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Kondo resonant spectra in coupled quantum dots
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The Kondo effect in coupled quantum dots is investigated from the viewpoint of transmission spectroscopy
using the slave-boson formalism of the Anderson model. The antiferromagnetic spin-spin cdupditvgeen
the dots is taken into account. Conducta@éhrough the dots connected in a series is characterized by the
competition between the dot-dot tunneling couplig and the level broadening in the dots(dot-lead
coupling. WhenV/A<1, the Kondo resonance is formed between each dot and lead, which is replaced by
a spin-singlet state in the dots at low gate voltages. The gate voltage dependéhd¢m®fa sharp peak of
2€?/h in height in the crossover region between the Kondo and spin-singlet states. The sharp @ak of
survives when the energy levels are different between the dots. Whéa>1, the “molecular levels”
between the Kondo resonant states appear; the Kondo resonant peaks are located below and above the Fermi
level in the leads at low gate voltages. The gate voltage depender@@da$ a broad peak, which is robust
against). The broad peak splits into two peaks when the energy levels are different, reflecting the formation of
the asymmetric molecular levels between the Kondo resonant states.
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. INTRODUCTION is spin-up f1|0), spin-downf]|0), or emptyb'|0) (f}rﬁ
+ fIfl +b'b=1). In the mean-field approximatioh,andb
Recently the Kondo effect has been observed in semicorgre replaced by a realnumber,b’=b=b,. The density of
ductor quantum dots connected to external leads by tunnektates for pseudofermions per spifiis
ing barriers=* The Kondo effect makes a resonant state at
the Fermi level in the leads when the number of electrons in Im 1 1 A
the dot is odd® 12 The resonant width is given by the Kondo pilo)=—— ————==— =
temperatureT . This results in(i) the unitary limit of the T o—E+iA T (0—-E)+A
linear conductance through the dt= 2e2/h' at low tem- | the Kondo regime where one electron exists in the dot
peratures {<Tk) (Ref. 5 and(ii) the zero-bias peak of the (bg<1vf%fT+fIflgl)= the density of statep(w) is half

differential conductancdl/d Vg with the width of T under . ~
finite source-drain voltagés. filled and, hence, the center of the resonant states

In this paper, we theoretica”y examine the Kondo resomatched with the Fermi level. The width is the Kondo
nant state in double quantum dots connected in a series, #nperature
will be shown in Fig. 1. We consider one level in each quan-
tum dot, often referred to as an “artificial atont>4 At T Te = A exp(mE* 1), 3)
>Ty, the transport properties of such systems have been G
investigated by several experimefts!® from a viewpoint
of the formation of an “artificial molecule.” The molecular
orbitals between the two dots have been obset/étwhich . . .

A pling V. E* is the renormalized dot-levelE* =V,

reflect the coherent coupling between the ddts (n Fig. 1). , .
+ A/ In(Dw/A) with th I h h
Wnen e e dot sysem accommodates two lecror /7 N0 e it voragu, o e Jaravidy

the coherent coupling and intra-dot interactich make ine how the Kondo resonant state is formed. When the num
many-body state¥?° The ground state is a spin singlet. The : _ ' -
y y g b 9 ber of electrons in the dot is less than unalence fluctu-

excitation energy to a spin-triplet state is given b . i
vy P P 9 y ating regime, the center of the resonance moves above the
Fermi level. The resonant width increases frdmto A, as

whereA is the level broadeningrp|V|?, with the density of
statesp in the external leads and the dot lead tunneling cou-

VC 2 2

J:7[\/(U/VC) +16—(U/V¢)]~4Ve/U, (1)
vV Ve A%

whenU>V,. The ground state is an “entangled” state be- PN Wy
tween two localized spins, which has attracted new interest
for the application to quantum computiRgAt T<T,, the
two elements/ andJ would lead to rich structures of the
Kondo resonant state in this system.

A useful tool to elucidate the Kondo resonance is the

U—.22-28|n the case of a single quantum dot, the dot state FIG. 1. A quantum dot dimer connected in series.
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the number of electrons in the dot decreases. However, th@ons to asymmetric double dot systems. Some preliminary
mean-field approximation is not quantitatively accurate inresults have been reported in Ref. 44.
the valence fluctuating regime. The organization of this paper is as follows. In Sec. Il, the
The Kondo effect on the transport properties in couplednodel Hamiltonian for a coupled quantum dot system is in-
dot systems has been studied by several theoreticdioduced. We explain the slave-boson mean-field theory and
methods*®>~34 In our previous papet, we have applied the derive the expression of the conductance through the dots. In
slave boson mean-field theory to the double dot system in the€c: Ill, we briefly review electron transport through sym-
absence of the antiferromagnetic spin-spin couplingve ~ Metric double dots in the absence &f The transmission
have shown that the Kondo resonance is determined by thepectra are discussed in detail. In Sec. IV, we investigate
competition between the dot-dot tunneling couplwig and electron transport through coupled dots in the presence of

dot-lead coupling\. The resonant state has two peaks be|OV\)n Se_c. N th_e electron transport throggh asymmetric _double
. . dots is examined. Conclusions and discussion follow in Sec.
and above the Fermi level forc/A>1, whereas it has a

single peak at the Fermi level fofc /A<<1. In consequence,
the linear-conductanc@ through the double dots as a func-
tion of the gate voltage is qualitatively different between the
two cases. A. Model
Extending our calculations, Georges and Meihave

