Searched for: subject%3A%22nanowire%22
(1 - 2 of 2)
document
van Veen, J. (author)
Quantum computers can solve some problems exponentially faster than classical computers. Unfortunately, the computational power of quantum computers is currently limited by the number of working qubits. It is difficult to scale up these systems, because qubits are easily affected by noise in their environment. This noise leads to decoherence:...
doctoral thesis 2019
document
Gül, Önder (author), Zhang, H. (author), de Vries, F.K. (author), van Veen, J. (author), Zuo, K. (author), Mourik, V. (author), Conesa Boj, S. (author), Nowak, M.P. (author), van Woerkom, D.J. (author), Quintero Perez, M. (author), Cassidy, M.C. (author), Geresdi, A. (author), Koelling, Sebastian (author), Car, D. (author), Plissard, S.R. (author), Bakkers, E.P.A.M. (author), Kouwenhoven, Leo P. (author)
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap,...
journal article 2017