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Abstract

All existing data sources used to reconstruct 3D building models have certain restrictions.
An eye-catching alternative is IndoorOSM, one of the most popular examples of the newly
evolved crowdsourced geodata. The potential power of this rich and simple-formatted data
source has been proven by many researches. However, a fatal flaw of IndoorOSM is also
pointed out, which is its accuracy. Another promising data source that has been looked
into is 2D architectural floor plans. They are also commonly available and full of detailed
indoor information. Due to the inconsistencies and ambiguities existing among real-life floor
plans, previous researches all are established on different user cases. Although sharing a
common pipeline, they differ from each other in every step, from the data structure, processing
procedure to the 3D reconstruction method. The combination of these two data sources can
be beneficial, because architectural floor plans can offer IndoorOSM better accuracy and
extensive indoor information while IndoorOSM can provide a unified data structure and 3D
reconstruction workflow for information extracted from floor plans.

Based on a throughout review of the characters of real-life floor plans, a set of rules are
proposed to redraw architectural floor plans from real life. These rules mainly focus on reor-
ganizing information contained in floor plans, taking advantages of the layering and blocking
functions supported by CAD application. The original geometry and graphical representa-
tion in the raw floor plans is reserved as much as possible. Redrawing is only required when
unstandardized representation is encountered. Then, an automatic process is accordingly
presented to extract desired information from the redrawn floor plans into an IndoorOSM
database. Finally, highly detailed CityGML LoD4 models with interior structures can be
generated using a method proposed by Dr. Marcus Goetz. The pipeline is tested with several
floor plans from real life for 3D reconstruction. User feedback validated the feasibility and
efficiency of the redrawing rules.
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Chapter 1

Introduction

1-1 Context

Nowadays, people spend more time indoor than outdoors, as a result of which the demand
of indoor information increases more than ever [1, 2]. Tasks like indoor navigation and
emergency management all require such information [3]. Several global companies, such as
Bing [4], Google [5] and Navteq [6], have already made their efforts trying to seize this
ever-growing market by providing indoor-related services or applications. However, for now
most of them are limited to 2D indoor maps. On the other hand, 3D building models have
been proved to be an efficient tool to present indoor environment. It provides an immersive
visualization allowing people to virtually wander inside the building to have a more intuitive
perspective [7, 8].

Normally, 3D building models can be obtained through Building Information Modeling (BIM),
photogrammetry and LIDAR (Light Detection and Ranging). For designing purpose from an
architect’s view, architects use various architectural softwares, e.g. AutoCAD, Sketchup,
Rhino, to create 3D building models by hand. Although very time-consuming and larbor-
intensive, models created in this way are very exhaustive, showing the buildings from all
aspects: internal, external, from beneath and from above [9]. Both aerial photogrammetry
and LIDAR solved the problem of massive data collection [10]. Traditionally, 3D urban
model can be obtained through semi-automatic interaction between proficient operators and
aerial imagery on a photogrammetry station [11]. Recently, large-scale production has been
achieved due to the emergence of more automated computerized tools [12]. Fig. 1-1 shows
some building models that are reconstructed from aerial imagery. Methods using point cloud
collected by LIDAR can be generally categorized into model-driven methods and data-driven
methods. To put it simple, model-driven methods try to fit parameterized building models
to the point cloud, while data-driven methods try to find parametric planes for building
roofs in the point cloud, possibly grouped with buildings’ orthogonal projection information
(e.g. ground plans and cadastral maps), to reconstruct the building [13, 14, 15]. Fig. 1-2
illustrates the general steps in data-driven methods to extract a building’s roof planes from
point cloud. For photogrammetry and point cloud, in addition to possible human intervention
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2 Introduction

Figure 1-1: Reconstructed building models from aerial imagery [16]

and restrictive data resources that require professional instruments, a critical disadvantage
is that only external facades of buildings can be rebuilt without any information about the
interior environment. Thus, it is very necessary to find another data source that is commonly
available and easily retrievable that can be used for automatic 3D reconstruction for buildings’
indoor space.

2D architectural floor plans, as a standard way to express design by architects and are widely
used in the field of architecture, are an extensively available data source with a wealth of
information that is suitable for 3D reconstruction. Space subdivision is represented by simple
planar geometries (usually lines and polygons) with notations of their measurements. Texts
and symbols are used to present semantic information, such as name and usage of a subspace
or texture of walls [18]. Furthermore, connectivity network of subspaces can be obtained
by searching for connectors that are usually represented by specific symbols, such as doors,
windows, staircases, elevators, escalators and slopes [19]. There are various formats of 2D
architectural floor plans. Hand drawings, digital scanned copies and vector formats like
CAD, all are very widespread. Another advantage of 2D architectural plan is its considerable
accuracy since architectural floor plans are strictly drawn based on buildingsąŕ real dimensions
under certain scale [20]. Therefore, 2D architectural floor plan is a very promising data source
for automatic reconstruction of 3D building models with indoor information.
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1-2 Challenges in using floor plans for 3D reconstruction 3

(a) (b) (c) (d)

Figure 1-2: Approximate roof modeling. (a) Segmented LIDAR points for a roof surface. (b)
Local plane patches fit to the LIDAR points. (c) Planar patches grouped together based on
similarity of normals. (d) Approximate boundaries of planar roofs. [17]

Figure 1-3: Reconstructed building models from aerial imagery [24]

1-2 Challenges in using floor plans for 3D reconstruction

Researchers have been trying to automate the process of reconstructing 3D building models
from 2D floor plans. However, there are some challenges in doing so caused by the characters
of real-life floor plans. The first one is the format of the input floor plans. Basically, there are
two categories of floor plans in real life: paper-based and CAD-based [20]. In earlier times
when CAD (Computer-aided Drafting or Computer-aided Design) is not yet popularized,
floor plans were drawn manually by architects on paper. Some of these hand drawings were
scanned and saved in digital format for archiving. Even nowadays, paper floor plans still
dominate the architectural workflow [20]. Nevertheless, the use of CAD has tremendously
increased the productivity of the designers and improved the quality of design [21]. There are
various CAD software, open-source or proprietary, modelling for both 2D and 3D or solely 2D,
being widely used in the field of architecture, MEP (Mechanical, Electrical and Plumbing)
or structural engineering [22]. Depending on the software by which these computer-drawn
floor plans are created they might be saved in different file formats [23]. Due to this reason,
existing systems all are developed based on certain input format and can only achieve the
expected results with their designated format. For systems that use paper-based floor plans
as input, they have to take some extra steps by adopting certain image processing techniques
to vectorize the floor plans before they can further deal with those extracted primitives like
CAD-based systems do [20].

The second reason that impedes the realization of fully automation is the varying representa-
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Figure 1-4: Examples of material symbols in floor plan [24]

Figure 1-5: Polymorphous representation of walls, windows and doors [20]

tion of the drawings, especially for those graphical symbols. These graphical symbols include
symbols for architectural components (e.g. windows and doors), construction material (e.g.
concrete and wood) and cross-references [24]. Fig. 1-3 shows some typical symbols of walls,
doors and windows. Fig. 1-4 shows some examples of material symbols commonly used in
floor plans. Although some common rules and standards of architectural floor plans have
been developed for designers as explicit guidelines [25, 26, 27], it does not completely elimi-
nate the ambiguities within real-life floor plans. It is because between these drawing standards
and symbol libraries, differences exist. For a single semantic symbol, it can be represented
in several different ways according to different standards [28]. Designers can choose freely
among them based on their purpose for the drawing. Besides, since none of these standards
are mandatory, in reality tiny differences might still exist in symbols that are claimed to be
conformable with a particular standard, as designers might alter and adapt the represen-
tation of the symbols to some degrees to their own drafting habit and artistic incline [24].
Furthermore, the characters of a same symbol can change emphasizing on different aspects
at different design stages with different level of details [29]. Fig. 1-5 illustrates this situation
with four different possible representations of a same case, where there is a wall with one
window and one door on it. Last but not least, these standards and guidelines are developed
for architectural use. They might not be suitable for 3D reconstruction.
Unfortunately, existing researches, besides being restricted to the input format, focus on
applying different techniques of image processing, symbol recognition and 3D reconstruction
based on certain assumed representation of the floor plans. Their performance depends on
how closed the floor plans are to the desired case. Very few analysis of real-life floor plans
have been carried out to give a guideline for a standardized representation of the input floor
plans to facilitate 3D reconstruction.

1-3 Objectives and research question

Based on the context described above, the goal of this thesis is to propose a (semi-)automatic
process to extract information from 2D architectural floor plans in the form of IndoorOSM
for 3D reconstruction. The main research question to be addressed is:
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1-4 Research scope 5

How to integrate 2D architectural floor plans as input data into the 3D reconstruction pipeline
of IndoorOSM?

This research question can further be divided into three underlying questions:

1. What information about indoor environment is contained in real-life floor plans and
among them which can be exported into IndoorOSM for 3D reconstruction?

2. In what way can the information to be used be extracted from the floor plans?

3. How should the extracted information be reorganized in the form of IndoorOSM?

1-4 Research scope

There are several things will not be considered in this thesis:

1. Input floor plans. The input floor plans in this thesis are 2D architectural floor plans.
Any other floor plans designated for other application purpose will not be considered.

2. Building structure. Since a floor plan is an aerial plan view that is horizontally cut
approximately 4 feet above the floor, it cannot fully present a buildingąŕs indoor spatial
structure. In this thesis, only normal-structured buildings will be considered, which
means there is no room on each floor that crosses several floors in the building. The
height of every room cannot exceed the height of the floor it belongs to.

3. 3D reconstruction. This thesis will focus on analysis, processing and information ex-
traction of 2D floor plans for 3D reconstruction. The 3D reconstruction will be carried
out by algorithm developed by other researchers.

4. Geo-referencing. Usually architectural floor plans only contain measurements of a build-
ing without any information about its geographical location. Thus, models created in
this thesis will not be geo-referenced or be geo-referenced manually.

1-5 Contributions

Generally, in this thesis, a complete pipeline for processing 2D architectural floor plans is pro-
posed with the purpose of integrating 2D architectural floor plans into the 3D reconstruction
workflow of IndoorOSM proposed by Dr. Marcus Goetz. By using architectural floor plans
as input data source, the data source for 3D reconstruction that is currently very restrictive
can be extended. Additionally, the relatively high accuracy of architectural floor plans in
can help solve the biggest problem of crowdsourced data like IndoorOSM that the generated
3D models are often distorted since the accuracy of the data source is not guaranteed. In
turns, IndoorOSM provides architectural floor plans with a unified data structure and 3D
reconstruction workflow that the extracted information can be put into.

To be more specifically, previous researches on processing floor plans for 3D reconstruction,
although share a common pipeline, all make their own assumptions or requirement on the
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input floor plans based on the data format or the methods they are going to use. In this
thesis, based on a throughout review of the characters of real-life floor plans, a set of rules
are proposed to redraw input floor plans to make them unified in terms of format, graphical
representation and information segmentation, and compatible with the later 2D processing
steps. These rules mainly focus on reorganizing information contained in floor plans, tak-
ing advantages of the layering and blocking functions supported by CAD application. The
original geometry and graphical representation in the raw floor plans is reserved as much
as possible. Redrawing is only required when unstandardized representation is encountered.
Besides, auxiliary information and some other architectural information that are not used in
the reconstruction process can also be saved in other separated layers, so that the redrawn
floor plans are not proprietary and can still be used for other application purposes, such as
instruction for construction.

Then, an automatic process is accordingly presented to extract desired information from the
redrawn floor plans into an IndoorOSM database. This process includes drafting error fixing,
wall reconstruction, opening and contour reconstruction. In drafting error fixing step, in
addition to the problem of disjoint vertices that has been looked at by previous researches,
some redundancies that might be contained in the floor plans are newly considered in this
thesis. In wall reconstruction step, instead of recognizing parallel line pairs as walls, this thesis
tries to group line segments in the wall layer into closed polygons. Although the topological
information of walls is ignored, the problem of possible incorrect detections is avoided. In
contour reconstruction step, more possible layout between openings and its adjacent walls
that have not been considered in previous researches is looked into in this thsis.

1-6 Chapter overview

The rest of this thesis will be organized as follows:

Chapter 2 first gives a thorough analysis of real-life floor plans. All the representation possi-
bilities of the information to be used in the floor plans will be summarized. Based on that,
a preliminary conclusion that floor plans from real life must be redrawn according to cer-
tain rules to facilitate an automatic 3D reconstruction will be drawn. Next, an overview of
some previous researches in this area is presented, which covers both the methods to process
2D architectural floor plans and their corresponding reconstruction algorithms. Decisions on
what information should be used, in what way the information should be prepared for 3D
reconstruction and the reconstruction method to be used are also made in this chapter based
on the literature study.

Chapter 3 first illustrates how the input floor plans should be redrawn in detail, which includes
the content to be kept, the specific representation of the symbols, the layering and the format.
After that, each step of processing the redrawn floor plans is explained. After the information
is extracted from the redrawn floor plans, it is exported to a database for 3D reconstruction.

Chapter 4 presents the implementation of the proposed algorithms and the testing results
from several cases of real-life floor plans.

Chapter 5 concludes this thesis research.
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Chapter 2

Background

This chapter introduces the background of the thesis. The characters of 2D architectural floor
plans are presented first. Then a literature study of previous researches on extracting and
reorganizing of 2D information in the floor plans is carried out to find out which method can
contribute to this thesis and what needs to be improved. Last, some methods of reconstructing
3D models from 2D information are introduced and the method developed by Dr. Marcus
Goetz is chose for this thesis.

2-1 Overview of real-life floor plans

In last chapter, it is mentioned that there are there are some challenges caused by the char-
acters of real-life floor plans that impede the realization of fully automatic 3D reconstruction
from 2D floor plans. They are basically the diversified formats of the floor plans and the vary-
ing representation of symbols in the floor plans. In this section, the representation problem
will be explained in details. First, some commonly seen contents in architectural floor plans
will be reviewed. Among them, walls, doors and windows are determined to be the most
basic elements in the 3D reconstruction of building models with indoor information. Then,
the representation of these three elements will be further introduced respectively.

2-1-1 Content

Fig. 2-1 shows example of an architectural floor plans commonly seen in real life. The contents
in this floor plan can be generally divided into two categories: auxiliary and architectural.
The auxiliary ones are center lines, dimension lines, numbers and texts. Center lines go
through the center of objects (usually the main walls and openings), indicating their location
and orientation. It usually connects with a circle, within which there is letter and/or number
for its identification. Dimension lines are used to show the measurement of an object. It
can be used to indicate length, width, diameter, etc. Fig. 2-2 is the zoom-in view of the
area bounded by the dark blue box in Fig. 2-1. In Fig. 2-2, there are two center lines going
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Figure 2-1: Example of an architectural floor plans

through two walls, between which there is a dimension line perpendicularly intersecting with
them showing the distance between these two walls.

Besides being used to identify the center lines and to indicate measurements, texts and num-
bers are often used for additional description of objects. For example, in Fig. 2-3, which is
the zoom-in view of the area bounded by the yellow box in Fig. 2-1, the room number, room
type and the area of room are presented. Moreover, some other auxiliary elements, such as
section lines, cross-reference symbols, opening number symbols, north arrows and legends,
are also very commonly seen in architectural floor plans.

The architectural contents that can be recognized in Fig. 2-1 are walls and columns, windows
and doors, material hatch patterns, stairs and elevators, furniture and facilities, and objects
outdoors. Among them, walls and columns are the main structural entities in a building, which
are also the most important elements in the 3D reconstruction constituting the skeleton of the
building structure. Doors and windows are also indispensable elements in 3D reconstruction
since they closure the contours of rooms formed by its surrounding walls. Besides, openings
can be used to obtain the connectivity between rooms in indoor environment in further phases
once a 3D model has been rebuilt. Those reasons mentioned above make walls, columns, doors
and windows the most basic elements used by existing methods to reconstruct 3D building
models. Thus, their characteristics will be analyzed with more detail in the following sections.

Moreover, material or texture of some objects is often required to be denoted in architectural
floor plans. There are three types of material symbols in CAD software regularly used for
this purpose. They are hatch pattern, solid fill and gradient fill. In Fig. 2-1, different hatch
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2-1 Overview of real-life floor plans 9

Figure 2-2: Center lines and dimension lines

Figure 2-3: Descriptive information of a living room

patterns are used for walls as well as the tiled floor in bathrooms.

Stairs and elevators are another important architectural element in architectural floor plans.
In Fig. 2-1, the stairs are bounded by the grey box. Fig. 2-4 shows some other examples
of stairs symbols, from which it can be seen that although the representation of stairs in
floor plans varies, they all share some common parts, e.g. the steps, the direction of flight
indicating by an arrow, and the rails. From a topological view, stairs and elevators play a
role of connector between different floors. In both 2D and 3D indoor navigation application,
vertical connectors like stairs and elevators will first be searched when a cross-floor route is
going to be determined. However, in this thesis, stairs and elevators will not be used in the
reconstruction of the 3D building model since navigation is not the priority in this thesis.
After a 3D model is rebuilt, future work can be invested into the reconstruction of stairs to
obtain the topological information to be used for further applications, such as navigation.

Depending on the level of detail, there might be also furniture and facilities for emergency
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Figure 2-4: Symbols of stairs

control in a floor plan. Fig. 2-5 is the zoom-in view of one of the areas in Fig. 2-1 that are
bounded by the green boxes, which is actually a bathroom. Furniture such as toilet, shower,
wash-basin, ceramic tiles can be identified from it. Fig. 2-6 shows some other examples. These
contents will not be used in this thesis as well, but they can be used to determine a function
of a space or for emergency control applications in future study.

Figure 2-5: Toilet, shower, wash-basin, ceramic tiles

In addition to those auxiliary lines and symbols and interior objects introduced above, there
are normally some other objects outside the building in a floor plan. They include balconies,
canopies, railings, air-conditioning brackets, outdoor stairs and ramps and so on. The two sky
blue boxes in Fig. 2-1 indicate stairs and ramps outside the building. Since this thesis focus
on the reconstruction of the indoor environment, these outdoor objects will not be considered
as well. Table 1 summarizes the contents that commonly show up in architectural floor plans.
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(a) Kitchen range (b) Washing machine and washing dryer (c) Bed

(d) Fire escape (e) Fire hose

Figure 2-6: Symbols of furniture and emergency control facilities

Table 2-1: Contents of architectural floor plans

Category Elements and objects To be used
in 3D extrusion

Auxiliary

Center lines No
Dimension lines No

Texts and numbers No
Other symbols No

Architectural

Wall and columns Yes
Doors and windows Yes
Material symbols No

Stairs and elevators No

Furniture and facilities

Toilet, shower,
wash-basin, ceramic
tiles, kitchen range,
washing machine,
washing dryer, bed,

wardrobe, closet, desk,
carpet, fire escape,

fire hose, etc.

No

Outdoor objects

Balcony, canopy,
railings, air-conditioning
brackets, outdoor stairs

and
ramps, etc.

No
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2-1-2 Walls

There are several ways of drawing walls and columns. Fig. 2-7 shows three typical ways that
are found from the study of a set of architectural floor plans. In Fig. 2-7a, each wall with
columns amid it is represented by a single polygon; in Fig. 2-7b, walls and columns are drawn
separately; in Fig. 2-7c, even a wall is also separated into several parts based on the material
of part of the wall. Besides the material of the wall, in some floor plans exterior walls and
interior walls are also drawn separately. To make it clearer, Fig. 2-8 provides a demonstration
of a simple room drawn in four of these different ways. In Fig. 2-8a all connected walls and
columns are drawn by a single polygon, just like Fig. 2-7a; Fig. 2-8b and Fig. 2-8c shows
two different ways of separating walls and columns, corresponding to Fig. 2-7b; Fig. 2-8d
corresponds to Fig. 2-7c, in which exterior walls and interior walls are also drawn separately.
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(a)

(b)

(c)

Figure 2-7: Examples of different ways of drawing walls
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(a) (b)

(c) (d)

Figure 2-8: Demonstration of different ways of drawing walls

Additionally, in some of the floor plans that have been studied in this thesis, some decorative
details and embossed bricks have been discovered on outer or inner side of the walls. Fig. 2-9
gives an example. Fig. 2-9b and Fig. 2-9c are respectively the blue area and green area in
Fig. 2-9a.
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(a)

(b) (c)

Figure 2-9: Decorative details on walls

Last, it is very common that in some buildings there are some hollow vertical shafts for air
canal, pipelines and electric wires (Fig. 2-10).

(a) (b)

Figure 2-10: Hollow vertical shafts
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2-1-3 Doors

Generally, there are four types of doors frequently used in 2D architectural floor plans. They
are swing door, sliding door, pocket door and bi-fold door, among which swing door is the
most common one.

Swing doors

Fig. 2-11 shows a simplified model of a swing door in both vertical and plane view. There are
two main parts in the model: the door frame and the door panel. The door frame also consists
of several components. A lintel is the horizontal block that spans the opening between its
two doorjambs. Doorjambs are the side pieces of the door frame, which play a role of weight-
bearing and connecting unit between the door and its adjacent walls. Some swing doors might
also have a doorsill in the underpart of the door frame, which plays a role of threshold of the
doorway and connecting unit between the door and the floor. As for door panel, it is the part
of the door that actually separates two connecting spaces, on which a door knob (also called
door handler) is attached and used to open or closed the door by certain mechanism.

Figure 2-11: A normal swing door in both vertical and plane view

However, as simple as it is, the symbol of a single swing-door in the plane view in real-life
floor plans can still vary a lot, since there are various variants in each part of the door.
For the doorjamb, it might be simply represented by a rectangle, or some more detailed
shapes, or even its detailed inner structure (Figs. 2-12a and 2-12b); for the door panel, it can
either be represented by a rectangle indicating the thickness of the panel, or it can be simply
represented by a single line (Figs. 2-12c to 2-12e); for the doorknob, it can be represented by
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2-1 Overview of real-life floor plans 17

multiple shapes, e.g. rectangle, ellipse or a single line parallel to the door panel (Fig. 2-12c);
for the swing trajectory of the door panel, it can be represented by an arc (Figs. 2-12c to 2-12e
and 2-12i), a single line (Figs. 2-12a and 2-12f) or broken lines (Figs. 2-12b, 2-12e and 2-12h).
And the angle can either be 90 degrees or certain angle less than 90 degrees (Figs. 2-12a
and 2-12f). In addition, none of these components is certain to be drawn in the symbol. In
some extreme cases, a door symbol can even just be a single rectangle filling the gap between
its adjacent walls (Fig. 2-12j), or a single line indicating the door panel with an arc or a line
indicating the trajectory (Figs. 2-12a and 2-12f).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j)

Figure 2-12: Variants of door symbols from real-life floor plans
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2-1 Overview of real-life floor plans 19

What is described above can be summarized as the problem of level of details in the repre-
sentation of the symbols. Besides that, several single-swing doors can be combined together
forming other more complicated swing doors. Fig. 2-13 shows different combinations of single-
swing doors in real-life floor plans.

(a) Single-swing
door (90 degrees) (b) Double sing-swing door

(c) Opposing door (d) Uneven door

(e) Double-acting door (f) Double double-acting door

Figure 2-13: Different combinations of single-swing doors

Last, in architectural floor plans, in addition to the door symbol itself, there are always some
other extra primitives or annotations in the symbol expressing more detailed information
about the opening. For example, in Figs. 2-14a and 2-14b, there are some texts around the
doors indicating the model of the doors; in Figs. 2-14b and 2-14c, the central lines of the
doors are also drawn; in Fig. 2-14c, there are two crosses on both sides of the door panel
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connected by its central line and a number “30” in a circle, which means this door can hold
fire and smoke for thirty minutes.

