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1
Introduction

This chapter will present the main research goals of this thesis, by firstly introducing the concepts
of Information Centric Networking (ICN) and the Internet of Things (IoT). A short description on the
background of ICN will be given in Section 1.1. The basic concepts of ICN will be presented in Section
1.2. Section 1.3 will introduce the IoT by outlining the key characteristics of IoT deployments and
applications. A qualitative comparison of ICN and IP is performed in Section 1.4.2, which is used to
provide a first hypothesis into the main drawbacks and advantages of using ICN compared to classic
IP technologies. This chapter concludes with a description of the main research questions in Section
1.5 and a thesis outline in Section 1.6.

1.1. Background
The American computer scientist Van Jacobson is renowned for his contributions to internet research
which has had a big impact on the internet we use today. The most prominent example is his work on the
TCP flow control mechanism [1], which is widely used in the current internet. In 2006, Van Jacobson
presented his view on the future of the current IP oriented internet architecture by introducing the
fundamentals of the Information Centric Networking (ICN) paradigm [2, 3]. According to Van Jacobson,
the current host centric internet architecture is no longer fitting the data-centric way we use the internet
today. Internet users are no longer interested to solely connect to a certain network resource, as was
the case when the IP protocol was developed. Users nowadays typically want to receive certain data
as fast as possible, caring less where the data is exactly stored. A data centric internet approach would
allow hosts to request content based on a known data name, rather than on a host name, eliminating
the need to discover the exact location where the data is stored.

The deployments of Peer-to-Peer (P2P) and Content Distribution Networks (CDN) indicate the need
for a more data centric usage of the current internet by decoupling the data retrieval process from a
specific location or server. In P2P networks, data is distributed over several ’peers’ or nodes and a user
can retrieve (parts of) the content from other peers. The original data source only needs to inject the
content once into the P2P network, where the data is then distributed over several other nodes. CDNs
are widely used by data services such as YouTube and Facebook. The main goal of CDNs is typically
to move content closer to the end-user and therefore optimising network and service performance. This
can be done by, for example, geographically distributing copies of the content over several severs or by
deploying web caching, and thereby reducing the content retrieval delay and total network bandwidth
usage.

The wide scale adoption of CDNs and P2P networks shows that we use the internet in a different
way than originally was envisioned when the main foundations of the internet were developed. Both
technologies can be seen as manners to map the current internet usage patterns to the legacy host
centric IP based internet. ICN revises this approach by replacing the current internet implementation
by a new ICN stack with native support for data centric networking, and thereby simplifying the required
internet stack.

1



2 1. Introduction

1.2. Information Centric Networking (ICN)
We will introduce the concept of ICN by addressing the most important building blocks of this new
networking paradigm in Section 1.2.1. Moreover, a short description will be provided on the most
popular ICN software implementations in Section 1.2.2.

1.2.1. ICN basic principals
We distinguish five main features in the ICN architecture. We start by explaining the used ICN termi-
nology of defining consumers and producers. Afterwards, we will address how data can be named and
how this naming scheme is used to forward data. The third feature we will cover is seen as one of the
most promising features of ICN, namely the ability to cache named data on a network-wide scale. The
last identified feature is the support for packet level security.

The roles of the nodes in the architecture
In ICN, nodes may take one out of two different types of roles: a consumer role or a producer role. A
node which wants to receive a certain piece of data is called a consumer and a node which is able to
supply new data into the network is called a producer. The assignment of consumer and producer roles
is only fixed during one single data exchange. A node which, for example, currently has a producer
role, is thus free to take a consumer role in the next data transmission.

Message types
In ICN only two packet types are envisioned; the Interest message and the Data message, which
are shown in Figure 1.1. The ICN architecture uses a pull-based, ‘one-Interest, one-Data’ approach:
consumers request for data by issuing an Interest message, and will receive at most one Data message
matching that Interest. This Interest message contains the name of the data, which is used to forward
the message towards the data producer or towards a cache, and a unique ‘nonce’ to detect duplicate
Interests. Further, the selector field can be used to enforce additional constraints on the requested
Data message. As an example, the exclude selector field can be used to exclude Data messages with
certain name components which can be defined by the consumer.

