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Recently we predicted that the Andreev bound-state spectrum of four-terminal Josephson junctions may
possess topologically protected zero-energy Weyl singularities, which manifest themselves in a quantized
transconductance in units of 4e2/h when two of the terminals are voltage biased [R.-P. Riwar, M. Houzet,
J. S. Meyer, and Y. V. Nazarov, Nature Commun. 7, 11167 (2016)]. Here, using the Landauer-Büttiker
scattering theory, we compute numerically the currents flowing through such a structure in order to assess
the conditions for observing this effect. We show that the voltage below which the transconductance becomes
quantized is determined by the interplay of nonadiabatic transitions between Andreev bound states and
inelastic relaxation processes. We demonstrate that the topological quantization of the transconductance
can be observed at voltages of the order of 10−2�/e, � being the the superconducting gap in the
leads.

DOI: 10.1103/PhysRevB.95.075417

I. INTRODUCTION

Topological phases of matter have attracted much interest
in recent years [1,2]. Starting with gapped phases such as
topological insulators and superconductors, more recently
gapless topological phases possessing topologically protected
band crossings have been discovered [3–6]. The topological
properties of these systems are determined by their band
structure and in particular the variation of the wave functions
throughout the Brillouin zone [7,8]. Realizing topological
phases is not an easy task and relies on finding the appropriate
materials or combining different materials to engineer the
required band structure.

Josephson junctions are a tool to probe topological prop-
erties [9–13], and they may possess interesting topological
properties themselves [14–20]. As some of us have pointed
out recently [17], multiterminal Josephson junctions present
an alternative to engineering topological materials. Josephson
junctions host Andreev bound states (ABS) localized at the
junction and the energy of which is below the gap for the
excitations in the leads. The spectrum of these ABS depends
on the properties, both of the superconducting leads and the
scattering region that connects them. The ABS energy is a
function of the phase differences between the superconducting
leads, which can be viewed as the quasimomenta of the ABS
“band structure”. This allows one to make an analogy between
n-terminal junctions and (n − 1)-dimensional materials. We
showed that the ABS spectrum of four-terminal junctions
made with conventional superconductors may possess Weyl
singularities, corresponding to topologically protected zero-
energy states. These Weyl singularities carry a topological
charge ±1. As a consequence the ABS pseudo-band-structure
as a function of two phase differences may possess a nonzero
Chern number. We further showed that this nonzero Chern
number leads to a quantized transconductance between two
voltage-biased terminals.

The present paper addresses the observability of this
quantized transconductance in a transport experiment. The
quantized transconductance is associated with adiabatic trans-
port at fixed occupation of the ABS. On the other hand, a
bias voltage is known to lead to multiple Andreev reflections
[21–24], where a quasiparticle can be transferred from the
occupied states below the superconducting gap to the empty
states above the superconducting gap, leading to a dissipative
current. At low bias, these processes may alternatively be
described as resulting from Landau-Zener transitions between
Andreev bound states [22]. Here we compute the currents
taking into account these processes in order to establish the
voltage regime, where a quantized transconductance can be
observed. We find four different voltage regimes. At large
voltages, the conductances are given by their normal-state
values. Decreasing the voltage, multiple Andreev reflections
lead to a complicated voltage dependence with pronounced
subgap features. Further decreasing the voltage, a competition
between Landau-Zener transitions and inelastic relaxation,
which is modeled by an imaginary energy shift, takes place.
Finally, at the lowest voltages, the dissipation vanishes and the
transconductances reach their quantized values.