Il. MODEL AND METHOD

Let us consider coupled quantum dots as shown in Fig. 1.

pointed out the importance .Of the spin-spin couplhgAt Two dots couple to each other with-, and to external leads
low-gate voltages, the coupling becomes relevant and mak%,[h V. Each dot has a single energy le@el(a=L,R). We

a spin-singlet state in the two dots. Then the Kondo reSOganote the energy difference, — Er, by AE. A common
nance between dots and leads is destroyed. Izumida a ; ’ . -
Sakat* have examined the same problem using the numeriz teVg is attached to the dots to colntrEL(, we defme\/Q

=7 P using the nt =(E_+ERg)/2. We assume that the intradot Coulomb inter-
cal repormqllzatlon grouQ\IRG) methoq. A similar S|tuat.|on _actionU is sufficiently large so thai) the double occupancy
was investigated for dilute magnetic sys_tAezms, which ispf electrons in each dot is forbidden, biit) the antiferro-
known as the two impurity Kondo prgblef’ﬁ. When the  magnetic spin coupling exists between the quantum dots due
antiferromagnetic coupling, the origin of which is the to the virtual double occupancy in a dalS - Sy with J
Ruderman-Kittel-Kasuya-Yosida interaction, increases from=4v2/u) [see Eq.(1)] and the spin operatoS,(a

zero, electronic states of two magnetic impurities exhibit the— L,R). The interdot Coulomb interaction is neglected. The
first-order phase transition from the Kondo state to the spingemperature is set to be zero.

singlet state al~ T\ ;. The magnetic susceptibility diverges e adopt the =2)-fold degenerate Anderson model
at the transition. The phase transition changes into a crosgiin the antiferromagnetic SW{) spin interactions, repre-
over in the case 0¥ c#0.“>*!In coupled quantum dotS,is  sented by the slave-boson formalidf?? We introduce the
given by Eq.(1), whereasT , increases as the gate voltage gjave-boson operatds’, which creates an empty state and

increases as in Eq3). fermion operatorf! | which creates a singly occupied state
As indicated by the previous work;*®the interplay ofA, - Operatoliam, W 168 @ sindly oetlp

. . . with spin m=—j,—(j—1),...,j—1j(2j+1=N) in dot

Ve, andJ results in various transport properties. They are _LR der th . e b'b =1 with
observable by experiments since these parameters can Be +R. under the constraint 0Q,=n,+b,b,=1 wit

controlled in quantum dot systems. The physical origins oinazilmfsza.m- The annihilation operator of an electron in
the transport properties, however, are difficult to understan@Ot « is rewritten asC,m=bf ;.22

by the NRG methotf and by the conventional argument  The Hamiltonian is

using the phase shitf.In this paper, we look directly at the
Kondo resonant state in the presence of spin-spin coupling
The effect ofJ can be understood in terms of the transmis-
sion spectrum, just as in our previous work in the absence of
J. We will show that even fod#0, electron transport is The first term on the right-hand side of E@) represents
characterized by the competition between the dot-dot tunneklectrons in the leads and dots;

ing couplingV¢ and the dot-lead coupling. WhenVc/A
<1, the couplingd is essentially importantG has a sharp _ +
peak of 2%/h in height, as a function of gate voltage, which HO_QZEL, R E(K)CatmCatem®
stems from the coexistence of the Kondo coupling and spin- k,m

singlet coupling. WhenVc/A>1, the transport properties The gperatoc!, , creates an electron in leadwith energy
are robust againskt These results are explained by only one E(k) and spinm. The second and third terms on the right-

criterion, whether the transmission spectrum has doublg g side of Eq(4) describe the dot-lead tunneling coupling
peaks. Hence, our argument is much simpler than the ong,

> o nd the dot-dot tunneling coupling, respectively,
based on the phase shiftin addition, the transmission spec-
trum by itself is directly observable in the differential con- Vv
ductance under finite source-drain voltages, as suggested by H = ¢ f p'+He (6)
Aguado and Langretf? Further, we generalize our calcula- dot-tead ™ \/Na;m akm? ama

H="Ho+ Hgot teadt Maot-dor Ha+ ;L ] Na(Qu—1). (@)

R

a

;L Eoflnfam. (5
T
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Ve b ot whereE,=E_,+\, andVc=b, bgrV¢ with b,=b,/N.
Hdot-dot_ﬁ % bLfLmfrmPR+H.C. (@) From this Hamiltonian, we can calculate the ground state
) ) _ _ o energy. Minimizing the ground-state energy, we determine
T_he termH; gives the antiferromagnetic spin-spin interac- fjye parameterd,, A ,(«=L,R), and x self consistently.
tion (See Appendix A.In general, the self-consistent equations
Hf% E f;&memenfRanH-C- (8) have two sglutions; one i&,,=0(b,=0) andx=J/2, and
m.n the other isA ,#0. The former means that electrons in the
dots are isolated from the leads and make a spin-singlet state.
The latter corresponds to the coherent couplings between
dots and leads. We determine the ground state by comparing
the energies of these solutions.

