Searched for: subject%3A%22healing%22
(1 - 20 of 51)

Pages

document
Wan, Z. (author), Xu, Y. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
This paper presents a state-of-the-art review on the application of additive manufacturing (AM) in self-healing cementitious materials. AM has been utilized in self-healing cementitious materials in three ways: (1) concrete with 3D-printed capsules/vasculatures; (2) 3D concrete printing (3DCP) with fibers or supplementary cementitious...
journal article 2024
document
He, S. (author), Nuri, Masi (author), Jonkers, H.M. (author), Lukovic, M. (author), Schlangen, E. (author)
This study investigates the structural behaviour and self-healing performance of hybrid reinforced concrete (RC) beams, enhanced with a 1.5-cm-thick self-healing cover composed of bacteria-embedded strain hardening cementitious composite (SHCC), for its potential in crack width control and crack healing. The research focuses on the...
journal article 2024
document
Sayadi, Sina (author), Chang, Z. (author), He, S. (author), Schlangen, E. (author), Mihai, I.C. (author), Jefferson, Anthony (author)
This paper describes the development of a discrete lattice model for simulating structures formed from self-healing cementitious materials. In particular, a new approach is presented for simulating time dependent mechanical healing in lattice elements. The proposed formulation is designed to simulate the transient damage and healing behaviour...
journal article 2023
document
He, S. (author), Wan, Z. (author), Chen, Y. (author), Jonkers, H.M. (author), Schlangen, E. (author)
The current study investigates short-term and long-term crack-healing behaviour of mortars embedded with bacteria-based poly-lactic acid (PLA) capsules under both ideal and realistic environmental conditions. Two sets of specimens were prepared and subjected to different healing regimes, with the first set kept in a mist room for varying...
journal article 2023
document
Al-Obaidi, S.M.J. (author), He, S. (author), Schlangen, E. (author), Ferrara, Liberato (author)
This study investigates the bond-slip behavior of micro steel fibers embedded into an Ultra-High-Performance Concrete (UHPC) matrix as affected by the self-healing of the same matrix in different exposure conditions. The UHPC matrix contains a crystalline admixture as a promoter of the autogenous self-healing specially added to enhance the...
journal article 2023
document
He, S. (author), Zhang, Shizhe (author), Lukovic, M. (author), Schlangen, E. (author)
Strain hardening cementitious composite (SHCC) is a special class of ultra-ductile material which has autogenous self-healing capability due to its intrinsic tight crack widths. To further improve its healing ability, healing agent (HA) can be incorporated in SHCC, enabling it also the autonomous self-healing mechanism. In this study, the...
journal article 2022
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Microwave heating has been shown to be an effective method of heating asphalt concrete and in turn healing the damage. As such, microwave heating holds great potential in rapid (1–3 min) and effective damage healing, resulting in improvement in the service life, safety, and sustainability of asphalt pavement. This study focused on the microwave...
journal article 2021
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO<sub>2</sub> emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and...
journal article 2021
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Lin, P. (author), Zhang, Y. (author), Nahar, S. (author), Lommerts, B. J. (author), Schlangen, E. (author)
Rejuvenator encapsulation technique showed great potential for extrinsic asphalt pavement damage healing. Once the capsules are embedded within asphalt pavement, the healing is activated on-demand via progressing microcrack. When the microcrack encounters the capsule, the fracture energy at the tip opens the capsule and releases the...
journal article 2021
document
Aimi, M. A.Raden Maizatul (author), Hamidah, M. S. (author), Kartini, K. (author), Hana, H. Noor (author), Khalilah, A. K. (author), Schlangen, E. (author)
Autonomous healing by the microbially induced calcite precipitation (MICP) mechanism has garnered significant interest in the sustainable approach to concrete repair and maintenance. Previous research works have reported that Bacillus pasteurii and Bacillus sphaericus are the most commonly used in concrete associated with bacteria. However,...
journal article 2021
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Self-healing asphalt, aimed to produce a sustainable asphalt pavement using green technology, has been studied in the past two decades. Technologies including encapsulated rejuvenator and induction heating have been proposed, demonstrated in the laboratory, and gradually evaluated in field application. This paper looks into the synergy effect...
journal article 2020
document
Tabakovic, A. (author), Schlangen, E. (author)
This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator...
book chapter 2020
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Mercuri, L. (author), Gan, Y. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, the interface between different types of bacteria-embedded self-healing polylactic acid capsules (PLA) and cement paste is investigated. Particularly, the changes in microstructure and mechanical properties of the interface with respect to bulk cement paste were studied. First, nanoindentation was performed to obtain maps of...
journal article 2020
document
Xu, S. (author), Liu, X. (author), Tabaković, Amir (author), Schlangen, E. (author)
Improving the healing capacity of asphalt is proving to be an effective method to prolong the service life of an asphalt pavement. The calcium alginate capsules encapsulating rejuvenator have been developed and proved to provide successful localized crack healing in asphalt mastic. However, it is not known whether this self-healing asphalt...
journal article 2019
document
Md Yunus, Balqis (author), Schlangen, E. (author), Jonkers, H.M. (author)
This paper investigates the effects of alkaliphilic spore-forming bacteria of the genus Bacillus on the compressive strength of the mortar cube and the healing capacity of the bacteria as healing agent on mortar containing crack. The experiments were carried out using cube test, stereomicroscopy and environmental scanning electron microscopy ...
journal article 2019
document
Norambuena-Contreras, J. (author), Gonzalez, A. (author), Concha, J. L. (author), Gonzalez-Torre, I. (author), Schlangen, E. (author)
This paper aims to evaluate the effect of metallic waste addition on the electrical, thermophysical and microwave crack-healing properties of asphalt mixtures. With this purpose, asphalt mixtures with two different types of metallic waste, steel wool fibres and steel shavings, added in four different contents, were tested. Electrical and...
journal article 2018
document
González-Campo, A (author), Norambuena Contreras, J.E. (author), Storey, L. (author), Schlangen, E. (author)
The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy....
journal article 2018
document
Tabakovic, A. (author), Schlangen, E. (author)
This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator...
conference paper 2018
document
Xu, S. (author), Tabakovic, A. (author), Schlangen, E. (author), Liu, X. (author)
Researchers have demonstrated that the rejuvenator encapsulation method is a promising autonomic self-healing approach for asphalt pavements, where by the self-healing system improves the healing capacity of an asphalt pavement mix. However, potentially high environmental risk via leaching of hazardous chemicals such as melamine formaldehyde...
journal article 2018
document
González-Campo, A (author), Norambuena Contreras, J.E. (author), Storey, L. (author), Schlangen, E. (author)
Microwave heating of asphalt mixtures containing metal fibers is a promising technology for asphalt pavement rehabilitation. The main characteristic of these types of mixtures is that they have the ability to self-heal their cracks when external microwave heating is applied. Prior to this study, the assessment of crack-healing has only been...
journal article 2018
Searched for: subject%3A%22healing%22
(1 - 20 of 51)

Pages