Another node can satisfy this Interest by returning a packet containing the Data message, if it holds
a copy of the specified content. If an intermediate node is not able to supply the specified data, then
the Interest will be forwarded in the direction of the producer or in the direction of another cache. The
Data message must at least contain the data name and the data itself, and may optionally be signed
by the data producer. A consumer can use the signature and signature info to verify whether the data
originates from a trusted producer. It must be noted that the specifics of the Interest and Data message
formats are implementation dependent. Some ICN implementations may offer extra fields in the ICN
messages.

Naming and forwarding
The data naming scheme typically follows a hierarchical structure, where different levels of this hierar-
chy are separated by a forward slash. An example ICN name for a picture can be: /TNO/Floris/Cat.jpg.
This hierarchical structure is used in the forwarding logic of the ICN hosts, where longest prefix match-
ing is used to find a suitable next hop for Data and Interest messages. The ICN architecture defines a

Figure 1.1: The ICN Interest and Data messages (packets), specified by [3]. Picture from [3].



1.3. Internet of Things 3

modular forwarding mechanism on every ICN host which comprises a Content Store (CS), a Pending
Interest Table (PIT) and a Forwarding Information Base (FIB). Data and Interest messages enter the
ICN forwarding logic via so-called faces. A face can for example be an Ethernet interface or even a
TCP or UDP socket. When an ICN host receives an Interest on a certain face, it will initially check
whether it holds a copy of the data of interest in its CS. If so, it will return it to the requesting face via a
Data message. Otherwise, the ICN host will check whether it had previously received any other Interest
for the specified content. This check is done via a lookup in the PIT where each Interest is registered
with a single entry containing the name and incoming face. If there is no matching entry in the PIT, a
new PIT entry will be added for the Interest and the FIB will be consulted to find an appropriate face
to forward the Interest to. If the PIT already contains an entry for the data requested by the incoming
Interest, then the incoming face of this Interest will be added to that specific PIT entry, if it is not there
yet.

When a Data message arrives at a node, the PIT will again be consulted to find the incoming faces
of the corresponding Interest messages. The Data message will then be forwarded to all faces listed
in the matching PIT entry. An overview of the ICN forwarding logic can be seen in Figure 1.2.

In-network caching
As mentioned earlier, ICN Data messages can be identified by their name. Naming Data messages
based on the data that they carry rather than the host they are directed to enables caching at interme-
diary nodes on the data path. ICN hosts and routers can simply cache Data messages to satisfy future
Interests for the same data. Caching named data could result in a reduced usage of network resources
and faster data retrieval, since Interest messages could be satisfied with Data messages cached close
to the interested node.

Packet-level security
Due to the simple ICN message structure with only Interest and Data messages, it is possible to use
so-called content-based security. In the current IP-based internet, safe data transfer is guaranteed
by using secured connections. A secure connection then requires two steps: establishing trust in the
endpoint and securing the data transfer with cryptographic key pairs.

In ICN a different approach is followed. Instead of securing a connection, the Data messages them-
selves are being secured. It is therefore no longer necessary to set-up a secure connection between
the requester and the producer, since the Data messages themselves can be verified. The signature
in the Data message can be used to check that the content name, data and signed info are originat-
ing from the trusted producer. One of the main advantages of content-based security is the ability
of reusing Data messages when secured data transfer is required. Content based security allows to
cache signed Data messages, which would not be possible with the end-to-end secured connection in
IP. Next to signing Data messages, it is also possible to encrypt the data itself, if the data should not
be visible for other users. The fact that data names in Interest and Data messages are transmitted in
the clear may pose some confidentiality issues when using ICN. A possible workaround to this may be
that of using a hash of the human-readable name components as the Data name [5].

1.2.2. ICN implementations
Van Jacobson’s proposal resulted in the development of multiple ICN software implementations. The
two most popular implementations following the ICN design are called NDNx [6] and CCNx [7]. CCNx
is the oldest of the two, dating back to 2006. Van Jacobson originally started the development of the
CCNx software at the Palo Alto Research Center (PARC), which later acquired a trademark on the name
CCNx. The multi campus NDN research project funded by the American National Science Foundation
(NSF) started in 2010 and used the CCNx implementation as basis for their research. Starting from
2013, the implementation from the NDN project and the implementation from PARC have begun to
diverge. The implementation developed by the NDN project was then renamed to NDNx. In february
2017 it was announced that Cisco acquired PARC’s Content Centric Networking (CCN) Platform [8].

