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Kondo resonant spectra in coupled quantum dots
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The Kondo effect in coupled quantum dots is investigated from the viewpoint of transmission spectroscopy
using the slave-boson formalism of the Anderson model. The antiferromagnetic spin-spin couplingJ between
the dots is taken into account. ConductanceG through the dots connected in a series is characterized by the
competition between the dot-dot tunneling couplingVC and the level broadeningD in the dots~dot-lead
coupling!. WhenVC /D,1, the Kondo resonance is formed between each dot and lead, which is replaced by
a spin-singlet state in the dots at low gate voltages. The gate voltage dependence ofG has a sharp peak of
2e2/h in height in the crossover region between the Kondo and spin-singlet states. The sharp peak ofG
survives when the energy levels are different between the dots. WhenVC /D.1, the ‘‘molecular levels’’
between the Kondo resonant states appear; the Kondo resonant peaks are located below and above the Fermi
level in the leads at low gate voltages. The gate voltage dependence ofG has a broad peak, which is robust
againstJ. The broad peak splits into two peaks when the energy levels are different, reflecting the formation of
the asymmetric molecular levels between the Kondo resonant states.

DOI: 10.1103/PhysRevB.63.125327 PACS number~s!: 73.23.Hk, 72.15.Qm, 73.40.Gk, 85.35.Be
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I. INTRODUCTION

Recently the Kondo effect has been observed in semic
ductor quantum dots connected to external leads by tun
ing barriers.1–4 The Kondo effect makes a resonant state
the Fermi level in the leads when the number of electron
the dot is odd.5–12 The resonant width is given by the Kond
temperatureTK . This results in~i! the unitary limit of the
linear conductance through the dotG52e2/h at low tem-
peratures (T!TK) ~Ref. 5! and~ii ! the zero-bias peak of th
differential conductancedI/dVsd with the width ofTK under
finite source-drain voltages.9

In this paper, we theoretically examine the Kondo re
nant state in double quantum dots connected in a serie
will be shown in Fig. 1. We consider one level in each qua
tum dot, often referred to as an ‘‘artificial atom.’’13,14 At T
@TK , the transport properties of such systems have b
investigated by several experiments,15–18 from a viewpoint
of the formation of an ‘‘artificial molecule.’’ The molecula
orbitals between the two dots have been observed,17,18which
reflect the coherent coupling between the dots (VC in Fig. 1!.
When the double dot system accommodates two electr
the coherent coupling and intra-dot interactionU make
many-body states.19,20The ground state is a spin singlet. Th
excitation energy to a spin-triplet state is given by

J5
VC

2
@A~U/VC!21162~U/VC!#'4VC

2 /U, ~1!

whenU@VC . The ground state is an ‘‘entangled’’ state b
tween two localized spins, which has attracted new inte
for the application to quantum computing.21 At T!TK , the
two elementsVC and J would lead to rich structures of th
Kondo resonant state in this system.

A useful tool to elucidate the Kondo resonance is
slave-boson formalism of the Anderson model w
U→`.22–26In the case of a single quantum dot, the dot st
0163-1829/2001/63~12!/125327~11!/$15.00 63 1253
n-
l-
t

in

-
as
-

en

s,

st

e

e

is spin-up f ↑
†u0&, spin-down f ↓

†u0&, or empty b†u0& ( f ↑
†f ↑

1 f ↓
†f ↓1b†b51). In the mean-field approximation,b andb†

are replaced by a realc number,b†5b5b0. The density of
states for pseudofermions per spin is27

r f~v!52
Im

p

1

v2Ẽ1 iD̃
5

1

p

D̃

~v2Ẽ!21D̃2
. ~2!

In the Kondo regime where one electron exists in the
(b0

2!1,f ↑
†f ↑1 f ↓

†f ↓>1), the density of statesr f(v) is half

filled and, hence, the center of the resonant stateẼ is
matched with the Fermi level. The widthD̃ is the Kondo
temperature

TK,15
D

p
exp~pE* /D!, ~3!

whereD is the level broadening,pruVu2, with the density of
statesr in the external leads and the dot lead tunneling c
pling V. E* is the renormalized dot-level,E* 5Vg
1D/p ln(Dp/D) with the gate voltageVg and the bandwidth
D in the leads.28 Therefore, this method is suitable to exam
ine how the Kondo resonant state is formed. When the nu
ber of electrons in the dot is less than unity~valence fluctu-
ating regime!, the center of the resonance moves above
Fermi level. The resonant width increases fromTK to D, as

FIG. 1. A quantum dot dimer connected in series.
©2001 The American Physical Society27-1
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the number of electrons in the dot decreases. However,
mean-field approximation is not quantitatively accurate
the valence fluctuating regime.

The Kondo effect on the transport properties in coup
dot systems has been studied by several theore
methods.29–34 In our previous paper,35 we have applied the
slave boson mean-field theory to the double dot system in
absence of the antiferromagnetic spin-spin couplingJ. We
have shown that the Kondo resonance is determined by
competition between the dot-dot tunneling couplingVC and
dot-lead couplingD. The resonant state has two peaks bel
and above the Fermi level forVC /D.1, whereas it has a
single peak at the Fermi level forVC /D,1. In consequence
the linear-conductanceG through the double dots as a fun
tion of the gate voltage is qualitatively different between t
two cases.

