A multi-physics solver for liquid-fueled fast systems based on the discontinuous Galerkin FEM discretization

More Info
expand_more

Abstract

Performing accurate numerical simulations of molten salt reactors is challenging, especially in case of fast-spectrum designs, due to the unique physics phenomena characterizing these systems. The limitations of codes traditionally used in the nuclear community often require the development of novel high-fidelity multi-physics tools to advance the design of these innovative reactors. In this work, we present the most recent code developed at Delft University of Technology for multi-physics simulations of liquid-fueled fast reactors. The coupling is realized between an incompressible RANS model and an SN neutron transport solver. The models are implemented in two in-house codes, based on the discontinuous Galerkin Finite Element discretization, which guarantees high-quality of the solution. We report and discuss the results of preliminary simulations of the Molten Salt Fast Reactor at steady-state and during a Total Loss of Power transient. Results prove our code has capabilities for steady-state and transient analysis of non-moderated liquid-fueled reactors.