The outline of the paper is the following. In Sec. II, we
provide the description of the Andreev spectrum and the
topological properties of zero-energy states in a four-terminal
Josephson junction through a time-reversal invariant normal
region contacted to each superconducting terminal through
a single channel. We illustrate the results with a random
symmetric scattering matrix describing the normal-state prop-
erties of the junction (results for another one are given in the
Appendices). In Sec. III, we compute numerically the currents
flowing through the voltage-biased junction within the scat-
tering theory for out-of-equilibrium superconducting hybrid
structures. In Sec. IV, we discuss the conditions for the ob-
servability of the transconductance quantization between two
voltage-biased terminals. Our conclusions are given in Sec. V.
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FIG. 1. Sketch of a four-terminal Josephson junction. The
normal-state scattering region connecting the four leads is described
by the scattering matrix Ŝ. For the transconductance measurement,
leads one and two are voltage biased with voltages V1 and V2,
respectively. The other two leads, lead zero and lead three, are
connected into a loop, such that the phase difference φ0 − φ3 can
be controlled by a magnetic flux through that loop. Gauge invariance
allows us to choose φ3 = 0. We compute the outgoing currents into
all four leads.

II. TOPOLOGICAL CHARACTERIZATION
OF THE ANDREEV SPECTRUM

A. Generalities

We are considering a four-terminal Josephson junction, the
setup of which is shown in Fig. 1. The superconducting leads
are labeled by α = 0,1,2,3. To perform a transconductance
measurement, two of the leads, here lead one and lead two,
have to be voltage biased, whereas the phase difference
between the other two leads, here lead zero and lead three,
has to be fixed, which can be achieved by connecting them
into a loop that is threaded by a magnetic flux (see Fig. 1). The
superconducting gap � is assumed to be the same for all leads.
Their phases are given by φ0,φ1,φ2,φ3, where gauge invariance
allows us to put φ3 = 0. The leads are connected through a
short normal region characterized by an energy-independent
(unitary) scattering matrix Ŝ for electrons. We further assume
spin rotation as well as time-reversal symmetry in the normal
region, such that Ŝ is spin independent and Ŝ = ŜT . Thus Ŝ

belongs to the circular orthogonal ensemble (COE). We further
restrict ourselves to junctions having one transmitting channel
per terminal, such that Ŝ is a 4 × 4 matrix.

The spectrum of ABS with energy E (|E| < �) in the
junction is obtained by solving the eigenproblem [25]

ψeα(E) =
∑

β

a(E)Sαβeiφβ ψhβ(E), (1a)

ψhα(E) =
∑

β

a(E)S∗
αβe−iφβ ψeβ(E). (1b)

Here, ψeα and ψhα are electron and hole outgoing wave
functions from the normal region to lead α, respectively,
and a(E) = E/� − i

√
1 − (E/�)2 is the Andreev reflection

amplitude. Then, for each set of phases, Eq. (1) admits for four
solutions at energies ±E1 and ±E2 (with 0 � E1 � E2 � �),
which are pairwise opposite due to the built-in particle-hole
symmetry in the theory of superconductivity.

According to Ref. [17], scattering matrices drawn out
of the COE can admit for zero-energy Weyl points in the
ABS spectrum. These Weyl points correspond to topologically
protected crossings of the two solutions with energies ±E1 in
the (φ0,φ1,φ2) space of superconducting phases. Each crossing
is characterized by a topological charge Q = ±1, where

Q = 1

2π

∫
S

dS · B. (2)

Here, S is a surface in the (φ0,φ1,φ2) space that encloses the
Weyl point, dS is an element of that surface, and

B ≡ (B0,B1,B2) = i

3∑
α=0

∂ψ∗
eα × ∂ψeα, (3)

where ∂ = (∂φ0 ,∂φ1 ,∂φ2 ) is the Berry curvature associated with
a normalized eigenstate with energy −E1 (with

∑
α |ψeα|2 =

1). Time-reversal symmetry, together with the fermion-
doubling theorem [26], imposes that the Weyl points appear
in groups of four: there are two Weyl points of a given
charge at ±(φ(1)

0 ,φ
(1)
1 ,φ

(1)
2 ), as well as two Weyl points of

the opposite charge at ±(φ(2)
0 ,φ

(2)
1 ,φ

(2)
2 ). For definiteness, we

chose 0 � φ
(1)
0 � φ

(2)
0 � π . For phases φ0 �= φ

(i)
0 , the Andreev

spectrum is gapped in the entire (φ1,φ2) plane.
Subsequently, we define a (topological) Chern number in

the (φ1,φ2) plane:

