The SWAN model is a third-generation spectral wave prediction model developed by Delft University of Technology. Since its initial release in 1998 this model has become a widely used and reliable tool for offshore and near shore wave predictions. Its main field of application is the coastal zone where, by virtue of its implicit numerical scheme, it can be considered as a very efficient tool for high resolution coastal applications. Besides this field of application it is also appropriate for open ocean conditions.

The source code of SWAN is published, well documented and web served (www.swan.tudelft.nl). Delft University continuously develops and improves SWAN with the support of U.S. Office of Naval Research and Dutch Ministry of Public Works. New features and improved physics are regularly added. This poster provides an overview.

Physics and model features

Wind drag and bottom friction

An alternative to the well-known Wu (1982) wind drag parameterization is added. It is based on a review of a large number of more recent observations, and will give lower drag values for relatively high wind speeds; see Figure 1. This parameterization has been published in Zijlema et al. (2012). In addition, we recommend the use of the lower value of the bottom friction coefficient based on the JONSWAP formulation for both wind seas and swell waves, C_D=0.0026 (Figure 2). Applied the new wind drag parameterization is applied. Using this lower value has also improved the estimates of wave growth in shallow water and of low-frequency wave decay in a tidal inlet, independent of the wind drag.

White capping

It has been known for a long time that SWAN underestimates structurally the peak and mean wave periods. Investigations of Rogers et al. (2003) showed that adjusting a specific parameter in the white capping term of WAM Cycle III (i.e. exponent of the mean wave number) leads to an improved prediction of the wave energy at lower frequencies which, in turn, improved the wave periods. This adjustment has led to a new default value in SWAN.

Depth-induced wave breaking

To improve model performance of wave breaking in the depth-limited regions, including bottom slopes, reefs and horizontal flats, a literature study was carried out. This is summarized in Figure 2.

Unstructured grids

For many coastal applications the use of unstructured grids provides a huge modeling flexibility to have high resolution where needed. Mesh spacings are varied within the application domain using a single, unstructured mesh. This approach is economical, but it can cause accuracy errors in regions where the bathymetry is under-resolved. In particular, excessive directional turning can occur on coarsely-resolved mesh. CFL-limiters have been proposed for the spectral propagation velocities in SWAN (Dietrich et al., 2012b). These limiters are not required for model stability, but they improve accuracy by using local errors that would otherwise spread throughout the domain.

SWAN-ADCIRC coupling

At present, coupling spectral wave models with circulation models is a challenging tool for (wave) climate studies and real-time forecasting of waves and storm surge. The tightly-coupled SWAN-ADCIRC model has become a mature tool for realistic high-resolution wave-current predictions in basin scale and inlet scale systems. The combined codes use identical grids and are highly scalable on petascale computers (Dietrich et al., 2012a). At Delft University we shall apply this model to the North Sea and Dutch Wadden Sea under extreme storm conditions for the near future. An example is depicted in Figure 5.

The main conclusion is that there is no prevailing dissipation model with default settings for the best performance of SWAN under arbitrary bathymetries. Next, a scaling for the well-known Battjes-Janssen model has been developed based on a joint dependency on local bottom slope β and local depth d normalized by wave length λ (Figure 3). In addition, this scaling is extended with the effect of directional spreading. This extended β-d scaling is shown to resolve the observed problem of overestimating wave heights over a horizontal bottom and underestimating waves generated by a local wind in idealized 1D shallow lakes. The inclusion of directional spreading has been shown to improve the model for predicting short-crested waves propagating over the horizontal tidal flats.

Triad wave-wave interactions

A number of formulations from the literature (Becq-Girard et al., 1999, Booij et al., 2009, and Toledo and Agnon, 2012) have been implemented to assess their feasibility for operational use in SWAN and to model higher harmonics and the equilibrium spectrum tail more accurately compared to the default Lumped Triad Approximation (LTA) of Eldeberky (1999). Some preliminary results are given in Figure 4. We see improvements over the LTA.

The Scatter index D of the 12 models based on 13 data sets containing 225 cases of laboratory observations ($*$) and field observations ($**$). The highlight colors indicate the two ranges of performance (green and blank) and four ranges of scatter index (from blank to orange).

References

Tolman, H.L., M.L. Banner and I.M. Kallikatsi (2013). The NOPP operational wave model improvement project - Ocean Modelling, 72, 2-10.

Acknowledgements: The authors would like to thank the Office of Naval Research for their support research grants N00014-10-1-0453 and N00014-12-1-0534. Also support from Rijkswaterstaat and Deltares is greatly acknowledged.