Extending our calculations, Georges and Meir36 have
pointed out the importance of the spin-spin couplingJ. At
low-gate voltages, the coupling becomes relevant and ma
a spin-singlet state in the two dots. Then the Kondo re
nance between dots and leads is destroyed. Izumida
Sakai34 have examined the same problem using the num
cal renormalization group~NRG! method. A similar situation
was investigated for dilute magnetic systems, which
known as the two impurity Kondo problem.37–42 When the
antiferromagnetic couplingJ, the origin of which is the
Ruderman-Kittel-Kasuya-Yosida interaction, increases fr
zero, electronic states of two magnetic impurities exhibit
first-order phase transition from the Kondo state to the sp
singlet state atJ;TK,1 . The magnetic susceptibility diverge
at the transition. The phase transition changes into a cr
over in the case ofVC5” 0.40,41 In coupled quantum dots,J is
given by Eq.~1!, whereasTK,1 increases as the gate voltag
increases as in Eq.~3!.

As indicated by the previous work,34,36the interplay ofD,
VC , and J results in various transport properties. They a
observable by experiments since these parameters ca
controlled in quantum dot systems. The physical origins
the transport properties, however, are difficult to underst
by the NRG method34 and by the conventional argume
using the phase shift.36 In this paper, we look directly at the
Kondo resonant state in the presence of spin-spin couplinJ.
The effect ofJ can be understood in terms of the transm
sion spectrum, just as in our previous work in the absenc
J. We will show that even forJ5” 0, electron transport is
characterized by the competition between the dot-dot tun
ing couplingVC and the dot-lead couplingD. WhenVC /D
,1, the couplingJ is essentially important.G has a sharp
peak of 2e2/h in height, as a function of gate voltage, whic
stems from the coexistence of the Kondo coupling and s
singlet coupling. WhenVC /D.1, the transport propertie
are robust againstJ. These results are explained by only o
criterion, whether the transmission spectrum has dou
peaks. Hence, our argument is much simpler than the
based on the phase shift.36 In addition, the transmission spec
trum by itself is directly observable in the differential co
ductance under finite source-drain voltages, as suggeste
Aguado and Langreth.43 Further, we generalize our calcula
12532
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tions to asymmetric double dot systems. Some prelimin
results have been reported in Ref. 44.

The organization of this paper is as follows. In Sec. II, t
model Hamiltonian for a coupled quantum dot system is
troduced. We explain the slave-boson mean-field theory
derive the expression of the conductance through the dot
Sec. III, we briefly review electron transport through sym
metric double dots in the absence ofJ. The transmission
spectra are discussed in detail. In Sec. IV, we investig
electron transport through coupled dots in the presence oJ.
In Sec. V, the electron transport through asymmetric dou
dots is examined. Conclusions and discussion follow in S
VI.

II. MODEL AND METHOD

A. Model

Let us consider coupled quantum dots as shown in Fig
Two dots couple to each other withVC , and to external leads
with V. Each dot has a single energy levelEa(a5L,R). We
denote the energy difference,EL2ER , by DE. A common
gateVg is attached to the dots to controlEa ; we defineVg
5(EL1ER)/2. We assume that the intradot Coulomb inte
actionU is sufficiently large so that~i! the double occupancy
of electrons in each dot is forbidden, but~ii ! the antiferro-
magnetic spin coupling exists between the quantum dots
to the virtual double occupancy in a dot,JSL•SR with J
(54VC

2 /U) @see Eq. ~1!# and the spin operatorSa(a
5L,R). The interdot Coulomb interaction is neglected. T
temperature is set to be zero.

We adopt the (N52)-fold degenerate Anderson mod
with the antiferromagnetic SU(N) spin interactions, repre
sented by the slave-boson formalism.36,39 We introduce the
slave-boson operatorba

† , which creates an empty state an
fermion operatorf am

† , which creates a singly occupied sta
with spin m52 j ,2( j 21), . . . ,j 21,j (2 j 115N) in dot
a5L,R, under the constraint ofQ̂a[na1ba

†ba51 with
na5(mf am

† f am . The annihilation operator of an electron
dot a is rewritten asCam5ba

† f am .22–26

The Hamiltonian is

H5H01Hdot-lead1Hdot-dot1HJ1 (
a5L, R

la~Q̂a21!. ~4!

The first term on the right-hand side of Eq.~4! represents
electrons in the leads and dots;

H05 (
a5L, R

k,m

E~k!cakm
† cakm1 (

a5L, R
m

Ea f am
† f am . ~5!

The operatorcakm
† creates an electron in leada with energy

E(k) and spinm. The second and third terms on the righ
hand side of Eq.~4! describe the dot-lead tunneling couplin
and the dot-dot tunneling coupling, respectively,

Hdot-lead5
V

AN
(

a,k,m
cakm

† f amba
†1H.c., ~6!
7-2
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KONDO RESONANT SPECTRA IN COUPLED QUANTUM DOTS PHYSICAL REVIEW B63 125327
Hdot-dot5
VC

N (
m

bL
† f Lmf Rm

† bR1H.c. ~7!

The termHJ gives the antiferromagnetic spin-spin intera
tion

HJ5
J

N (
m,n

f Rm
† f Lmf Ln

† f Rn1H.c. ~8!

The constraint ofQ̂a51 is taken into account by the las
term on the right-hand side of Eq.~4! with the Lagrange
multiplier la .

