Latin Hypercubes and Cellular Automata

More Info
expand_more

Abstract

Latin squares and hypercubes are combinatorial designs with several applications in statistics, cryptography and coding theory. In this paper, we generalize a construction of Latin squares based on bipermutive cellular automata (CA) to the case of Latin hypercubes of dimension. In particular, we prove that linear bipermutive CA (LBCA) yielding Latin hypercubes of dimension are defined by sequences of invertible Toeplitz matrices with partially overlapping coefficients, which can be described by a specific kind of regular de Bruijn graph induced by the support of the determinant function. Further, we derive the number of k-dimensional Latin hypercubes generated by LBCA by counting the number of paths of length on this de Bruijn graph.