(a) (b)

(c)

Figure 2-14: Annotations in door symbols

Sliding doors, pocket doors and bi-fold doors

(a) Sliding door (b) Pocket door (c) Bi-fold door

Figure 2-15: Basic models of sliding door, pocket door and bi-fold door

In addition to swing doors, occasionally there might be some sliding doors, pocket doors
and bi-fold doors in real-life floor plans. Fig. 2-15 shows the basic models of sliding door,
pocket door and bi-fold door. Compared to swing doors, a larger part of these doors exists
in between the gap of its adjacent walls since they do not have the opened door panel with
a swing trajectory. However, there usually is an arrow within the symbol indicating the
direction in which the door panel moves, similar to the trajectory in swing door. Fig. 2-16
shows some variants of symbols of sliding doors and pocket doors in real-life floor plans.
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(a) Single sliding door (b) Double sliding door (c) Pocket door

Figure 2-16: Sliding doors and pocket doors in real-life floor plans

2-1-4 Windows

There are mainly three types of windows normally used in architectural floor plans: fixed
window, sliding window and casement window. A fixed window is a window that cannot be
opened, only allowing light to go through, while sliding window and casement window belong
to the category of unfixed window, whose window sashes can somehow be moved to open
or close the window. Depending on the way the window sash moves, sliding window and
casement window can be distinguished. A casement window is a window with a hinged sash
that swings in or out like a door. Based on the location of the hinge, it can further be divided
into side-hung, top-hung (also called “awning window”), and bottom-hung sash (also called
“hopper window”). Fig. 2-17 shows some examples of window symbols in real-life floor plans.

Like doors, there can also be combinations of windows of different types. Fig. 2-17g shows a
combined consisting of a hopper window and a single casement window. Besides, compared
with doors, a special point of windows in architectural floor plans is that several windows can
connect with each other to form a curtain wall, a wall of glass. Except for its transparency,
this kind of wall plays a same role with normal walls of separating two adjacent spaces.
Fig. 2-18 shows two examples of curtain walls.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2-17: Variants of window symbols in real-life floor plans. (a) (b) Fixed window; (c)
Single-hung sash; (d) Double-hung sash; (e) Hopper window; (f) Double casement window; (g)
Combination of a hopper window and a single casement window

(a) (b)

Figure 2-18: Examples of curtain walls
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2-2 2D floor plan processing

There have been quite many studies done to reconstruct 3D models from 2D architectural
floor plans. Based on the format of the input floor plans, they can be mainly divided into two
groups: ones that use scanner images as input, and ones that use CAD-based files as input.
CAD applications are widely used nowadays in the field of architecture by designers to draw
graphic primitives on computers in the format of vector. They allow users to more efficiently
manage graphical information by segmenting the whole drawing into different layers of related
elements or grouping primitives into blocks to represent some higher level objects. In addition
to CAD-based floor plans, there are still many floor plans that were drawn on paper by hand
before the popularization of CAD software. These paper floor plans are usually digitally
scanned and saved as raster images. Compared with CAD-based floor plans, the distinction
between wall lines, graphical symbols, textual content and some other components in a raster
image of architectural floor plan is much vaguer, since they are all represented by line segments
of pixels in one integrated layer [20]. Fig. 2-19 shows the pipeline followed by them.

Figure 2-19: Pipeline for raster-based and CAD-based systems

Generally, researches using CAD-based floor plans as input data take advantage of CAD appli-
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cationsąŕ in-built methods, such as layers and blocks, to realize the information segmentation.
Different symbol recognition methods will then be applied to detect walls, doors, windows
and possibly semantics from the floor plans. Finally, closed contours of different spaces can
be obtained using different loop searching algorithm and then extruded to recreate the 3D
building models. In comparison, researches using raster image floor plans as input data must
first segment the information contained in the floor plans since pixels representing different
information all are mixed together in one single layer, before each group of information can
be properly dealt with respectively. However, apart from the preprocessing of raster images,
they share drafting error fixing, wall detection, opening recognition and contour reconstruc-
tion in the 2D processing phase. Thus, in this section, methods used in these four steps will
be reviewed respectively.

2-2-1 Drafting error fixing

Manually generated input floor plans typically suffer from many drafting errors and redun-
dancies [20]. These errors might be visually imperceptible in CAD applications for users and
not really affect the use of the floor plans for a construction purpose, but they might make
algorithms to be used in later phases generate some unpredictable results and thus affect
the behavior of the overall (semi)automatic process. Therefore, they have to be found and
corrected.

Figure 2-20: Correction of disjoint vertices [30]
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However, very few researches reviewed by this thesis have considered the drafting errors.
Most of their algorithms are based on the assumption that the input floor plans do not
contain any drafting errors. Only Rick et al. proposed a coerce-to-grid method to clean
up disjoint vertices in his prototype system called Building Model Generator (BMG) [30].
Disjoint vertices appear when two lines that are supposed to connect with each other at a
same vertex disjoin or intersect. Figs. 2-20a, 2-20c, 2-20e, 2-20g and 2-20i show cases of
disjoint lines. Fig. 2-21 shows a case of overlapping lines. In this method, first, every vertex
is snapped to a grid of a specified resolution to fix relatively small gaps and intersections.
Then lines that are still disjoint after the snapping are corrected in the way shown in Fig. 2-
20. If these two lines are parallel and collinear (Fig. 2-20a), they will be simply connected
(Fig. 2-20b); if they are parallel but not collinear (Figs. 2-20c and 2-20e), they will be
connected perpendicularly (Figs. 2-20d and 2-20f); if they are approximately perpendicular
(Fig. 2-20g), the intersection of these two lines will be computed and they will be extended
to the computed intersecting point (Fig. 2-20h); if none of these conditions is fulfilled (Fig.
2-20i), a new line perpendicular to one of the two lines will be created and intersect with
the extension of the other line (Fig. 2-20j). In addition, overlapping lines are also corrected
by cutting each of them into two distinct lines at the intersecting point and discarding the
shorter lines (Fig. 2-21).

Figure 2-21: Correction of overlapping lines [30]

Nevertheless, this method only considered disjoint vertices that are caused by disjoint lines
and false intersecting lines. In real-life floor plans, there also exist other drafting errors like
null-length lines and duplicated lines. In this thesis, a new method is developed to fix those
null-length lines and duplicated lines before disjoint vertices are fixed.

2-2-2 Opening recognition

In most cases, openings are detected by using different symbol recognition techniques. Based
on the format of the input data, they can be divided into two main categories: vector-based
and pixel-based. Vector-based approaches process vectorized images that contain primitives
such as points, lines, arcs and circles, by checking the mutual relationship between a group
of neighboring primitives. Pixel-based approaches work on raster images, trying to fit the
statistical features of a symboląŕs pixels in the image. Due to this thesis focuses working
on CAD-based floor plans, only main vectorized-based methods have been reviewed, which
includes example-driven approach [28], graphical-knowledge-guided reasoning [31] and con-
straint network [32].

Guo et al. described an improved example-driven symbol recognition algorithm based on
an extended relation representation mechanism with automatic knowledge acquisition capa-
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bility. They also proposed a method making sure similar symbols with repeating modes
can be recognized by one rule. However, they only considered limited geometrical relations
that are commonly used in architectural symbols [28]. Yan et al. proposed a graphical-
knowledge-guided reasoning method, which learns graphical knowledge from five types of
geometric constrains (intersection, parallelism, perpendicularity, circles and arcs) from an
example symbol given by user and uses the learned knowledge to recognize similar symbols.
Yet, their prototype system can only learn the graphical knowledge from single example [31].
Ah-Soon and Tombre introduced a method that defines a set of constraints on geometrical
features describing what architectural symbols to be recognized. Features extracted by this
method from the drawing through the network of constraints can be propagated so that the
network can be constantly updated whenever new symbols need to be taken in account [32].
Nevertheless, from the report on the International Symbol Recognition and Spotting Contest
on 2013 [33], it can be concluded that symbol recognition still remains an open question.
According to them, although several existing methods have achieved satisfying results, they
all have limitation to different degrees under certain circumstances that are not originally
designed for the methods.

Figure 2-22: Nine-point bounding box of a door block [34]

Due to the limitation of symbol recognition, in [34] a new idea is introduced to handle the
openings, which uses the bounding box of opening blocks. First, it is assumed that contents
of walls and openings are properly stored in two separated layers in the CAD file and that
each opening symbol is saved as an instance of block. Then the bounding box of each block
is calculated among all the primitives in the block. The central point of the bounding box
(point C in Fig. 2-22) is used to search for its nearest endpoints of a topology segment that
represents a wall. A topology segment of the opening is created by connecting the two found
endpoints. This method benefits from the use of layering and blocking supposed in CAD
system to avoid the influence from the varying layout of the primitives in the symbols. It is
limited to normal layout between opening and its adjacent walls, such as the one shown in
Fig. 2-25. Fig. 2-23 shows a scenario where the algorithm could go wrong.
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(a) (b)

(c) (d)

Figure 2-23: Opening topology segment: (a) a scenario with a door and its adjacent walls; (b)
topology graph of the walls and the bounding box of the door; (c) false result of nearest endpoints
searching; (d) expected correct result of nearest endpoints searching.

2-2-3 Wall detection and contour reconstruction

Figure 2-24: Contour searching for wall extrusion [20]

After openings have been recognized, contours of indoor spaces will be reconstructed for 3D
extrusion (Fig. 2-24). Usually, equivalent lines are created for the recognized openings to
replace the opening symbols in the floor plans (Fig. 2-25). Then, certain contour searching
algorithm is applied to find closed contours among the opening equivalent lines and the wall
lines. In some researches, to establish the topological relation between walls and openings,
certain wall detection algorithm is additionally required to detect wall objects from the wall
lines.
In the prototype system called the Building Model Generator (BMG) developed by Rick et al.
to address the issue of creating 3D building models from existing floor plans, they replaced
each such door symbol as shown in Fig. 2-25a with two parallel lines (Fig. 2-25b) as a step
towards building closed room contours that can be located through a vertex-graph traversal
[30]. Then with a starting vertex of a starting line and a desired orientation determined (Fig.
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2-26a), the traversal chooses the leftmost turn and proceeds to next line (Fig. 2-26b). This
process repeats and backtracks when dead ends are reached (Fig. 2-26c) until the starting
vertex is reached (Fig. 2-26d). At this moment, a closed contour has been formed and lines
in this contour are marked so that they will not be used in the next traversal.

(a) (b)

Figure 2-25: Replace door symbol with a pair of parallel lines[30]

Figure 2-26: Vertex-graph traversal for interior contour [30]

In order to additionally detect floor topology from architectural floor plans, Domínguez et al.
proposed a method, in which walls are extracted as single lines from a set of planar segments
contained in the wall layer [34]. In this method, each pair of parallel segments that are close
with each other is searched in the wall layer (Fig. 2-27 (1)). The endpoints of one segment
will be projected to the other to find the common part between them (Fig. 2-27 (2)). The
segments then are split at the projected point and the common part will be recognized as
walls and removed from the wall layer (Fig. 2-27 (3)). This searching process repeats in the
wall layer until no segments in the layer fulfill the criteria (Fig. 2-27 (4)).

Afterwards, the center line of each recognized line pairs is used to represent the walls and
form a topology graph of the floor plan with opening equivalent lines recognized by certain
symbol recognition techniques (Fig. 2-28). However, they also only considered the simplest

Haoxiang Wu Master of Science Thesis



2-2 2D floor plan processing 29

Figure 2-27: Iteration of the algorithm proposed by Domínguez et al. [34]. (1) Initial set
of segments and relations. (2) Projection of the end points. (3) Segment splitting and wall
extraction. (4) Updated segments and relations.

layout as shown in Fig. 2-25 between opening and its adjacent walls.

Figure 2-28: Topology representation from a portion of a CAD vector floor plan l [34]

In addition, by testing this wall detection algorithm with the floor plans used in this thesis, it
is found that some line pairs that are not supposed to represent walls might also be detected
in the results. Fig. 2-29 shows three examples of incorrect detection results. Figs. 2-29a, 2-29d
and 2-29g are the expected results from the wall detection algorithm. In case of Fig. 2-29a,
there should be three parallel line pairs being detected, while in case of Figs. 2-29d and 2-29g,
there should be two and four pairs. But, in practice, more line pairs fulfilling the conditions
are mistakenly detected ( 4© 5© in Fig. 2-29b, 3© in Fig. 2-29e, 2© in Fig. 2-29h). This results
in those extra red wall lines in Figs. 2-29c, 2-29f and 2-29i.
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(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 2-29: Examples of incorrect wall detection results: (a)(d)(g) expected results; (b)(e)(h)
incorrectly detected parallel line pairs; (c)(f)(i) incorrectly detected wall lines.

These errors are mainly caused by the user-defined threshold. Because, to find parallel line
pairs that are possibly representing walls, for each line, the algorithm only searches for its
corresponding parallel line within a user-defined threshold. If this threshold is set to be too
small, some thick walls might be overlooked. As a result, not all the detected wall lines can
be connected to other wall lines or opening equivalent lines at its both sides. Thus, this
threshold must be at least the biggest wall thickness to make sure all walls can be detected.
However, problem presented above arises that some line pairs that are not meant to represent
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walls will be detected in turn.

Figure 2-30: Shape T and its variations [35]

A new idea to extract walls from architectural floor plans is put forward by Lu et al. [35], who
applied a shape-based recognition method for structural entities (e.g. walls and beams). In
their research, they dealt with floor plans in which information is not segmented into proper
layers. In this case, such simple criteria as close parallel line pairs represent structural entities
cannot be trusted any more since there are a lot of disturbing lines making the analysis of
parallel line pairs more complicated. Based on this, they argued that shapes of crossing
regions can be used as the entrances for the recognition. They classified the most frequently
occurring shapes into three types: shape T (Fig. 2-30), shape X (Fig. 2-31) and shape L
(Fig. 2-32). Only after two end shapes are identified, the parallel line pairs between them can
be recognized as walls.

Figure 2-31: Shape X and its variations [35]

Unfortunately, although this method realized the recognition of structural entities from floor
plans without being layered, it still suffered from the problem of user-defined threshold as
Domínguez et al. did. The specific reason has been analyzed above. In Fig. 2-33, besides the
correct recognized shape, there are also shapes that are falsely recognized or not recognized
at all.
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Figure 2-32: Shape L and its variations [35]

In a more recent research, on the basis of the work of Lu et al., Zhu et al. introduced a Shape-
Opening Graph (SOG) to build the topological relationships between recognized parallel line
pairs and openings, with the observation that X, L, T shapes intersect with other shapes or
other openings and that an opening is adjacent to either shapes or other openings. Each
time, an opening is used to search for it adjacent shapes or openings in the SOG. Then,
according to the layout between the walls and openings, opening equivalent lines are created
in corresponding ways (Fig. 2-35). Fig. 2-34b shows the parallel line pairs recognized from
Fig. 2-34a. Fig. 2-34c shows the preprocessing result of the wall lines and the opening lines
after all vertices with degree of 1 are fixed. Last, closed loops are searched by a similar vertex-
graph traversal as shown in Fig. 2-26. There are two kinds of loops in the floor plan: inner
loops, which represent indoor spaces, such as rooms and corridors, and outer loop, which
represents the floor shell. In Fig. 2-34d, the inner loops are drawn in blue, while the outer
loop is drawn in red.

Figure 2-33: Correct, false, missing and suspicious shapes recognized by [35]
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Figure 2-34: Recognized parallel line pairs of walls by Zhu et al. [36]: (a) Original floor plan;
(b) recognized walls; (c) preprocessing result; (d) loop searching result.

An advancement of this method over other methods is that on the phase of creating opening
equivalent lines, more possible layouts between the opening and its adjacent walls are consid-
ered. In Fig. 2-35, in addition to (a) which are the same layout as in Fig. 2-25, layouts like
(b) (c) (d) (e) are also considered and corresponding solutions are provided ((g) (h) (i) (j)).

By reviewing these methods, it is found that existing wall detection algorithms which identify
walls as close parallel line pairs are not reliable since the performance is influenced by the
user-defined threshold for searching for nearby lines. Thus, instead of using wall detection
algorithm to extract wall lines from all those disturbing lines, the layers in CAD software, an
efficient information segmentation tool, can be used to separately store the wall lines. So that
the contours of spaces can be obtained by just searching closed loops among the wall lines
and opening equivalent lines, since the topological relationship between walls and openings is
not indispensable in the reconstruction of 3D building model. In this thesis, a more general
analysis of the layout between walls and openings will be carried out to help the creation of
opening equivalent lines.
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Figure 2-35: Openings and their adjacent walls analyzed in [36]

2-3 3D reconstruction

The 3D reconstruction method used for this thesis is developed by Dr. Marcus Goetz for
IndoorOSM data, the extension of OpenStreetMap (OSM) in indoor field. OSM is one of the
most popular examples of Volunteered Graphical Information (VGI), which is a newly evolved
geodata source in recent years that rises with the idea of crowdsourcing. The aim of OSM
is to use a massive amount of crowdsourced geodata collaboratively collected by individuals
who can collect geodata using manual survey, GPS devices, aerial photography and other free
sources, to create a free editable map of the world for everyone [37].

Figure 2-36: Exemplary floor plan of a building, which is mapped according to IndoorOSM in
JOSM [3]
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The favorable point of IndoorOSM is that it is a rich, open, free-editable and simple-formatted
data source with necessary semantics for indoor applications that can be manually input by
anyone who can acquire the data. There are several researches have been conducted to
discover its application prospect in indoor environment. A 3D indoor routing web application
purely using IndoorOSM data was developed by Marcus Goetz [38]. Not only simple route
planning applications are promising, the suitability of IndoorOSM data for indoor multi-agent
evacuation simulations has also been proven feasible [39]. In addition, a free and open web
repository for 3D building models which can be linked to the OSM database was proposed to
support the development towards 3D-VGI [40].

Figure 2-37: Structure of IndoorOSM building model [Liu]

Fig. 2-36 shows a floor plan of a building that is m according to IndoorOSM. There are three
basic elements used to represent the floor plan in IndoorOSM: nodes, ways and relations. A
node can either represent an opening (door, windows), or a corner point in a sequence of
nodes representing a way or entrances of the building. A way is a sequence of ordered nodes,
which can either represent a buildingpart (e.g. rooms, corridors etc.) or the shell (outline) of
a level (floor). Each level is represented as a relation, a conceptual element, in which there
might be several relation-members included. For a level relation, its relation-members are
several buildingparts and a level shell. Besides, the whole building is also a relation, whose
relation-members are a sequence of levels and its entrances. Additional semantic information
(attributes) about the building, the buildingparts, the entrances and the openings, is attached
as OSM key-value pairs to the OSM elements used to represent them. For example, for a
building, information such as address, name, height etc. can be attached to the building
relation; for a level, information such as name, level number, height etc. can be attached
to the level relation; for a buildingpart, information such as type of the space, name, height
etc. can attached to the way representing it; for a window, information such as type of the
window, width, height etc. can be attached to the node representing it. Fig. 2-37 illustrates
the structure of IndoorOSM building model as described above. Fig. 2-38 shows key-value
pairs that can be attached to different objects in IndoorOSM.
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Figure 2-38: Key-values of different objects [Liu]

After a building has been mapped in the way described above, 3D building model can be
reconstructed by simple extrusion of the contours of the way elements. The general workflow
for the generation of CityGML LoD3 and LoD4 models from IndoorOSM data is shown in
Fig. 2-39. In the generation of CityGML LoD3 models, only the ways representing the shell of
each floor are extruded (Fig. 2-40). In the generation of CityGML LoD4 models, in addition
to the level shells, ways representing buildingparts on the level are also extruded (Fig. 2-41).
Fig. 2-42 shows a building model of the OTB research institution in TU Delft created from
IndoorOSM data. For a clearer vision of the interior buildingparts, the front facade has been
removed in the model.

However, a fatal flaw of crowdsourced geo-data is that the accuracy of the data varies a lot
and sometimes can be very frustrating since anybody even non-geomatics professionals can
contribute to the datasets. The result of this is the geometric distortion of the outcome 3D
models. Marcus Goetz addressed these problems as follows: “some building models revealed
slightly dislocated levels”, “the position of windows does not fit to the provided width”,
“different sides of a wall are sometimes not parallel”, “some four-sided rooms are obviously
not quadrangular” and “many interior walls do not have a thickness” [3] (examples shown in
Fig. 2-43).
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Figure 2-39: General workflow for the generation of CityGML LoD3 and LoD4 models [3]

Figure 2-40: Stepwise generation of a CityGML LoD3 building model with IndoorOSM data [3]
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Figure 2-41: Stepwise generation of a CityGML LoD4 building model with interior structures
based on IndoorOSM data [3]

Figure 2-42: A CityGML building model created from IndoorOSM data
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(a) (b)

(c) (d)

Figure 2-43: Examples of erroneous results caused by inaccurate input geo-data [3]
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Chapter 3

2D floor plan processing

This chapter first illustrates how the input floor plans should be redrawn in detail, which
includes the content to be kept, the specific representation of the symbols, the layering and
the format. After that, each step of processing the redrawn floor plans is explained. After
the information is extracted from the redrawn floor plans, it is exported to a database for 3D
reconstruction.

3-1 Redrawing of floor plans

Fig. 3-1 shows the overall workflow of redrawing the floor plans.

3-1-1 Software choosing

• AutoCAD will be used as drawing software to redraw the floor plans.

AutoCAD is a commercial software application for 2D and 3D computer-aided design
(CAD) and drafting. It is used across a wide range of industries, by architects, project
managers, engineers, graphic designers, and other professionals. It is supported by 750
training centers worldwide as of 1994 [41]. As Autodesk’s flagship product, by March
1986 AutoCAD had become the most ubiquitous CAD program worldwide [42]. In
addition to its broad spectrum of users, AutoCAD is also very easy and straightforward
to use. User can create geometry by just clicking. These reasons make AutoCAD more
compatible with the redrawing rules that are going to be described below.

3-1-2 Content segmentation

• Contents of structural objects (i.e. walls and columns), windows and doors should be
separated from other contents by layering.
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Figure 3-1: Workflow of floor plan redrawing

In last chapter, it has been mentioned that only content of structural objects (i.e.
walls and columns), windows and doors will be used for 3D reconstruction. Any other
non-structural objects (e.g. toilets, showers, wash-basins, ceramic tiles, kitchen ranges,
furniture, stairs, elevators), objects outdoors (e.g. balconies, railings, air-conditioning
brackets), indicative information and symbols (e.g. texts, dimensions, auxiliary lines)
and hatch patterns within walls, need to be separated from them.
Figure 3-1 (a) and (c) are parts of two floor plans from real life. In Figure 3-1 (a), besides
structural objects, windows and doorsčňthere are a toilet, a wash-basin, ceramic tiles, a
kitchen range, dimensions, auxiliary lines and some other symbols and texts. In Figure
3-1 (d), in addition to these objects, there are also carpets, bathtubs and a canopy
for plants outside the windows. Besides, in Figure 3-1 (a) three different patterns of
parallel lines are used as hatch patterns; in Figure 3-1 (d) in addition to hatch pattern
of parallel lines, there are also some walls filled by grey solid fill. These contents all
need to be moved to other layers. Figure 3-1 (b) and (c) shows what the floor plans
look like after removing these contents.
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(a)

(b)

(c) (d)

Figure 3-2: Examples of cleaning content in real-life floor plans:(a) (c) parts of floor plans from
real life; (b) (d) floor plans after removing redundant objects

3-1-3 Walls

• Data types for wall geometry: LINE, POLYLINE and LWPOLYLINE

LINE is the most basic entity in AutoCAD, which is a straight segment specified by two
endpoints; POLYLINE is a connected sequence of segments created as a single entity,
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which can be 2D or 3D, and has been supported since very early version of AutoCAD;
LWPOLYLINE is simply "lightweight" version of a POLYLINE, which is always 2D and
supported in later versions.

• Wall representation
Walls and columns are represented by closed polygons, which can be drawn by LINE,
POLYLINE and LWPOLYLINE, the three most commonly used line entities in CAD
files, or any combination of these three entities. Figure 3-2 shows four possibilities of
how a simple rectangular wall can be drawn by these three entities. From left to right,
the wall is respectively drawn by four LINE entities, one POLYLINE entity, one LINE
and one POLYLINE, one POLYLINE and one LWPOLYLINE.