B. Mean-field approximation

Let us now make the following two assumptions to tre
the Hamiltonian~4! within the mean-field theory.23,39 First,
the slave-boson operatorsba andba

† are replaced by a con
stantc-numberba . This approximation is exact in the limi
of N→` whenJ50; it corresponds to the calculation to th
lowest order in the 1/N expansion.22–24Second, we also trea
the spin-spin coupling~8! by the mean-field theory. It is
decoupled by a parameterk,

k5
J

N (
m

^ f Rm
† f Lm&, ~9!

which characterizes the antiferromagnetic order between
spins in the dots. Then we obtain the following mean-fie
Hamiltonian;

H05 (
a5L, R

k,m

E~k!cakm
† cakm1(

m
~ f Lm

† f Rm
† !

3S ẼL ṼC1k

ṼC1k ẼR
D S f Lm

f Rm
D

1
V

AN
(

a,k,m
ba~cakm

† f am1 f am
† cakm!

1 (
a5L, R

la~ba
221!1

1

J
k2, ~10!
12532
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whereẼa5Ea1la and ṼC5b̄Lb̄RVC with b̄a5ba /AN.
From this Hamiltonian, we can calculate the ground st

energy. Minimizing the ground-state energy, we determ
five parametersba ,la(a5L,R), and k self consistently.
~See Appendix A.! In general, the self-consistent equatio

have two solutions; one isD̃a50(ba50) andk5J/2, and

the other isD̃a5” 0. The former means that electrons in th
dots are isolated from the leads and make a spin-singlet s
The latter corresponds to the coherent couplings betw
dots and leads. We determine the ground state by compa
the energies of these solutions.

C. Conductance

Next, we derive the expression of the conductanceG.
CurrentI through the coupled dots under a source-drain v
age Vsd is given by a charge transfer through the cent
tunneling barrier

I 5
2 ieVC

\ (
m

~^cLm
† cRm&2^cRm

† cLm&!, ~11!

where^ . . . & represents the Keldysh-Green function. By t
mean-field approximations, ^cLm

† cRm&5bLbR^ f Lm
† f Rm&,

where ^ f Lm
† f Rm& can be calculated using the Hamiltonia

~10!. ~See Appendix B.!
Evaluating the Keldysh-Green functions, we obtain t

expression of the conductanceG[ limVsd→0I /Vsd,

G5
2e2

h
T~v50!, ~12!

formally in the same form as the Landauer formulas.35 The
transmission probabilityT(v) through the two dots is
T~v!5
4D̃LD̃Rt2

@~v2ẼL2 i D̃L!~v2ẼR2 i D̃R!2t2#@~v2ẼL1 i D̃L!~v2ẼR1 i D̃R!2t2#
, ~13!
with D̃a5b̄a
2D (a5L,R) and t5ṼC1k. We choosev50

at the Fermi level in the leads.

III. SYMMETRIC DOUBLE DOTS WITHOUT J

We begin with a symmetric double dot systemEL5ER in
the absence of the spin-spin couplingJ50. Because of the
symmetry between the two dotsb̄L5b̄R[b̄, nL5nR[n/2,
lL5lR , and ẼL5ẼR[Ẽ. k50 due to the absence ofJ.
Then the expression of the transmission probabilityT(v) in
Eq. ~13! is simplified to

T~v!5
4D̃2ṼC

2

@„v2~Ẽ1ṼC!…21D̃2#@„v2~Ẽ2ṼC!…21D̃2#
,

~14!
7-3
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TOMOSUKE AONO AND MIKIO ETO PHYSICAL REVIEW B63 125327
with D̃5b̄2D and ṼC5b̄2VC . The parameterṼC character-
izes the effective dot-dot coupling. Note thatṼC/D̃
5VC /D.

The line shape ofT(v) is determined by the parameter
VC /D.35 In Fig. 2, T(v) is plotted as a function ofv/D̃.
WhenVC /D,1, T(v) has a single peak atv5Ẽ @Fig.2~a!#,
whereas whenVC /D.1, T(v) has two maxima atv5Ẽ

7AṼC
22D̃2 @Fig. 2~c!#. When VC /D51, T(v) has a flat-

topped single peak as shown in Fig. 2~b!.
The dotted line in Fig. 3~a! represents the conductance

a function of the gate voltage whenVC /D,1. For suffi-
ciently low gate voltages, the Fermi level in the leads
located at the peak ofT(v) @the case ofVg /D522 is indi-
cated by the arrow in Fig. 2~a!#. In this case, each dot ac
commodates one electron and forms the Kondo reso
state with conduction electrons in a lead. The electron tra
port is determined by the hopping between the two Kon
resonant states. ThusG is proportional toVC

2 and indepen-
dent of the gate voltage. As the gate voltage increases
position of the Fermi level shifts downwards@the cases of
Vg /D50 and 1 in Fig. 2~a!#. The number of electrons in th
dotsn decreases monotonically from 2 to 0~valence fluctu-
ating regime!. As a result,G decreases with increasing th
gate voltage.

The dotted line in Fig. 4~a! represents the conductance
a function of the gate voltage whenVC /D.1. For low gate

FIG. 2. The transmission probabilityT(v) as a function of (v

2Ẽ)/D̃ with the energy of incident electronsv, the level position

Ẽ and width D̃ of the Kondo resonance.EL5ER and J50. ~a!
VC /D50.3, ~b! 1.0, and~c! 10.0. Arrows indicate the positions o
the Fermi level in the leads for several values of the gate volt
Vg /D.
12532
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FIG. 3. ~a! The conductanceG versus the gate voltage whe
VC /D50.3. EL5ER . The dotted and solid lines represent the ca
of J50 and J/D59.031024 (U/D543102), respectively.~b!