1.3. Internet of Things
The Internet of Things (IoT) [9] comprises the collection of (smart) ‘things’ which are connected to
the internet. These ‘things’ can be all kinds of devices capable of sensing and/or changing certain
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Figure 1.2: The forwarding logic of the ICN architecture. Picture from [4].

phenomena, for example, smart cars, remote temperature sensors, digitally controllable lighting or even
smart refrigerators. Connecting these devices to the internet, offers the potential to unlock new types of
use cases and applications. For this reason, IoT has risen high market expectations and is envisioned
to provide new business opportunities to a large variety of different companies. The IoT is currently at
the peak of Gartner’s famous hype cycle [10] meaning that it is currently at the highest of its visibility.
A lot of different research organisations and consulting firms are studying and making predictions on
the future impact of the IoT business and market added value it can deliver. The consulting firm IHS,
for example, expects that the number of IoT devices will double in the next five years, reaching 30.7
billion connected devices in 2020 [11]. Management consulting firm McKinsey & Company estimates
in a detailed report that the IoT will provide an economical impact of 11.1 trillion USD in 2025 [12].

1.3.1. Key IoT domains
According to McKinsey & Company [12], the large variety of IoT deployments can be structured into nine
different IoT settings which are illustrated in Figure 1.3. In the Home and Office settings, IoT devices
may be used to monitor and control slow changing climate conditions such as temperature and humidity
levels. IoT devices can also help to reduce energy consumption, by using this sensor data to actively
adjust heating and lighting settings. IoT devices may also be used for security purposes, by deploying
sensors on a large scale to get a detailed overview over the secured home or office.

IoT devices may be deployed in factories, worksites, outside and retail settings to help optimising
certain processes. An example can be predictive maintenance for the industrial settings, where IoT
sensors can be used to minimise downtime in case of faulty machinery. In retail environments, IoT
devices can be used to track customers inside a store and thereby being able to optimise sales. The
outside setting covers all IoT use cases that do not fit into the eight other scenarios. Example outside
settings are related to navigation at sea, or process optimisation in military operations.

The Human setting focusses on the rise of wearable devices, which mostly perform monitoring
actions. These devices are able to measure metrics related to the health of the owner, which can be
used for a medical purpose but also for improving the fitness of the user for example with a smart watch.

In the City IoT setting, sensors are employed to more efficiency use the resources in an urban
environment. One could use sensors to detect the availability of parking spots, monitor traffic flows
and using this data to adjust traffic lights or even dynamically control street lighting by measuring light
intensity or road usage.

In vehicular applications the IoT can help to make vehicles autonomous, by combining multiple
forms of sensor data gathered from own sensors or other cars. Characteristics of the IoT are currently
already visible in modern cars which are able to combine sensor data to propose suitable service
intervals. Vehicles operating in harsh conditions may need more frequent maintenance which can be
better scheduled if measurement data is used.
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Figure 1.3: The nine most promising IoT settings identified by McKinsey & Comapny. Picture from [12].

1.3.2. Key IoT characteristics
We have identified four key characteristics of IoT networks [13], which we will discuss individually.

• Sense →Combine →Take Action Most IoT deployments use a strategy where measurement data
from sensors is processed and evaluated to decide whether a certain action must be taken. An
energy management set-up in a home setting, may sense the temperature in multiple rooms.
Motion sensors are able to sense where the house owner is currently situated. This data can be
cleverly combined, which allow the thermostat to dynamically switch off (=action) the heating in
unused rooms and thereby save energy.

• Low power, low cost devices In some IoT deployment scenarios, a power source may not (always)
be available. IoT devices then have to be equipped with batteries to supply their needed energy.
The devices should be designed in such a way that battery life is maximised, since users do not
want to replace batteries often. Battery replacement or charging can become a cumbersome task
when the number of deployed IoT nodes increases. Battery life is typically optimised by using
constrained hardware with a low performance and therefore a low power consumption. One of
the main implementation problems in IoT applications, is to find a balance between application
performance and battery life.

