Aerobatic maneuvering of Autonomous Hybrid UAVs

Trajectory Tracking using INDI in the Control Frame

More Info
expand_more

Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly being used in various applications, which demand longer endurance, extended range, and high maneuverability. These requirements necessitate the development of effective control methods for Hybrid UAVs. In this paper, we propose an outer loop Incremental Nonlinear Dynamic Inversion (INDI) controller for Hybrid UAVs, based on an analytically derived control effectiveness to control the linear acceleration of the UAV. The control effectiveness is derived in a new frame that does not show singularities, technically allowing controlled flight at all attitudes. For trajectory tracking purposes, a Proportional Derivative (PD) controller is added. In simulation the proposed controller shows comparable results to already existing INDI controllers for hover and forward flight. When performing loop the loops it is shown that the proposed control system is able to handle high roll angles, while the already existing INDI controller crashed.