The Kondo resonance widthD̃ ~dotted line! and the spin-singlet
order parameterk ~solid line! versus the gate voltage forJ/D

59.031024. The inset showsG ~broken line!, D̃ ~dotted line!, and
k ~solid line! as functions of the gate voltage, near the sharp pea
G.

FIG. 4. ~a! The conductanceG versus the gate voltage whe
VC /D510.0. EL5ER . The dotted and solid lines represent th
cases ofJ50 andJ/D51.0 (U/D543102), respectively.~b! The

Kondo resonance widthD̃ ~dotted line! and the spin-singlet orde
parameterk ~solid line! versus the gate voltage forJ/D51.0.
7-4
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KONDO RESONANT SPECTRA IN COUPLED QUANTUM DOTS PHYSICAL REVIEW B63 125327
voltages, the Fermi level in the leads is located at the ce
of T(v) @the case ofVg /D527 in Fig. 2~c!#, and thus the
conductanceG is considerably suppressed. As the gate vo
age increases, the Fermi level shifts downwards@the case of
Vg /D524 in Fig. 2~c!#, which increasesG. At a gate volt-
age ofVg'0, the Fermi level is just on the bonding pea
and, thus, the conductanceG has the maximum value o
2e2/h. On increasing the gate voltage further, the Fer
level shifts downwards further@the case ofVg /D55 in Fig.
2~c!#, which leads to a decrease inG.

In summary, whenVC /D,1, the electron transport i
characterized by electronic states in each dot below
Kondo temperature whereas, whenVC /D.1, it is character-
ized by the formation of molecular levels of the Kondo res
nant states. In the recent work,43 Aguado and Langreth hav
argued that these molecular levels are directly observab
the differential conductance under finite source-drain v
ages.

We next mentionVg dependence of the peak widthD̃ of
the Kondo resonances. WhenVC /D!1,

D̃5H TK ~Vg,0!

D̃VF[D/2S 1

2
1

2

p
arctan~Vg /D! D ~0,Vg!

,

~15!

whereTK is the Kondo temperature for the coupled dots,

TK5TK,1 expS VC

D
arctan

VC

D D /A11~VC /D!2. ~16!

TK,1 is given by Eq.~3!. TK increases exponentially withVg
or VC .36 WhenVC /D@1,

D̃55
TK ~Vg,2VC/2!

D

2VC
~Vg1VC/2! ~2VC/2,Vg,VC/2!

D̃VF ~VC/2,Vg!

. ~17!

~See Appendix C.!

IV. SYMMETRIC DOUBLE DOTS WITH J

Now we discuss a symmetric double dot system,EL
5ER , in the presence of the spin-spin couplingJ. When the
couplingJ is strong enough, the Kondo coupling between
dot and lead is destroyed and a spin-singlet state app
between the dots. First we make a rough estimation oJ
5Jc , where the crossover between the Kondo and sp
singlet states takes places. The ground-state energyegs in Eq.
~A11! is given by

egs5Vg2
2

p
D̃2

k2

J
2

2ẼD̃

D
, ~18!

where D̃L,R[D̃, ẼL,R[Ẽ, and nL,R[n/2. Here we have
used the self-consistent equations in Appendix A. The
term is negligible whenn;2. We consider two simple situ
ations; ~i! Kondo state without spin-singlet ordering (k
12532
er

-

i

e

-

in
-

a
ars

-

st

50), egs5Vg22/pD̃, and ~ii ! spin-singlet state without the

Kondo effect (D̃50 andk5J/2), egs5Vg2J/4. The cross-
over between~i! and~ii ! takes place atJc /D̃58/p>2.54. If
VC→0, D̃→TK,1 and thusJc /TK,152.54. This is consisten
with the NRG result of the two-impurity Kondo problem
Jc /TK,1>2.2.37 When VC /D50.11 and Jc /D52.1
31023(U/D521.2), Jc /D52.55 is in good agreement with
the recent NRG calculation of the coupled dot system34 that
givesJc /TK,152.65.

In coupled quantum dots,J is given by 4VC
2 /U. U/D

543102 is assumed in this paper. We investigate the g
voltage dependence ofG with fixed J. With decreasingVg ,
the Kondo effect becomes weaker, as indicated in Eq.~3!,
and thusJ is relatively stronger compared withD̃. At suffi-
ciently low gate voltages, a spin-singlet state appears
destroys the Kondo effect.

A. Transmission probability

In the present case, the transmission probabilityT(v) is
given by

T~v!5
4D̃2t2

@„v2~Ẽ1t !…21D̃2#@„v2~Ẽ2t !…21D̃2#
,

~19!

where t5ṼC1k, ṼC5b̄2VC , and D̃5b̄2D. This result is
the same as the one withoutJ @Eq. ~14!# if the dot-dot cou-
pling ṼC is replaced byt. Then the line shape ofT(v) quali-
tatively depends on whethert/D̃5VC /D1k/D̃ is larger than
unity.