• Large scale distributed data generation As we stated earlier, it is estimated that the total number
of connected IoT devices will increase rapidly in the coming years. This will also cause an increase
in generated data traffic. A difference with classical internet traffic patterns is that data is no longer
generated at centralised locations such as servers. Data is now generated in a distributed manner
over a large number of constrained IoT nodes.

• Heterogeneous networks Special physical layer communication technologies exist which allow effi-
cient transmission and reception of data in IoT applications. Examples are 802.15.4 [14], Bluetooth-
LE [15], NB-IoT [16], LTE-M [16], LoRA [17], Sigfox [18]. IoT devices may also be connected with
classical connection methods, such as wired connections. In the IoT, data from multiple sources
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and locations may be exchanged via numerous of different device types and communication
methods.

1.4. Qualitative comparison of ICN and IP
A qualitative comparison between ICN and IP helps to determine for which scenarios and use cases
ICN may perform better or worse compared to IP. We will use an illustrative example which covers
both an IP as well as an ICN enabled network to show the most important differences between both
networking technologies. The differences can then be used for a more fine-grained comparison, to find
out when these differences may be beneficial in terms of network performance.

1.4.1. ICN vs IP example
In our example which is illustrated in Figure 1.4, two users want to receive a cat picture over both an
IP and an ICN enabled network. We have designed the example in such a way that most features of
ICN are illustrated. We will first describe how the transmission process of the picture is performed in
the IP case, and we will then compare this to the ICN case.

IP case
User C1 (for ‘Consumer’) wants to receive the picture and it will therefore transmit a request to the
server P (for ‘Producer’) which holds the original cat picture. The user first has to find the IP address of
the sever which in this case is 131.180.77.102. C1 creates a request, which is forwarded via node 1,
node 2, node 3 and node 4 to the destination server. At every node, the IP routing table is consulted to
find the next eligible hop. When the request reaches the server, a response message is constructed,
which is transmitted to the IP address of user C1. The response packet is routed via node 4, node 5,
node 6 and node 1 back to consumer C1. Just after the transmission of the request from node C1, C2
also issues a request for the picture. The request and response message will follow in this example
the same routes as for C1.

ICN case
If user C1 is interested to receive the picture when an ICN network is used, different traffic patterns
can be observed. The consumer first has to know the ICN name of the picture, which in this case
is ’/cat.jpg’. It then creates an Interest message which includes the ICN name of the picture. The
consumer consults its FIB to find the next hop for the Interest, which in this case will be node 1. When
node 1 has received the Interest it will follow the forwarding logic from Figure 1.2. So it will first check
its content store, the PIT and the FIB to forward the data to node 2. The same process will be followed
at node 2 and node 3. At node 4, a different path is followed in the forwarding logic since the picture
is available from the node’s content store. Node 4 retrieves the data from its cache and then creates a

Figure 1.4: The consumers, indicated in green, want to receive a cat picture in an IP (left) and in an ICN (right) network. The
producer of the data is marked with a blue circle. The cat picture can be found at the producer node and at node 4, which

previously requested the picture. A solid arrow indicates the transmission of a request/Interest message, while a dotted arrow
indicates the transmission of a response/Data message.
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Data message which is forwarded back to the consumer by consulting the PITs for every node on the
return path. The data then arrives at node C1.

Just as was the case in IP, C2 decides to also issue an Interest for the picture just after C1’s trans-
mission. An Interest is created which is forwarded to node 1. The Interest enters the forwarding logic
at node 1, where the PIT entry from the C1 Interest matches C2’s Interest. An extra incoming face
will be added to the PIT entry, and the Interest will not be forwarded further. The Data message which
satisfies the Interest from C1 will also be forwarded to C2, and thus also satisfying C2’s Interest.

In this specific example, the IP network required 20 message transmissions to satisfy the requests
from node 1 and node 2. On the other hand, in the ICN network only 10 message transmissions where
needed to satisfy the interests.

