Searched for: subject%3A%22method%22
(1 - 12 of 12)
document
Verhelst, H.M. (author), den Besten, J.H. (author), Möller, M. (author)
Parallel computing is omnipresent in today's scientific computer landscape, starting at multicore processors in desktop computers up to massively parallel clusters. While domain decomposition methods have a long tradition in computational mechanics to decompose spatial problems into multiple subproblems that can be solved in parallel, advancing...
journal article 2024
document
Verhelst, H.M. (author), Mantzaflaris, A. (author), Möller, M. (author), den Besten, J.H. (author)
Mesh adaptivity is a technique to provide detail in numerical solutions without the need to refine the mesh over the whole domain. Mesh adaptivity in isogeometric analysis can be driven by Truncated Hierarchical B-splines (THB-splines) which add degrees of freedom locally based on finer B-spline bases. Labeling of elements for refinement is...
journal article 2024
document
Lotz, J.E. (author), ten Eikelder, Marco F.P. (author), Akkerman, I. (author)
The computation of periodic flows is typically conducted over multiple periods. First, a number of periods is used to develop periodic characteristics, and afterwards statistics are collected from averages over multiple periods. As a consequence, it is uncertain whether the numerical results are exactly time-periodic, and additionally, the...
journal article 2024
document
Hille, Helge C. (author), Kumar, Siddhant (author), De Lorenzis, Laura (author)
We propose Floating Isogeometric Analysis (FLIGA), which extends IGA to extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space. With basis functions “floating” deformation-dependently in this direction, mesh distortion...
journal article 2022
document
Verhelst, H.M. (author), Möller, M. (author), den Besten, J.H. (author), Mantzaflaris, Angelos (author), Kaminski, M.L. (author)
Modelling nonlinear phenomena in thin rubber shells calls for stretch-based material models, such as the Ogden model which conveniently utilizes eigenvalues of the deformation tensor. Derivation and implementation of such models have been already made in Finite Element Methods. This is, however, still lacking in shell formulations based on...
journal article 2021
document
Casquero, Hugo (author), Bona-Casas, Carles (author), Toshniwal, D. (author), Hughes, Thomas J.R. (author), Gomez, Hector (author), Zhang, Yongjie Jessica (author)
We extend the recently introduced divergence-conforming immersed boundary (DCIB) method [1] to fluid-structure interaction (FSI) problems involving closed co-dimension one solids. We focus on capsules and vesicles, whose discretization is particularly challenging due to the higher-order derivatives that appear in their formulations. In two...
journal article 2021
document
ten Eikelder, M.F.P. (author), Bazilevs, Y. (author), Akkerman, I. (author)
In this paper we show that the variational multiscale method together with the variation entropy concept form the underlying theoretical framework of discontinuity capturing. The variation entropy [M.F.P. ten Eikelder and I. Akkerman, Comput. Methods Appl. Mech. Engrg. 355 (2019) 261-283] is the recently introduced concept that equips total...
journal article 2020
document
Tielen, R.P.W.M. (author), Möller, M. (author), Göddeke, D. (author), Vuik, Cornelis (author)
Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM). However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider a p-multigrid method, in which coarsening is applied in the spline degree p instead of the mesh width h...
journal article 2020
document
Möller, M. (author), Jaeschke, M.A. (author)
This work extends the high-resolution isogeometric analysis approach established in chapter “High-Order Isogeometric Methods for Compressible Flows. I: Scalar Conservation Laws” (Jaeschke and Möller: High-order isogeometric methods for compressible flows. I. Scalar conservation Laws. In: Proceedings of the 19th International Conference on...
conference paper 2020
document
ten Eikelder, M.F.P. (author), Akkerman, I. (author)
This paper presents the construction of a correct-energy stabilized finite element method for the incompressible Navier–Stokes equations. The framework of the methodology and the correct-energy concept have been developed in the convective–diffusive context in the preceding paper [M.F.P. ten Eikelder, I. Akkerman, Correct energy evolution of...
journal article 2018
document
ten Eikelder, M.F.P. (author), Akkerman, I. (author)
This paper presents the construction of novel stabilized finite element methods in the convective–diffusive context that exhibit correct-energy behavior. Classical stabilized formulations can create unwanted artificial energy. Our contribution corrects this undesired property by employing the concepts of dynamic as well as orthogonal small...
journal article 2018
document
Wang, Z. (author), Turteltaub, S.R. (author), Abdalla, M.M. (author)
This work is concerned with the development of a framework to solve shape optimization problems for transient heat conduction problems within the context of isogeometric analysis (IGA). A general objective functional is used to accommodate both shape optimization and passive control problems under transient conditions. An adjoint sensitivity...
journal article 2017
Searched for: subject%3A%22method%22
(1 - 12 of 12)