B. Weak dot-dot coupling case

First we discuss electron transport whenVC /D,1. The
solid line in Fig. 3~a! representsVg dependence ofG, while
the solid and dotted lines in Fig. 3~b! representVg depen-
dence of k and D̃, respectively (VC /D50.3,J/D59.0
31024). For sufficiently low gate voltages,k5J/2 and D̃
50, indicating a complete spin-singlet state, which results
G50. With increasingVg , the Kondo effect is stronger. A
a consequence,D̃ becomes larger, whereask becomes
smaller. At high gate voltages,G is identical to the one with-
out J ~dotted line!. Here the spin-spin couplingJ is weak
enough compared with the Kondo effect. Between these
regions,G has a sharp peak of 2e2/h in height. At this peak,
both the Kondo effectD̃ and spin-singlet couplingk coexist
@see the inset in Fig. 3~b!#. This peak structure ofG is con-
sistent with the NRG calculations.34

The calculated results of theG-Vg curve can be under
stood by Eq.~19!. At high gate voltages,k/D̃!1 so that
t/D̃5VC /D1k/D̃.VC /D; the plot of G is similar to the
one of J50. With decreasingVg , k/D̃ increases and thu
t/D̃ becomes larger. On the right-hand side of the sharp p
of G, t/D̃,1 and henceT(v) has a single peak. Atk/D̃
512VC /D, t/D̃51, and T(v50)51, resulting in G
7-5
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TOMOSUKE AONO AND MIKIO ETO PHYSICAL REVIEW B63 125327
52e2/h. With decreasingVg further, split peaks ofT(v) sup-
pressG. At a certain gate voltage, the Kondo states disapp

and a spin-singlet state appears (k5J/2 andD̃50).
From the results given above, the origin of the peak oG

is explained as follows. The Kondo resonant state is form
by the coherent coupling between the dot and the lead, w
the spin-singlet state is formed by the coherent coupling
tween the two dots. When these two states coexist, the
and right leads are connected via a coherent channel. E
trons transfer through this channel and as a result,T(v
50)51.

We find that the width of the sharp peak is roughly giv
by VC . This implies that the crossover region between
spin-singlet state and the Kondo state becomes wider asVC

increases. It is consistent with the results by Sakaiet al.40,41

for the two-impurity Kondo problem.~See also Refs. 34,36.!

C. Strong dot-dot coupling case

Next we discuss electron transport whenVC /D.1. The
solid line in Fig. 4~a! representsVg dependence ofG; the
solid and dotted lines in Fig. 4~b! representVg dependence

of k and D̃, respectively (VC /D510.0,J/D51.0). For this
case, the gate voltage dependence ofG is fairly robust
againstJ except that the region ofG50 for low gate volt-

ages. WhenG50, k5J/2, andD̃50 ~spin-singlet state in

the dots! as in the case ofVC /D,1. Both k and D̃ change
gradually against the gate voltage~there is a simple relation

of 2k/J51/22D̃/D, see Appendix C!. These results contras
to the ones for the weak dot-dot coupling case.

The robustness ofG againstJ is explained as follows. At
the top of the broad peak ofG, n.1 as seen in the previou
section. On the right-hand side of the peak,n,1 and spin-
spin couplingJ is not relevant. On the left-hand side of th
peak, n.1 and the antiferromagnetic interaction becom
more effective with decreasingVg . However, the transition
from the Kondo states to the spin-singlet state takes plac
quite a low gate voltage because the Kondo temperatureTK

@Eq. ~16!# is much larger thanTK,1 for strong dot-dot cou-

pling. In addition, t/D̃ is always larger than unity whe
VC /D.1. Thus the spin couplingJ does not introduce quali
tatively new features in expression~19!.

D. Intermediate region of VC ÕD

Finally, we showVg dependence ofG by changing the
magnitude ofVC /D in Fig. 5. AsVC increases,~i! the height
of the plateau increases,~ii ! the sharp peak ofG broadens,
and ~iii ! the position of the sharp peak ofG shifts to larger
Vg . WhenVC /D.1, the peak position is fixed atVg;0. At
the peak ofG, n52 when VC /D!1 while n51 when
VC /D@1; n decreases gradually from 2 to 1 asVC in-
creases. In conclusion electron transport and electronic s
in the dots change continuously from the weak to stro
dot-dot coupling regions.
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V. ASYMMETRIC DOUBLE QUANTUM DOTS

In this section, we discuss the effects of the energy d
ferenceDE5EL2ER between the dots. First, we describ
the case ofVC /D,1. In Fig. 6, the gate voltage dependen
of G is shown for DE50 ~thin dotted line! and DE5” 0
~thick dotted line! in the absence ofJ. These plots show tha
DE has no effect on the height ofG when the gate voltage is
low enough and both of the dots accommodate one elect
This is because the dot-lead coupling makes the Kondo r
nant state at the Fermi level in the leads, irrespective of
position of the dot levels. The single peak of the transmiss
probability T(v) is located at the Fermi level, as discuss
in Fig. 2~a!. As a result,G is insensitive toDE. In the pres-
ence ofJ, the gate voltage dependence ofG is shown for
DE50 ~thin solid line! and DE5” 0 ~thick solid line!. The
sharp peak ofG appears, but the peak height is less th
2e2/h.

Next, we describe the case ofVC /D.1. In Fig. 7, the
gate voltage dependence ofG is shown for DE50 ~thin

FIG. 5. The conductanceG versus the gate voltage for sever
values ofVC /D from 0.2 to 3.0.EL5ER . All the curves are verti-
cally offset for clarity.