Figure 3-3: A rectangle-shape wall drawn by different entities

Only the outer boundary of each wall will be drawn. In case of that outer walls and
inner walls are drawn separately (Figure 3-3 (a)), or that walls and columns are drawn
separately (Figure 3-3 (b)), or that there are walls of different types intersecting with
each other (Figure 3-3 (c)), intersecting polygons should be merged into one polygon.
For example, the bold black polygons in Figure 3-3 (d) (e) (f) are the outer boundary
of walls shown in Figure 3-3 (a) (b) (c). Therefore, the redrawing of Figure 3-3 (a) (b)
(c) should look like Figure 3-3 (g) (h) (i) respectively.
Last, in case that there is a hollow vertical shaft for air canal, pipelines and electric
wires (Figure 2-10), the outline of the shaft should also be drawn as an inner ring of the
polygon that represents the structural object this shaft belongs to (Figure 3-4 (a)).Based
on the rules described above, the final representation of the walls of Figure 3-1 (a) and
(d) should be redrawn as below (bold black contours).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3-4: Examples of redrawing of walls: (a) (b) (c) representation of walls in real-life floor
plans; (d) (e) (f) outer boundary of walls in (a) (b) (c); (g) (h) (i) redrawn representation of
walls in (a) (b) (c)
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(a) (b)

Figure 3-5: Final representation of walls of Figs. 3-2a and 3-2d

3-1-4 Openings

• Data types for opening geometry: LINE, POLYLINE, LWPOLYLINE and ARC.
In addition to LINE, POLYLINE and LWPOLYLINE that have been introduced above,
ARC entity is also used in opening geometry. An ARC is a portion of a circular arc,
which can be created in AutoCAD in many ways. For example, it can be created by
specifying three points on it, or by specifying its start point, center and angle.
LINE, POLYLINE, LWPOLYLINE and any other combinations of them can be used
to drawn lintels, doorjambs and door panels in the same way of drawing walls. ARC
entities are used to draw the swinging trajectory of doors and windows.

• Symbol representation
For swing doors, lintel must be drawn because lintel is the most important part of the
whole door that indicates the location of the door. In case that lintel is missing in the
original symbol, it should be redrawn to fit the gap between its adjacent walls or the gap
between its doorjambs if doorjambs exist in the original symbol. Besides lintel, other
components such as doorjambs, door panel and trajectory should be kept if they exist
in the original symbol. If the trajectory is going to be drawn, it should be drawn by
an ARC entity. The angle of the ARC entity is not compulsory, which can range from
0 to 90 degree. Because by doing this, trajectory in the symbol can be distinguished
from other components which are composed of linear primitives. Then by checking the
center of the ARC entities, the location of the door hinge can be determined so that
the location of the lintel can be indicated. This can help to minimize the bounding box
in 2D processing phase. In addition, annotating primitives and texts shown in Figure
2-14 should be removed.
Figure 3-5 shows the redrawing of the door symbol in Figure 2-12. The modified parts
are indicated by dark blue stroke. Figure 3-5 (a) corresponds to Figure 2-12 (b), whose
trajectory has redrawing of symbols shown in Figure 2-12 been redrawn by an arc;
Figure 3-5 (b) (c) (d) respectively correspond to Figure 2-12 (d) (g) (i), whose missing
lintel has been added; Figure 3-5 (e) (f) (g) (h) respectively correspond to Figure 2-12
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(a) (e) (f) (h), whose missing lintel has been added and trajectory has been redrawn by
an arc. Figure 2-12 (c) and (i) do not need to be redrawn.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3-6: Redrawing of doors in Fig. 2-12

For sliding doors, pocket doors and bi-fold doors, only the arrows and annotating con-
tents in the symbols should be removed. No other redrawing is required.
For casement windows and combined windows within which a casement window is in-
cluded, they should be redrawn in same way as swing doors. For other windows, besides
removing annotating contents, no extra redrawing is required, since the bounding boxes
of these windows correctly indicate their locations.

• Symbol blocking
After the symbols have been redrawn, each of them should be saved as a block entity. A
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block is a named group of objects that act as a single 2D or 3D object. It can be used to
create repeated content such as drawing symbols, common components, and standard
details. By updating a blockąŕs definition, all instances of this block in the drawing
can be updated together. Blocks help designers save time, maintain consistency, and
reduce file size by reusing and sharing content rather than redrawing it every time it is
needed [43]. The benefit of blocking each opening symbol is that each symbol can be
dealt with separately as a whole to calculate its bounding box without applying symbol
recognition. Except for openings, blocking should not be used for any other purpose.
A block can be copied and used multiple times for duplicated symbols.
In case of combination of openings of same type, i.e. door with door (Figure 2-13) or
window with window (Figure 2-17 (g)), they should be blocked together as one single
block. Within this block, each window and door can either be a block as well, or they
can be directly drawn by primitives.
In case of combination of windows and doors (Figure 3-6), they should be blocked
together as a single block, which counts for a door block. Within this block, each
window and door can either be a block as well, or they can be directly drawn by
primitives.

(a) (b)

Figure 3-7: Combination of windows and doors

• Block defining
In AutoCAD, each block has its own coordinate system and a reference point, which
can be freely located by the designer in the coordinate system. This reference point is
also the origin of the system. Every primitive in the block is given coordinates with
respect to the reference point in the local coordinate system. When a block instance
is inserted in a drawing, all primitives in the block are transformed to the drawingąŕs
coordinate system by translating, rotating and scaling. Besides, each block has a name.
Whenever a repeating symbol is needed, a block instance with the same name will be
inserted. The naming of the blocks is not mandatory in this thesis.
In the following 2D processing phase, the bounding box of each block will be calculated
to indicate the outline and orientation of the opening. Thus, the opening should be
defined aligned with the x and y axes of the local coordinate system. Figure 3-7 shows
two scenarios. In Figure 3-7 (a), the symbol is defined in the coordinate system in the
expected way. It can be seen that the bounding box (in dark blue) correctly indicates
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the outline and orientation of the symbol. In Figure 3-7 (b), the symbol is define tilted
and the bounding box is stretched and not in the same orientation as the symbol.

(a) (b)

Figure 3-8: Opening with bounding box in local coordinate system

3-1-5 Layering

• Walls, window blocks and door blocks should be separately stored in three different
layers, respectively with the name of ąőWallsąŕ, ąőWindowsąŕ and ąőDoorsąŕ. Figure
3-8 shows how the layers should be organized in AutoCAD layer properties manager.

Figure 3-9: Layer properties manager

3-1-6 Format

• The file should be saved in DXF format.

DXF is one of the most widely supported vector formats in the world today. It is an
open standard, of which both binary and ASCII version exist. The ASCII version of
DXF file can be read with a texteditor, making DXF an easy format to parse. There
are several open-source libraries for manipulating DXF files (e.g. dxfgrabber, dxfwrite,
ezdxf, SDXF).

• Floor plan of each floor should be saved in separated files.
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3-2 Redundancy cleaning

In last chapter, it has been mentioned that manually generated input floor plans typically
suffer from many drafting errors and redundancies. In spite that raw floor plans have been
redrawn according to the rules described in last section, they might still contain drafting errors
and redundancies as long as they are redrawn by hand. These errors and redundancies might
be visually imperceptible, but they might make algorithms to be used in later phases generate
some unpredictable results. Therefore, they have to be found and corrected. In the literature
review, the method proposed by Rick only considered drafting errors of disjoint vertices,
which are caused by disjoint lines and false intersecting lines. In this section, two types
of redundancies, null-length line segments and duplicated line segments, will be introduced.
Besides, there are five more specific cases of duplicated line segments. Definitions of all of
them will be given, based on which the algorithm to detect and fix them will be proposed
accordingly.

A null-length line segment will be created when a user incidentally assign a same point as both
the start point and the end point of a line, since this kind of operations will not be recognized
as illegal in most CAD applications. Although a null-length line segment is visually recognized
as a point, its data type stored in the CAD file is still “LINE” and thus can still be read into
later algorithms which work on content in the wall layer. In addition to line segments whose
length are exactly zero, those that are shorter than a given threshold will also be regarded as
null-length line segments in this thesis. They are created in a similar way that the designer
incidentally puts its start point and end point extremely closed to each other. Thus, the
definition of null-length line segments is given as follows, where R notates all line segments
in wall layer.

Definition 1 (NULL-LENGTH ). Let a be a line segment in R, and L(a) the length of a.
Given a fixed threshold δ, a is considered to be NULL-LENGTH when L (a) ≤ δ.

Duplicated line segments happen when a single straight line segment in the floor plans is
mistakenly represented by multiple line segments. The definition is given as below:

Definition 2 (DUPLICATED). Let a and b be line segments (including endpoints) in R2.
Let r and s be the lines containing a and b respectively, and a’ and b’ the projections of
a and b onto r and s. Given a fixed threshold ε, the pair (a, b) (also the pair (b, a)) is
DUPLICATED if and only if all the conditions below are held:

(1) Neither of a and b is NULL-LENGTH ;

(2) aand b are parallel: a‖b;

(3) a’and b (and also aand b’) overlap: a
⋂
b′ 6= �;

(4) The distance between r and s is less than or equal to the threshold: d(r, s) 6= ε;

Based on the geometric relationship between those line segments, DUPLICATED line seg-
ments can be further divided into five specific cases: OVERLAPPING, CONTAINING,
CONTAINED, IDENTICAL and CONSECUTIVE (Figure 3-9). In real floor plans, DU-
PLICATED line segments in these cases are so closed to each other that the errors are always
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visually imperceptible. But in Figure 3-9, line segments are drawn clearly separated from
each other on purpose so that it can be easier to understand the geometric relationship be-
tween them: in case of Figure 3-9 (a), two line segments partially overlap with each other.
The leftmost endpoint of the upper line segment connecting with the rightmost endpoint of
the other line segment formed the expected line segment; in case of Figure 3-9 (b), a shorter
line segment is contained by the other one. The expected line segment is just the longer one
after removing the shorter one; in case of Figure 3-9 (c), the two line segments are identical.
One of them should be removed; in case of Figure 3-9 (d), two line segments are consecutive
sharing a common endpoint. The expected line segment is the union of them.

(a) (b)

(c) (d)

Figure 3-10: Cases of DUPLICATED line segments: (a) OVERLAPPING; (b) CONTAINING
and CONTAINED; (c) IDENTICAL; (d) CONSECUTIVE.

There is one more definition needs to be given before the definitions of these specific cases
can be provided.

Definition 3 (IN and OUT ). Let a be a line segment (excluding endpoints) in R, and r a
line containing a. P is a point on r. If P intersects with a, i.e. P

⋂
a 6= �, then P is IN a;

else P is OUT a.

Then, these five specific cases of DUPLICATED line segments can be defined as follows:

Definition 4 (OVERLAPPING). Let a and b be line segments (including endpoints) in R2.
Let A1 and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Let r and
s be the lines containing a and b respectively. Let A′1 and A′2 be the projections of A1 and
A2 onto s, and B′1 and B′2 be the projections of B1 and B2 onto r. Given a fixed threshold
ε, the pair (a, b) (also the pair (b, a)) is OVERLAPPING if and only if all the conditions
below are held:

(1) The pair (a, b) (also the pair (b, a)) is DUPLICATED

(2) A′1 is IN b and

(3) A′2 is OUT b, or A′2 is IN b and A′1 is OUT b, or B′1 is IN b and B′2 is OUT b, or B′1
is IN b and B′2 is OUT b

Definition 5 (CONTAINING). Let a and b be line segments (including endpoints) in R2.
Let A1 and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Let r and
s be the lines containing a and b respectively. Let A′1 and A′2 be the projections of A1 and
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A2 onto s, and B′1 and B′2 be the projections of B1 and B2 onto r. Given a fixed threshold
ε, the pair (a, b) (also the pair (b, a)) is OVERLAPPING if and only if all the conditions
below are held:

(1) The pair a, b is DUPLICATED

(2) A′1 is OUT b and A′2 is OUT b, or B′1 is IN a and B′2 is IN a

Definition 6 (CONTAINED). Let a and b be line segments (including endpoints) in R2. Let
A1 and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Let r and s
be the lines containing a and b respectively. Let A′1 and A′2 be the projections of A1 and A2
onto s, and B′1 and B′2 be the projections of B1 and B2 onto r. Given a fixed threshold ε, the
pair (a, b) (also the pair (b, a)) is OVERLAPPING if and only if all the conditions below
are held:

(1) The pair a, b is DUPLICATED

(2) A′1 is IN b and A′2 is IN b, or B′1 is OUT a and B′2 is OUT a

Definition 7 (IDENTICAL). Let a and b be line segments (including endpoints) in R2. Let
A1 and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Let r and s
be the lines containing a and b respectively. Let A′1 and A′2 be the projections of A1 and A2
onto s, and B′1 and B′2 be the projections of B1 and B2 onto r. Given a fixed threshold ε, the
pair (a, b) (also the pair (b, a)) is OVERLAPPING if and only if all the conditions below
are held:

(1) The pair a, b is DUPLICATED

(2) A′1 = B1 and A′2 = B2, or A′1 = B2 and A′2 = B1, or A1 = B′1 and A2 = B′2, or A2 = B′1
and A1 = B′2

Definition 8 (CONSECUTIVE). Let a and b be line segments (including endpoints) in R2.
Let A1 and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Let r and
s be the lines containing a and b respectively. Let A′1 and A′2 be the projections of A1 and
A2 onto s, and B′1 and B′2 be the projections of B1 and B2 onto r. Given a fixed threshold
ε, the pair (a, b) (also the pair (b, a)) is OVERLAPPING if and only if all the conditions
below are held:

(1) The pair a, b is DUPLICATED

(2) A′1 is OUT b and A′2 = B1, or A′2 is OUT b and A′1 = B1, or A′1 is OUT b and A′2 = B2,
or A′2 is OUT b and A′1 = B2

To determine whether a pair of line segments is DUPLICATED, which types of DUPLI-
CATED line segments they are, and how to fix them, the concepts of BUFFER_POLYGON
and MERGED is introduced.

Definition 9 (BUFFER POLYGON ). Let a be a line segment in R, A and B be the two
endpoints of a. Let r and s be the lines parallel with a on its both sides with a given offset
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distance ε. Let A1 and A2 be the projections of A onto r and s respectively, and B1 and
B2 the projections of B onto r and s respectively. The BUFFER POLYGON of a (indicated
by BF(a)) is the polygon bounded by line segments A1A2, A2B2, B2B1, B1A1.Line segments
A1A2, A2B2, B2B1, B1A1 are called the boundary of BF(a), indicated by BFB(a).

(a)

(b) (c)

(d) (e)

Figure 3-11: BUFFER POLYGON in cases of: (a) OVERLAPPING; (b) CONTAINING; (c)
CONTAINED; (d) IDENICAL; (e) CONSECUTIVE

Definition 10 (MERGED). Let a and b be line segments (including endpoints) in R2. Let A1
and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Line segment (Ai, Bj)
(i, j ∈ {0, 1}) is the MERGED line segment of a and b (denoted by M(a, b)). If and only if
the distance between Ai and Bj is maximum: d(Ai, Bj) = MAX[d(Am, Bm)],m, n ∈ {0, 1}.
After all these terms and concepts have been clarified, the ways of identifying and fixing the
redundancies are summarized in Table 3-1 .

Table 3-1: Identification and fixing of drafting errors

Drafting errors Identification Fixing
NULL-
LENGHTH

L(a) ≤ δ Delete a from R

CONTAINING BFB(a) ∩ b = NULL Delete b from R
OVERLAPPING

BFB(a) ∩ b = POINT Delete a and b from R
Add M(a, b) to RCONSECUTIVE

CONTAINED
BFB(a) ∩ b = MULTI-POINT Delete a from RIDENTICAL

The pseudocode of this step is given in Function FixRedundancy. It can be seen that the
whole process is iterative. Every time the first line segment in R is compared to each of the
resting line segments in R. Between line 4 and line 22, the codes try to identify the pair as
one of redundancy types and fix them accordingly, according to the criteria listed in Table
3-1. After a redundancy is identified and fixed, all the line segments will be taken back to line
3 to repeat the previous process. This is because a line segment might have DUPLICATED
relationship with more than one other line segment, or a new line segments generated from
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fixing one DUPLICATED case, might in turns be DUPLICATED with another line segment.
The only gate to get out of the iteration is between line 23 and line 26, when a line segment
has been compared to every other line segment and no redundancy has been matched. This
line segment then will be moved from R to a new group.

Algorithm 1 FixRedundancy
Input: R: line segments with redundancy to be fixed
Input: δ: the threshold for determining NULL-LENGTH line segments
Output: ε: the threshold for determining closed line segments

1: NR← empty
2: while len(R) ≤ 0 do
3: l0← first line in R
4: if L(l0) ≤ δ then
5: delete l0 from R
6: continue
7: end if
8: for each li in the rest of R do
9: if l0‖li and d(l0,li)≤ ε then

10: if BFB(l0) capli = NULL then
11: delete li from R
12: break
13: else if BFB(l0) capli = POINT then
14: nl←M(l0, li)
15: delete l0, li from R
16: R← nl
17: break
18: else if BFB(l0) capli = MULTI POINT then
19: delete l0 from R
20: break
21: else
22: if li is the last line in R then
23: NR← l0
24: delete l0 from R
25: end if
26: end if
27: else
28: if li is the last line in R then
29: NR← l0
30: delete l0 from R
31: end if
32: end if
33: end for
34: end while
35: return NR
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3-3 Line grouping

In this step, line segments within which redundancies have been cleaned will be divided into
groups. Lines in each group represent a closed polygon in the floor plan. In the meantime,
drafting errors of disjoint vertices caused by disjoint lines and false intersecting lines will
be detected and fixed in the grouping process. In order to better explain the line grouping
algorithm, two terms need to be defined first as below:
Definition 11 (CHAIN ). A ordered sequence of points {P1, P2, . . . , Pi}(i ≥ 2) is called a
CHAIN, denoted by C{P1, P2, . . . , Pi}(i ≥ 2).
Definition 12 (POLYGON ). A POLYGON is a closed CHAIN C{P1, P2, . . . , Pi}(i ≥ 2),
whose first point P1 and last point Pi are coincided, e.g. P1 = Pi. To avoid the du-
plicate of points, the last point will not be stored. Thus, a POLYGON is denoted by
P{P1, P2, . . . , Pj}(3 ≥ j ≥ i− 1).
There are two things that need to be noted. First, a line with two endpoints P1, P2 can also
be a CHAIN according to the definition. Besides, a POLYGON just represents the exterior
ring of a polygon. Any interior rings of the polygon will not be included in the POLYGON.
Definition 13 (CONNECTED and UNCONNECTED). Let a and b be line segments in R2.
Let A1 and A2 be the two endpoints of a, and B1 and B2 the two endpoints of b. Given a
fixed threshold ε, if there exist Ai and Bj (i, j ∈ {1, 2}), that hold the conditions that the
distance between Ai and Bj is less than or equal to the threshold, i.e. d(Ai, Bj) ≤ ε. Ai

and Bj are called CONNECTED vertices, a and b are called CONNECTED line segments.
Otherwise, they are UNCONNECTED.

(a) CONNECTED (b) UNCONNECTED

Figure 3-12: Illustration of connected and unconnected line segments

The pseudocode of this step is given in Algorithm LineGrouping. It is also a repetitive pro-
cess. Every time it takes ungrouped line segments into Function FindClosedChains, which
returns both closed and unclosed CHAINs among the line segments with the given thresh-
old. The returned closed CHAINs will be added to a new group as recognized POLYGONs.
This process repeats until all the line segments have been grouped into POLYGONs or the
repeating times have reached certain number. In addition, the threshold taken into Function
FindClosedChains to determine CONNECTED line segments is proportional to the number
of times this process has been repeating.
There are three cases of disjoint vertices. As shown in Figure 3-12, (a) and (b) happen when
the CONNECTED line segments are collinear; (c) and (d) happen when the CONNECTED
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line segments are not collinear but overlapping with each other; (e) and (f) happen when the
CONNECTED line segments are not collinear and disjoint. For (a) and (b), the endpoint of
the ungrouped line segment on the other side of the connecting side (the red node) will be
added to the CHAIN; for (c) (d) (e) and (f), first the intersection of the CONNECTED line
segments will be calculated by Function IntersectingPoint. Then the calculated point and the
endpoint on the other side of the connecting side (the red nodes) will be added to the CHAIN.
The yellow line segments in the figure indicate the new line segments created in this process.
For each case, the connecting side could be at the start or the end of the CHAIN. In (a) (c)
(e), the connecting happens at the start of the CHAINs, while in (b) (d) (f), the connecting
happens at the end of the CHAINs. For (a) (c) (e), the new points will be inserted to the
beginning of the CHAINs; for (b) (d) (f), the new points will be appended to the CHAINs at
the end. This part is shown in Function FindClosedChains line 14, 17 and 26.

(a) (b)

(c) (d)

Figure 3-13: Fixing of disjoint vertices: cases when CONNECTED line segments are(a) (b)
collinear; (c)(d) collinear but overlapping; (e) (f) collinear and disjoint.
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Algorithm 2 LineGroupig
Input: R: line segments to be grouped
Input: σ: the threshold to consider two vertices are CONNECTED
Input: n: number of times the process is allowed to repeat
Output: P: POLYGONs that have been successfully detected

1: L← R
2: C ← empty
3: CC ← empty
4: k ← 1
5: while len(R) ≤ 0 or (k ≤ nand C is not empty) do
6: if k 6= 1 then
7: L← break every chain in C into line segments
8: CC ← empty
9: end if

10: C, CC← FindClosedChains(L, kδ)
11: P ← CC
12: CC ← empty
13: k ← k + 1
14: end while
15: return P
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Algorithm 3 Function: FindClosedChains
Input: L: lines to be grouped
Input: d:the threshold to consider two vertices are CONNECTED
Input: C: group of detected unclosed CHAINs
Output: CC:group of detected closed CHAINs

1: C ← empty
2: CC ← empty
3: for each l ∈ L do
4: if C is empty then
5: c← two endpoints of l
6: C ← c
7: continue
8: end if
9: for each c ∈ C do

10: l0← first line segment of c
11: l1← last line segment of c
12: if l and l0 are CONNECTED within d =True then
13: newpoints← FixDisjointVertices (l, l0)
14: Insert newpoints to the beginning of c
15: if l and l1 are CONNECTED within d =True then
16: newpoints← FixDisjointVertices (l, l1)
17: Insert newpoints to the end of c
18: CC ← c
19: delete c from C
20: break
21: else
22: break
23: end if
24: else if l and l1 are CONNECTED within d =True then
25: newpoints← FixDisjointVertices (l, l2)
26: Insert newpoints to the end of c
27: break
28: else
29: continue
30: end if
31: end for
32: end for
33: return C, CC
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Algorithm 4 Function: FixDisjointVertices
Input: l1: line segment in a chain that is CONNECTED with a ungrouped line segment
Input: l2: ungrouped line segment to be added to a chain
Output: newpoints: new points that should be added to a CHAIN

1: if C is empty then
2: return the endpoint of l2 on the other side of the connecting part
3: else
4: Pt← IntersectingPoint(l1, l2)
5: return Pt, the endpoint of l2 on the other side of the connecting part
6: end if

Algorithm 5 Function: IntersectingPoint
Input: l1: line segment in a chain that is CONNECTED with a ungrouped line segment
Input: l2: ungrouped line segment to be added to a chain
Output: newpoints: new points that should be added to a CHAIN

1: P11, P12 ← endpoints of l1
2: P21, P22 ← c endpoints of l2
3: A1← P12 · y − P11 · y
4: B1← P11 · x− P12 · x
5: C1← P12 · x× P11 · y − P11 · x× P12 · y
6: A2← P22 · y − P21 · y
7: B2← P21 · x− P22 · x
8: C2← P22 · x× P21 · y − P21 · x× P22 · y
9: x0← −B2×C1−B1×C2

A1×B2−A2×B1
10: y0← −A2×C1−A1×C2

A2×B1−A1×B2
11: return point(x0, y0)

3-4 Opening reconstruction

In this opening reconstruction step, BLOCK entities will be read from the DXF file for
calculating the Opening Equivalent Lines (OEL), which is supposed to indicate the right
location and orientation of the opening symbol for later use in the contour reconstruction
phase. According to the rules that are set up for openings in the redrawing phase, the
opening reconstruction algorithm must fulfill the following characters:

(1) It should be able to deal with primitives of types that are allowed to be used in the
opening symbols, including LINE, POLYLINE, LWPOLYLINE and ARC.