C12(φ0) = −C21(φ0)

= 1

2π

∫ π

−π

dφ1

∫ π

−π

dφ2 B0(φ0,φ1,φ2). (4)

At φ0 = 0, the setup is effectively a three-terminal junction,
which does not admit for topologically protected crossings
[17]. Time-reversal symmetry imposes that the Chern number
C12(φ0 = 0) = 0. Increasing the phase φ0, the Chern number
changes when crossing φ

(i)
0 by the charge of the corresponding

Weyl point. Thus, we deduce that C12(φ0) = 0 in the regions
0 < φ0 < φ

(1)
0 and φ

(2)
0 < φ0 < π , while it takes a value 1 or

−1 in the intermediate region φ
(1)
0 < φ0 < φ

(2)
0 . Furthermore,

C12(−φ0) = −C12(φ0).
According to adiabatic perturbation theory [17], the

Chern number determines the transconductance between two-
voltage-biased terminals one and two, G12 = −(4e2/h)C12, at
sufficiently low voltage biases. To probe the transconductance
quantization beyond the adiabatic regime, we will perform a
numerical calculation of the current at arbitrary voltages for
two specific setups (cf. Sec. III and the Appendices). Below we
motivate our choice for the two different scattering matrices
describing these setups.
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B. Examples

To obtain systems with Weyl points, we generate random
symmetric scattering matrices Ŝ within COE. This is done
by first generating random Hermitian matrices H from the
Gaussian unitary ensemble, and then forming Ŝ = UT U ,
where U is the unitary matrix that diagonalizes H , i.e.,
H = U †DU with D a real diagonal matrix. Around 5% of
these matrices admit for Weyl points.

To observe the topological quantization of the transcon-
ductance, it is favorable to have a large gap in the Andreev
spectrum between the Weyl points. Thus, for each scattering
matrix with Weyl points, we determine the largest possible

gap in the (φ1,φ2) plane for all φ0 in between the Weyl points:

Eg = max
φ

(1)
0 <φ0<φ

(2)
0

min
φ1,φ2

E1(φ0,φ1,φ2). (5)

Furthermore, we do the same for all the remaining φ0 in the
intervals 0 < φ0 < φ

(1)
0 and φ

(2)
0 < φ0 < π . A histogram of the

smallest of these maximal gaps for an ensemble of topological
scattering matrices is shown in Appendix A. We do not find
any gap larger than around E = 0.12�. For our simulation,
we choose a topological scattering matrix with a gap close to
that value.

Specifically, we use the matrix

Ŝ1 =

⎛
⎜⎝

0.299 + i0.091 −0.547 − i0.171 −0.190 − i0.474 −0.543 − i0.140
−0.547 − i0.171 0.271 + i0.306 −0.334 − i0.182 −0.288 − i0.527
−0.190 − i0.474 −0.334 − i0.182 0.348 + i0.565 −0.369 − i0.140
−0.543 − i0.140 −0.288 − i0.527 −0.369 − i0.140 0.317 + i0.263

⎞
⎟⎠, (6)

which has four Weyl points at (φ0,φ1,φ2) = ±(1.72,

−1.89,−2.82), with charge −1, and (φ0,φ1,φ2) = ±(2.66,

−1.84,1.01), with charge +1. Taking φ0 as a control parameter,
its maximal gap in the (φ1,φ2) plane for φ0 in between the
two Weyl points is E = 0.11� and is realized at φ0 = ±2.21.
See Fig. 2 for some examples of the ABS spectrum of the
four-terminal setup.

In Appendix C, we show results for a second scattering
matrix, which has a smaller gap in between its Weyl points.