The constraint ofQ,=1 is taken into account by the last
term on the right-hand side of E@4) with the Lagrange
multiplier \ , .

B. Mean-field approximation

Let us now make the following two assumptions to treat C. Conductance

the Hamiltonian(4) within the mean-field theor$*° First,
the slave-boson operatols, and bl are replaced by a con-
stantc-numberb, . This approximation is exact in the limit
of N—o whenJ=0; it corresponds to the calculation to the
lowest order in the N expansiorf?~?*Second, we also treat
the spin-spin coupling8) by the mean-field theory. It is
decoupled by a parametet —ieV

J + I= % = % (<CEmCRm>_<CTRmCLm>)v (11)

K=N§m‘, (Fhnf L), 9)

Next, we derive the expression of the conductai&e
Currentl through the coupled dots under a source-drain volt-
age Vg4 is given by a charge transfer through the central
tunneling barrier

which characterizes the antiferromagnetic order between tr\ﬁ;here< ...} represents the Keldysh-Green function. By the
spins in the dots. Then we obtain the following mean-field, o4 _field approximations (CI CRm>:bLbR<fI fam)
) m m 1

Hamiltonian; where (f/ frm can be calculated using the Hamiltonian
: - (10). (See Appendix B.
Ho= ;L - E(k)CakmCakm"‘% (Fimfrm) Evaluating the Keldysh-Green functions, we obtain the
“em expression of the conductan&zlimvspollvsd,
« EL vc"‘K fLm)
~ ~ f 262
Vetx  Er Jlfem G="-T(w=0), (12)

Y,
+—= E ba(Ckaf am™ meCakm)
N a.km formally in the same form as the Landauer formufaghe

1 transmission probabilit through the two dots is
+ 3 N1+ (10) P (w) throug
a=L, R

47| Agt?

T(w)= == == F— = = ,
[((J)_EL_|AL)((J)_ER_|AR)_t2][((1}_EL+|AL)((H—ER+|AR)_t2]

13

with A,=b%A (a=L,R) andt=V¢+«. We choosew=0 ) =\g, andE, =Ex=E. x=0 due to the absence df
at the Fermi level in the leads. Then the expression of the transmission probabiflity) in
Eqg. (13) is simplified to
. SYMMETRIC DOUBLE DOTS WITHOUT J
We begin with a symmetric double dot systé&=Eg in T(w)= 48%VE
the absence of the spin-spin couplidig:0. Because of the [(0—(E+Ve)2+A2][(w— (E-V)2+AY]’
symmetry between the two dolg =br=b, n  =ng=n/2, (14
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FIG. 3. (a) The conductanc& versus the gate voltage when
Vc/A=0.3.E =Eg. The dotted and solid lines represent the cases
of J=0 and JJA=9.0x10"% (U/A=4X10%), respectively.(b)

FIG. 2. The transmission probabilifj(w) as a function of {
—E)/A with the energy of incident electrons, the level position
E and widthA of the Kondo resonancé&, =Eg and J=0. (a)

The Kondo resonance width (dotted liné and the spin-singlet
order parametei (solid line versus the gate voltage fal/A

=9.0x 10" 4. The inset show§ (broken ling, A (dotted ling, and

Vc/A=0.3, (b) 1.0, and(c) 10.0. Arrows indicate the positions of X (solid line) as functions of the gate voltage, near the sharp peak of
the Fermi level in the leads for several values of the gate voltag@-

Vg/A.
with A=b?A andV.=b?V.. The paramete¥  character-
izes the effective dot-dot coupling. Note thatc/A 1.0
=Vc/A. 0.8
The line shape of (w) is determined by the parameter of <
Vc/A.%8 In Fig. 2, T(w) is plotted as a function ofy/A. i 061
WhenV/A<1, T(w) has a single peak at=E [Fig.2a)], o4l
whereas whenV/:/A>1, T(w) has two maxima aw=E ) 0.2
¥ VV2—A2? [Fig. 2)]. WhenV./A=1, T(w) has a flat- '
topped single peak as shown in FighR 0.0
The dotted line in Fig. &) represents the conductance as 1.0
a function of the gate voltage whew-/A<1. For suffi- )
ciently low gate voltages, the Fermi level in the leads is 0.8
located at the peak df(w) [the case oV /A=—2 is indi-
cated by the arrow in Fig.(@]. In this case, each dot ac- 20.61
commodates one electron and forms the Kondo resonant ¥04_
state with conduction electrons in a lead. The electron trans- ™"
port is determined by the hopping between the two Kondo 0.2
resonant states. Thus is proportional tové and indepen- 0.0

dent of the gate voltage. As the gate voltage increases, the
position of the Fermi level shifts downwardithe cases of
V¢/A=0 and 1 in Fig. 2)]. The number of electrons in the
dotsn decreases monotonically from 2 to(@alence fluctu-

