Title
Assessing the Effectiveness of the IJmuiden Salt Screen Design for Nonuniform Selective Withdrawal by Physical and Numerical Modeling
Author
De Fockert, Anton (Deltares)
O'Mahoney, Tom S.D. (Deltares)
Nogueira, Helena I.S. (Deltares)
Oldenziel, G. (TU Delft Fluid Mechanics)
Bijlsma, Arnout C. (Deltares)
Janssen, Hans (Rijkswaterstaat)
Date
2022
Abstract
Salt water intrusion through the New Sea Lock of IJmuiden, Netherlands requires mitigation to ensure availability of enough fresh water further inland. For this purpose, a salt screen has been proposed for selective withdrawal of salt water from the Noordzeekanaal in the vicinity of the lock complex. Formulas to assess the withdrawal rate of selective withdrawal are based on idealized layouts and conditions. In the case of IJmuiden, the flow surrounding a salt screen has a strong nonuniform character, such that these formulas are not applicable to predict the correct withdrawal rate and the effectiveness of selective withdrawal accurately. In this case physical scale modeling or computational fluid dynamics (CFD) modeling can be applied. This article discusses the limitations of the formulas for a three-dimensional (3D) flow application near the locks of IJmuiden and presents the use of CFD and physical scale model research to assess the flow patterns around the salt screen and the effectiveness of selective withdrawal. The CFD model was validated against the physical scale model and represented the complex flow fields around the salt screen to within acceptable deviations for both steady and transient states. This gives confidence in applying these more advanced modeling tools for the design and positioning of salt screens in confined complex 3D flow areas.
Subject
CFD validation
Density currents
Density measurements
New sea lock IJmuiden
Particle image velocimetry (PIV)
Physical scale model
Salt intrusion
Salt screen
Selective withdrawal
Three-dimensional particle tracking velocimetry (3D-PTV)
To reference this document use:
http://resolver.tudelft.nl/uuid:aea4549f-4708-4d61-a1ec-ef9be1a7f81c
DOI
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001958
Embargo date
2023-07-01
ISSN
0733-9429
Source
Journal of Hydraulic Engineering (Reston), 148 (2)
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Part of collection
Institutional Repository
Document type
journal article
Rights
© 2022 Anton De Fockert, Tom S.D. O'Mahoney, Helena I.S. Nogueira, G. Oldenziel, Arnout C. Bijlsma, Hans Janssen