Note that a quantization of the transconductance is also ex-
pected in multichannel junctions. In fact, as shown in Ref. [17],
the probability of realizing Weyl points is greatly increased in
that case. However, as the number of Andreev bound states at
the junction increases with the number of channels, the gap
in the spectrum in between Weyl points is likely to decrease,
making the observation of a quantized transconductance more
difficult. Similar considerations also apply to junctions with
more than four leads, where the transconductance between
two voltage-biased leads is predicted to be quantized when
the phase differences between all the other leads are kept
fixed [17]. Therefore, we concentrate here on the four-terminal,
single channel case.

FIG. 2. Cuts through the Andreev bound-state spectrum for the
scattering matrix Ŝ1. From left to right: At phase φ0 = 1.72 (Weyl
point), at phase φ0 = 2.21 where the gap is the largest within the
topological region (E = 0.11�), and at phase φ0 = 2.66 (Weyl
point). The spectra are along the lines (φ1 = χ,φ2 = 3χ + φ), where
the phase shift φ is chosen such that the cut goes through the point in
the (φ1,φ2) plane with the smallest gap.

III. CURRENT-VOLTAGE CHARACTERISTICS

In this section we use the Landauer-Büttiker scattering
formalism extended to superconducting hybrid structures to
calculate the currents flowing through the setup at arbitrary
voltage biases [22]. We compare the numerical results with the
prediction of the transconductance quantization at sufficiently
low voltages.

A. Formalism

To obtain the transconductances G12 and G21, we need to
voltage-bias leads one and two. We will consider that they
are voltage biased with commensurate voltages V1 = n1V

and V2 = n2V (n1,n2 integers), while V0 = V3 = 0. The dc
currents flowing to the leads also depend on the phase bias
φ0, as well as on a phase shift φ between the time-dependent
phases, φ1(t) = 2eV1t and φ2(t) = 2eV2t + φ (with e > 0).
They are given by (below we set h̄ = kB = 1, unless they are
explicitly written out)

Iα = IN
α − e

2π

∫
dE J 2(E) tanh

E

2T

×
⎧⎨
⎩2Re

[
a(E)ψαE

h,α(E)
] +

∑
β,k

(|ak(E)|2 + 1)

×(∣∣ψβE

hα (E + keV )
∣∣2 − ∣∣ψβE

eα (E + keV )
∣∣2)

⎫⎬
⎭, (7)

where IN
α = (2e2/h)

∑
β |Sαβ |2(Vβ − Vα) is the normal-state

current, T is the temperature, J (E) =
√

1 − |a(E)|2,
and ak(E) = a(E + keV ). Here a(E) = [E + i
 −
i
√

�2 − (E + i
)2]/� generalizes the Andreev reflection
amplitude to energies below and above the gap. It includes
a phenomenological broadening parameter 
, also known as
Dynes parameter (see below) [27]. The outgoing electron and
hole wave functions in lead α associated with an incoming
electronlike state from lead β and with energy E are given by
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the set of equations

ψβE
eα (E + keV ) =

∑
γ

ei(φα−φγ )/2Sαγ

[
ak(E − nγ eV + nαeV )ψβE

hγ (E + keV − nγ eV + nαeV ) + δβ,γ δk,nγ −nα

]
, (8a)

ψ
βE

hα (E + keV ) =
∑

γ

ei(−φα+φγ )/2S∗
αγ ak(E + nγ eV − nαeV )ψβE

eγ (E + keV + nγ eV − nαeV ), (8b)

which take into account inelastic-scattering processes due to
voltage biases. Here n0 = n3 = 0, φ1 = φ3 = 0, and φ2 = φ.

The Dynes parameter generates a finite density of states
at all energies below �, ν(E) = ν0Re{[1 + a2(E)]/[1 −
a2(E)]}, where ν0 is the density of states in the normal state.
In particular, ν(E � �) � ν0
/� at 
 � �. Thus it admits
for inelastic relaxation of subgap states within the junction by
coupling them with the small density of states in the leads.
By contrast, when 
 = 0, quasiparticles can only relax their
energy after performing successive Andreev reflections in the
subgap region until they reach �.