0
Vg/A

FIG. 4. (a) The conductanc& versus the gate voltage when

ating regime. As a result,G decreases with increasing the V-/A=10.0. E_.=Eg. The dotted and solid lines represent the

gate voltage.

cases 0fl=0 andJ/A=1.0 (U/A=4X10?), respectively(b) The

The dotted line in Fig. @) represents the conductance asKondo resonance width (dotted ling and the spin-singlet order

a function of the gate voltage whafy /A>1. For low gate

parameter (solid line) versus the gate voltage fafA=1.0.
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voltages, the Fermi level in the leads is located at the center

of T(w) [the case oW y/A=—7 in Fig. Ac)], and thus the

conductancés is considerably suppressed. As the gate volt-

age increases, the Fermi level shifts downwdtte case of
Vy/A=—4 in Fig. 2c)], which increase§. At a gate volt-

PHYSICAL REVIEW B3 125327

), €gs= Vg—2/7rZ, and (ii) spin-singlet state without the
Kondo effect 8 =0 andx=J/2), €4s=Vy—J/4. The cross-
over betweerii) and(ii) takes place al./A=8/m=2.54. If

Vc—0, ATy ; and thusl. /Ty ;=2.54. This is consistent

age ofVy=~0, the Fermi level is just on the bonding peak with the NRG result of the two-impurity Kondo problem,

and, thus, the conductan@® has the maximum value of J. /Ty ,=2.23

When V:/A=0.11 and J./A=21

2e?/h. On increasing the gate voltage further, the Fermix 10*3(U/A=21.2),JC/A=2.55 is in good agreement with

level shifts downwards furthdthe case oW /A=5 in Fig.
2(c)], which leads to a decrease @

In summary, whenVc/A<1, the electron transport is

the recent NRG calculation of the coupled dot systetat
givesJ, /Ty 1=2.65.
In coupled quantum dots] is given by 4\/%/U. U/A

characterized by electronic states in each dot below the-4x1(? is assumed in this paper. We investigate the gate

Kondo temperature whereas, wheég/A>1, it is character-

voltage dependence @& with fixed J. With decreasing/,

ized by the formation of molecular levels of the Kondo reso-the Kondo effect becomes weaker, as indicated in (By.

nant states. In the recent wotkAguado and Langreth have

and thusl is relatively stronger compared with. At suffi-

argue_d that f[hese molecular levels are directly obser_vable i@iently low gate voltages, a spin-singlet state appears that
the differential conductance under finite source-drain volt—destroys the Kondo effect.

ages.
We next mentiorVVy dependence of the peak width of
the Kondo resonances. Whaf /A<1,

Tk  (Vg<O)

A=1 -
AVFEA/Z

1 2 )
§+ ;arctamvg/A)) (0<Vy)

(15
whereT is the Kondo temperature for the coupled dots,

IN1+(VcIA)2.

Tk, is given by Eq.(3). Tk increases exponentially wittA,
or V¢.%® WhenVc/A>1,

Ve

L
A arc aﬂx

(16)

TK: TK,l eXF{

Te  (Vg<—Vcl2)

>t

A
v Vet Veld  (~Vel2<Vg=Vel2). (17)

ZVF
(See Appendix Q.

(Vel2<Vy)

IV. SYMMETRIC DOUBLE DOTS WITH J

Now we discuss a symmetric double dot systef,
=Eg, in the presence of the spin-spin couplihdVhen the
couplingJ is strong enough, the Kondo coupling between
dot and lead is destroyed and a spin-singlet state app
between the dots. First we make a rough estimatiord o

A. Transmission probability

In the present case, the transmission probability) is
given by

47%t2
[(=(E+1))*+A%|[ (0= (E-1)?+A%]’

(19
wheret=Vc+«, Ve=b?Ve, and A=b?A. This result is
the same as the one withodi{ Eq. (14)] if the dot-dot cou-
pling V¢ is replaced by. Then the line shape df(w) quali-

tatively depends on whethefA =V /A + «/A is larger than
unity.