(2) It should be able to deal with cases of combination of openings that is illustrated in
Figure 2-13 and Figure 3-6. In these cases, each opening symbols in the block definition
can either be drawn directly by primitives, or inserted as an INSERT entity with the
type of BLOCK. Thus, besides basic primitives LINE, POLYLINE, LWPOLYLINE and
ARC, INSERT entities should also be considered.
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(3) Transformation between different coordinate reference systems should be applied. This
is because besides the global coordinate system of a floor plan, each BLOCK entity
has its own coordinate system, within which all its primitives are defined. After the
bounding box of the BLOCK has been calculated in its local coordinate system, it needs
to be transformed to the global coordinate system by applying translation, rotation
and scaling to it. In case of BLOCK containing BLCOK, the coordinates might be
transformed multiple times until the global coordinate system of the floor plan has
been reached.

(4) The second and the third characters both require the algorithm to be recursive. Only if
the algorithm is recursive, the primitives defined in a son BLOCK contained by a father
BLOCK can be reached to calculate its bounding box. Then, the bounding box of the
son BLOCK then will be recursively transformed back to the coordinate system of its
father BLOCK until the global coordinate system has been reached.

(5) It should be able to give an estimation of the OEL when symbols of swing doors and
casement windows are encountered. The location indicated by the bounding boxes
directly calculated from these symbols is a little bit shifted from the real location.
Because the extra primitives in the blocks representing door panels, window sashes and
swinging trajectories stretch the bounding box. Thus, the bounding box needs to be
shrunk to its real size for these symbols.

Figure 3-14: Feature points of a bounding box

An algorithm has been developed to address the problems mentioned above, the pseudocode
of which is given in Algorithm CalcOpeningEquibalentLine. As shown in Fig. 3-14, there
are eight feature points for each bounding box. In addition to the four corner points that
are denoted respectively by nw,ne,sw,se, the centers of line nw, sw,sw, se,nw, sw,ne, se are
also included, denoted by n,s,w,e respectively. The calculation of the OELs is based on the
assumption that the main direction of an opening is along the longer side of its bounding
box. In addition, in order to make sure calculated OEL intersect with its adjacent wall line
segments, it should be extended on its both sides with a threshold d. Thus, if w, e is longer
than n, s, the OEL of this opening is the extension of w, e; otherwise, it is the extension
of n, s. According to the type of this opening, i.e. window or door, it will be instantiated
with its thickness and width, information that will be needed in the database for later 3D
reconstruction.
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Algorithm 6 CalcOpeningEquibalentLine
Input: blocks: all BLOCKs in the DXF file
Input: window_layer: the layer containing window blocks
Input: door_layer: the layer containing door blocks
Input: r: the average thickness of openings
Input: d: length to extend OEL on its both sides
Output: windows: group for storing WINDOW objects
Output: doors: group for storing DOOR objects

1: windows← empty
2: doors← empty
3: for each blocki ∈ block do
4: parameters0← parameters of translating, rotating and scaling of blocki

5: BBOX ← BBlock(blocki, parameters0, r)
n, s, w, e← BBOX

6: if w, e is longer than n, s then
7: OEL← extend w, e with d
8: thickness← length of n, s
9: width← length of w, e

10: else
11: OEL← extend n, s with d
12: thickness← length of w, e
13: width← length of n, s
14: end if
15: if blocki is in window_layer then
16: make an instance of WINDOW object with OEL, thickness, width
17: add this instance into windows
18: else if blocki is in door_layer then
19: make an instance of DOOR object with OEL, thickness, width
20: add this instance into doors
21: end if
22: end for
23: return windows, doors
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The calculation of the bounding box for openings is actually realized in Function BlockBBox,
the pseudocode of which is given below. The algorithm reads an entity in the BLOCK each
time. If it is of type of LINE, POLYLINE or LWPOLYLINE, the x and y coordinates of
its every endpoints are read to update the bounding box (e.g. XMIN, XMAX, YMIN and
YMAX); if it is an ARC entity, then its center will be stored into group W for later shrinking
the bounding box; if it is of type of INSERT, which means it is a BLOCK entity, this entity will
be taken into Function BlockBBox with its transformation parameters to recursively calculate
its bounding box. The centers of ARCs in the son BLOCK entity are also returned together
with its bounding box (Line 14) and added to W. After all the entities have been reviewed,
the bounding box is made (Line 20). If there exits any ARC entity in this BLOCK or its son
BLOCK, Function ShrinkBBox will be called to shrink the bounding box to an estimation of
its real size based on the location of the centers (Line 22). At last, the bounding box as well
as the centers of ARCs will be transformed to the coordinate system of the upper level and
returned (Line 24 - 29).

(a) (b) (c)

(d) (e) (f)

Figure 3-15: Calculation of minimized bounding box
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Algorithm 7 Function: BlockBBox
Input: block: a block entity of opening read from DXF file
Input: parameters0: parameters of translating, rotating and scaling
Input: r: the average thickness of openings
Output: BBOX: bounding box of block
Output: CC: group for storing center of ARCs

1: XMIN ← inf
2: XMAN ← −inf
3: YMIN ← inf
4: YMAN ← −inf
5: C ← empty
6: for each entityi ∈ block do
7: if entityi is of any type in {LINE, POLYLINE, LWPOLYLINE} then
8: xmin, xmax, ymin, ymax← endpoints of entityi

9: updeate XMIN, XMAX, YMIN, YMAX with xmin, xmax, ymin, ymax
10: else if entityi is of type of ARC then
11: C ← the center of ARC
12: else if entityi is of type of INSERT then
13: parameters← parameters of translating, rotating and scaling of entityi

14: bbox0, C0← BlockBBox(entityi,parameters, r)
15: C ← C0
16: xmin, xmax, ymin, ymax← bbox0
17: updeate XMIN, XMAX, YMIN, YMAX with xmin, xmax, ymin, ymax
18: end if
19: end for
20: bbox ← [Point(XMIN, YMIN), Point(XMAX, YMIN), Point(XMAX, YMAX),

Point(XMIN, YMAX)]
21: if C is not empty then
22: bbox← ShrinkBBox(bbox, C, r)
23: end if
24: CC ← empty
25: for each ci ∈ C do
26: CC ← CoordTransformation(ci, parameters0)
27: end for
28: BBOX ← CoordTransformation(bbox, parameters0)
29: return BBOX, CC

To be more specific about how to shrink the bounding box, first three base lines should be
established once its main direction is determined. These base lines actually indicate three
possible locations of the opening frame. Based on the observation that the shafts of windows
and doors are always attached to the frame, the real location of the frame can be estimated
by checking the distance from the base lines to the points representing the shafts, which are
indicated by the centers of ARC entities in the block definition. In addition, if there are
multiple ARC entities in a BLOCK, only one of them needs to be checked. This is because
even in case of the combination of openings shown in Fig. 2-13, all the arc centers are closed
to a same base line since the multiple door panels share a common frame that they are
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attached to. Let xmin, xmax, ymin, ymadxx be respectively the minimal and maximal x and
y coordinates. Let dx be the width of the bounding box and dy the height of the bounding
box. dx = xmax − xmin, dy = ymax − ymin. If dx is longer than dy, the main direction is
west-east and the three base lines are nw, ne,sw, se,w, e; if dx is shorter than dy, the main
direction is west-east and the three base lines are nw, sw,ne, se,n, s. For an opening block in
which there exists any ARC entity, given the average thickness of openings r, the bounding
box is shrunk based on the location of the centers of ARCs with respect to the base lines in
the following way: under the circumstance that the main direction is west-east, if the center
is closer to sw, se then ymax is adjusted to ymin + r (Fig. 3-15a); if the center is closer to
nw, ne then ymin is adjusted to ymax− r (Fig. 3-15b); if the center is closer to w, e then ymin

and ymax is adjusted to fracymin + ymax − r2 and fracymin + ymax + r2 (Fig. 3-15c); under
the circumstance that the main direction is north-south, if the center is closer to nw, sw then
xmax is adjusted to xmin +r (Fig. 3-15d); if the center is closer to ne, se then xmin is adjusted
to xmax − r (Fig. 3-15e); if the center is closer to n, s then xmin and xmax is adjusted to
fracxmin + xmax − r2 and fracxmin + xmax + r2 (Fig. 3-15f); If there is no ARC entity in a
block, the bounding box is assumed to already represent the correct boundary of the opening
and no shrinking needs to be performed. The pseudocode of this part is given in Function
ShrinkBBox.

Algorithm 8 Function: CoordTransformation
Input: P0: point to be transformed
Input: angle: rotating angle
Input: dX: translation on X
Input: dY: translation on Y
Input: xs: scaling factor on X
Input: ys: scaling factor on Y
Output: Pt: point after transforming

1: X ← xs× P0 · x× cos(angle)− ys× P0 · y × sin(angle) + dX
2: Y ← xs× P0 · x× sin(angle) + ys× P0 · y × cos(angle) + dY
3: return Pt(X,Y)
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Algorithm 9 Function: ShrinkBBox
Input: bbox: bounding box of opening
Input: C: group of center of ARCs
Input: r: the average thickness of openings
Output: BBOX: new bounding box after shrinking

1: nw, ne, sw, se, n, s, w, e← bbox
2: xmin, xmax, ymin, ymax← bbox
3: dx← xmax − xmin

4: dy ← ymax − ymin

5: c0 ← the first center of ARC in C
6: if dx ≥ dy then
7: d1← distance from c0 to sw, se
8: d2← distance from c0 to nw, ne
9: d3← distance from c0 to w, e

10: if d1 = MIN(d1, d2, d3) then
11: ymax ← ymin + r
12: else if d2 = MIN(d1, d2, d3) then
13: ymin ← ymax − r
14: else
15: ymin ← ymin+ymax−r

2
16: ymax ← ymin+ymax+r

2
17: end if
18: else
19: d1← distance from c0 to nw, sw
20: d2← distance from c0 to ne, se
21: d3← distance from c0 to n, s
22: if d1 = MIN(d1, d2, d3) then
23: xmax ← xmin + r
24: else if d2 = MIN(d1, d2, d3) then
25: xmin ← xmax − r
26: else
27: xmin ← xmin+xmax−r

2
28: xmax ← xmin+xmax+r

2
29: end if
30: end if
31: BBOX ← [Point(xmin, ymin), Point(xmax, ymin), Point(xmax, ymax), Point(xmin, ymax)]
32: return BBOX
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3-5 Contour reconstruction

In this thesis, the contour reconstruction algorithm is developed based on the extensive study
of the layout between openings and their adjacent walls. A classification of the opening-wall-
layouts needs to be first presented before introducing the specific algorithm.

(a)

(b)

Figure 3-16: Two types of openings based on whether a space is closured by the opening:
Connector Opening; (b) Closure Opening.

(a) (b) (c)

(d) (e) (f)

Figure 3-17: Three main layouts between an opening and its adjacent walls
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For each opening, it has two adjacent walls on its both sides. Thus, for each OEL, it intersects
with two wall line segments. Based on whether an opening closures a space, the openings can
be divided into two types. If an opening is just connecting two different POLYGONs (Figure
3-15 (a) right), it is called Connector Opening; if an opening is connecting a POLYGON with
itself making the space surrounded by this POLYGON closured (Figure 3-15 (b) right), then
it is called Closure Opening. In the case of Connector Openings, after the OEL is created,
the two POLYONs will be merged into a new POLYGON (Figure 3-15 (a) left); while in this
case of Closure Openings, after the OEL is created, the previous POLYGON will be made
into two new POLYGONs, with one containing the other (Figure 3-15 (b) left).

(a)

(b)

Figure 3-18: Two cases of the first layout

In addition to the types of openings, there are three main layouts between an opening and its
adjacent walls as shown in Figure 3-16: (1) the adjacent walls are parallel and in a same line
(Figure 3-16 (a)); (2) the adjacent walls are perpendicular (Figure 3-16 (b)); (3) the adjacent
walls are parallel but not in a same line (Figure 3-16 (c)). Given a value δ indicating the
average wall thickness in the floor plan, the characters of each layout can be summarized as
follows: in the first layout, the two line segments intersected by OEL are both shorter than
or equal to δ (Figure 3-16 (d)); in the second layout, one of the line segments intersected by
OEL is shorter than or equal to δ, while the other one is longer than δ (Figure 3-16 (e)); in
the third layout, the two line segments intersected by OEL are both longer than δ (Figure
3-16 (f)). In Figure 3-16 (d) (e) (f), the yellow line segments are the OELs, while the red line
segments are the wall line segments intersected by OEL.

To be more specific, based on the difference of the length of the two line segments intersected
by OEL, the first layout can be further divided into two cases. Given a ratio τ , let the
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(a)

(b)

Figure 3-19: Two cases of the second layout

shorter line segment be S, and the longer one L. If |length(S)− length(L)| ≤ τ × length(S),
then the endpoints of L and S are directly connected to merge the POLYGONs; else, the
endpoints of S need to be first projected to L. To merge the POLYGONs, first they have to
be made into anti-clockwise starting from the end of the intersected line segment. For the
first case as shown in Fig. 3-18a, let {A0, A1, . . . , An−1, An} be the POLYGON that S belongs
to, and {B0, B1, . . . , Bm−1, Bm} the POLYGON that L belongs to. The merged POLYGON
is {A0, A1, . . . , An−1, An} + {B0, B1, . . . , Bm−1, Bm}; for the second case as shown in Fig. 3-
18b, additionally let B′0 and B′n be the projections of B0 and Bm respectively. The merged
POLYGON is {A0, A1, . . . , An−1, An}+B′0+{B0, B1, . . . , Bm−1, Bm}. Both of these two cases
can be called I-shape.

There are also two cases of the second layout, which is shown in Fig. 3-19. In the first case
which is called T-shape, the projections of the endpoints of the shorter line segment are both
IN the longer line segment; in the second case which is called L-shape, one of the projection
of the endpoints of the shorter line segment coincides with one the endpoints of the longer
line segment. Similarly, the two POLYGONs are made into anti-clockwise with the first point
being the end of the intersected line segment. Let {A0, A1, . . . , An−1, An} be the POLYGON
that L belongs to, and {B0, B1, . . . , Bm−1, Bm} the POLYGON that S belongs to. Let B′0 and
B′n be the projections of B0 and Bm respectively. For the first case as shown in Fig. 3-19a,
the merged POLYGON is {A0, A1, . . . , An−1, An} + B′0 + {B0, B1, . . . , Bm−1, Bm} + B′n; for
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the second case as shown in Fig. 3-19b, B0 coincides with An. The merged POLYGON is
{A0, A1, . . . , An−1, An}+ {B0, B1, . . . , Bm−1, Bm}+B′n.

The third layout is more complicated since for both the shorter and longer line segments,
there are three possible locations of the intersecting point with the OEL on each of them.
Thus, the total number of the possible cases for the third layout is nine, which are listed in
Table 3-2. These nine cases can be generalized into four kinds of shapes: U-shape, Z-shape,
h-shape and H-shape. They are all deal with in a similar way as the other shapes.

Table 3-2: Different cases of the third layout

The method described above is under the circumstance that the opening is a Connector
Opening. In case of Closure Openings, in addition to making the adjacent POLYGONs anti-
clockwise, points belonging to the outer and the inner rings need to be separated. Similar
with cases of Connector Openings, there also exist all the shapes mentioned above. The only
difference is that for a certain point it is not sure if it is in the outer ring or the inner ring.
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Taking L-shape as an example, Fig. 3-20 shows two possible scenarios for a self-closed L-shape.
Let the POLYGON be {A0, A1, . . . , Ai−1, Ai}. The longer line segment is An, An+1 and the
shorter one is Am, Am+1. A′m is the projection of Am on An, An+1. After the contour is recon-
structed, the POLYGON is separated into two CHAINs: {Am+1, Am+2, . . . , An−1, An} and
{An+1, An+2, . . . , Am−1, Am, A

′
m}. In case of (a), {Am+1, Am+2, . . . , An−1, An} is the outer

ring, while {An+1, An+2, . . . , Am−1, Am, A
′
m} is the inner ring. However, it is the opposite

situation in case of (b). Thus, in addition to breaking a POLYGON into two CHAINs, it
also has to be determined which one is the outer CHAIN and which one is the inner CHAIN.
This is achieved by calculating the area of the space bounded by the CHAIN. The area of the
outer CHAIN is always bigger than the area of the inner one. The pseudocode of this part is
given in Function SeparateOutandIn.

(a) CONNECTED (b) UNCONNECTED

Figure 3-20: Two possible cases for a T-shape when the opening is Closure Opening

Haoxiang Wu Master of Science Thesis



3-5 Contour reconstruction 71

Algorithm 10 Function: SeparateOutandIn
Input: I1: index of the start point of one of the intersecting line segments in the POLYGON
Input: I2: index of the start point of the other intersecting line segments in the POLYGON
Input: P: the POLYGON to be separated
Output: outRing: the outer CHAIN P is divided into
Output: inRing: the inner CHAIN P is divided into

1: if I1 > I2 then
2: b← I1
3: s← I2
4: else
5: b← I2
6: s← I1
7: end if
8: if b+ 1 < len(P ) then
9: a1← P[s + 1, b + 1]

10: a2← P[b +1:] + P[0: s + 1]
11: else
12: a1← P[b + 1 ĺC len(P), s + 1]
13: a2← P[s +1:] + P[0: b + 1 ĺC len(P) ]
14: end if
15: S1← calculate the area bounded by a1
16: S2← calculate the area bounded by a2
17: if S1 > S2 then
18: outRing ← a1
19: inRing ← a2
20: else
21: outRing ← a2
22: inRing ← a1
23: end if
24: return outRing, inRing
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Chapter 4

Implementation and testing

This chapter presents the results of each step in the proposed process with responding anal-
ysis. The floor plans from three different buildings are tested. Among them, there are floor
plans that are originally drawn by CAD software, digitized floor plans and image floor plans.
Besides, the structure and complexity of these three buildings are also different with each
other.

4-1 Tested buildings

The algorithms introduced above are implemented and tested on three buildings floor plans.
Among them, the floor plans of building “EB_alle_niveaus” and “Binnenvest” are offered by
company MoreForYou. The other one is the floor plan of the ground floor of the architecture
faculty of TU Delft. The specific case of each of them is explained below.

Building 1: Architecture faculty of TU Delft

Floor plan of this building is not originally drawn in CAD software but the scanned copy of
paper floor plan and saved in CAD format. Although it has been post-processed by architects
in CAD software and related information has generally segmented into several layers, certain
degrees of geometric distortion exist in the floor plan. This means some line segments are
not correctly connected, or perfectly parallel or perpendicular. More drafting errors might
be contained in it than floor plans that are originally created by CAD software. In addition,
not all windows and doors are properly saved as block entities, and some are still left as
primitives. In reality, this building has three floors and the layout of each floor is almost the
same. Thus, this thesis only processes the floor plan of its ground floor and the final building
model is generated by extruding the extracted contours three times. The original floor plan
of this building is shown in Fig. 4-1.
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Figure 4-1: Ground floor of architecture faculty of TU Delft

Building 2: EB_alle_niveaus

This building has four floors. The layouts of the ground, the first and the second floor are
all different from each other. The third floor is eaxactly the same as the second floor. Since
the situation of duplicated floors will already be tested by the first building, here for this
building only the floor plans of its first three floors will be processed. Since all the floor plans
of this building are originally drawn by CAD software, the conditions in terms of geometric
correctness and information segmentation of this building are better than the other two tested
building. However, this building also is the most complicated one with the largest amount of
line segments and blocks. The original floor plans of this building are shown in Fig. 4-2.

Figure 4-2: Building EB_alle_niveaus
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Building 3: Binnenvest

The retrieved floor plans of this building are saved as raster images, which means the floor
plans of this building have to be completely redrawn based on the images according to the
proposed rules in this thesis. This will also result in certain inaccuracy like the first building.
Besides, this building has a small basement and its first floor only occupies a part of the area
of its ground floor. The original floor plans of this building are shown in Fig. 4-3.

(a) Basement

(b) Ground floor

(c) First floor

Figure 4-3: Building Binnenvest

Master of Science Thesis Haoxiang Wu



76 Implementation and testing

4-2 Redrawing

These floor plans are first redrawn according to the rules proposed in Chapeter 3. Fig. 4-4
shows the floor plans after redrawing. The number of line segments in the wall layer, the
number of windows and doors of them are shown in Table 4-1. As for the time efficiency of
the proposed redrawing rules, according to Bart Kroesbergen from company MoreForYou, it
only took a professional architect from his team about two hours to redraw the whole set of
floor plans of building EB_alle_niveaus completely from the original paper floor plans, even
including the objects and information that are not to be used. He said compared to the time
to manually make a 3D model of such a building, the time to redraw the floor plans is much
less.

Table 4-1: Statistics of entities in floor plans

Building Line segments Window blocks Door blocks
Architecture Faculty of TU Delft 2239 297 151

EB_alle_niveaus 7784 488 756
Binnenvest 541 40 12

4-3 Drafting error fixing

Table 4-2 shows the results of fixing the drafting errors. Here, the threshold ε and δ for
determining null-length line segments and duplicated line segments are both set to be 5 mm.
This is because in real-life indoor environment, any distance smaller than 5 mm can regarded
trivial and thus be discarded.

Table 4-2: Results of fixing drafting errors

Building Null-length
Overlapped

or
Consecutive

Containing Contained

Architecture Faculty of TU Delft 5 24 3 25
EB_alle_niveaus 1 4 0 3

Binnenvest 0 0 0 0

From the table we can see that the floor plan of architecture faculty contains more errors
than the other floor plans. This is because in the original version of this floor plan, the
representation of walls is already conformed to the proposed rules. Thus, in the redrawing
phase, it is just storing the line segments of walls into a separated layer without checking
and modifying them. Thus, this floor plan inevitably suffered from more drafting errors. For
the other floor plans, the walls have been redrawn carefully according to the proposed rules.
Thus, they contain less drafting errors.
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(a)

(b)

(c)

Figure 4-4: Redrawn floor plans
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4-4 Grouping

Table 4-3 shows the results of fixing the drafting errors. Here, the threshold d for searching
disjoint vertices are set to be 5 mm. each time the algorithm repeats, the searching distance
will be increased with a d. From the table, it can be seen the line segments in floor plan of
architecture faculty took six times to be fully grouped into closed chains. While the floor
plan of the second floor of building EB_alle_niveaus took the less times, indicating that the
geometry in this floor plan is better than the others.

Table 4-3: Results of line grouping

Floor plans 1 2 3 4 5 6
Input lines BK

TU
Delft

2188 920 376 64 38 38
Closed chains 211 286 310 311 311 312

Remaining lines 920 376 64 38 38 0
Input lines BE

ground
floor

1809 484 174 76 / /
Closed chains 134 147 150 152 / /

Remaining lines 484 174 76 0 / /
Input lines BE

first
floor

2021 624 368 172 46 /
Closed chains 167 183 190 194 195 /

Remaining lines 624 368 172 46 0 /
Input lines BE

second
floor

1909 496 42 / / /
Closed chains 180 206 208 / / /

Remaining lines 496 42 0 / / /

4-5 Reconstruction of openings and contours

Table 4-4 shows the results of opening reconstruction. In the table, σ is the factor used in
determining the main direction of bounding box. If the width of a bounding box is larger
than or equal to the value of its height multiplied by σ, the main direction is assumed to be
along the width when the width and height are very close; else, it is assumed to be along
the height. The role of σ is to make the direction of the width has higher possibility to
be the main direction since in most cases the openings are defined horizontally in its local
coordinate system. Thus, for the three floor plans of building EB_alle_niveaus, the ratio of
failed openings decreases as σ decrease. This is because those openings in these floor plans
failed to find its two adjacent wall line segments are mostly caused by that they are vertically
defined. However, for the first floor plan of, the situation is opposite. This is because those
failed openings in this floor plan are not caused by the direction. After checking the created
OEL, the problem is found to be like what is shown in Fig. 4-5a. The OELs of some openings
(the yellow line segment in Fig. 4-5a) are mistakenly chosen as the center line of its bounding
box while the correct OEL should be the bottom line. This caused the OEL shifted and not
intersecting with its adjacent wall lines.
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(a)

(b)

(c)

Figure 4-5: Openings cannot be reconstructed

In addition to that, Fig. 4-5b and Fig. 4-5c shows two other kinds of openings that cannot
be reconstructed. Fig. 4-5b shows three cases of bay windows and glass walls found in the
test floor plans. They are all combination of several consecutive single windows with turning
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Table 4-4: Results of opening reconstruction

Floor plans σ
0.8 0.9 1

Architecture
TU Delft

failed windows 23 23 23
ratio 7.74% 7.74% 7.74%

failed doors 11 7 5
ratio 7.28% 4.64% 3.31%

EB_alle_niveaus
Ground Floor

failed windows 0 0 0
ratio 0 0 0

failed doors 0 0 0
ratio 0 0 0

EB_alle_niveaus
First Floor

failed windows 0 0 0
ratio 0 0 0

failed doors 1 1 12
ratio 0.50% 0.50% 5.94%

EB_alle_niveaus
Second Floor

failed windows 0 0 0
ratio 0 0 0

failed doors 0 0 11
ratio 0 0 5.95%

Binnenvest

failed windows 0 0 0
ratio 0 0 0

failed doors 0 0 0
ratio 0 0

angles. Due to that in the method proposed in this thesis they are dealt with as a whole, the
OELs calculated from the blocks of these openings are also shifted. Fig. 4-5c shows another
case. In this case, the door intersects with a wall on its left side non-perpendicularly. However,
in our algorithm, the line segments created to replace the opening are always perpendicular
to the wall. Thus, the created line segments will be the blue lines in Fig. 4-5c.