Note that topological conductance quantization has been
predicted for incommensurate voltages [17]. As we work with
commensurate voltages, the currents contain a Josephson-like
contribution that depends periodically on the phase shift φ

between the voltage-biased leads. This contribution has a small
amplitude for commensurability ratios n1/n2 different from 1
(see Fig. 8) and would vanish for incommensurate voltage
biases. To extract the φ-independent part of the currents, we
perform an average of the currents of Eq. (7) over the phase
shift φ.

The solution of the coupled Eqs. (8) is implemented
numerically as a matrix equation problem, making use of
PYTHON’s scipy.linalg library (the solve_banded algorithm
for solving a matrix equation with a sparse banded matrix).
From the obtained wave functions, the currents are computed
by the integration over energy in Eq. (7). For the integration we
use direct summation over energies −3� � E � 3�, with a
sampling distance dE = 0.2eV . The computation time scales
as ∼V −2. At voltage V = 0.007�/e and fixed φ0, computing
all the currents for a single phase shift φ takes around 4 h on a
single CPU. Although the time can be reduced by parallelizing
the integration over energy in Eq. (7), and the averaging over
phase shifts (in practice, ten equidistant phase shifts were
sufficient to perform that average), this still limits the voltage
range that we are able to efficiently probe.

In the next subsection, we show the numerical results for the
scattering matrix Ŝ1, Eq. (6). Results for a different scattering
matrix Ŝ2 are shown in Appendix C.

B. Results

In Fig. 3 we show the I − V curves for the four-terminal
setup with scattering matrix Ŝ1 and a Dynes parameter 
 =
0.002�. To extract the transconductances, we use two sets of
values (n1,n2). Shown in the figure are the I − V curves using
(n1 = 2,n2 = 3) and two different values of the phase bias φ0.
Note that the currents I1 and I2 have to tend to zero as voltage
tends to zero. By contrast, a Josephson current may circulate
in the ring between leads zero and three at nonzero φ0. This is
seen in the top panel of Fig. 3, where I3 tends to −I0 �= 0 as
the voltage tends to zero.

From the computed currents Iα for the two sets of voltage
biases, we obtain the conductance matrix Ĝ, defined as
Iα = ∑

β GαβVβ , for φ0 = 0 (trivial region) and φ0 = 2.21
(topological region). Its elements as a function of voltage
V are shown in Fig. 4. At very low voltages, the direct
conductances vanish, while the transconductances become
quantized, Gαβ = −(4e2/h)Cαβ . We now fix the voltage to
a value small enough to observe conductance quantization and
vary the control parameter φ0. In Fig. 5, the dependence of the
transconductance as a function of φ0 is shown for two different

FIG. 3. The currents I0,I1,I2,I3 as function of voltage for the
scattering matrix Ŝ1. The voltages in terminals one and two are given
as V1 = 2V and V2 = 3V , respectively. The Dynes parameter is set
to 
 = 0.002�. Top: At phase φ0 = 2.21 in the topological region.
Bottom: At phase φ0 = 0 in the trivial region. We have used an
average over N = 10 phase shifts φ. The insets show a larger range
of voltages.
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FIG. 4. The conductances G12,G21,G11, and G22 between the
voltage-biased leads one and two as a function of voltage in
logarithmic scale. The conductances are obtained from the currents
shown in Fig. 3 and a similar set is obtained with a different
voltage ratio, V1 = V and V2 = 3V . Top: At phase φ0 = 2.21 in
the topological region. Bottom: At phase φ0 = 0 in the trivial region.
The expected quantization of the transconductance is seen for voltages
eV/� � 0.01.

voltages. We see that the transconductance quantization holds
for φ0 not too close to the values ±φ

(1)
0 ,±φ

(2)
0 , where the

topological transitions take place.
To help interpreting the results, we compute the dissipation

of the system as a function of voltage, defined as P ≡∑
α IαVα . Using the two sets of voltages, we also compute

the chirality, defined as

C ≡
(

h

8e2

)
I ′

1V1 − I1V
′

1 + I ′
2V2 − I2V

′
2

V1V
′

2 − V2V
′

1

(9)

when V0 = V3 = 0. Here the primed variables are computed
using the set n1 = 2,n2 = 3 and the unprimed variables are
computed using n1 = 1,n2 = 3. The chirality selects the anti-
symmetric part of the conductance matrix. In a linear-response
regime, it reduces to C = (h/8e2)(G12 − G21). In particular,
in the presence of time-reversal symmetry, it vanishes in the