T(w)=

B. Weak dot-dot coupling case

First we discuss electron transport whép/A<1. The

solid line in Fig. 3a) representd/, dependence 0B, while

the solid and dotted lines in Fig.(l® representv, depen-
dence of x and A, respectively Yc/A=0.3)/A=9.0

X 10~ %). For sufficiently low gate voltages¢=J/2 and A
=0, indicating a complete spin-singlet state, which results in
G=0. With increasing/,, the Kondo effect is stronger. As
a consequenceA becomes larger, whereas becomes
smaller. At high gate voltage§ is identical to the one with-
gout J (dotted ling. Here the spin-spin coupling is weak

eafoough compared with the Kondo effect. Between these two
¢ regions,G has a sharp peak ofe?/h in height. At this peak,

=J., where the crossover between the Kondo and spinboth the Kondo effech and spin-singlet coupling coexist

singlet states takes places. The ground-state erggy Eq.
(A11) is given by

, (18

where A=A, E, g=E, and n_g=n/2. Here we have

used the self-consistent equations in Appendix A. The la

[see the inset in Fig.(B)]. This peak structure o& is con-
sistent with the NRG calculatiorié.
The calculated results of th8-V, curve can be under-

stood by Eq.(19). At high gate voltagesx/A<1 so that
t/A=Vc/A+kIA=Vc/A; the plot of G is similar to the
one of J=0. With decreasing/, /A increases and thus
St[/A becomes larger. On the right-hand side of the sharp peak

term is negligible whem~ 2. We consider two simple situ- Of G, t/A<1 and henceT(w) has a single peak. Ak/A

ations; (i) Kondo state without spin-singlet orderings (

=1-V¢/A, t/A=1, and T(w=0)=1, resulting in G

125327-5
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=2€e?/h. With decreasiny/q further, split peaks of (w) sup-
pressG. At a certain gate voltage, the Kondo states disappear
and a spin-singlet state appears<(J/2 andA=0).
From the results given above, the origin of the peaksof

is explained as follows. The Kondo resonant state is formed
by the coherent coupling between the dot and the lead, while
the spin-singlet state is formed by the coherent coupling be-
tween the two dots. When these two states coexist, the left
and right leads are connected via a coherent channel. Elec-

trons transfer through this channel and as a resulty
=0)=1.

We find that the width of the sharp peak is roughly given
by V. This implies that the crossover region between the

spin-singlet state and the Kondo state becomes wid&f-as
increases. It is consistent with the results by Saltail *%4
for the two-impurity Kondo problemSee also Refs. 34,36.

C. Strong dot-dot coupling case

Next we discuss electron transport wheég/A>1. The
solid line in Fig. 4a) represents/y dependence oG; the
solid and dotted lines in Fig.(4) represent, dependence
of k andA, respectively Yc/A=10.0)/A=1.0). For this
case, the gate voltage dependence®fis fairly robust
againstJ except that the region d&6=0 for low gate volt-

ages. WherG=0, x=J/2, andA=0 (spin-singlet state in
the dot$ as in the case ofc/A<1. Bothx andA change
gradually against the gate volta@ibere is a simple relation

of 2«x/J=1/2—A/A, see Appendix € These results contrast
to the ones for the weak dot-dot coupling case.

The robustness db against] is explained as follows. At
the top of the broad peak @, n=1 as seen in the previous
section. On the right-hand side of the peak;1 and spin-

1.40

.20
.00
b.80
beo |\
b.40
0.20
4

) 0 2 4
Vg/A

FIG. 5. The conductanc@ versus the gate voltage for several
values ofV-/A from 0.2 to 3.0.E, =Eg. All the curves are verti-
cally offset for clarity.

V. ASYMMETRIC DOUBLE QUANTUM DOTS

In this section, we discuss the effects of the energy dif-
ferenceAE=E —Eg between the dots. First, we describe
the case o¥/-/A<1. In Fig. 6, the gate voltage dependence
of G is shown for AE=0 (thin dotted line@ and AE#0
(thick dotted ling in the absence af. These plots show that
AE has no effect on the height & when the gate voltage is
low enough and both of the dots accommodate one electron.
This is because the dot-lead coupling makes the Kondo reso-
nant state at the Fermi level in the leads, irrespective of the
position of the dot levels. The single peak of the transmission

spin couplingd is not relevant. On the left-hand side of the probability T(w) is located at the Fermi level, as discussed
peak,n>1 and the antiferromagnetic interaction becomesn Fig. 2(a). As a resultG is insensitive tAAE. In the pres-

more effective with decreasing,. However, the transition

ence ofJ, the gate voltage dependence ®fis shown for

from the Kondo states to the spin-singlet state takes place &E=0 (thin solid ling and AE+#0 (thick solid ling. The

quite a low gate voltage because the Kondo temperature
[Eq. (16)] is much larger tharTy ; for strong dot-dot cou-
pling. In addition, t/A is always larger than unity when
Vc/A>1. Thus the spin couplingdoes not introduce quali-
tatively new features in expressioh9).

D. Intermediate region of Vc/A

Finally, we showV, dependence oG by changing the
magnitude oV /A in Fig. 5. AsV. increases(i) the height
of the plateau increase€i) the sharp peak o6& broadens,
and (iii ) the position of the sharp peak &f shifts to larger
Vgy. WhenVc/A>1, the peak position is fixed at;~0. At
the peak ofG, n=2 whenV;/A<1 while n=1 when
Vc/A>1; n decreases gradually from 2 to 1 & in-

sharp peak ofG appears, but the peak height is less than
2€?/h.

