maljaars, J.M. (author), Labeur, R.J. (author), Möller, M. (author)
A generic particle–mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier–Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize...
journal article 2018