FIG. 5. Conductances as a function of phase φ0 at fixed volt-
age. Top: V = 0.005�/e. Bottom: V = 0.003�/e. The quantized
conductance plateaus are clearly visible. Around the topological
transitions at ±φ

(1)
0 = ±1.72 and ±φ

(2)
0 = ±2.66, conductance quan-

tization breaks down because the gap closes and dissipation becomes
large.

normal state. In Fig. 6, we plot the chirality C as a function of
voltage for the same structure as in Figs. 3 and 4, together with
the normalized dissipation P/PN , where PN ≡ ∑

α IN
α Vα is

the normal-state dissipation.

IV. DISCUSSION

The adiabatic perturbation theory that was used in Ref. [17]
to predict the transconductance quantization requires the
Andreev levels to retain their equilibrium occupations. In
that regime, direct conductances vanish. On the other hand,

FIG. 6. Dissipation P/PN (dashed lines) and chirality C (solid
lines) as a function of voltage in logarithmic scale. Green curves
correspond to V1 = 2V,V2 = 3V and red curves correspond to V1 =
V,V2 = 3V . Top: At phase φ0 = 2.21 in the topological region. The
chirality tends to 1 as the dissipation tends to zero at low enough
voltages. Bottom: At phase φ0 = 0 in the trivial region.
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FIG. 7. To observe the quantization of the transconductance, it
is favorable to have (φ1,φ2) planes with a large spectral gap both in
the topological and the trivial region. Here we show a histogram of
the smaller of the maximal gaps in these two regions for 500 random
scattering matrices with Weyl points.

multiple Andreev reflections allow for quasiparticle transfer
between the leads by overcoming the energy gap 2�. Thus,
they result in charge transport at subgap voltages. At low
voltages, these multiple Andreev reflections can be related with
nonadiabatic transitions of quasiparticles occupying different
branches of the Andreev spectrum as the phases increase
linearly with time due to the voltage biases. Therefore the
two regimes described above are competing. We expect that
the transconductance quantization holds provided that an
inelastic-scattering process restores equilibrium occupation
of the subgap states while suppressing multiple Andreev
reflections. The Dynes parameter 
 provides such a mech-
anism, while essentially preserving the superconducting gap if

 � �. Increasing 
 would help equilibration, but at the same
time introduce additional dissipation, which is detrimental to
observing transconductance quantization.

In Fig. 4 showing the conductance as a function of voltage,
we can distinguish four different voltage regimes.

We see that, for high voltages V 	 �/e, the conductance
matrix elements match their normal-state values, GN

αβ =
(2e2/h)(|Sαβ |2 − δαβ). (Note that GN

αα < 0 and GN
α �=β > 0

due to the chosen conventions for the current directions.) In
particular, GN

11 = −0.42 × (4e2/h), GN
22 = −0.28 × (4e2/h),

and GN
12 = GN

21 = 0.07 × (4e2/h), corresponding to C = 0
(cf. Figs. 4 and 6).

At lower voltages, 0.1�/e � V � 2�/e, we observe a
complex dependence of the direct conductances as well as the
transconductances, with resonant features that are related with
multiple Andreev reflections involving various leads [28–33].

At even lower voltages, V � 0.1�/e, the interplay between
Landau-Zener transitions and inelastic relaxation becomes
important. If 
 is larger than the Landau-Zener transition rate
between the states with energy −E1 and E1, it restores the
equilibrium occupations, where the state with energy −E1 is
occupied and the state with E1 is empty, throughout most of
the time evolution.