Fig. 4-6 shows the contours reconstructed from the four test floor plans after some of those
problematic openings on the building facades have been fixed manually to make sure the outer
shell of the building can be enclosure.

4-6 Import data into database

For a building, the file names of floor plans of its every floor will be given by user. Along
with the file names, the building name, the number of levels, the lowest and the highest level
number will also be provided by user. Also, a record of a building relation will be generated
in table<relations> with the provided information. Then the floor plans will be processed in
order of the level (from the lowest to the highest) by the algorithms introduced in last chaper.
After the contours have been reconstructed, all the contours along with the openings will be
imported into database in a simplified form of IndoorOSM. In the database, four tables in
total will be generated, which are nodes, ways, relations and relation_member respectively.
The structure of these four tables is shown in Tables 4-5 to 4-8.
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(a)

(b)

(c)

Figure 4-6: Reconstructed contours

Every time an opening is imported, a coresponding record will be generated in table<nodes>.
There are three attributes in the table for each record: “id”, “geom” and “tags”. “id” is the
identification number for this node, which will be generated automatically in order; “geom”
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Table 4-5: nodes

Table<nodes>
Attributes Description

id Identification number for this opening,
automatically generated in order.

tags

window/door “door=yes” when it is a door;
“window=yes” when it is a window.

width width of the OEL.
height Provided by user.
breast Provided by user, only applied to windows.

level The level this opening belongs,to, automatically generated
when the level of the floor plan is specified by,user.

geom Central point of the OEL.

contains the central point of the OEL of this opening; “tags” contains the other semantic
information in the form of key-value pairs. For each window, it contains five keys: “window’,
“width”, “height’ ’, “breast’ ’ and “level”. Among them, “window=yes” is used to indicate the
type of this opening. “width” is the width of the OEL of this window. “height” and “breast”
are provided by user since these two values can not be retrieved from 2D floor plans. In this
thesis, for the sake of convenience, the height and breast of all windows in a building are set
to be a fixed value. “level” is the level number this window belongs to, which is specified each
time a floor plan is processed. For doors, the case is similar (see Table 4-5).

Table 4-6: ways

Table<ways>
Attributes Description

id Identification number for this contour,
automatically generated sequentially.

tags

name

Generated sequentially, e.g.“name=room 0-0” when it is
the first room on the ground floor;

Generated automatically according to the level when it is
the level shell, e.g. “name=FirstFloorShell”.

indoor “indoor=yes”.
height Provided by user.

buildingpart “buildingpart = room” if it is a room;
skipped if it is a level shell.

level The level this contour belongs to, automatically generated
when the level of the floor plan is specified by user.

geom An ordered sequence of points in the contour

Every time a contour is imported, a coresponding record will be generated in table<ways>.
There are also three attributes in the table for each record: “id”, “geom” and “tags”. “id” is
the identification number for this way, which will be generated automatically in order; “geom”
contains the ordered sequence of points in the contour; “tags” contains the other semantic
information in the form of key-value pairs: “name”, “indoor”, “height”, “buildingpart” and
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“level”. “name” is the name of the room or level shell this contour represents. For rooms in
each floor, their names will be automatically generated in sequence. For example, the first
room on the ground floor will be named “room 0-0” and the first room on the first floor “room
1-0”. For level shells, their names will be automatically generated according to the level, e.g.
“GroundFloorShell”, “FirstFloorShell”. “indoor=yes” indicates this area is an indoor space.
“height” is the height of the room or the height of the level, which will be provided by user.
Here again, for the sake of convenience, the height of each level are set to be a same value
and the height of each room are set to be the level height minus a fixed value. “buildingpart”
only applies to rooms. “level” is the level number, which is specified each time a floor plan is
processed (see Table 4-6).

Table 4-7: relations

Table<relations>
Attributes Description

id Identification number for this relation,
automatically generated sequentially.

tags

name

Generated automatically according to the level when it
represents a level, e.g. “name=FirstFloorLevel”;

If it represents a building, the name of this building
is provided by user.

type “type = level” when it represents a level;
“type = building” when it represents a building.

height Height of the level or the,total height of the building,
provided by user.

level The level number when it represents a level;
Skipped when it represents a building;

building:levels The number of levels, only applied to a building relation.
building:min_levels The lowest level, only applied to a building relation.

building:max_levels The highest level, only applied to a building
relation.

Each time the processing of a floor plan finished, a coresponding record of a level relation
will be generated in table<relations>. There are two attributes in the table for each record:
“id” and “tags”. “id” is the identification number for this “relation”, which will be generated
automatically in order; “tags” contains the other semantic information of this “relation” in
the form of key-value pairs. For each level relaton, it contains four keys: “name”, “type”,
“height” and “level”. “name” will be automatically generated according to the level, e.g.
“GroundFloorLevel”, “FirstFloorLevel”. “type = level” indicates it represents a level relation;
“height” is the height of level provided by user. “level” is the level number which will be
automatically generated in sequence (see Table 4-7).

In addition, for table<relation_members>, each time a record of way is inserted, a corespond-
ing record of the relation between this way and the level it belongs to will be generated; each
time a floor plan is processed, a coresponding record of the relation between this level and
the building will be generated (see Table 4-8).
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Table 4-8: relation_members

Table<relation_members>
Attributes Description

relation_id Automatically generated, refers to the id of the
relation in Table<relations>

member_id
Automatically generated:

Refers to the id of the member in Table<ways> when it is a way;
Refers to the id of the member in Table<relations> when it is a relation.

member_type
Automatically generated according to the type of the member:

“member_type = W” when the member is a way;
“member_type = R” when the member is a relation.

member_role

Automatically generated:
“member_role = buildingpart” when the member is a room;
“member_role = shell” when the member is a level shell;

“member_role = level_{the level number}” when it is a level relation.

4-7 3D Reconstruction

Fig. 4-7 shows the 3D building models looked from different views generated by the program
developed by Dr. Marcuz by simple extrusion of the contours that have been extracted the
test floor plans by our algorithms. Figs. 4-7a to 4-7c is the 3D model created from building
EB_alle_niveaus. Figs. 4-7d and 4-7e is the 3D model created from the ground floor of
architecture faulty of TU Delft. In Fig. 4-7e, the outer surface of the model has been removed
for a clear view of the indoor space. Fig. 4-7f is the 3D model created from Binnenvest. For
all the models, their indoor environment can be explored by zoom-in like Fig. 4-7c.
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(a)

(b)

(c)

Figure 4-7: 3D models reconstructed in CityGML LOD4
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(d)

(e)

Figure 4-7: 3D models reconstructed in CityGML LOD4
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(f)

Figure 4-7: 3D models reconstructed in CityGML LOD4

Master of Science Thesis Haoxiang Wu



88 Implementation and testing

Haoxiang Wu Master of Science Thesis



Chapter 5

Conclusions

In this thesis, the possibility of using 2D CAD architectural floor plans as input data for 3D
reconstruction is investigated. Accordingly, a semiautomatic process is proposed and tested
with several floor plans from real life. The research questions:

(1) What information about indoor environment is contained in real-life floor plans and
among them which can be exported into IndoorOSM for 3D reconstruction?

(2) In what way can the information to be used be extracted from the floor plans?

(3) How should the extracted information be reorganized in the form of IndoorOSM?

can be answered as below:

(1) This thesis performed a throughout review of the characters of real-life floor plans.
Various content and graphical representation, as well as ambiguities and inconsistencies
existing in real-life floor plans are fully analyzed. Together with the literature review of
other researches, it is concluded that structural objects such as walls and columns, and
openings like windows and doors, are the most important content contained in the floor
plans with regrads of the buildingąŕs indoor environment. Meanwhile, they are also the
most basic elements in IndoorOSM. Therefore, when using architectural floor plans as
input data for IndoorOSM, walls, columns, windows and doors should be extracted into
the database at least.

(2) This thesis concluded that real-life floor plans should be redrawn to facilitate automatic
3D reconstruction. Some basic rules are accordingly proposed for the redrawing. The
proposed rules for redrawing floor plans mainly focus on segmentation of information
contained in floor plans, taking advantages of the layering and blocking supported by
CAD application, with reserving the original graphical representation in the raw floor
plans as much as possible. By doing this, other additional information can also be
contained in the floor plans in other layers without intervening the 3D reconstruction.
Thus, the redrawn floor plans are not proprietary for 3D reconstruction but can also be
used for other application purposes.
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(3) This thesis tested the wall detection algorithm that regards walls as parallel line pairs
in the floor plans. Limitations of such algorithm have been found. A new method is
thus proposed in this thesis to reconstruct the contours of indoor spaces by replacing
openings with parallel line pairs in different ways in accordance with the layout between
an opening and its adjacent walls. In this method, complicated symbol recognition
techniques are avoided. Instead, openings are reconstructed using bounding box of
blocks to estimate the location and orientation of them in the floor plans. Besides,
the preprocessing for fixing drafting errors contained in floor plans is also improved,
by further considering null-length and duplicated line segments, in addition to disjoint
vertices.

Meanwhile, some problems still remain open and require for deeper research in future work:

(1) Algorithms proposed in this thesis have multiple thresholds, which need to be provided
by the user based on the specific scenario of a given floor plan (e.g. greatest wall
thickness or greatest opening width). Besides, some thresholds do not subject to floor
plans but their optimal values need to be tested with multiple floor plans multiple times
(e.g. the searching radius for disjoint vertices). The study of a way to automatically
compute the optimum value for these thresholds needs to be conducted.

(2) Using bounding box of blocks to estimate the location and orientation of openings
requires the primitives in the block are defined aligned with x and y axes in the local
coordinate system and that the width of the openings is larger than its height. In some
cases where these conditions are not fulfilled, the direction of the calculated OEL will
be wrong, causing the OEL cannot successfully intersect with its adjacent wall lines and
that some contours of indoor spaces cannot be reconstructed. Thus, this method need
to be further improved to be more robust.

(3) he redrawing rules need to be further elaborated. First, the redrawing rules put for-
ward in this thesis only focus on walls and openings. As a result, the 3D models
reconstructed by this thesis lack semantic information (e.g. rooms and corridors cannot
be distinguished, vertical connectors are unknown). How to set up more rules to include
more information in the redrawing phase, and how should this information be processed
in 2D, to enrich the semantics in the final 3D models, needs to be further studied. Sec-
ond, some redrawing rules proposed in this thesis might be too strict. To make the
redrawing rules easier to be conformed, the later algorithms need to be improved to be
more capable of handling multiple representations in the floor plans.

(4) In this thesis, only normal-structured buildings, in which there is no room on each
floor that crosses over several floors, can be reconstructed. In further research, how
to extract information from floor plans of buildings with more complicated structure
to fully restore the buildingsąŕ indoor spatial environment needs to be investigated.
Besides, the buildingąŕs roof shape should be considered in further research, instead of
simplifying every roof as flat.

To conclude, 2D architectural floor plans are a very promising data source for 3D reconstruc-
tion. In this thesis, it has been proved possible that formatted 2D architectural floor plans
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can be used as input data in the IndoorOSM 3D reconstruction pipeline. However, at present
it is still very hard to fully automatically realize this with a raw floor plan from real life.
Some trade-offs have to be made between designers of floor plans and the users of 3D models,
or between the preprocessing and the reconstruction.
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Appendix A

Source code(part)

This appendix shows part of the source code of the whole process. Each step of this process
is chained together through main.py. Meanwhile, configuration for all necessary parameters
and the connection between extracted information and the database are also realized in this
file. Besides, the source code of some other important side functions are selected to be shown
here as well. For complete source code please click here.

A-1 main.py

1 import os
2 import time
3 import math
4 import shapefile
5 import fiona
6 import psycopg2
7 import dxfgrabber
8
9 from shapely . geometry import Point

10 from shapely . geometry import LineString
11 from shapely . geometry import Polygon
12 from shapely . geometry import polygon
13
14 from collections import OrderedDict
15 from fix_drafting_errors import fix_duplicated_lines
16 from fix_drafting_errors import fix_disjoint_vertices
17
18 from untitled0 import blockbbox
19 from untitled0 import dist_p2l
20 from untitled0 import GetProjectivePoint
21 from untitled0 import separate_in_out
22
23 from extend_line import extend_line_onedir
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24 from extend_line import extend_line_bothdir
25
26 from Opening import Door
27 from Opening import Window
28 from LineGroupingFromSHP import LineGroupingFromSHP
29 from calcOpeningBoundingBox import calcOpeningBoundingBox
30 from ContourReconstruction00 import ContourReconstruction00
31
32
33
34 start_time = time . time ( )
35
36 #-------INPUT & OUTPUT SETTINGS -------
37 #DXF_FILENAMES=[’EB_alle_niveaus_ground_floor_changed.dxf’, ’

EB_alle_niveaus_first_floor_changed.dxf’, ’
EB_alle_niveaus_second_floor_changed.dxf’, ’
EB_alle_niveaus_second_floor_changed.dxf’]

38 #DXF_FILENAMES=[’BK_preprocessed_changed.dxf’,’BK_preprocessed_changed.
dxf’,’BK_preprocessed_changed.dxf’]

39 DXF_FILENAMES=[’Binnenvest_03.dxf’ ,’Binnenvest_01_changed.dxf’ ,’
Binnenvest_02_changed.dxf’ ]

40 #DXF_FILENAMES=[’Binnenvest_01_changed.dxf’,’Binnenvest_02_changed.dxf’]
41
42 WALL_LAYER_NAME=’Walls’
43 WINDOW_LAYER_NAME=’Windows’
44 DOOR_LAYER_NAME=’Doors’
45 sourceCRS_EPSG=31463
46
47 #SHP_FILENAMES=[’EB_alle_niveaus_ground_floor_fixed.shp’, ’

EB_alle_niveaus_first_floor_fixed.shp’, ’
EB_alle_niveaus_second_floor_fixed.shp’, ’
EB_alle_niveaus_second_floor_fixed.shp’]

48 #SHP_FILENAMES=[’BK_preprocessed_fixed.shp’,’BK_preprocessed_fixed.shp’,’
BK_preprocessed_fixed.shp’]

49 SHP_FILENAMES=[’Binnenvest_03_fixed.shp’ ,’Binnenvest_01_fixed.shp’ ,’
Binnenvest_02_fixed.shp’ ]

50 #SHP_FILENAMES=[Binnenvest_01_fixed.shp’,’Binnenvest_02_fixed.shp’]
51
52 EXPORT_DATA_INTO_DATABASE=True
53
54 #EXPORT_DATA_INTO_QGIS=True
55 #-----------------------------------
56
57 #-------DATABASE SETTINGS -------
58 #DBNAME="EB_alle_niveaus"
59 DBNAME="Binnenvest"
60 USER="postgres"
61 PASSWORD="lyyz064101011"
62 #-----------------------------------
63
64 #-------BUILDING GENERAL INFORMATION -------
65 BUILDINGNAME=’Binnenvest’
66 BUILDINGHEIGHT=12
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67 BUILDINGLEVELS=3
68 MINLEVEL=0
69 MAXLEVEL=2
70
71 #FLOORNAMES=[’GroundFloor’,’FirstFloor’,’SecondFloor’,’ThirdFloor ’]
72 FLOORNAMES=[’Basement’ ,’GroundFloor’ ,’FirstFloor’ ]
73 LEVELHEIGHT=4
74 ROOMHEIGHT=3
75 DOORHEIGHT=2.5
76 WINDOWHEIGHT=1.5
77 WINDOWBREAST=0.5
78 #-----------------------------------
79
80 #-------2D PROCESSING SETTINGS -------
81 MINIMALDIST=5
82
83 #AVG_WALL_THICKNESS=230
84 #AVG_WALL_THICKNESS=800
85 AVG_WALL_THICKNESS=450
86
87 verbose=False # provide detailed information while processing
88 #-----------------------------------
89
90 #-------configure the database -------
91 if EXPORT_DATA_INTO_DATABASE==True :
92
93 # Connect to an existing database
94 conn = psycopg2 . connect ("dbname=" + DBNAME + " user=" + USER + "

password=" + PASSWORD + "" )
95
96 # Open a cursor to perform database operations
97 cur = conn . cursor ( )
98
99

100 # Drop all tables if they exist.
101 cur . execute ( """
102 DROP TABLE IF EXISTS nodes;
103 DROP TABLE IF EXISTS ways;
104 DROP TABLE IF EXISTS way_nodes;
105 DROP TABLE IF EXISTS relations;
106 DROP TABLE IF EXISTS relation_members;
107 """ )
108
109 # Create a table for nodes.
110 cur . execute ( """ CREATE TABLE nodes (id bigint NOT NULL,
111 tags hstore);
112 """ )
113
114 # Create a table for ways.
115 cur . execute ( """CREATE TABLE ways (id bigint NOT NULL,
116 tags hstore);
117 """ )
118
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119 # Add a postgis point column holding the location of the node.
120 cur . execute ("SELECT AddGeometryColumn(’nodes’, ’geom’, " + str (

sourceCRS_EPSG ) + ", ’POINT’, 2);" )
121 cur . execute ("SELECT AddGeometryColumn(’ways’, ’linestring’, " + str (

sourceCRS_EPSG ) + ", ’LINESTRING’, 2);" )
122
123 # Create a table for relations.
124 cur . execute ( """CREATE TABLE relations (id bigint NOT NULL,
125 tags hstore);""" )
126
127 # Create a table for representing relation member relationships.
128 cur . execute ( """CREATE TABLE relation_members (relation_id bigint NOT

NULL,
129 member_id bigint NOT

NULL,
130 member_type character

(1) NOT NULL,
131 member_role text NOT

NULL);""" )
132
133 # Add primary keys to tables.
134 cur . execute ( """ ALTER TABLE ONLY nodes ADD CONSTRAINT pk_nodes

PRIMARY KEY (id);
135 ALTER TABLE ONLY ways ADD CONSTRAINT pk_ways PRIMARY

KEY (id);
136
137 ALTER TABLE ONLY relations ADD CONSTRAINT

pk_relations PRIMARY KEY (id);
138 ALTER TABLE ONLY relation_members ADD CONSTRAINT

pk_relation_members PRIMARY KEY (relation_id ,
member_id);

139 """ )
140
141 # Add indexes to tables.
142 cur . execute ( """ CREATE INDEX idx_nodes_geom ON nodes USING gist (geom

);
143 CREATE INDEX idx_relation_members_member_id_and_type

ON relation_members USING btree (member_id ,
member_type);

144 """ )
145
146 # Set to cluster nodes by geographical location.
147 cur . execute ( """ALTER TABLE ONLY nodes CLUSTER ON idx_nodes_geom;""" )
148
149 # Set to cluster the tables showing relationship by parent ID and

sequence
150 cur . execute ("ALTER TABLE ONLY relation_members CLUSTER ON

pk_relation_members;" )
151
152 # Insert the building relation record into TABLE RELATION
153 tag="hstore(array[’type’,’building’,’height’,’name’,’building:levels

’,’building:max_level’,’building:min_level ’],array[’building’, ’
yes’, ’" + str ( BUILDINGHEIGHT ) +"’, ’" + BUILDINGNAME + "’, ’" +
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str ( BUILDINGLEVELS )+ "’,’" + str ( MAXLEVEL ) + "’,’" + str ( MINLEVEL )
+"’])"

154 cur . execute ("INSERT INTO relations (id, tags) VALUES (" + str (0 ) + ",
" + tag + ");" )

155
156 # Make the changes to the database persistent
157 conn . commit ( )
158 #-----------------------------------
159
160 #-------for each floor -------
161 numNODES=0
162 numWAYS=0
163 levelID=1
164
165 for level in range ( MINLEVEL , MAXLEVEL+1) :
166
167 print "#-----------------------------"
168 print "This is level: "+str ( level )
169
170 script_dir = os . path . dirname ( __file__ )
171 #-------Unconnected vertices fixing & lines grouping -------
172 # groupedPoints is groups of points representing wall polygons
173 abs_file_path = os . path . join ( script_dir , ’INPUT_DATA/’ +

SHP_FILENAMES [ level ] )
174 groupedPoints = LineGroupingFromSHP ( abs_file_path , MINIMALDIST )
175
176 #-------Calculate bounding box of openings and create opening objects

-------
177 # openings is CLASS OPENINGS to be used for contour reconstruction
178 abs_file_path = os . path . join ( script_dir , ’INPUT_DATA/’ +

DXF_FILENAMES [ level ] )
179 openings = calcOpeningBoundingBox ( abs_file_path , WINDOW_LAYER_NAME ,

DOOR_LAYER_NAME )
180
181 #-------Reconstruct contours from wall lines and opening lines -------
182 # Nodes is openings that can be successfully reconstructed and

exported into TABLE NODES
183 # contourPoint is the corner points of the ways to be exported into

TABLE WAYS representing contours
184 contourPoints , Nodes=ContourReconstruction00 ( groupedPoints , openings ,

AVG_WALL_THICKNESS , verbose )
185
186 #-------Find level shell and filter out columns -------
187 maxS=0
188 indx_Shell=−1
189 indx_Columns=[]
190
191 for i in range (0 , len ( contourPoints ) ) :
192 if len ( contourPoints [ i ] ) >2:
193 S=Polygon ( contourPoints [ i ] ) . area
194 if S<1000000: # contours with area smaller than 1 m2 are

considered columns
195 indx_Columns . append (i )
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196 elif S>maxS :
197 maxS=S
198 indx_Shell=i
199 levelshell=contourPoints [ indx_Shell ]
200
201 indx_ToDelete=indx_Columns+[indx_Shell ]
202 indx_ToDelete . sort ( )
203
204 for i in range (0 , len ( indx_ToDelete ) ) :
205 contourPoints . pop ( indx_ToDelete [ i]−i )
206 #-----------------------------------
207
208 #-------Export data into database -------
209 if EXPORT_DATA_INTO_DATABASE==True :
210
211
212 # Insert the level relation record into TABLE RELATION
213 tag="hstore(array[’type’,’name’,’height’,’level’],array[’level’,

’" + FLOORNAMES [ level ] + "Level" + "’, ’" + str ( LEVELHEIGHT ) +
"’,’" + str ( level ) + "’])"

214 cur . execute ("INSERT INTO relations (id, tags) VALUES (" + str (
levelID ) + ", " + tag + ");" )

215 conn . commit ( )
216
217
218 # Insert the relation between this level and the building into

TABLE RELATION_MEMBERS
219 cur . execute ("INSERT INTO relation_members (relation_id , member_id

, member_type , member_role) VALUES (" + str (0 ) + ", " + str (
levelID ) + ", ’R’, ’level_" + str ( level ) + "’);" )

220 conn . commit ( )
221
222
223
224 # Insert doors and windows into TABLE NODES
225 for i in range (0 , len ( Nodes ) ) :
226 if Nodes [ i ] . type==0: # doors
227 tag="hstore(array[’door’,’level’, ’width’,’height’],array

[’yes’,’" + str ( level ) + "’,’" + str ( Nodes [ i ] . length
/1000) + "’,’" + str ( DOORHEIGHT ) +"’])"

228 else : # windows
229 tag="hstore(array[’window’,’level’, ’width’,’height’,’

breast’],array[’yes’,’" + str ( level ) + "’,’" + str (
Nodes [ i ] . length /1000) + "’,’" + str ( WINDOWHEIGHT ) +"
’,’"+str ( WINDOWBREAST )+"’])"

