Design methodology for trailing-edge high-lift mechanisms

More Info
expand_more

Abstract

A new methodology has been developed that integrates the preliminary wing design with trailing edge high-lift systems and accounts for three-dimensional flap kinematics. The high-lift system in the developed application includes the kinematic synthesis of four common mechanisms (dropped-hinge, four-bar, link-track and hooked-track) and a preliminary actuation architecture. The paper details how each of these mechanisms is synthesized based on a set of intuitive input requirements such as gap and overlap dimensions in landing and take-off configuration. A SimMechanics multi-body mechanism model is generated to obtain the internal loads of the mechanism and actuation torque. The mechanisms and actuating drive train are structurally sized, leading to a determination of system weight and power consumption. A weight measurement of the outboard hooked-track mechanism of a VFW-614 flap has been compared to a modeled hooked-track mechanism by using the proposed method. This resulted in a 13 % underestimation of the mechanism weight, which was attributed to modeling simplifications, sizing assumptions and a crude aerodynamic load estimation. A comparison study between the four different mechanism types to be applied on a Boeing 777 wing, shows that the method can give the designer valuable insight in the gap/overlap behavior of the flap during deployment as well as an initial estimation of the difference in required fairing size, mechanism weight, and actuation power between the four mechanisms.