Next, we describe the case ¥i./A>1. In Fig. 7, the
gate voltage dependence & is shown for AE=0 (thin

1.0

i,
“,
%
%,
“,
oy

-3

-2 0 1 2

-1
Vg/A

FIG. 6. The conductancé& versus the gate voltage when

creases. In conclusion electron transport and electronic statgg./A =0.3. ForJ=0, AE/A=0.0 (thin dotted ling and 2.0(thick
in the dots change continuously from the weak to strongiotted ling. For JJA=9.0x10"* (U/A=4X10%), AE/A=0.0

dot-dot coupling regions.

(thin solid line and 2.0(thick solid ling.
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1.0

0.8+
ey
o 0.6¢
&
Yo.4t
OCo.21

0.0 i .

-10 -5 0 5 10
Vg/A

FIG. 7. The conductanc& versus the gate voltage when
Vc/A=10.0. ForJ=0, AE/A=0.0 (thin dotted line and 8.0
(thick dotted lin@. For J/A=1.0 (U/A=4Xx10?), AE/A=0.0
(thin solid line and 8.0(thick solid ling.

dotted ling and AE# 0 (thick dotted ling in the absence of
J. For low gate voltages), =ng=1 andG is independent of
AE as in the case o¥/c/A<1. In the valence fluctuating
regime, wheren decreases a¥, increasesn #ng, and ,
hence, electron transport depends OB prominently. The -4 -2 0
broad peak ofG splits into two peaks. They are less than Vg/A
2e?/h in height. At the left-hand peak), decreases from
unity to zero with increasiny, Wh'.le Ng=1. At th_e right- values ofVc/A from 0.2 to 3.0.AE/A=2.0. All the curves are
hand peakng decreases from unity to zero whitg =0. vertically offset for clarity.

These peaks are understood by the Kondo resonance between

a molecular orbital in the dimer and leads. One molecula(Nith the case ol/c/A<1, becausdi) the Kondo tempera-
orbital has the amplitude mainly in the left dot, and the other ;.o of 54 coupled dot is large arfil) the transmission prob-

in the right dot. The peak heights Gfare determined by the ability always has two peaks. When the energy levels are
amplitude of the orbitals in the other dot. Note that the gatgitferent in the dots, the conductan@has two peaks, re-
voltage dependence @ is fairly robust againsgd as in the flecting asymmetric molecular levels.

case of AE=0 (compare the thick dotted and thick solid  \ye should mention the validity of the mean-field approxi-
lines in Fig. 7. _ _ _ o mation. First, the mean-field theory predicts the first-order

Finally, we show the intermediate region\8¢ /A in Fig.  yransition between the Kondo and spin-singlet states when
8. WhenVc/A<1, G has a sharp peak. A& /A increases, v/ /A<1/m7:* it is an artifact of the mean-field theory, be-
the sharp peak broadens and a weak peak developg at cayse the NRG results show that whég+0, the transition
~AE/2. The width of the weak peak isA. The line shapes s always smooth®4!For the present problem of coupled dot
of these two peaks bepome similar to each other. Electrogystemsy this artifact appears on the left-hand side of the
transport changes continuously from the weak to strong do%harp peak ofG; a discontinuous jump ofs is seen for
dot coupling regions, as discussed in Fig. 5 in the case of _/A=0.2 in Fig. 5. Second, in the valence fluctuating re-
AE=0. gime, the fluctuations around the mean field of the slave

boson are not negligible. Hence, our calculations are not
VI. CONCLUSIONS AND DISCUSSION enough for quantitative discussion.

We have investigated the conductance through coupled In rSaI couple_d quantu:n _orlﬁts, ttme mtersﬂs Ciotulomb en-
guantum dots in series, as a function of the gate voltagegrgy’. ‘”FnLnRt; IS present. Then the ground-state energy
below the Kondo temperature. Electron transport is charac-9:nt IS given by
terized by the ratio oWV -/A. WhenV:/A<1, a plateau of o C(1_h2\(1_h2
G appears because each dot forms the Kondo resonant state Eqin=Egst Uin(1~b1)(1-bR), 20
with conduction electrons in a lead, afidis determined by in the mean-field approximation. Equati@20) indicates that
the hopping between the Kondo states. For low gate voltthe intersite Coulomb energy raises the dot le®glsandEg
ages, they are replaced by the spin-singlet stateGazn@. A  effectively. As a result, the valence fluctuating regime is ex-
sharp peak oz appears with the height ofeé?/h, which is  tended and the Kondo regime shifts to low&y. Note that
due to a coherent electron transport brought by the cooperave have assumed that the on-site Coulomb interadtida
tion between the Kondo and spin-singlet states. When thanfinite, and thusU;,<U.
energy levels are different in the dots, the sharp peak sur- When U, is large enough, the coupled dots cannot ac-
vives, but the peak height is less thae’th. WhenVc/A commodate more than one electron. This situation has been
>1, the molecular levels between the Kondo resonant statéavestigated by Pohjolat al3! In this case, the coupled dots
appear. The gate voltage dependenc& dfas a broad peak. is regarded as a single quantum dot with two levels when the
The antiferromagnetic spin coupling is ineffective, compareddot-dot tunneling is large. Pohjokt al. have found a split-