230
231 cur . execute ("INSERT INTO nodes (id, tags, geom) VALUES (" +

str ( numNODES+i ) + ", " + tag + ", ST_GeomFromText(’POINT("
+ str ( Nodes [ i ] . center . y/1000) + " " + str ( Nodes [ i ] . center
. x/1000) + ")’, " + str ( sourceCRS_EPSG ) + "));" )

232 conn . commit ( )
233
234 # Insert level shell of this floor into TABLE WAYS
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235 geom="’LINESTRING("
236 for i in range (0 , len ( levelshell ) ) :
237 geom=geom+str ( levelshell [ i ] [ 1 ] / 1 0 0 0 )+" "+str ( levelshell [ i

] [ 0 ] / 1 0 0 0 )+","
238 geom=geom+str ( levelshell [ 0 ] [ 1 ] / 1 0 0 0 )+" "+str ( levelshell

[ 0 ] [ 0 ] / 1 0 0 0 )+")’"
239
240 tag="hstore(array[’name’,’height’,’level’],array[’" + FLOORNAMES [

level ] + "Shell" + "’,’" + str ( LEVELHEIGHT ) +"’,’" + str ( level
) + "’])"

241 cur . execute ("INSERT INTO ways (id, tags, linestring) VALUES (" +
str ( numWAYS ) + ", " + tag + ", ST_GeomFromText(" + geom + ", "
+ str ( sourceCRS_EPSG ) + "));" )

242
243 # Insert the relation between the shell and this level into TABLE

RELATION_MEMBERS
244 cur . execute ("INSERT INTO relation_members (relation_id , member_id

, member_type , member_role) VALUES (" + str ( level+1) + ", " +
str ( numWAYS ) + ", ’W’, ’shell’);" )

245 conn . commit ( )
246
247
248 # Insert ways of rooms into TABLE WAYS
249 for i in range (0 , len ( contourPoints ) ) :
250 if len ( contourPoints [ i ] ) >0:
251 geom="’LINESTRING("
252 for j in range (0 , len ( contourPoints [ i ] ) ) :
253 pt=contourPoints [ i ] [ j ]
254 geom=geom+str ( contourPoints [ i ] [ j ] [ 1 ] / 1 0 0 0 )+" "+str (

contourPoints [ i ] [ j ] [ 0 ] / 1 0 0 0 )+","
255 geom=geom+str ( contourPoints [ i ] [ 0 ] [ 1 ] / 1 0 0 0 )+" "+str (

contourPoints [ i ] [ 0 ] [ 0 ] / 1 0 0 0 )+")’"
256
257 tag="hstore(array[’name’,’buildingpart’,’height’,’indoor’],

array[’Room "+str ( level )+ "-" + str (i ) + "’,’room’,’" +
str ( ROOMHEIGHT ) +"’,’yes ’])"

258 cur . execute ("INSERT INTO ways (id, tags, linestring) VALUES (
" + str ( numWAYS+i+1) + ", " + tag + ", ST_GeomFromText(" +

geom + ", " + str ( sourceCRS_EPSG ) + "));" )
259 # Insert the relation between the way and this level into

TABLE RELATION_MEMBERS
260 cur . execute ("INSERT INTO relation_members (relation_id ,

member_id , member_type , member_role) VALUES (" + str (
levelID ) + ", " + str ( numWAYS+i+1) + ", ’W’, ’buildingpart
’);" )

261 conn . commit ( )
262
263 levelID=levelID+1
264 numNODES=numNODES+len ( Nodes )
265 numWAYS=numWAYS+len ( contourPoints )+1
266 #-----------------------------------
267
268 #-------Close communication with the database -------
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269 if EXPORT_DATA_INTO_DATABASE==True :
270 cur . close ( )
271 conn . close ( )
272 #-----------------------------------
273
274 #-----------------------------------
275 print ’#-----------------------------’
276 print ’finished!’
277 print ’executing time:’ , time . time ( ) − start_time , ’seconds’
278 print time . strftime (’%H:%M:%S’ , time . gmtime ( time . time ( ) − start_time ) )
279 print ’#-----------------------------’

A-2 calcOpeningBoundingBox.py

1 import math
2 import shapefile
3 import dxfgrabber
4
5 from shapely . geometry import Point
6 from shapely . geometry import LineString
7 from extend_line import extend_line_onedir
8 from extend_line import extend_line_bothdir
9 from Opening import Door

10 from Opening import Window
11
12
13 def calcOpeningBoundingBox ( abs_file_path , WINDOW_LAYER_NAME ,

DOOR_LAYER_NAME ) :
14
15 dxf = dxfgrabber . readfile ( abs_file_path , {"grab_blocks" : True , "

assure_3d_coords" : False , "resolve_text_styles" : False })
16 windows=[]
17 doors=[]
18
19 for i in dxf . entities :
20 #----------Windows ----------
21 if i . layer == WINDOW_LAYER_NAME and i . dxftype == ’INSERT’ :
22 X0=i . insert [ 0 ]
23 Y0=i . insert [ 1 ]
24 angle=math . radians (i . rotation )
25 xs=i . scale [ 0 ]
26 ys=i . scale [ 1 ]
27 result=blockbbox (i , dxf , X0 , Y0 , angle , xs , ys )
28 p1=result [ 0 ]
29 p2=result [ 1 ]
30 p3=result [ 2 ]
31 p4=result [ 3 ]
32 if p1 . distance (p2 )>=p2 . distance (p3 ) :
33 pp1 , pp2=extend_line_bothdir ( Point ( ( p1 . x+p4 . x ) /2 , (p1 . y+p4

. y ) /2) , Point ( ( p2 . x+p3 . x ) /2 , (p2 . y+p3 . y ) /2) , 20)
34 width=p2 . distance (p3 )
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35 length=Point ( ( p1 . x+p4 . x ) /2 , (p1 . y+p4 . y ) /2) . distance ( Point
( ( p2 . x+p3 . x ) /2 , (p2 . y+p3 . y ) /2) )

36 else :
37 pp1 , pp2=extend_line_bothdir ( Point ( ( p1 . x+p2 . x ) /2 , (p1 . y+p2

. y ) /2) , Point ( ( p3 . x+p4 . x ) /2 , (p3 . y+p4 . y ) /2) , 20)
38 width=p1 . distance (p2 )
39 length=Point ( ( p1 . x+p2 . x ) /2 , (p1 . y+p2 . y ) /2) . distance ( Point

( ( p3 . x+p4 . x ) /2 , (p3 . y+p4 . y ) /2) )
40 windows . append ( Window ( LineString ( [ ( pp1 . x , pp1 . y ) , ( pp2 . x , pp2 . y )

] ) , width , length ) )
41
42 #----------Doors ----------
43 if i . layer == DOOR_LAYER_NAME and i . dxftype == ’INSERT’ :
44
45 X0=i . insert [ 0 ]
46 Y0=i . insert [ 1 ]
47 angle=math . radians (i . rotation )
48 xs=i . scale [ 0 ]
49 ys=i . scale [ 1 ]
50 result=blockbbox (i , dxf , X0 , Y0 , angle , xs , ys )
51 p1=result [ 0 ]
52 p2=result [ 1 ]
53 p3=result [ 2 ]
54 p4=result [ 3 ]
55 if p1 . distance (p2 )>=p2 . distance (p3 ) :
56 pp1 , pp2=extend_line_bothdir ( Point ( ( p1 . x+p4 . x ) /2 , (p1 . y+p4

. y ) /2) , Point ( ( p2 . x+p3 . x ) /2 , (p2 . y+p3 . y ) /2) , 20)
57 width=p2 . distance (p3 )
58 length=Point ( ( p1 . x+p4 . x ) /2 , (p1 . y+p4 . y ) /2) . distance ( Point

( ( p2 . x+p3 . x ) /2 , (p2 . y+p3 . y ) /2) )
59 else :
60 pp1 , pp2=extend_line_bothdir ( Point ( ( p1 . x+p2 . x ) /2 , (p1 . y+p2

. y ) /2) , Point ( ( p3 . x+p4 . x ) /2 , (p3 . y+p4 . y ) /2) , 20)
61 width=p1 . distance (p2 )
62 length=Point ( ( p1 . x+p2 . x ) /2 , (p1 . y+p2 . y ) /2) . distance ( Point

( ( p3 . x+p4 . x ) /2 , (p3 . y+p4 . y ) /2) )
63 doors . append ( Door ( LineString ( [ ( pp1 . x , pp1 . y ) , ( pp2 . x , pp2 . y ) ] ) ,

width , length ) )
64
65 openings=[]
66 openings . extend ( windows )
67 openings . extend ( doors )
68
69 return openings
70
71 def blockbbox ( block , dxf , X0 , Y0 , angle , xs , ys ) :
72 anchors=[]
73 lines=[]
74 xmin=float (’inf’ )
75 xmax=float (’-inf’ )
76 ymin=float (’inf’ )
77 ymax=float (’-inf’ )
78
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79 for j in dxf . blocks [ block . name ] :
80 if j . dxftype==’LINE’ :
81 if j . start [0] >xmax :
82 xmax=j . start [ 0 ]
83 if j . start [0] <xmin :
84 xmin=j . start [ 0 ]
85 if j . start [1] >ymax :
86 ymax=j . start [ 1 ]
87 if j . start [1] <ymin :
88 ymin=j . start [ 1 ]
89 if j . end [0] >xmax :
90 xmax=j . end [ 0 ]
91 if j . end [0] <xmin :
92 xmin=j . end [ 0 ]
93 if j . end [1] >ymax :
94 ymax=j . end [ 1 ]
95 if j . end [1] <ymin :
96 ymin=j . end [ 1 ]
97 lines . append ( LineString ( [ ( j . start [ 0 ] , j . start [ 1 ] ) , (j . end [ 0 ] ,

j . end [ 1 ] ) ] ) )
98 #---------------------
99

100 elif j . dxftype==’POLYLINE’ :
101 if j . is_closed==True :
102 lines . append ( LineString ( [ ( j . points [ 0 ] [ 0 ] , j . points [ 0 ] [ 1 ] )

, (j . points [ −1 ] [ 0 ] , j . points [ − 1 ] [ 1 ] ) ] ) )
103 for k in range (0 , len (j . points ) ) :
104 if j . points [ k ] [ 0 ] > xmax :
105 xmax=j . points [ k ] [ 0 ]
106 if j . points [ k ] [ 0 ] < xmin :
107 xmin=j . points [ k ] [ 0 ]
108 if j . points [ k ] [ 1 ] > ymax :
109 ymax=j . points [ k ] [ 1 ]
110 if j . points [ k ] [ 1 ] < ymin :
111 ymin=j . points [ k ] [ 1 ]
112 if k<len (j . points )−1:
113 lines . append ( LineString ( [ ( j . points [ k ] [ 0 ] , j . points [ k

] [ 1 ] ) , (j . points [ k+1 ] [ 0 ] , j . points [ k+1 ] [ 1 ] ) ] ) )
114 #---------------------
115
116 elif j . dxftype==’LWPOLYLINE’ :
117 if j . is_closed==True :
118 lines . append ( LineString ( [ ( j . points [ 0 ] [ 0 ] , j . points [ 0 ] [ 1 ] )

, (j . points [ −1 ] [ 0 ] , j . points [ − 1 ] [ 1 ] ) ] ) )
119 for k in range (0 , len (j . points ) ) :
120 if j . points [ k ] [ 0 ] > xmax :
121 xmax=j . points [ k ] [ 0 ]
122 if j . points [ k ] [ 0 ] < xmin :
123 xmin=j . points [ k ] [ 0 ]
124 if j . points [ k ] [ 1 ] > ymax :
125 ymax=j . points [ k ] [ 1 ]
126 if j . points [ k ] [ 1 ] < ymin :
127 ymin=j . points [ k ] [ 1 ]
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128 if k<len (j . points )−1:
129 lines . append ( LineString ( [ ( j . points [ k ] [ 0 ] , j . points [ k

] [ 1 ] ) , (j . points [ k+1 ] [ 0 ] , j . points [ k+1 ] [ 1 ] ) ] ) )
130 #---------------------
131
132 elif j . dxftype==’ARC’ :
133 anchors . append ( Point (j . center [ 0 ] , j . center [ 1 ] ) )
134 if j . center [0] >xmax :
135 xmax=j . center [ 0 ]
136 if j . center [0] <xmin :
137 xmin=j . center [ 0 ]
138 if j . center [1] >ymax :
139 ymax=j . center [ 1 ]
140 if j . center [1] <ymin :
141 ymin=j . center [ 1 ]
142
143 x0=j . center [0 ]+j . radius∗math . cos ( math . radians (j . startangle ) )
144 y0=j . center [1 ]+j . radius∗math . sin ( math . radians (j . startangle ) )
145 x1=j . center [0 ]+j . radius∗math . cos ( math . radians (j . endangle ) )
146 y1=j . center [1 ]+j . radius∗math . sin ( math . radians (j . endangle ) )
147 if x0>xmax :
148 xmax=x0
149 if x0<xmin :
150 xmin=x0
151 if y0>ymax :
152 ymax=y0
153 if y0<ymin :
154 ymin=y0
155 if x1>xmax :
156 xmax=x1
157 if x1<xmin :
158 xmin=x1
159 if y1>ymax :
160 ymax=y1
161 if y1<ymin :
162 ymin=y1
163 lines . append ( LineString ( [ ( j . center [ 0 ] , j . center [ 1 ] ) , (x0 , y0 )

] ) )
164 lines . append ( LineString ( [ ( j . center [ 0 ] , j . center [ 1 ] ) , (x1 , y1 )

] ) )
165 lines . append ( LineString ( [ ( x0 , y0 ) , (x1 , y1 ) ] ) )
166 #---------------------
167
168 elif j . dxftype==’INSERT’ :
169 X0_0=j . insert [ 0 ]
170 Y0_0=j . insert [ 1 ]
171 angle_0=math . radians (j . rotation )
172 xs_0=j . scale [ 0 ]
173 ys_0=j . scale [ 1 ]
174 result=blockbbox (j , dxf , X0_0 , Y0_0 , angle_0 , xs_0 , ys_0 )
175 for i in range ( 0 , 4 ) :
176 if result [ i ] . x<xmin :
177 xmin=result [ i ] . x

Master of Science Thesis Haoxiang Wu



104 Source code(part)

178 if result [ i ] . x>xmax :
179 xmax=result [ i ] . x
180 if result [ i ] . y<ymin :
181 ymin=result [ i ] . y
182 if result [ i ] . y>ymax :
183 ymax=result [ i ] . y
184 lines . extend ( result [ 4 ] )
185 anchors . extend ( result [ 5 ] )
186 #---------------------
187
188 if len ( anchors ) >0:
189 p1=Point (xmin , ymin )
190 p2=Point (xmax , ymin )
191 p3=Point (xmax , ymax )
192 p4=Point (xmin , ymax )
193 if p1 . distance (p2 )>=p2 . distance (p3 ) :
194 d1=dist_p2l ( anchors [ 0 ] , p1 , p2 )
195 d2=dist_p2l ( anchors [ 0 ] , p3 , p4 )
196 p14=Point ( ( p1 . x+p4 . x ) /2 , (p1 . y+p4 . y ) /2)
197 p23=Point ( ( p2 . x+p3 . x ) /2 , (p2 . y+p3 . y ) /2)
198 d3=dist_p2l ( anchors [ 0 ] , p14 , p23 )
199 if d1<=d2 and d1<=d3 :
200 ymax=ymin+120
201
202 elif d2<=d1 and d2<=d3 :
203 ymin=ymax−120
204 else :
205 ymax=p14 . y+120/2
206 ymin=p14 . y−120/2
207 else :
208 d1=dist_p2l ( anchors [ 0 ] , p1 , p4 )
209 d2=dist_p2l ( anchors [ 0 ] , p2 , p3 )
210 p12=Point ( ( p1 . x+p2 . x ) /2 , (p1 . y+p2 . y ) /2)
211 p34=Point ( ( p3 . x+p4 . x ) /2 , (p3 . y+p4 . y ) /2)
212 d3=dist_p2l ( anchors [ 0 ] , p12 , p34 )
213 if d1<=d2 and d1<=d3 :
214 xmax=xmin+120
215 elif d2<=d1 and d2<=d3 :
216 xmin=xmax−120
217 else :
218 xmax=p12 . x+120/2
219 xmin=p12 . x−120/2
220 new_lines=[]
221 for line in lines :
222 p0=coordtransformation ( Point ( list ( line . coords ) [ 0 ] ) , angle , X0 , Y0

, xs , ys )
223 p1=coordtransformation ( Point ( list ( line . coords ) [ 1 ] ) , angle , X0 , Y0

, xs , ys )
224 new_lines . append ( LineString ( [ ( p0 . x , p0 . y ) , ( p1 . x , p1 . y ) ] ) )
225 new_anchors=[]
226 if len ( anchors ) >0:
227 for anchor in anchors :
228 new_anchor=coordtransformation ( anchor , angle , X0 , Y0 , xs , ys )
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229 new_anchors . append ( new_anchor )
230 p1=coordtransformation ( Point (xmin , ymin ) , angle , X0 , Y0 , xs , ys )
231 p2=coordtransformation ( Point (xmax , ymin ) , angle , X0 , Y0 , xs , ys )
232 p3=coordtransformation ( Point (xmax , ymax ) , angle , X0 , Y0 , xs , ys )
233 p4=coordtransformation ( Point (xmin , ymax ) , angle , X0 , Y0 , xs , ys )
234
235 return [ p1 , p2 , p3 , p4 , new_lines , new_anchors ]

A-3 ContourReconstruction.py

1 import math
2 import shapefile
3
4 from shapely . geometry import Point
5 from shapely . geometry import LineString
6 from shapely . geometry import Polygon
7 from shapely . geometry import polygon
8
9 from untitled0 import GetProjectivePoint

10 from untitled0 import separate_in_out
11
12 from extend_line import extend_line_onedir
13 from extend_line import extend_line_bothdir
14 from extend_line import point_on_line
15
16
17 def ContourReconstruction00 ( groupedPoints , openings , AVG_WALL_THICKNESS ,

verbose ) :
18 Nodes=[]
19 groups_P=groupedPoints
20 for i in range (0 , len ( openings ) ) :
21 l1=openings [ i ] . mline
22 width=openings [ i ] . width
23 anchor_lines=[]
24
25 for j in range (0 , len ( groups_P ) ) :
26 for k in range (0 , len ( groups_P [ j ] ) ) :
27 if k==len ( groups_P [ j ] ) −1:
28 l2=LineString ( [ groups_P [ j ] [ k ] , groups_P [ j ] [ 0 ] ] )
29 else :
30 l2=LineString ( [ groups_P [ j ] [ k ] , groups_P [ j ] [ k+1] ] )
31
32 if l1 . intersects (l2 )==True :
33 anchor_lines . append ( [ j , k , l2 ] )
34
35 if len ( anchor_lines )==2:
36 break
37 else :
38 continue
39 if j==len ( groups_P )−1 and len ( anchor_lines ) <2:
40 print ’Opening ’ + str (i ) +’ reconstruction failed!’
41 continue
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42 else :
43 # openings that can be successfully reconstructed
44 Nodes . append ( openings [ i ] )
45
46 if anchor_lines [ 0 ] [ 2 ] . length>=anchor_lines [ 1 ] [ 2 ] . length :
47 longL=anchor_lines [ 0 ]
48 shortL=anchor_lines [ 1 ]
49 else :
50 longL=anchor_lines [ 1 ]
51 shortL=anchor_lines [ 0 ]
52
53 if anchor_lines [ 0 ] [ 0 ]== anchor_lines [ 1 ] [ 0 ] :
54 # self-closed
55 if verbose==True :
56 print ’self-closed’
57 if longL [ 2 ] . length<=AVG_WALL_THICKNESS :
58
59 if verbose==True :
60 print ’situation111’
61
62 if math . fabs ( longL [ 2 ] . length−shortL [ 2 ] . length ) /shortL

[ 2 ] . length<=0.15:
63 outRing , inRing=separate_in_out ( longL [ 1 ] , shortL

[ 1 ] , groups_P [ longL [ 0 ] ] )
64 groups_P . pop ( longL [ 0 ] )
65 groups_P . append ( outRing )
66 groups_P . append ( inRing )
67 else :
68 outRing , inRing=separate_in_out ( longL [ 1 ] , shortL

[ 1 ] , groups_P [ longL [ 0 ] ] )
69
70 ptProj0=GetProjectivePoint ( Point ( groups_P [ shortL

[ 0 ] ] [ shortL [ 1 ] ] [ 0 ] , groups_P [ shortL [ 0 ] ] [ shortL
[ 1 ] ] [ 1 ] ) , longL [ 2 ] )

71 ptProj1=GetProjectivePoint ( Point ( groups_P [ shortL
[ 0 ] ] [ shortL [ 1 ] + 1 ] [ 0 ] , groups_P [ shortL [ 0 ] ] [
shortL [ 1 ] + 1 ] [ 1 ] ) , longL [ 2 ] )

72
73 if groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ] in outRing :
74 new_outRing=outRing+[(ptProj0 . x , ptProj0 . y ) ]
75 new_inRing=[(ptProj1 . x , ptProj1 . y ) ]+inRing
76 else :
77 new_outRing=[(ptProj1 . x , ptProj1 . y ) ]+outRing
78 new_inRing=inRing+[(ptProj0 . x , ptProj0 . y ) ]
79
80 groups_P . pop ( longL [ 0 ] )
81 groups_P . append ( new_outRing )
82 groups_P . append ( new_inRing )
83 elif shortL [ 2 ] . length>AVG_WALL_THICKNESS :
84 # self-closed
85 if verbose==True :
86 print ’self-closed222’
87 shortP=l1 . intersection ( shortL [ 2 ] )
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88 longP=l1 . intersection ( longL [ 2 ] )
89 startS=groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ]
90 if shortL [1]+1>=len ( groups_P [ shortL [ 0 ] ] ) :
91 endS=groups_P [ shortL [ 0 ] ] [ shortL [1]+1−len ( groups_P

[ shortL [ 0 ] ] ) ]
92 else :
93 endS=groups_P [ shortL [ 0 ] ] [ shortL [ 1 ]+1 ]
94
95 startL=groups_P [ longL [ 0 ] ] [ longL [ 1 ] ]
96 if longL [1]+1>=len ( groups_P [ longL [ 0 ] ] ) :
97 endL=groups_P [ longL [ 0 ] ] [ longL [1]+1−len ( groups_P [

longL [ 0 ] ] ) ]
98 else :
99 endL=groups_P [ longL [ 0 ] ] [ longL [ 1 ]+1 ]

100 if shortP . distance ( Point ( startS [ 0 ] , startS [ 1 ] ) )<=60:
101 if longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )<=60:
102 d1=shortP . distance ( Point ( startS [ 0 ] , startS [ 1 ] )

)
103 d2=longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )
104 if math . fabs (d1−d2 ) /d1<=0.15:
105 if verbose==True :
106 print ’U shape(closed)’
107 # situation 1
108 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
109 new_pt0=point_on_line ( Point ( endS [ 0 ] , endS

[ 1 ] ) , shortP , (d1+d2 ) /2)
110 new_pt1=point_on_line ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , longP , (d1+d2 ) /2)
111 new_outRing=outRing
112 new_inRing=[(new_pt0 . x , new_pt0 . y ) ]+inRing

+[(new_pt1 . x , new_pt1 . y ) ]
113 groups_P . pop ( longL [ 0 ] )
114 groups_P . append ( new_outRing )
115 groups_P . append ( new_inRing )
116 else :
117 if verbose==True :
118 print ’U(Z) shape(closed)’
119 if d1<d2 :
120 ptProj=GetProjectivePoint ( Point (

startS [ 0 ] , startS [ 1 ] ) , longL [ 2 ] )
121 outRing , inRing=separate_in_out ( longL