Thus, at very low voltages, V � 0.01�/e, the direct
conductances vanish, while the transconductances become
quantized, Gαβ = −(4e2/h)Cαβ . Namely, for φ0 = 0 (trivial
region), G12 = −G21 = 0 and, for φ0 = 2.21 (topological
region), G12 = −G21 = 4e2/h.

The Landau-Zener transition rate at an avoided crossing
between the two states is given as 
LZ = peV/π with
p = exp[−πE2

g/v]. Here Eg = E(t∗) and v = ∂E/∂t(t 	 t∗)
for E(t) = E1(φ0,2n1eV t,2n2eV t + φ) having an avoided
crossing at t∗. From the central panel of Fig. 2, which shows
the cut in the plane of phases (φ1,φ2) going through the
minimal gap, we extract Eg = 0.11� and v ∼ eV � for the
scattering matrix Ŝ1. Using these values, our estimate for
the Landau-Zener transition rate becomes 
LZ ≈ 
 = 0.002
at V ≈ 0.02�/e, which is in good agreement with the voltage
where one starts to see low dissipation and the quantization of
the transconductance (cf. Figs. 4 and 6).

When approaching the Weyl points, the gap in the (φ1,φ2)
plane decreases. Thus, the voltage V ∗ below which conduc-
tance quantization can be observed decreases as well. As
shown in Fig. 5, at fixed voltage, we see a peak in the direct
conductances around the Weyl points signaling that dissipation
is large (see also Fig. 9 in Appendix B). The smaller the

FIG. 8. Dependence of the currents on the phase shift φ. Here φ0 = 2.21, 
 = 0.002�, and V = 0.005�/e. Left: φ1 = eV t,φ2 = 3eV t + φ.
Right: φ1 = 2eV t,φ2 = 3eV t + φ. We see that already 10 phase shifts give a rather good sampling.
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voltage, the more one can approach the Weyl points without
losing the transconductance quantization.

V. CONCLUSION

It has recently been predicted that multiterminal Josephson
junctions may realize a novel type of topological matter [17].
Namely, for n � 4 terminals, Weyl singularities may appear in
the Andreev bound-state spectrum of the junction, giving rise
to topological transitions as the superconducting phases are
tuned. These transitions are observable as quantized jumps in
the transconductance between two voltage-biased terminals.
In this paper, we have studied this effect by numerically
solving the Landauer-Büttiker scattering theory for a four-
terminal Josephson junction, which describes the quasiparticle
transfer between the leads by the process of multiple Andreev
reflection in the subgap regime. We have observed how the
transconductances approach the quantized values predicted
by the topology at low voltages, when dissipation is small.
Tuning the superconducting phase at a fixed voltage, the
topological transitions could be clearly seen. Our results
provide an important step towards the clarification of the
experimental conditions to observe the topological properties
of multiterminal Josephson junctions.
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APPENDIX A: STATISTICS OF THE LARGEST POSSIBLE
SPECTRAL GAPS FOR RANDOM SCATTERING

MATRICES WITH WEYL POINTS

In order to find suitable scattering matrices for our nu-
merical investigation, we analyzed an ensemble of random
scattering matrices. In particular, we searched for the largest
possible gap in the (φ1,φ2) plane, both in the topologically
trivial and the topologically nontrivial regime. A histogram
of the smaller of these maximal gaps in the two regions for
an ensemble of topological scattering matrices is shown in
Fig. 7. For our simulation, we choose two different topological
scattering matrices: matrix Ŝ1, for which results are presented
in the main text, with a gap close to the largest value we
could obtain, and matrix Ŝ2, for which results are presented in
Appendix C, with a more typical gap.

FIG. 9. Dissipation and chirality as a function of phase φ0 at fixed
voltage V = 0.003�/e. The two curves for dissipation correspond
to two sets of voltages V1 = n1V,V2 = n2V .

APPENDIX B: ADDITIONAL RESULTS FOR THE
SCATTERING MATRIX Ŝ1

To obtain the results presented in the main part, we averaged
the currents over the phase offset φ between the phases of the
leads one and two. As shown in Fig. 8, the dependence of the
currents on φ is weak and smooth, justifying this procedure.