FIG. 8. The conductancé versus the gate voltage for several
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ting of the Kondo resonance due to the level differedde  Herep(w) is the density of states of conduction electrons in
between the two dots. The one peak is on the Fermi [Bgel 3 |ead,p=p(w=0), ®(w)=p(w)/p, andA =wpb?V2/N.

and the other is located B+ AE. This is in contrastto the To derive Eq.(A4), we have assumed that(w) varies
present case in which the split peaks are located below ang’noothly when compared with.

aboyeEF. . . By the substitution of Eqs(A3) and (A4) into Eq. (A2)
Finally, we comment on an asymmetric dot-lead coupling, 4 integration by parts, the free enerdy2) becomes
caseA, #Ag. This asymmetry introduces the following two

effects. First, the maximum of the conductance is less than N %

2e?/h by a geometrical asymmetryM Ar/(A +ARg)2.° F=—Imf dof(0)®(w)In(w—&)+N\(b%—1),
Second, the difference of dot-lead couplindA=(A, . o

—AR)/2 introduces a difference in the number of electrons

between the dots, resulting iy # Eg. Electronic states are, with E=E+iA.

therefore, asymmetric; the situation is similar to the case of |f the leads has a wide flat band of widtiD2 ®(w)
E, #ERg discussed in Sec. VEquation(A9) in Appendix A = 1(—-D<w<D), the free energy is

is modified by replacingA,—Ay+b25A and A;—A;

(A5)

+b38A. The latter modification means that #ng when F=N|mJD dof(w)in(w—&+1(b2=1). (A6)
SA#0.] 77 -D
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APPENDIX A: DERIVATION OF THE GROUND-STATE F=—im> J doof(0)In(w— &)
ENERGY 7 p=t Jop

First, we review a single impurity model with the impu- ) N
rity level E.232526We start from the following mean-field + _EL: . No(bG=1)+ 5«5 (A8)
Hamiltonian o

with
H:E E(k)ClkaerE Emefm ~ L~ [~ % 2. .2
k,m m gp:Eo+|Ao+P (El+|Al) +t-. (Ag)
Vb Here Eo,=(E =ER)/2, Rg =b3,A with Dbj,=(b?

+—= > (¢l ufmt flom +A(b?=1), (A1) L
JN % (G on FmCicm +b32)/2, andt=Vc\bi—bi+ k. & are the eigenvalues of

L~ : ) the matrix given by
with E=E+\ and b is the mean-field value of the slave

boson.
The free energy of the system is given by

EL+iZL Vc+K
. (A10)

2 ’\70+ K ER+ IZR
=— — —Boy ¢ 2_

F doin(l+e ")p(w)+A(b"=1), (A2) Then the ground-state ener@y=Negd =F(T=0)] is
_ written as
where p(w) is the density of states, which is given by the
retarded Green functio®,(w) of electrons in the dot - — - — 1
€gs= 2(Eg—E*)(bg—1/2) + 2(E; — AE)bi + 3K2
)= Gy () = (A3)
p\lw)=—0U\w)=— — =, 1

T T w—E—2(w) +; 2 |m[§P<|nW_§P_1

A

}, (A11)
with the self-energy. (o)
whereE* =V, + A/ In(D/A) with the bandwidthD in the

2\ /2
S(w)= b=V > 1 leads?® In experimentsE* can be controlled by the gate
N X o—Ek)+in voltageV, (we redefineE* asVy).
h2y2 Minimizing the ground-state energ11), we determine
_ ¢ five parametersp,,\ (a=L,R) and «, self-consistently.
=— =—iAdD . A4 Lo Ak
' N p(w) 1A0(w) (A4) The self-consistent equations are
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1 Pb2tV For the Hamiltoniar(10), Eq.(B3) is given by the follow-
Z(EO_Vg) +— E Im ¢ ing functional integral on the degrees of freedom of electrons
™ \/7 b(E +iR)2+2]  inthe dots?
xInWTgP =0, (A1)  expWHID= f DD
(~ AE) Xex;(m_ﬂ/zj’dwFG 'F—J.F-F-J
2| Ei— —
2 (B4)
. 1 S im i A —D2(A%+ V2 + Ve /\bE— b)) F=[fim(@),fim(®) Frirm(@).f_rm(@)]  and T
% JE k22 =0 (@)1 +:m( )]~ re(@) ] 1 re(@)] With £ =(f
Lo T1)02, f_=f1—15,j.=(J1+]2)/2, j-=]1—],. The ma-
mép trix G~ 1 is the inverse of the Green functions:
XPIn——|=0, (A13) 4
A 0 G, (o) 0 t
1 mép G )= Go (@) Bifi(w) t 0
2(03- 12+ — 3 Im InT}=o, (AL4) (@=1" t 0 G ko |
-~ t 0 G, R(®) Agfr(w)
1 (E1+iAy) wé B5
22+ = —— " pin—|=0, (B9
™ \/(E1+iA1)2+t2 A with the Fermi functionf () of the electrodes with the
(A15) chemical potentiak, and the retarded and advanced Green
function G, ;a(a:L,R) of electrons in the dots:
2k 1 z | t b wép 0
—+— n =0. 1 I ¢
= .~ =w+E_ +
J m P \/(E1+iA1)2+t2 A ra(w) w Ea IAav (86)
(A16) 1 -~ o~
G, ., (w)=w+E,—iA,. (B7)