[ 1 ] , shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
122 new_pt0=point_on_line ( Point ( endS [ 0 ] ,

endS [ 1 ] ) , shortP , (d1+d2 ) /2)
123 new_pt1=point_on_line ( Point ( startL

[ 0 ] , startL [ 1 ] ) , longP , (d1+d2 ) /2)
124 new_outRing=outRing+[(ptProj . x ,

ptProj . y ) ]
125 new_inRing=[(new_pt0 . x , new_pt0 . y ) ]+

inRing+[(new_pt1 . x , new_pt1 . y ) ]
126 groups_P . pop ( longL [ 0 ] )
127 groups_P . append ( new_outRing )
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128 groups_P . append ( new_inRing )
129 else :
130 ptProj=GetProjectivePoint ( Point ( endL

[ 0 ] , endL [ 1 ] ) , shortL [ 2 ] )
131 outRing , inRing=separate_in_out ( longL

[ 1 ] , shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
132 new_pt0=point_on_line ( Point ( endS [ 0 ] ,

endS [ 1 ] ) , shortP , (d1+d2 ) /2)
133 new_pt1=point_on_line ( Point ( startL

[ 0 ] , startL [ 1 ] ) , longP , (d1+d2 ) /2)
134 new_outRing=outRing+[(ptProj . x ,

ptProj . y ) ]
135 new_inRing=[(new_pt0 . x , new_pt0 . y ) ]+

inRing+[(new_pt1 . x , new_pt1 . y ) ]
136 groups_P . pop ( longL [ 0 ] )
137 groups_P . append ( new_outRing )
138 groups_P . append ( new_inRing )
139 elif longP . distance ( Point ( startL [ 0 ] , startL [ 0 ] ) )

<=60:
140 # situation 2
141 if verbose==True :
142 print ’Z shape(closed)’
143 ptProj0=GetProjectivePoint ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , longL [ 2 ] )
144 ptProj1=GetProjectivePoint ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , shortL [ 2 ] )
145 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
146 new_outRing=outRing+[(ptProj0 . x , ptProj0 . y ) ]
147 new_inRing=[(ptProj1 . x , ptProj1 . y ) ]+inRing
148 groups_P . pop ( longL [ 0 ] )
149 groups_P . append ( new_outRing )
150 groups_P . append ( new_inRing )
151 else :
152 # situation 3
153 if verbose==True :
154 print ’4 shape(closed)’
155 ptProj=GetProjectivePoint ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , longL [ 2 ] )
156 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
157 d1=shortP . distance ( Point ( startS [ 0 ] , startS [ 1 ] )

)
158 new_pt0=point_on_line ( Point ( endS [ 0 ] , endS [ 1 ] ) ,

shortP , d1 )
159 new_pt1=point_on_line ( Point ( startL [ 0 ] , startL

[ 1 ] ) , longP , d1 )
160 if groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ] in outRing :
161 new_outRing=outRing+[(ptProj . x , ptProj . y )

]
162 new_inRing=inRing+[(new_pt1 . x , new_pt1 . y )

]+ [ ( new_pt0 . x , new_pt0 . y ) ]
163 else :
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164 new_outRing=outRing+[(new_pt1 . x , new_pt1 . y
) ]+ [ ( new_pt0 . x , new_pt0 . y ) ]

165 new_inRing=inRing+[(ptProj . x , ptProj . y ) ]
166 groups_P . pop ( longL [ 0 ] )
167 groups_P . append ( new_outRing )
168 groups_P . append ( new_inRing )
169 elif shortP . distance ( Point ( endS [ 0 ] , endS [ 1 ] ) )<=60:
170 if longP . distance ( Point ( startL [ 0 ] , startL [ 0 ] ) )

<=60:
171 # situation 4
172 d1=shortP . distance ( Point ( endS [ 0 ] , endS [ 0 ] ) )
173 d2=longP . distance ( Point ( startL [ 0 ] , startL [ 1 ] ) )
174 if math . fabs (d1−d2 ) /d1<=0.15:
175 if verbose==True :
176 print ’U shape(closed)’
177 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
178 new_pt0=point_on_line ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , shortP , (d1+d2 ) /2)
179 new_pt1=point_on_line ( Point ( endL [ 0 ] , endL

[ 1 ] ) , longP , (d1+d2 ) /2)
180 new_outRing=outRing
181 new_inRing=[(new_pt1 . x , new_pt1 . y ) ]+inRing

+[(new_pt0 . x , new_pt0 . y ) ]
182 groups_P . pop ( longL [ 0 ] )
183 groups_P . append ( new_outRing )
184 groups_P . append ( new_inRing )
185 else :
186 if verbose==True :
187 print ’U(Z) shape(closed)’
188 if d1<d2 :
189 ptProj=GetProjectivePoint ( Point ( endS

[ 0 ] , endS [ 1 ] ) , longL [ 2 ] )
190 outRing , inRing=separate_in_out ( longL

[ 1 ] , shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
191 new_pt0=point_on_line ( Point ( startS

[ 0 ] , startS [ 1 ] ) , shortP , (d1+d2 ) /2)
192 new_pt1=point_on_line ( Point ( endL [ 0 ] ,

endL [ 1 ] ) , longP , (d1+d2 ) /2)
193 new_outRing=outRing+[(ptProj . x ,

ptProj . y ) ]
194 new_inRing=[(new_pt1 . x , new_pt1 . y ) ]+

inRing+[(new_pt0 . x , new_pt0 . y ) ]
195 groups_P . pop ( longL [ 0 ] )
196 groups_P . append ( new_outRing )
197 groups_P . append ( new_inRing )
198 else :
199 ptProj=GetProjectivePoint ( Point (

startL [ 0 ] , startL [ 1 ] ) , shortL [ 2 ] )
200 outRing , inRing=separate_in_out ( longL

[ 1 ] , shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
201 new_pt0=point_on_line ( Point ( startS

[ 0 ] , startS [ 1 ] ) , shortP , (d1+d2 ) /2)
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202 new_pt1=point_on_line ( Point ( endL [ 0 ] ,
endL [ 1 ] ) , longP , (d1+d2 ) /2)

203 new_outRing=outRing+[(ptProj . x ,
ptProj . y ) ]

204 new_inRing=[(new_pt1 . x , new_pt1 . y ) ]+
inRing+[(new_pt0 . x , new_pt0 . y ) ]

205 groups_P . pop ( longL [ 0 ] )
206 groups_P . append ( new_outRing )
207 groups_P . append ( new_inRing )
208 elif longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )<=60:
209 # situation 5
210 if verbose==True :
211 print ’Z shape(closed)’
212 ptProj0=GetProjectivePoint ( Point ( endL [ 0 ] , endL

[ 1 ] ) , shortL [ 2 ] )
213 ptProj1=GetProjectivePoint ( Point ( endS [ 0 ] , endS

[ 1 ] ) , longL [ 2 ] )
214 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
215 new_outRing=outRing+[(ptProj1 . x , ptProj1 . y ) ]
216 new_inRing=inRing+[(ptProj0 . x , ptProj0 . y ) ]
217 groups_P . pop ( longL [ 0 ] )
218 groups_P . append ( new_outRing )
219 groups_P . append ( new_inRing )
220 else :
221 # situation 6
222 if verbose==True :
223 print ’4 shape(closed)’
224 ptProj=GetProjectivePoint ( Point ( endS [ 0 ] , endS

[ 1 ] ) , longL [ 2 ] )
225 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
226 d1=shortP . distance ( Point ( endS [ 0 ] , endS [ 1 ] ) )
227 new_pt0=point_on_line ( Point ( startS [ 0 ] , startS

[ 1 ] ) , shortP , d1 )
228 new_pt1=point_on_line ( Point ( endL [ 0 ] , endL [ 1 ] ) ,

longP , d1 )
229 if groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ] in outRing :
230 new_outRing=outRing+[(new_pt0 . x , new_pt0 . y

) ]+ [ ( new_pt1 . x , new_pt1 . y ) ]
231 new_inRing=inRing+[(ptProj . x , ptProj . y ) ]
232 else :
233 new_outRing=outRing+[(ptProj . x , ptProj . y )

]
234 new_inRing=inRing+[(new_pt0 . x , new_pt0 . y )

]+ [ ( new_pt1 . x , new_pt1 . y ) ]
235 groups_P . pop ( longL [ 0 ] )
236 groups_P . append ( new_outRing )
237 groups_P . append ( new_inRing )
238 else :
239 if longP . distance ( Point ( startL [ 0 ] , startL [ 0 ] ) )

<=60:
240 # situation 7
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241 if verbose==True :
242 print ’4 shape(closed)’
243 ptProj=GetProjectivePoint ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , shortL [ 2 ] )
244 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
245 d1=longP . distance ( Point ( startL [ 0 ] , startL [ 1 ] )

)
246 new_pt0=point_on_line ( Point ( startS [ 0 ] , startS

[ 1 ] ) , shortP , d1 )
247 new_pt1=point_on_line ( Point ( endL [ 0 ] , endL [ 1 ] ) ,

longP , d1 )
248 new_outRing=outRing+[(ptProj . x , ptProj . y ) ]
249 new_inRing=[(new_pt1 . x , new_pt1 . y ) ]+inRing+[(

new_pt0 . x , new_pt0 . y ) ]
250 groups_P . pop ( longL [ 0 ] )
251 groups_P . append ( new_outRing )
252 groups_P . append ( new_inRing )
253 elif longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )<=60:
254 # situation 8
255 if verbose==True :
256 print ’4 shape(closed)’
257 ptProj=GetProjectivePoint ( Point ( endL [ 0 ] , endL

[ 1 ] ) , shortL [ 2 ] )
258 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
259 d1=longP . distance ( Point ( endL [ 0 ] , endL [ 1 ] ) )
260 new_pt0=point_on_line ( Point ( endS [ 0 ] , endS [ 1 ] ) ,

shortP , d1 )
261 new_pt1=point_on_line ( Point ( startL [ 0 ] , startL

[ 1 ] ) , longP , d1 )
262 new_outRing=outRing+[(ptProj . x , ptProj . y ) ]
263 new_inRing=[(new_pt0 . x , new_pt0 . y ) ]+inRing+[(

new_pt1 . x , new_pt1 . y ) ]
264 groups_P . pop ( longL [ 0 ] )
265 groups_P . append ( new_outRing )
266 groups_P . append ( new_inRing )
267 else :
268 # situation 9
269 if verbose==True :
270 print ’H shape(closed)’
271 new_pt0=point_on_line ( Point ( startS [ 0 ] , startS

[ 1 ] ) , shortP , width /2)
272 new_pt1=point_on_line ( Point ( endL [ 0 ] , endL [ 1 ] ) ,

longP , width /2)
273 new_pt2=point_on_line ( Point ( startL [ 0 ] , startL

[ 1 ] ) , longP , width /2)
274 new_pt3=point_on_line ( Point ( endS [ 0 ] , endS [ 1 ] ) ,

shortP , width /2)
275 outRing , inRing=separate_in_out ( longL [ 1 ] ,

shortL [ 1 ] , groups_P [ longL [ 0 ] ] )
276 if groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ] in outRing :
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277 new_outRing=outRing+[(new_pt0 . x , new_pt0 . y
) ]+ [ ( new_pt1 . x , new_pt1 . y ) ]

278 new_inRing=inRing+[(new_pt2 . x , new_pt2 . y )
]+ [ ( new_pt3 . x , new_pt3 . y ) ]

279 else :
280 new_outRing=outRing+[(new_pt2 . x , new_pt2 . y

) ]+ [ ( new_pt3 . x , new_pt3 . y ) ]
281 new_inRing=inRing+[(new_pt0 . x , new_pt0 . y )

]+ [ ( new_pt1 . x , new_pt1 . y ) ]
282 groups_P . pop ( longL [ 0 ] )
283 groups_P . append ( new_outRing )
284 groups_P . append ( new_inRing )
285 else :
286 outRing , inRing=separate_in_out ( longL [ 1 ] , shortL [ 1 ] ,

groups_P [ longL [ 0 ] ] )
287 ptProj0=GetProjectivePoint ( Point ( groups_P [ shortL [ 0 ] ] [

shortL [ 1 ] ] [ 0 ] , groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ] [ 1 ] ) ,
longL [ 2 ] )

288 ptProj1=GetProjectivePoint ( Point ( groups_P [ shortL [ 0 ] ] [
shortL [ 1 ] + 1 ] [ 0 ] , groups_P [ shortL [ 0 ] ] [ shortL
[ 1 ] + 1 ] [ 1 ] ) , longL [ 2 ] )

289 if groups_P [ shortL [ 0 ] ] [ shortL [ 1 ] ] in outRing :
290 new_outRing=outRing+[(ptProj0 . x , ptProj0 . y ) ]
291 new_inRing=[(ptProj1 . x , ptProj1 . y ) ]+inRing
292 else :
293 new_outRing=[(ptProj1 . x , ptProj1 . y ) ]+outRing
294 new_inRing=inRing+[(ptProj0 . x , ptProj0 . y ) ]
295 groups_P . pop ( longL [ 0 ] )
296 groups_P . append ( new_outRing )
297 groups_P . append ( new_inRing )
298 else :
299 if longL [ 2 ] . length<=AVG_WALL_THICKNESS :
300 if verbose==True :
301 print ’not self-closed’ ,’situation 1’
302 if math . fabs ( longL [ 2 ] . length−shortL [ 2 ] . length ) /shortL

[ 2 ] . length<=0.15:
303 longGroup=groups_P [ longL [ 0 ] ]
304 reL=longGroup [ longL [ 1 ]+1 : ]+ longGroup [ 0 : longL

[ 1 ]+1 ]
305 shortGroup=groups_P [ shortL [ 0 ] ]
306 reS=shortGroup [ shortL [ 1 ]+1 : ]+ shortGroup [ 0 : shortL

[ 1 ]+1 ]
307 if longL [0] > shortL [ 0 ] :
308 groups_P . pop ( longL [ 0 ] )
309 groups_P . pop ( shortL [ 0 ] )
310 else :
311 groups_P . pop ( shortL [ 0 ] )
312 groups_P . pop ( longL [ 0 ] )
313 groups_P . append ( reL+reS )
314 else :
315 longGroup=groups_P [ longL [ 0 ] ]
316 reL=longGroup [ longL [ 1 ]+1 : ]+ longGroup [ 0 : longL

[ 1 ]+1 ]
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317 shortGroup=groups_P [ shortL [ 0 ] ]
318 reS=shortGroup [ shortL [ 1 ]+1 : ]+ shortGroup [ 0 : shortL

[ 1 ]+1 ]
319 ptProj0=GetProjectivePoint ( Point ( shortGroup [

shortL [ 1 ] ] [ 0 ] , shortGroup [ shortL [ 1 ] ] [ 1 ] ) , longL
[ 2 ] )

320 ptProj1=GetProjectivePoint ( Point ( shortGroup [
shortL [ 1 ] + 1 ] [ 0 ] , shortGroup [ shortL [ 1 ] + 1 ] [ 1 ] ) ,
longL [ 2 ] )

321 if longL [0] > shortL [ 0 ] :
322 groups_P . pop ( longL [ 0 ] )
323 groups_P . pop ( shortL [ 0 ] )
324 else :
325 groups_P . pop ( shortL [ 0 ] )
326 groups_P . pop ( longL [ 0 ] )
327 groups_P . append ( reS+[(ptProj0 . x , ptProj0 . y ) ]+reL

+[(ptProj1 . x , ptProj1 . y ) ] )
328 elif shortL [ 2 ] . length>AVG_WALL_THICKNESS :
329 if verbose==True :
330 print ’not self-closed’ ,’situation 2’
331 longGroup=groups_P [ longL [ 0 ] ]
332 reL=longGroup [ longL [ 1 ]+1 : ]+ longGroup [ 0 : longL [ 1 ]+1 ]
333 shortGroup=groups_P [ shortL [ 0 ] ]
334 reS=shortGroup [ shortL [ 1 ]+1 : ]+ shortGroup [ 0 : shortL

[ 1 ]+1 ]
335 shortP=l1 . intersection ( shortL [ 2 ] )
336 longP=l1 . intersection ( longL [ 2 ] )
337 startS=reS [−1]
338 endS=reS [ 0 ]
339 startL=reL [−1]
340 endL=reL [ 0 ]
341 if shortP . distance ( Point ( startS [ 0 ] , startS [ 1 ] ) )<=60:
342 if longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )<=60:
343 d1=shortP . distance ( Point ( startS [ 0 ] , startS [ 1 ] )

)
344 d2=longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )
345 if math . fabs (d1−d2 ) /d1<=0.15:
346 if verbose==True :
347 print ’U shape’
348 # situation 1
349 new_group=reS [ 0 : ]+ reL [ 0 : ]
350 new_pt=point_on_line ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , longP , (d1+d2 ) /2)
351 new_group . append ( ( new_pt . x , new_pt . y ) )
352 new_pt=point_on_line ( Point ( endS [ 0 ] , endS

[ 1 ] ) , shortP , (d1+d2 ) /2)
353 new_group . append ( ( new_pt . x , new_pt . y ) )
354 if longL [0] > shortL [ 0 ] :
355 groups_P . pop ( longL [ 0 ] )
356 groups_P . pop ( shortL [ 0 ] )
357 else :
358 groups_P . pop ( shortL [ 0 ] )
359 groups_P . pop ( longL [ 0 ] )
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360 groups_P . append ( new_group )
361 else :
362 if verbose==True :
363 print ’U(Z) shape’
364 if d1<d2 :
365 ptProj=GetProjectivePoint ( Point (

startS [ 0 ] , startS [ 1 ] ) , longL [ 2 ] )
366 new_group=reS [ 0 : ] + [ ( ptProj . x , ptProj .

y ) ]+reL [ 0 : ]
367 new_pt=point_on_line ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , longP , (d1+d2 ) /2)
368 new_group . append ( ( new_pt . x , new_pt . y ) )
369 new_pt=point_on_line ( Point ( endS [ 0 ] ,

endS [ 1 ] ) , shortP , (d1+d2 ) /2)
370 new_group . append ( ( new_pt . x , new_pt . y ) )
371 if longL [0] > shortL [ 0 ] :
372 groups_P . pop ( longL [ 0 ] )
373 groups_P . pop ( shortL [ 0 ] )
374 else :
375 groups_P . pop ( shortL [ 0 ] )
376 groups_P . pop ( longL [ 0 ] )
377 groups_P . append ( new_group )
378 else :
379 ptProj=GetProjectivePoint ( Point ( endL

[ 0 ] , endL [ 1 ] ) , shortL [ 2 ] )
380 new_group=reS [ 0 : ] + [ ( ptProj . x , ptProj .

y ) ]+reL [ 0 : ]
381 new_pt=point_on_line ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , longP , (d1+d2 ) /2)
382 new_group . append ( ( new_pt . x , new_pt . y ) )
383 new_pt=point_on_line ( Point ( endS [ 0 ] ,

endS [ 1 ] ) , shortP , (d1+d2 ) /2)
384 new_group . append ( ( new_pt . x , new_pt . y ) )
385 if longL [0] > shortL [ 0 ] :
386 groups_P . pop ( longL [ 0 ] )
387 groups_P . pop ( shortL [ 0 ] )
388 else :
389 groups_P . pop ( shortL [ 0 ] )
390 groups_P . pop ( longL [ 0 ] )
391 groups_P . append ( new_group )
392 elif longP . distance ( Point ( startL [ 0 ] , startL [ 0 ] ) )

<=60:
393 # situation 2
394 if verbose==True :
395 print ’Z shape’
396 ptProj0=GetProjectivePoint ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , longL [ 2 ] )
397 new_group=reS [ 0 : ] + [ ( ptProj0 . x , ptProj0 . y ) ]+

reL [ 0 : ]
398 ptProj1=GetProjectivePoint ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , shortL [ 2 ] )
399 new_group . append ( ( ptProj1 . x , ptProj1 . y ) )
400 if longL [0] > shortL [ 0 ] :
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401 groups_P . pop ( longL [ 0 ] )
402 groups_P . pop ( shortL [ 0 ] )
403 else :
404 groups_P . pop ( shortL [ 0 ] )
405 groups_P . pop ( longL [ 0 ] )
406 groups_P . append ( new_group )
407 else :
408 # situation 3
409 if verbose==True :
410 print ’4 shape 1’
411 ptProj0=GetProjectivePoint ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , longL [ 2 ] )
412 new_group=reS [ 0 : ] + [ ( ptProj0 . x , ptProj0 . y ) ]+

reL [ 0 : ]
413 d1=shortP . distance ( Point ( startS [ 0 ] , startS [ 1 ] )

)
414 new_pt=point_on_line ( Point ( startL [ 0 ] , startL

[ 1 ] ) , longP , d1 )
415 new_group . append ( ( new_pt . x , new_pt . y ) )
416 new_pt=point_on_line ( Point ( endS [ 0 ] , endS [ 1 ] ) ,

shortP , d1 )
417 new_group . append ( ( new_pt . x , new_pt . y ) )
418 if longL [0] > shortL [ 0 ] :
419 groups_P . pop ( longL [ 0 ] )
420 groups_P . pop ( shortL [ 0 ] )
421 else :
422 groups_P . pop ( shortL [ 0 ] )
423 groups_P . pop ( longL [ 0 ] )
424 groups_P . append ( new_group )
425 elif shortP . distance ( Point ( endS [ 0 ] , endS [ 1 ] ) )<=60:
426 if longP . distance ( Point ( startL [ 0 ] , startL [ 0 ] ) )

<=60:
427 # situation 4
428 d1=shortP . distance ( Point ( endS [ 0 ] , endS [ 0 ] ) )
429 d2=longP . distance ( Point ( startL [ 0 ] , startL [ 1 ] ) )
430 if math . fabs (d1−d2 ) /d1<=0.15:
431 if verbose==True :
432 print ’U shape’
433 # situation 1
434 new_group=reL [ 0 : ]+ reS [ 0 : ]
435 new_pt=point_on_line ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , shortP , (d1+d2 ) /2)
436 new_group . append ( ( new_pt . x , new_pt . y ) )
437 new_pt=point_on_line ( Point ( endL [ 0 ] , endL

[ 1 ] ) , longP , (d1+d2 ) /2)
438 new_group . append ( ( new_pt . x , new_pt . y ) )
439 if longL [0] > shortL [ 0 ] :
440 groups_P . pop ( longL [ 0 ] )
441 groups_P . pop ( shortL [ 0 ] )
442 else :
443 groups_P . pop ( shortL [ 0 ] )
444 groups_P . pop ( longL [ 0 ] )
445 groups_P . append ( new_group )
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446 else :
447 if verbose==True :
448 print ’U(Z) shape’
449 if d1<d2 :
450 ptProj=GetProjectivePoint ( Point ( endS

[ 0 ] , endS [ 1 ] ) , longL [ 2 ] )
451 new_group=reL [ 0 : ] + [ ( ptProj . x , ptProj .

y ) ]+reS [ 0 : ]
452 new_pt=point_on_line ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , shortP , (d1+d2 ) /2)
453 new_group . append ( ( new_pt . x , new_pt . y ) )
454 new_pt=point_on_line ( Point ( endL [ 0 ] ,

endL [ 1 ] ) , longP , (d1+d2 ) /2)
455 new_group . append ( ( new_pt . x , new_pt . y ) )
456 if longL [0] > shortL [ 0 ] :
457 groups_P . pop ( longL [ 0 ] )
458 groups_P . pop ( shortL [ 0 ] )
459 else :
460 groups_P . pop ( shortL [ 0 ] )
461 groups_P . pop ( longL [ 0 ] )
462 groups_P . append ( new_group )
463 else :
464 ptProj=GetProjectivePoint ( Point (

startL [ 0 ] , startL [ 1 ] ) , shortL [ 2 ] )
465 new_group=reL [ 0 : ] + [ ( ptProj . x , ptProj .

y ) ]+reS [ 0 : ]
466 new_pt=point_on_line ( Point ( startS [ 0 ] ,

startS [ 1 ] ) , shortP , (d1+d2 ) /2)
467 new_group . append ( ( new_pt . x , new_pt . y ) )
468 new_pt=point_on_line ( Point ( endL [ 0 ] ,

endL [ 1 ] ) , longP , (d1+d2 ) /2)
469 new_group . append ( ( new_pt . x , new_pt . y ) )
470 if longL [0] > shortL [ 0 ] :
471 groups_P . pop ( longL [ 0 ] )
472 groups_P . pop ( shortL [ 0 ] )
473 else :
474 groups_P . pop ( shortL [ 0 ] )
475 groups_P . pop ( longL [ 0 ] )
476 groups_P . append ( new_group )
477 elif longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )<=60:
478 # situation 5
479 if verbose==True :
480 print ’Z shape’
481 ptProj0=GetProjectivePoint ( Point ( endL [ 0 ] , endL