FIG. 6. The conductanceG versus the gate voltage whe
VC /D50.3. ForJ50, DE/D50.0 ~thin dotted line! and 2.0~thick
dotted line!. For J/D59.031024 (U/D543102), DE/D50.0
~thin solid line! and 2.0~thick solid line!.
7-6



f

n

w
la
e

at

id

t

tro
do

le
g

ra

s

ol

er
th

su

at
.
re

-
are

xi-
er

hen
-

ot
the

e-
ve
not

en-
gy

x-

c-
een
s
the

n

al

KONDO RESONANT SPECTRA IN COUPLED QUANTUM DOTS PHYSICAL REVIEW B63 125327
dotted line! andDE5” 0 ~thick dotted line! in the absence o
J. For low gate voltages,nL5nR51 andG is independent of
DE as in the case ofVC /D,1. In the valence fluctuating
regime, wheren decreases asVg increases,nL5” nR , and
hence, electron transport depends onDE prominently. The
broad peak ofG splits into two peaks. They are less tha
2e2/h in height. At the left-hand peak,nL decreases from
unity to zero with increasingVg while nR.1. At the right-
hand peak,nR decreases from unity to zero whilenL.0.
These peaks are understood by the Kondo resonance bet
a molecular orbital in the dimer and leads. One molecu
orbital has the amplitude mainly in the left dot, and the oth
in the right dot. The peak heights ofG are determined by the
amplitude of the orbitals in the other dot. Note that the g
voltage dependence ofG is fairly robust againstJ as in the
case ofDE50 ~compare the thick dotted and thick sol
lines in Fig. 7!.

Finally, we show the intermediate region ofVC /D in Fig.
8. WhenVC /D!1, G has a sharp peak. AsVC /D increases,
the sharp peak broadens and a weak peak develops aVg
;DE/2. The width of the weak peak is;D. The line shapes
of these two peaks become similar to each other. Elec
transport changes continuously from the weak to strong
dot coupling regions, as discussed in Fig. 5 in the case
DE50.

VI. CONCLUSIONS AND DISCUSSION

We have investigated the conductance through coup
quantum dots in series, as a function of the gate volta
below the Kondo temperature. Electron transport is cha
terized by the ratio ofVC /D. WhenVC /D,1, a plateau of
G appears because each dot forms the Kondo resonant
with conduction electrons in a lead, andG is determined by
the hopping between the Kondo states. For low gate v
ages, they are replaced by the spin-singlet state andG50. A
sharp peak ofG appears with the height of 2e2/h, which is
due to a coherent electron transport brought by the coop
tion between the Kondo and spin-singlet states. When
energy levels are different in the dots, the sharp peak
vives, but the peak height is less than 2e2/h. WhenVC /D
.1, the molecular levels between the Kondo resonant st
appear. The gate voltage dependence ofG has a broad peak
The antiferromagnetic spin coupling is ineffective, compa

FIG. 7. The conductanceG versus the gate voltage whe
VC /D510.0. For J50, DE/D50.0 ~thin dotted line! and 8.0
~thick dotted line!. For J/D51.0 (U/D543102), DE/D50.0
~thin solid line! and 8.0~thick solid line!.
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with the case ofVC /D,1, because~i! the Kondo tempera-
ture of a coupled dot is large and~ii ! the transmission prob
ability always has two peaks. When the energy levels
different in the dots, the conductanceG has two peaks, re-
flecting asymmetric molecular levels.

We should mention the validity of the mean-field appro
mation. First, the mean-field theory predicts the first-ord
transition between the Kondo and spin-singlet states w
VC /D,1/p;39 it is an artifact of the mean-field theory, be
cause the NRG results show that whenVC5” 0, the transition
is always smooth.40,41For the present problem of coupled d
systems, this artifact appears on the left-hand side of
sharp peak ofG; a discontinuous jump ofG is seen for
VC /D50.2 in Fig. 5. Second, in the valence fluctuating r
gime, the fluctuations around the mean field of the sla
boson are not negligible. Hence, our calculations are
enough for quantitative discussion.

In real coupled quantum dots, the intersite Coulomb
ergy, U intnLnR , is present. Then the ground-state ener
Eg,int is given by

Eg,int5Egs1U int~12bL
2!~12bR

2 !, ~20!

in the mean-field approximation. Equation~20! indicates that
the intersite Coulomb energy raises the dot levelsEL andER
effectively. As a result, the valence fluctuating regime is e
tended and the Kondo regime shifts to lowerVg . Note that
we have assumed that the on-site Coulomb interactionU is
infinite, and thus,U int!U.

When U int is large enough, the coupled dots cannot a
commodate more than one electron. This situation has b
investigated by Pohjolaet al.31 In this case, the coupled dot
is regarded as a single quantum dot with two levels when
dot-dot tunneling is large. Pohjolaet al. have found a split-

FIG. 8. The conductanceG versus the gate voltage for sever
values ofVC /D from 0.2 to 3.0.DE/D52.0. All the curves are
vertically offset for clarity.
7-7
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ting of the Kondo resonance due to the level differenceDE
between the two dots. The one peak is on the Fermi leveEF
and the other is located atEF1DE. This is in contrast to the
present case in which the split peaks are located below
aboveEF .

