Mucoadhesive films inside the colonic tube

Performance in a three-dimensional world

More Info
expand_more

Abstract

A self-propelling colonoscopic device moving inside the colonic tube should be able to periodically grip safely to the colonic wall as well as to manipulate the generated friction. The feasibility of achieving high grip and friction manipulation by covering the device with mucoadhesive films is experimentally tested. More precisely, the frictional behaviour of mucoadhesive films inside the colonic tube is tested in vitro in porcine colon. It appears that mucoadhesive films generate significantly higher friction than conventional materials (ANOVA p=0, 95% CIs=-3.04, -2.14). The geometry of the film plays a role as well. When holes are, for instance, present in the film geometry and are large enough so that the colonic tissue can wrap their borders, friction can be significantly increased (ANOVA p=0, 95% CIs=-2.53, -1.26). By altering the contact area or the film geometry, friction manipulation can be achieved. Moreover, a simple theoretical model is developed and experimentally verified (R=0.92). The model can be used to estimate the level of the friction generated by three-dimensional configurations of mucoadhesive films as a function of their geometric characteristics and the material properties of the colon.

Files