[ 1 ] ) , shortL [ 2 ] )
482 new_group=reS [ 0 : ] + [ ( ptProj0 . x , ptProj0 . y ) ]+

reL [ 0 : ]
483 ptProj1=GetProjectivePoint ( Point ( endS [ 0 ] , endS

[ 1 ] ) , longL [ 2 ] )
484 new_group . append ( ( ptProj1 . x , ptProj1 . y ) )
485 if longL [0] > shortL [ 0 ] :
486 groups_P . pop ( longL [ 0 ] )
487 groups_P . pop ( shortL [ 0 ] )
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488 else :
489 groups_P . pop ( shortL [ 0 ] )
490 groups_P . pop ( longL [ 0 ] )
491 groups_P . append ( new_group )
492 else :
493 # situation 6
494 if verbose==True :
495 print ’4 shape 2’
496 d1=shortP . distance ( Point ( endS [ 0 ] , endS [ 1 ] ) )
497 new_pt=point_on_line ( Point ( startS [ 0 ] , startS

[ 1 ] ) , shortP , d1 )
498 new_group=reS [ 0 : ] + [ ( new_pt . x , new_pt . y ) ]
499 new_pt=point_on_line ( Point ( endL [ 0 ] , endL [ 1 ] ) ,

longP , d1 )
500 new_group . append ( ( new_pt . x , new_pt . y ) )
501 new_group . extend ( reL )
502 ptProj=GetProjectivePoint ( Point ( endS [ 0 ] , endS

[ 1 ] ) , longL [ 2 ] )
503 new_group . append ( ( ptProj . x , ptProj . y ) )
504 if longL [0] > shortL [ 0 ] :
505 groups_P . pop ( longL [ 0 ] )
506 groups_P . pop ( shortL [ 0 ] )
507 else :
508 groups_P . pop ( shortL [ 0 ] )
509 groups_P . pop ( longL [ 0 ] )
510 groups_P . append ( new_group )
511 else :
512 if longP . distance ( Point ( startL [ 0 ] , startL [ 0 ] ) )

<=60:
513 # situation 7
514 if verbose==True :
515 print ’4 shape 3’
516 d1=longP . distance ( Point ( startL [ 0 ] , startL [ 1 ] ) )
517 new_pt0=point_on_line ( Point ( startS [ 0 ] , startS

[ 1 ] ) , shortP , d1 )
518 new_pt1=point_on_line ( Point ( endL [ 0 ] , endL [ 1 ] ) ,

longP , d1 )
519 new_group=reS [ 0 : ] + [ ( new_pt0 . x , new_pt0 . y ) , (

new_pt1 . x , new_pt1 . y ) ]+reL [ 0 : ]
520 ptProj=GetProjectivePoint ( Point ( startL [ 0 ] ,

startL [ 1 ] ) , shortL [ 2 ] )
521 new_group . append ( ( ptProj . x , ptProj . y ) )
522 if longL [0] > shortL [ 0 ] :
523 groups_P . pop ( longL [ 0 ] )
524 groups_P . pop ( shortL [ 0 ] )
525 else :
526 groups_P . pop ( shortL [ 0 ] )
527 groups_P . pop ( longL [ 0 ] )
528 groups_P . append ( new_group )
529 elif longP . distance ( Point ( endL [ 0 ] , endL [ 0 ] ) )<=60:
530 # situation 8
531 if verbose==True :
532 print ’4 shape 4’
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533 d1=longP . distance ( Point ( endL [ 0 ] , endL [ 1 ] ) )
534 ptProj=GetProjectivePoint ( Point ( endL [ 0 ] , endL

[ 1 ] ) , shortL [ 2 ] )
535 new_group=reS [ 0 : ] + [ ( ptProj . x , ptProj . y ) ]+reL

[ 0 : ]
536 new_pt0=point_on_line ( Point ( startL [ 0 ] , startL

[ 1 ] ) , longP , d1 )
537 new_pt1=point_on_line ( Point ( endS [ 0 ] , endS [ 1 ] ) ,

shortP , d1 )
538 new_group . append ( ( new_pt0 . x , new_pt0 . y ) )
539 new_group . append ( ( new_pt1 . x , new_pt1 . y ) )
540 if longL [0] > shortL [ 0 ] :
541 groups_P . pop ( longL [ 0 ] )
542 groups_P . pop ( shortL [ 0 ] )
543 else :
544 groups_P . pop ( shortL [ 0 ] )
545 groups_P . pop ( longL [ 0 ] )
546
547 groups_P . append ( new_group )
548 else :
549 # situation 9
550 if verbose==True :
551 ’H shape’
552 new_pt=point_on_line ( Point ( startS [ 0 ] , startS

[ 1 ] ) , shortP , width /2)
553 new_group=reS [ 0 : ] + [ ( new_pt . x , new_pt . y ) ]
554 new_pt=point_on_line ( Point ( endL [ 0 ] , endL [ 1 ] ) ,

longP , width /2)
555 new_group . append ( ( new_pt . x , new_pt . y ) )
556 new_group . extend ( reL )
557 new_pt=point_on_line ( Point ( startL [ 0 ] , startL

[ 1 ] ) , longP , width /2)
558 new_group . append ( ( new_pt . x , new_pt . y ) )
559 new_pt=point_on_line ( Point ( endS [ 0 ] , endS [ 1 ] ) ,

shortP , width /2)
560 new_group . append ( ( new_pt . x , new_pt . y ) )
561 if longL [0] > shortL [ 0 ] :
562 groups_P . pop ( longL [ 0 ] )
563 groups_P . pop ( shortL [ 0 ] )
564 else :
565 groups_P . pop ( shortL [ 0 ] )
566 groups_P . pop ( longL [ 0 ] )
567
568 groups_P . append ( new_group )
569 else :
570 if verbose==True :
571 print ’not self-closed’ ,’situation 3’
572 longGroup=groups_P [ longL [ 0 ] ]
573 reL=longGroup [ longL [ 1 ]+1 : ]+ longGroup [ 0 : longL [ 1 ]+1 ]
574 shortGroup=groups_P [ shortL [ 0 ] ]
575 reS=shortGroup [ shortL [ 1 ]+1 : ]+ shortGroup [ 0 : shortL

[ 1 ]+1 ]
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576 ptProj0=GetProjectivePoint ( Point ( shortGroup [ shortL
[ 1 ] ] [ 0 ] , shortGroup [ shortL [ 1 ] ] [ 1 ] ) , longL [ 2 ] )

577 if shortL [1]+1>=len ( shortGroup ) :
578 ptProj1=GetProjectivePoint ( Point ( shortGroup [

shortL [1]+1−len ( shortGroup ) ] [ 0 ] , shortGroup [
shortL [1]+1−len ( shortGroup ) ] [ 1 ] ) , longL [ 2 ] )

579 else :
580 ptProj1=GetProjectivePoint ( Point ( shortGroup [

shortL [ 1 ] + 1 ] [ 0 ] , shortGroup [ shortL [ 1 ] + 1 ] [ 1 ] ) ,
longL [ 2 ] )

581 if longL [0] > shortL [ 0 ] :
582 groups_P . pop ( longL [ 0 ] )
583 groups_P . pop ( shortL [ 0 ] )
584 else :
585 groups_P . pop ( shortL [ 0 ] )
586 groups_P . pop ( longL [ 0 ] )
587 groups_P . append ( reS+[(ptProj0 . x , ptProj0 . y ) ]+reL+[(

ptProj1 . x , ptProj1 . y ) ] )
588 new_groups_P0=[]
589 for i in range (0 , len ( groups_P ) ) :
590 new_group=[]
591 for j in range (0 , len ( groups_P [ i ] ) ) :
592 if j==0:
593 dv1_x = groups_P [ i ] [ − 1 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
594 dv1_y = groups_P [ i ] [ − 1 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
595 dv2_x = groups_P [ i ] [ j+1 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
596 dv2_y = groups_P [ i ] [ j+1 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
597 elif j==len ( groups_P [ i ] ) −1:
598 dv1_x = groups_P [ i ] [ j−1 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
599 dv1_y = groups_P [ i ] [ j−1 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
600 dv2_x = groups_P [ i ] [ 0 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
601 dv2_y = groups_P [ i ] [ 0 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
602 else :
603 dv1_x = groups_P [ i ] [ j−1 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
604 dv1_y = groups_P [ i ] [ j−1 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
605 dv2_x = groups_P [ i ] [ j+1 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
606 dv2_y = groups_P [ i ] [ j+1 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
607 dv1xdv2 = dv1_x ∗ dv2_x + dv1_y ∗ dv2_y
608 absdv1 = math . sqrt ( dv1_x ∗ dv1_x + dv1_y ∗ dv1_y )
609 absdv2 = math . sqrt ( dv2_x ∗ dv2_x + dv2_y ∗ dv2_y )
610 if absdv1==0:
611 if j<=1:
612 dv1_x = groups_P [ i ] [ j−2+len ( groups_P [ i ] ) ] [ 0 ] −

groups_P [ i ] [ j ] [ 0 ]
613 dv1_y = groups_P [ i ] [ j−2+len ( groups_P [ i ] ) ] [ 1 ] −

groups_P [ i ] [ j ] [ 1 ]
614 else :
615 dv1_x = groups_P [ i ] [ j−2 ] [ 0 ] − groups_P [ i ] [ j ] [ 0 ]
616 dv1_y = groups_P [ i ] [ j−2 ] [ 1 ] − groups_P [ i ] [ j ] [ 1 ]
617 dv1xdv2 = dv1_x ∗ dv2_x + dv1_y ∗ dv2_y
618 absdv1 = math . sqrt ( dv1_x ∗ dv1_x + dv1_y ∗ dv1_y )
619 absdv2 = math . sqrt ( dv2_x ∗ dv2_x + dv2_y ∗ dv2_y )
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620 angle = math . degrees ( math . acos ( dv1xdv2 / ( absdv1 ∗ absdv2
) ) )

621 if math . fabs ( angle )>=3 and math . fabs ( angle )<=177:
622 new_group . append ( ( groups_P [ i ] [ j ] [ 0 ] , groups_P [ i ] [ j

] [ 1 ] ) )
623 elif absdv2==0:
624 continue
625 else :
626 if dv1xdv2 / ( absdv1 ∗ absdv2 ) >1:
627 angle=math . degrees ( math . acos (1 ) )
628 elif dv1xdv2 / ( absdv1 ∗ absdv2 )<−1:
629 angle=math . degrees ( math . acos (−1) )
630 else :
631 angle = math . degrees ( math . acos ( dv1xdv2 / ( absdv1 ∗

absdv2 ) ) )
632 if math . fabs ( angle )>=3 and math . fabs ( angle )<=177:
633 new_group . append ( ( groups_P [ i ] [ j ] [ 0 ] , groups_P [ i ] [ j

] [ 1 ] ) )
634 new_groups_P0 . append ( new_group )
635 new_groups_P=[]
636 for i in range (0 , len ( new_groups_P0 ) ) :
637 if len ( new_groups_P0 [ i ] ) >2:
638 new_groups_P . append ( list ( Polygon ( new_groups_P0 [ i ] ) . buffer

(0 ) . exterior . coords )
639
640 return new_groups_P , Nodes

A-4 LineGroupingFromSHP.py

1 import math
2 import shapefile
3
4 from shapely . geometry import Point
5 from shapely . geometry import LineString
6 from shapely . geometry import Polygon
7 from shapely . geometry import polygon
8
9 from fix_drafting_errors import fix_disjoint_vertices

10
11
12 def LineGroupingFromSHP ( abs_file_path , MINIMALDIST ) :
13
14
15 sf = shapefile . Reader ( abs_file_path )
16
17 #---------read lines from shapefile ---------
18 chains=[]
19 for geom in sf . shapeRecords ( ) :
20 chain=[(geom . shape . points [ 0 ] [ 0 ] , geom . shape . points [ 0 ] [ 1 ] ) , ( geom .

shape . points [ 1 ] [ 0 ] , geom . shape . points [ 1 ] [ 1 ] ) ]
21 chains . append ( chain )
22 #-------------------------------------------
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23
24 #---------group lines & fix unconnected vertices ---------
25 closed_chains=[]
26 k=1
27 RADIUS=MINIMALDIST
28
29 print ’#-----------------------------’
30 print ’k=’ , k , ’RADIUS=’ , RADIUS
31 print ’len(chains)’ , len ( chains )
32 print ’len(closed_chains)’ , len ( closed_chains )
33
34 while (k<=5 and len ( chains )>0) :
35 if len ( chains )==1:
36 pt11=Point ( chains [ 0 ] [ 0 ] [ 0 ] , chains [ 0 ] [ 0 ] [ 1 ] )
37 pt12=Point ( chains [ 0 ] [ − 1 ] [ 0 ] , chains [ 0 ] [ − 1 ] [ 1 ] )
38
39 if pt11 . distance ( pt12 )<=RADIUS :
40 chains . pop (0 )
41 l1=LineString ( [ chain1 [ 0 ] , chain1 [ 1 ] ] )
42 l2=LineString ( [ chain1 [−1] , chain1 [ −2 ] ] )
43 new_pts1=fix_disjoint_vertices (l1 , l2 )
44 new_chain=chain1 [1:−1]+new_pts1
45 closed_chains . append ( new_chain )
46 break
47 else :
48 k=k+1
49 RADIUS=RADIUS+MINIMALDIST
50 print ’#-----------------------------’
51 print ’k=’ , k , ’RADIUS=’ , RADIUS
52 print ’len(chains)’ , len ( chains )
53 print ’len(closed_chains)’ , len ( closed_chains )
54 break
55 L=len ( chains )
56 for i in range (0 , len ( chains )−1) :
57 chain1=chains [ i ]
58 pt11=Point ( chain1 [ 0 ] [ 0 ] , chain1 [ 0 ] [ 1 ] )
59 pt12=Point ( chain1 [ −1 ] [ 0 ] , chain1 [ − 1 ] [ 1 ] )
60 if pt11 . distance ( pt12 )<=RADIUS :
61 chains . pop (i )
62 l1=LineString ( [ chain1 [ 0 ] , chain1 [ 1 ] ] )
63 l2=LineString ( [ chain1 [−1] , chain1 [ −2 ] ] )
64 new_pts1=fix_disjoint_vertices (l1 , l2 )
65 new_chain=chain1 [1:−1]+new_pts1
66 closed_chains . append ( new_chain )
67 break
68 for j in range (i+1, len ( chains )+1) :
69 if j==len ( chains ) :
70 break
71 chain2=chains [ j ]
72 pt21=Point ( chain2 [ 0 ] [ 0 ] , chain2 [ 0 ] [ 1 ] )
73 pt22=Point ( chain2 [ −1 ] [ 0 ] , chain2 [ − 1 ] [ 1 ] )
74 if pt11 . distance ( pt21 )<=RADIUS :
75 l1=LineString ( [ chain1 [ 0 ] , chain1 [ 1 ] ] )
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76 l2=LineString ( [ chain2 [ 0 ] , chain2 [ 1 ] ] )
77 new_pts1=fix_disjoint_vertices (l1 , l2 )
78 if pt12 . distance ( pt22 )<=RADIUS :
79 # closed
80 l1=LineString ( [ chain1 [−1] , chain1 [ −2 ] ] )
81 l2=LineString ( [ chain2 [−1] , chain2 [ −2 ] ] )
82 new_pts2=fix_disjoint_vertices (l1 , l2 )
83
84 chains . pop (j )
85 chains . pop (i )
86 chain1 . reverse ( )
87 new_chain=new_pts2+chain1 [1:−1]+new_pts1+chain2

[ 1 : −1 ]
88 closed_chains . append ( new_chain )
89 break
90 else :
91 chains . pop (j )
92 chains . pop (i )
93 chain1 . reverse ( )
94 new_chain=chain1 [0:−1]+new_pts1+chain2 [ 1 : ]
95 chains . append ( new_chain )
96 break
97 elif pt11 . distance ( pt22 )<=RADIUS :
98 l1=LineString ( [ chain1 [ 0 ] , chain1 [ 1 ] ] )
99 l2=LineString ( [ chain2 [−1] , chain2 [ −2 ] ] )

100 new_pts1=fix_disjoint_vertices (l1 , l2 )
101
102 if pt12 . distance ( pt21 )<=RADIUS :
103 # closed
104 l1=LineString ( [ chain1 [−1] , chain1 [ −2 ] ] )
105 l2=LineString ( [ chain2 [ 0 ] , chain2 [ 1 ] ] )
106 new_pts2=fix_disjoint_vertices (l1 , l2 )
107
108 chains . pop (j )
109 chains . pop (i )
110 new_chain=new_pts1+chain1 [1:−1]+new_pts2+chain2

[ 1 : −1 ]
111 closed_chains . append ( new_chain )
112 break
113 else :
114 chains . pop (j )
115 chains . pop (i )
116 new_chain=chain2 [0:−1]+new_pts1+chain1 [ 1 : ]
117 chains . append ( new_chain )
118 break
119 elif pt12 . distance ( pt21 )<=RADIUS :
120 l1=LineString ( [ chain1 [−1] , chain1 [ −2 ] ] )
121 l2=LineString ( [ chain2 [ 0 ] , chain2 [ 1 ] ] )
122 new_pts1=fix_disjoint_vertices (l1 , l2 )
123 chains . pop (j )
124 chains . pop (i )
125 new_chain=chain1 [0:−1]+new_pts1+chain2 [ 1 : ]
126 chains . append ( new_chain )
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127 break
128 elif pt12 . distance ( pt22 )<=RADIUS :
129 l1=LineString ( [ chain1 [−1] , chain1 [ −2 ] ] )
130 l2=LineString ( [ chain2 [−1] , chain2 [ −2 ] ] )
131 new_pts1=fix_disjoint_vertices (l1 , l2 )
132 chains . pop (j )
133 chains . pop (i )
134 chain2 . reverse ( )
135 new_chain=chain1 [0:−1]+new_pts1+chain2 [ 1 : ]
136 chains . append ( new_chain )
137 break
138 else :
139 continue
140 if j==L :
141 continue
142 else :
143 break
144 if i==L−2 and j==L :
145 k=k+1
146 RADIUS=RADIUS+MINIMALDIST
147 print ’#-----------------------------’
148 print ’k=’ , k , ’RADIUS=’ , RADIUS
149 print ’len(chains)’ , len ( chains )
150 print ’len(closed_chains)’ , len ( closed_chains )
151 else :
152 continue
153 print ’#-----------------------------’
154 print ’len(chains)’ , len ( chains )
155 print ’len(closed_chains)’ , len ( closed_chains )
156 #-------------------------------------------
157
158 #-------------------------------------------
159 groups_P=[]
160 for i in range (0 , len ( closed_chains ) ) :
161 if len ( closed_chains [ i ] ) >2:
162 if Polygon ( closed_chains [ i ] ) . is_valid==True :
163 ply=Polygon ( closed_chains [ i ] )
164 new_ply=polygon . orient (ply , sign=1.0)
165 groups_P . append ( list ( new_ply . exterior . coords ) [ 0 : −1 ] )
166 else :
167 ply=Polygon ( closed_chains [ i ] ) . buffer (0 ) . exterior . coords
168 new_ply=polygon . orient (ply , sign=1.0)
169 groups_P . append ( list ( new_ply . exterior . coords ) [ 0 : −1 ] )
170 else :
171 print ’closed_chains ’ ,i , ’ only has two points’
172 return groups_P
173 #

------------------------------------------------------------------------------

A-5 FixDraftingErrors.py
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1 from shapely . geometry import LineString
2 from shapely . geometry import Point
3 from angle_of_line import angle_of_line
4 import math
5 import time
6 import fiona
7 from collections import OrderedDict
8
9

10 def find_intersectingPoint (l1 , l2 ) :
11 # find intersecting point of two unparallel lines
12 x11=list (l1 . coords ) [ 0 ] [ 0 ]
13 y11=list (l1 . coords ) [ 0 ] [ 1 ]
14 x12=list (l1 . coords ) [ 1 ] [ 0 ]
15 y12=list (l1 . coords ) [ 1 ] [ 1 ]
16
17 x21=list (l2 . coords ) [ 0 ] [ 0 ]
18 y21=list (l2 . coords ) [ 0 ] [ 1 ]
19 x22=list (l2 . coords ) [ 1 ] [ 0 ]
20 y22=list (l2 . coords ) [ 1 ] [ 1 ]
21
22 A1=y12−y11
23 B1=x11−x12
24 C1=x12∗y11−x11∗y12
25
26 A2=y22−y21
27 B2=x21−x22
28 C2=x22∗y21−x21∗y22
29
30 x0=(−1)∗(B2∗C1−B1∗C2 ) /(A1∗B2−A2∗B1 )
31 y0=(−1)∗(A2∗C1−A1∗C2 ) /(A2∗B1−A1∗B2 )
32
33 return Point (x0 , y0 )
34
35 def fix_disjoint_vertices (l1 , l2 ) :
36 a1=angle_of_line (l1 )
37 a2=angle_of_line (l2 )
38 if math . fabs (a1−a2 )<=2:
39 return [ ]
40
41 else :
42 if l1 . intersects (l2 )==True :
43 pt=l1 . intersection (l2 )
44 return [ ( pt . x , pt . y ) ]
45
46 else :
47 pt=find_intersectingPoint (l1 , l2 )
48 return [ ( pt . x , pt . y ) ]
49
50
51
52 def fix_duplicated_lines ( lines , MINIMALDIST ) :
53
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54
55 new_lines=[]
56 while len ( lines ) >0:
57 print len ( lines ) , len ( new_lines )
58
59 l1=lines [ 0 ]
60
61 if l1 . length<MINIMALDIST :
62 print ’Null-length’
63 lines . pop (0 )
64 continue
65
66 if len ( lines )==0:
67 break
68 elif len ( lines )==1:
69 new_lines . append (l1 )
70 lines . pop (0 )
71 break
72 else :
73
74 for i in range (1 , len ( lines )+1) :
75
76 if i==len ( lines ) :
77 new_lines . append (l1 )
78 lines . pop (0 )
79 break
80
81 l2=lines [ i ]
82 if l2 . length<MINIMALDIST :
83 print ’Null-length’
84 lines . pop (i )
85 break
86 a1=angle_of_line (l1 )
87 a2=angle_of_line (l2 )
88 if math . fabs (a1−a2 )<=2:
89 bff=l1 . buffer ( MINIMALDIST , resolution=16, cap_style

=2)
90 if bff . intersects (l2 )==True :
91 if bff . exterior . intersection (l2 ) . geom_type==’

GeometryCollection’ :
92 # contains
93 lines . pop (i )
94 print ’Contains’
95 break
96 elif bff . exterior . intersection (l2 ) . geom_type==’

Point’ :
97 # overlapped or consecutive
98 pt11=Point ( list (l1 . coords ) [ 0 ] )
99 pt12=Point ( list (l1 . coords ) [ 1 ] )

100 pt21=Point ( list (l2 . coords ) [ 0 ] )
101 pt22=Point ( list (l2 . coords ) [ 1 ] )
102 if pt21 . intersects ( bff )==True :
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103 if pt22 . distance ( pt11 )>=pt22 . distance (
pt12 ) :

104 nl=LineString ( [ ( pt11 . x , pt11 . y ) , (
pt22 . x , pt22 . y ) ] )

105 else :
106 nl=LineString ( [ ( pt12 . x , pt12 . y ) , (

pt22 . x , pt22 . y ) ] )
107 else :
108 if pt21 . distance ( pt11 )>=pt21 . distance (

pt12 ) :
109 nl=LineString ( [ ( pt11 . x , pt11 . y ) , (

pt21 . x , pt21 . y ) ] )
110 else :
111 nl=LineString ( [ ( pt12 . x , pt12 . y ) , (

pt21 . x , pt21 . y ) ] )
112 lines . pop (i )
113 lines . pop (0 )
114 lines . append (nl )
115 print ’Overlapped or Consecutive’
116 break
117 elif bff . exterior . intersection (l2 ) . geom_type==’

MultiPoint’ :
118 # contained
119 lines . pop (0 )
120 print ’Contained’
121 break
122
123
124 return new_lines
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