Finally, we comment on an asymmetric dot-lead coupl
case,DL5” DR . This asymmetry introduces the following tw
effects. First, the maximum of the conductance is less t
2e2/h by a geometrical asymmetry 4DLDR /(DL1DR)2.5

Second, the difference of dot-lead couplingdD[(DL
2DR)/2 introduces a difference in the number of electro
between the dots, resulting inẼL5” ẼR . Electronic states are
therefore, asymmetric; the situation is similar to the case
EL5” ER discussed in Sec. V.@Equation~A9! in Appendix A
is modified by replacingD̃0→D̃01b̄1

2dD and D̃1→D̃1

1b̄0
2dD. The latter modification means thatnL5” nR when

dD5” 0.#
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APPENDIX A: DERIVATION OF THE GROUND-STATE
ENERGY

First, we review a single impurity model with the impu
rity level E.23,25,26 We start from the following mean-field
HamiltonianH

H5(
k,m

E~k!ckm
† ckm1(

m
Ẽf m

† f m

1
Vb

AN
(
k,m

~ckm
† f m1 f m

† ckm!1l~b221!, ~A1!

with Ẽ5E1l and b is the mean-field value of the slav
boson.

The free energyF of the system is given by

F52
2

bE dv ln~11e2bv!r̄~v!1l~b221!, ~A2!

where r̄(v) is the density of states, which is given by th
retarded Green functionGr(v) of electrons in the dot

r̄~v!5
Im

p
Gr~v!5

Im

p

1

v2Ẽ2S~v!
, ~A3!

with the self-energyS(v)

S~v!5
b2V2

N (
k

1

v2E~k!1 ih

52 ip
b2V2

N
r~v![2 i D̃F~v!. ~A4!
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Herer(v) is the density of states of conduction electrons
a lead,r5r(v50), F(v)5r(v)/r, and D̃5prb2V2/N.
To derive Eq. ~A4!, we have assumed thatr(v) varies
smoothly when compared withD̃.

By the substitution of Eqs.~A3! and ~A4! into Eq. ~A2!
and integration by parts, the free energy~A2! becomes

F5
N

p
ImE

2`

`

dv f ~v!F~v!ln~v2j!1l~b221!,

~A5!

with j5Ẽ1 i D̃.
If the leads has a wide flat band of width 2D, F(v)

51(2D,v,D), the free energy is

F5
N

p
ImE

2D

D

dv f ~v!ln~v2j!1l~b221!. ~A6!

At zero temperature, this yields

F5
N

p
ImH jF lnS j

D D21G J 1l~b221!. ~A7!

An extension to the coupled dot system is straightforwa
The free energy is

F5
N

p
Im (

P56
E

2D

D

dv f ~v!ln~v2jP!

1 (
a5L, R

la~ba
221!1

N

J
k2, ~A8!

with

jP5Ẽ01 i D̃01PA~Ẽ11 i D̃1!21t2. ~A9!

Here Ẽ0,15(ẼL6ẼR)/2, D̃0,15b̄0,1
2 D with b̄0,1

2 5(b̄L
2

6b̄R
2)/2, andt5VCAb̄0

42b̄1
41k. jP are the eigenvalues o

the matrix given by

S ẼL1 i D̃L ṼC1k

ṼC1k ẼR1 i D̃R
D . ~A10!

Then the ground-state energyEgs5Negs@5F(T50)# is
written as

egs52~Ẽ02E* !~ b̄0
221/2!12~Ẽ12DE!b̄1

21
1

J
k2

1
1

p (
P56

ImFjPS ln
pjP

D
21D G , ~A11!

whereE* 5Vg1D/p ln(Dp/D) with the bandwidthD in the
leads.28 In experiments,E* can be controlled by the gat
voltageVg ~we redefineE* asVg).

Minimizing the ground-state energy~A11!, we determine
five parameters,ba ,la(a5L,R) and k, self-consistently.
The self-consistent equations are
7-8
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2~Ẽ02Vg!1
1

p (
P

ImF S iD1
Pb̄0

2tVC

Ab̄0
42b̄1

4A~Ẽ11 i D̃1!21t2D
3 ln

pjP

D G50, ~A12!

2S Ẽ12
DE

2 D
1

1

p (
P

ImF iẼ1D2b̄0
2~D21VC

2 1kVC /Ab̄0
42b̄1

4!

A~Ẽ11 i D̃1!21t2

3P ln
pjP

D G50, ~A13!

2~ b̄0
221/2!1

1

p (
P

ImF ln
pjP

D G50, ~A14!

2b̄1
21

1

p (
P

ImF ~Ẽ11 i D̃1!

A~Ẽ11 i D̃1!21t2
P ln

pjP

D G50,

~A15!

2k

J
1

1

p (
P

ImF t

A~Ẽ11 i D̃1!21t2
P ln

pjP

D G50.

~A16!

APPENDIX B: EXPRESSION OF CURRENT

In this appendix, we derive the expression of the curr
using the real-time functional integral method. The alter
tive derivation is given in Ref. 45, which is based on t
equation of motions for the Green functions. We take\51
in this appendix.

All of the physical quantities can be obtained in princip
by calculating the time evolution of the density matrixr(t)

r~ t !5U†~ t !r init.U~ t !, ~B1!

wherer init. is the initial density matrix andU(t) is the time
evolution kernel of the HamiltonianH

U~ t !5T exp@2 iH ~ t !#, ~B2!

using the time ordering productT.
Corresponding to Eq.~B1!, we introduce the generatin

functionalW@ j1 ,j2#,46,47

exp~W@ j1 ,j2# !5Tr U j 1†~ t !r init.U
j 2~ t !, ~B3!

whereU j (t) is the time evolution kernel of the Hamiltonia
H j5H2 j̄•f2 f̄• j with j̄5( j̄ Lm , j̄ Rm), f̄5( f̄ Lm , f̄ Rm), and
their conjugatesj andf. Equation~B3! is evaluated using the
real-time functional integral method, which is the function
integral on the Keldysh contour;48–51 the suffix ‘‘1’’ and
‘‘2’’ in j correspond to the upper and lower branches of
Keldysh contour, respectively.
12532
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For the Hamiltonian~10!, Eq.~B3! is given by the follow-
ing functional integral on the degrees of freedom of electro
in the dots;52

exp~W@J# !5E DfDf̄

3expS (
m561/2

E dvF̄G21F2J•F̄2F̄•JD
~B4!

