Searched for: subject%3A%22Cement%255C+paste%22
(1 - 20 of 21)

Pages

document
Liang, M. (author), He, S. (author), Gan, Yidong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper employs computer vision techniques to predict the micromechanical properties (i.e., elastic modulus and hardness) of cement paste based on an input of Backscattered Electron (BSE) images. A dataset comprising 40,000 nanoindentation tests and 40,000 BSE micrographs was built by express nanoindentation test and Scanning Electron...
journal article 2023
document
Liang, M. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build a database that contains 18,920 samples. Then, 3 DCNNs with different consecutive convolutional layers are built to learn...
journal article 2022
document
Zhang, H. (author), Schlangen, E. (author), Ge, Z. (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
document
Zhang, H. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
document
Gan, Y. (author), Vandamme, Matthieu (author), Chen, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This paper presents an experimental investigation on the short-term creep recovery of cement paste at micrometre length scale. Micro-cantilever beams were fabricated and tested with 8 different loading series using the nanoindenter. It is found that cement pastes show high recovery ratios (>80%) even subjected to very high stress levels....
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different...
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Zhang, Y. (author), Xu, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a higher density of nano-scale cracks generated during the fatigue...
journal article 2021
document
Gan, Y. (author), Romero Rodriguez, C. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study presents an experimental investigation of the rate-dependent mechanical properties of cement paste at the microscale. With the use of a nanoindenter, micro-cantilever beams with the size of 300 μm × 300 μm × 1650 μm were loaded at five different strain rates from around 10<sup>−6</sup>/s to 10<sup>−2</sup>/s until failure. It is...
journal article 2021
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Application of micromechanical modelling of hydrated cement paste (HCP) gains more and more interests in the field of cementitious materials. One of the most promising approaches is the use of so-called microstructure informed micromechanical models, which provides a direct link between microstructure and mechanical properties. In order to...
journal article 2020
document
Jiang, Nengdong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
A combination of laboratory experiments and numerical simulations at multiple length scales can provide in-depth understanding of fracture behaviour of hydrated cement paste (HCP). To that end, the current work presents a numerical study on compressive failure of hydrated cement paste (HCP) at the micro-scale. Virtual specimens consisting of...
journal article 2020
document
Zhang, H. (author), Romero Rodriguez, C. (author), Dong, H. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Carbonation of hydrated cement paste (HCP) causes numerous chemo-mechanical changes in the microstructure, e.g., porosity, strength, elastic modulus, and permeability, which have a significant influence on the durability of concrete structures. Due to its complexity, much is still not understood about the process of carbonation of HCP. The...
journal article 2020
document
Gan, Y. (author), Vandamme, Matthieu (author), Zhang, Hongzhi (author), Chen, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study proposes an experimental method for studying the short-term creep behaviour of cement paste at micro-scale. The micro-bending tests on miniaturized cantilever beams were used to characterize the viscoelastic properties of cement paste. The effects of w/b ratio, the type of binder and the stress level on the microscopic creep...
journal article 2020
document
Mercuri, L. (author), Romero Rodriguez, C. (author), Xu, Y. (author), Chaves Figueiredo, S. (author), Mors, R.M. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Šavija, B. (author), Schlangen, E. (author)
Soft inclusions, such as capsules and other particulate admixtures are increasingly being used in cementitious materials for functional purposes (i.e. self-healing and self-sensing of concrete). Yet, their influence on the fracture behaviour of the material is sometimes overlooked and requires in-depth study for the optimization of mechanical...
conference paper 2019
document
Gan, Y. (author), Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author), van Breugel, K. (author)
Nanoindentation is usually used to investigate local elastic properties and hardness of materials. In this paper, the nanoindenter served as a loading tool to perform micro scale bending tests and measure the global response of micro-scale specimens. For testing, cement paste cantilever beams with a square cross-section of 300 μm × 300 μm were...
conference paper 2019
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
The aim of this work is to investigate the mechanical performance of hardened cement paste (HCP) under compression at the micrometre length scale. In order to achieve this, both experimental and numerical approaches were applied. In the experimental part, micrometre sized HCP specimens were fabricated and subjected to uniaxial compression by...
journal article 2019
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behavior. This paper presents an experimentally informed approach for modeling elastic and transport properties of cement...
journal article 2019
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
This work presents a study of stochastic fracture properties of cement paste at the micro length scale based on a combination of X-ray computed tomography (XCT) technique and discrete lattice type fracture model. Thirty virtual specimens consisting of pore, outer hydration products, inner hydration products and anhydrous cement particles were...
journal article 2018
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
The aim of this paper is to investigate the fracture performance of cement paste at micro scale by both experimental and numerical methods. Micro cubic specimens with length of 100 µm were fabricated by precision cutting, grinding and micro-dicing, and tested by splitting with a wedge tip mounted on a nano-indenter. A nominal splitting...
journal article 2018
document
Zhang, H. (author), Šavija, B. (author), Xu, Y. (author), Schlangen, E. (author)
Cement paste possesses complex microstructural features including defects/pores over a range of length-scales, from nanometres to millimetres in size. As a consequence, it exhibits different behaviour under loading depending on the size. In this work, cubic specimens in a size range of 1: 400 were produced and tested by a one-sided splitting...
journal article 2018
document
Gan, Y. (author), Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author), van Breugel, K. (author)
Cement paste is the main binding component in concrete and thus its fundamental properties are of great significance for understanding the fracture behaviour as well as the ageing process of concrete. One major aim of this paper is to characterize the micromechanical properties of cement paste with the aid of a nanoindenter. Besides, this paper...
journal article 2018
Searched for: subject%3A%22Cement%255C+paste%22
(1 - 20 of 21)

Pages