To observe the quantization of the transconductance,
transport has to be quasiadiabatic, i.e., dissipation has to be
low. Close to the Weyl points, the gap around the Fermi level
becomes very small and this breaks down. The dissipation as a
function of the control parameter φ0 is shown in Fig. 9. Large
peaks at the positions of the Weyl points are clearly visible.
We also show the chirality C that is expected to be zero in
the trivial region and ±1 in the topological region. Due to the
large dissipation, it deviates from these values in the vicinity
of the Weyl points.

APPENDIX C: SCATTERING MATRIX Ŝ2

The results presented in the main text were obtained for
a scattering matrix that yields a particularly large gap in
the topological region. As can be seen from Fig. 7, typical
scattering matrices yield a smaller gap. In this section we
make use of a second scattering matrix that is more typical:

Ŝ2 =

⎛
⎜⎝

0.108 − i0.144 0.180 − i0.119 0.185 − i0.590 0.734 + i0.015
0.180 − i0.119 0.151 + i0.234 −0.362 − i0.634 −0.4750 + i0.341
0.1852 − i0.590 −0.362 − i0.634 0.145 − i0.009 −0.204 + i0.146
0.734 + i0.015 −0.475 + i0.341 −0.204 + i0.146 0.236 − i0.022

⎞
⎟⎠. (C1)

Here the Weyl points are at ±(1.74,−1.07,−2.82), with charge
+1, and ±(2.50,3.02,−0.73), with charge −1. The gap in the

topological region is largest in the planes at φ0 = ±2.16, where
E = 0.05�.
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FIG. 10. The currents I0,I1,I2,I3 as function of voltage for the scattering matrix Ŝ2. The voltages in terminals one and two are given as
V1 = n1V and V2 = n2V , respectively (top, n1 = 1,n2 = 3; bottom, n1 = 2,n2 = 3). The Dynes parameter is set to 
 = 0.0001�. Left: At
phase φ0 = 2.16 in the topological region. Right: At phase φ0 = 0 in the trivial region. We have used an average over N = 10 phase shifts φ.
The insets show a larger range of voltages.

FIG. 11. The conductances G12,G21,G11, and G22 between the voltage-biased leads one and two as a function of voltage in logarithmic
scale. The conductances are obtained from the currents shown in Fig. 10. Left: At phase φ0 = 2.16 in the topological region. Right: At phase
φ0 = 0 in the trivial region. The expected quantization of the transconductance is seen for voltages eV/� � 0.001.
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FIG. 12. Dissipation P/PN (dashed lines) and chirality C (solid lines) as a function of voltage in logarithmic scale. Green curves correspond
to V1 = 2V,V2 = 3V and red curves correspond to V1 = V,V2 = 3V . Left: At phase φ0 = 2.16 in the topological region. The chirality tends
to −1 as the dissipation tends to zero at low enough voltages. Right: At phase φ0 = 0 in the trivial region.

Due to the smaller gap, lower voltages have to be
used to observe the quantization of the transconductance,
making the calculations much more time consuming. The
current-voltage characteristics are shown in Fig. 10. The
conductances are shown in Fig. 11. As explained in the main
text, four different voltage regimes can be distinguished. At
high voltages, V 	 �/e, one finds the normal-state conduc-
tances, GN

11 = −0.46 × (4e2/h), GN
22 = −0.49 × (4e2/h),

and GN
12 = GN

21 = 0.27 × (4e2/h). Lowering the voltage,

0.01�/e � V � 2�/e, multiple Andreev reflections lead to
resonance features. At even lower voltages, V � 0.01�/e,
the interplay between Landau-Zener transitions and inelas-
tic relaxation becomes important. Here we chose a Dynes
parameter 
 = 0.0001�. At φ0 = 2.16, it becomes compa-
rable to the Landau-Zener rate at voltage V ≈ 0.002�/e.
This is consistent with the observed quantization at V �
0.001�/e. The dissipation and the chirality are shown in
Fig. 12.
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