F̄5@ f̄ 1;Lm(v), f̄ 2;Lm(v), f̄ 1;Rm(v), f̄ 2;Rm(v)# and J̄
5@ j̄ 2;Lm(v), j̄ 1;Lm(v), j̄ 2;Rm(v), j̄ 1;Rm(v)# with f 15( f 1
1 f 2)/2, f 25 f 12 f 2 , j 15( j 11 j 2)/2, j 25 j 12 j 2. The ma-
trix G21 is the inverse of the Green functions:

G21~v!5S 0 Gr , L
21 ~v! 0 t

Ga, L
21 ~v! D̃L f L~v! t 0

0 t 0 Gr , R
21 ~v!

t 0 Ga, R
21 ~v! D̃Rf R~v!

D ,

~B5!

with the Fermi functionf a(v) of the electrodes with the
chemical potentialma and the retarded and advanced Gre
function Gr ,a,a

21 (a5L,R) of electrons in the dots:

Gr , a
21 ~v!5v1Ẽa1 i D̃a , ~B6!

Ga, a
21 ~v!5v1Ẽa2 i D̃a . ~B7!

After integrating over the degrees of freedom of electron
the dots, the generating functionalW is finally given by
G(v),

W52 (
m561/2

E dv J̄G~v!J. ~B8!

The currentI Eq. ~11! is rewritten as

I 52 ieṼC(
m

E dv„^ f̄ 1;Lmf 1;Rm~v!&

2^ f̄ 1;Rmf 1;Lm~v!&…. ~B9!

This is represented using the generating functionalW

I 52 ieṼC(
m

E dvS d

dJ2;Lm

d

d J̄2;Rm

2
d

dJ2;Rm

d

d J̄2;Lm
D exp~W@J1 ,J2# ! ~B10!

522ieṼCE dv@G1,3~v!2G3,1~v!#, ~B11!

where Gn,m(v) is the (n,m) component ofG. I is finally
given by
7-9
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I 52eE dvT~v!@ f L~v!2 f R~v!# ~B12!

with T(v) in Eq. ~13!.
To derive Eq.~B12!, we have assumedD̃a , Ẽa , andk

are determined by the self-consistent equations for the t
mal equilibrium casemL5mR . Thus, the present calculatio
is valid only in the limit ofmL→mR . Extensions to the cas
of finite Vsd is possible within the framework of the prese
method. See Refs. 30,43.

APPENDIX C: KONDO TEMPERATURE WHEN VC ÕDš1

In this appendix, we derive the gate voltage depende
of D̃ whenJ50. The self-consistent equations are given

~ b̄0
221/2!1

1

2p (
P

ImF lnS pjP

D D G50, ~C1!

~Ẽ2Vg!1
1

2p (
P

ImF ~PVC1 iD!lnS pjP

D D G50,

~C2!

wherejP5Ẽ1PṼC1 i D̃ with ṼC5b̄0
2VC and D̃5b̄0

2D.
WhenVg,2VC/2, the Kondo state is formed in each d

and lead and thusẼ50. Then Eq.~C2! is reduced to

2Vg2
VC

p
arctan~VC /D!1

D

p
lnS pAD̃21ṼC

2

D
D 50,

~C3!

resulting in the first line of Eq.~17!.
When 2VC/2,Vg,VC/2, the broad peak ofG appears.

For this case, the bonding level is located near the Fe
level in the leads and the antibonding level is far away fr
vid

ys

en

M

ett
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i

the Fermi level. Then we can use the following two con
tions: ~i! Ẽ>ṼC (Rej2>0) and ~ii ! (P Im@ ln(pjP /D)#
>2(P Im@P ln(pjP /D)#> Im@ ln(pj2 /D)#. Then substituting
Eq. ~C1! into Eq. ~C2! yields

2ṼC2S Vg1
1

2
VCD1

D

2p (
P

ReF lnS ipD̃

D
D

1 lnS p~2ṼC1 i D̃ !

D
D G50. ~C4!

The logarithmic terms are negligible becausen>1 so that
D̃;D/2 andṼC;VC/2. Thus the gate voltage dependence
D̃ reduces to the second line in Eq.~17!.

When VC/2,Vg wheren,1, the coupled dot system i
essentially the same as the noninteracting system;n is deter-
mined by the position of the energy level:

n512
2

p
arctan~Vg /D!. ~C5!

This result yields the third line of Eq.~17!, becauseD̃
5D(12n/2)/2.

Finally, we mention the relation betweenk and D̃ when
J5” 0 ~Sec. V!. The self-consistent equation fork, Eq.~A16!,

2k

J
1

1

p (
P

ImFP lnS pjP

D D G50, ~C6!

is simplified for2VC/2,Vg,VC/2. Using the conditions~i!
and ~ii !, we obtain

2k

J
1

D̃

D
21/250. ~C7!
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