APPENDIX B: EXPRESSION OF CURRENT

After integrating over the degrees of freedom of electron in
he dots, the generating function® is finally given by

In this appendix, we derive the expression of the curren
using the real-time functional integral method. The alterna- (),
tive derivation is given in Ref. 45, which is based on the
equation of motions for the Green functions. We téke 1
in this appendix.

All of the physical quantities can be obtained in principle
by calculating the time evolution of the density matpift)

p(t)=UT(t)pin U(1), (B1)

wherep;,; is the initial density matrix andl(t) is the time
evolution kernel of the Hamiltoniahl

W= —
m= +1/2

f dwdG(w)J. (B8)
The currentl Eq. (11) is rewritten as
Iz_iev(:%: J dw(<f_+;me+;Rm(w)>

_<f—+;Rmf+;Lm(‘U)>)- (BQ)

U=Texg—iH(D], (B2) This is represented using the generating functiaial

using the time ordering produdt

Corresponding to EqB1), we introduce the generating eV E f d 4
functional W[j ,j,],¢*" =-ieVe “\ 83 im el -
exp(Wlj1.j2]) =Tr Ul (1) pin UT2(1),  (BY) 5

whereU!(t) is the time evolution kernel of the Hamiltonian )exp(W[J+ J-1)  (B10

Hi=H—j-f—f-j with j=(jim,jrm): f=(fLm.frm), and
their conjugate$ andf. Equation(B3) is evaluated using the
real-time functional integral method, which is the functional
integral on the Keldysh contodf ! the suffix “1” and
“2”in j correspond to the upper and lower branches of thavhere G, () is the (,m) component ofG. | is finally
Keldysh contour, respectively. given by

5‘]— ;Rm 53

Lm

= —2ieT/Cf do[Gy 4 ®)—G3(w)], (B11)
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the Fermi level. Then we can use the following two condi-
':ZGJ doT(w)[f (@)= Tr(w)] B12)  ions: (i) E=Vc (Rec_=0) and (i) SpIm[In(mép/A)]
with T(w) in Eq. (13), =—3pIM[ P In(7ép/A)]= Im[In(7£&_/A)]. Then substituting

- Eqg. (C1) into Eq.(C2) yields
To derive Eq.(B12), we have assumed,, E,, and «

are determined by the self-consistent equations for the ther- _ 1 A

mal equilibrium case:, = ug. Thus, the present calculation 2Ve—| Vgt 5V |+ E R In( )

is valid only in the limit of u, — ug. Extensions to the case

of finite V¢4 is possible within the framework of the present 7(2Ve+ik)

method. See Refs. 30,43. +In — A }:0. (C9

APPENDIX C: KONDO TEMPERATURE WHEN V/A>1 The logarithmic terms are negligible because 1 so that

In this appendix, we derive the gate voltage dependencé ~4A/2 andVc~Vc/2. Thus the gate voltage dependence of

of A whenJ=0. The self-consistent equations are given by réduces to the second line in E4.7).
WhenVc/2<V4 wheren<1, the coupled dot system is

wép essentially the same as the noninteracting systeisdeter-
(bg— 1/2)+— 2 Im|In{ —~]{=0, (C1)  mined by the position of the energy level:
2
(E-Vo)+ 5 2 Im[(PVchlA)In( fp) ~o0, n=1-arctanVg/A). €9
(C2 This result yields the third line of Eq(l7), becauseA
whereép=E+PVc+iA with Ve=b2Ve and X =b2A. =A(d=-n2)2. . -
WhenV,< —Vc/2, the Kondo state is formed in each dot _ Finally, we mention the relation betweanand A when
and lead and thuE=0. Then Eq.(C2) is reduced to J+#0 (Sec. V. The self-consistent equation fer Eq.(A16),
~ ~ 2k 1 gp
% A [ m\A2+VE —+=2> ImPI ( =0 C6
—Vg——carctamVC/A)Jr—ln —— "Cl-p, J W; MmN ' €8
T T A
(€3 is simplified for—Vc/2<Vy<Vc/2. Using the conditiong)
resulting in the first line of Eq(17). and (i), we obtain
When —V/2<Vy<V/2, the broad peak of appears. ~
For this case, the bonding level is located near the Fermi 2_"+é_1/2:0 (C?)
level in the leads and the antibonding level is far away from J A '
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