1.4.2. Main differences between ICN and IP
The example in Section 1.4.1 shows that there are large differences in the operational principles of IP
and ICN. We identified the five most important differences between both networking technologies.
• Data naming vs. IP addresses This is the most trivial difference between ICN and IP. Since ICN ad-

dresses data, names are used to specify which content a node wants to retrieve. In our example,
C1 and C2 had to first find the correct name and IP address to properly address the cat picture.
One of the advantages of ICN, which is commonly stated by the ICN community, is the elimination
of the necessary translation between the content name and the right IP address. Since ICN is
using the data name itself one could directly request the appropriate data. This is however not
always true, since a large scale deployment of ICN would also require a translation step between
the name of the content and ICN names which are known in the ICN network. So for both ICN
and IP a name resolution step will be necessary in most cases, either to find the IP address, or
to find the data name.
One of the advantages of using IP addresses is that the size is typically fixed. An IPv4 address
will always be 4 bytes long and IPv6 addresses will take 16 bytes of space. ICN Interest and Data
messages always have to contain the data name, which can be of variable size. The exact size
of the data name may depend on the specific application and naming scheme used.

• Message types As discussed earlier, ICN uses two fixed message types: the Interest and Data
message. This is one of the core features of ICN to allow the deployment of advanced forwarding
and distributed caching. IP does not set any constraints on message types and all IP packets may
be routed the same way. Compared to the CCNx and NDNx ICN implementations, IP is easier
to process since it is using fixed headers. The ICN implementations currently use so-called type-
length-value (TLV) formatting, which allows to easily add extra header fields at the cost of having
a more resource-intensive processing step in forwarding devices.

• Stateful vs. stateless forwarding ICN uses stateful forwarding, while IP uses stateless forwarding.
ICN thus stores information about earlier transmissions in a complex forwarding pipeline with PITs
and CSs. IP is considered stateless since forwarding decisions are typically not based on earlier
decisions. This difference is clearly illustrated in the example in Figure 1.4, which shows that in the
IP case the routing paths of the request and response message are not necessarily the same and
in this case are not completely overlapping. This is different in ICN since the Data message always
has to follow the path of the Interest message, which requires a stateful forwarding scheme.
Moreover, the stateful forwarding in ICN allows the use of Interest aggregation, which is also
illustrated in Figure 1.4, a second Interest for the same data entering an ICN node will typically
not result in the forwarding of that Interest. Only the incoming face is registered in the PIT of
the specific intermediate node. Compared to IP, this can greatly reduce the required network
bandwidth usage since the Data message would only be transmitted once. Only at node 1 in our
example, the Data message will be transmitted two times, but over two different interfaces.
Depending on the specific traffic patterns, this more advanced forwarding logic of ICN may lead
to a more efficient network usage. Naturally, the more nodes are interested in the same data at
around the same time, the more bandwidth may be saved. Also the topology may have a big
impact on the possible performance increase caused by this stateful forwarding plane. If most
nodes have node-disjoint paths to the producer, the benefits of using interest and data aggregation
may be small.
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• Application layer vs. network layer caching The distinction between Interest and Data messages
in ICN, together with the use of named data, creates a possibility to easily deploy caching at the
network layer on a network-wide scale. In IP, caching is also possible but it is harder to deploy on
the network layer. This because IP packets do indicate the origin and destination address, but do
not typically indicate what data is actually transported. This makes it hard to recognise duplicate
requests for the same data. Therefore caching is typically deployed at layers above the network
layer, which do have information on the data which is transmitted. IP caching implementations
are therefore mostly application-specific and require more configuration effort than is the case for
ICN. The usefulness of having caching in all nodes may also be dependent on the deployment and
use cases. A network with distributed content generation and retrieval may benefit more from a
distributed caching approach compared to classical hierarchical networks where the deployment
process of centralised caches is more straightforward.

• Legacy deployment and interoperability One of the design properties of ICN is that it can run over
any other communication protocol or technology. ICN can be deployed as a replacement of IP but
also on top of IP. The current internet is using mainly IP and network-wide adaptation of ICN as a
complete replacement of IP would require a large effort and hence be very costly. The advantage
of using ICN on top of IP, for example in UDP packets, is that it would allow a straightforward
deployment on the current internet. The disadvantage of this approach is that the resulting data
overhead from the UDP and IP headers may cause a higher network usage, compared to the case
when ICN is deployed at the network layer. There is therefore a trade-off between having a more
advanced protocol with stateful forwarding and caching which may lower the network usage, and
the extra overhead caused by the deployment on the legacy internet.

1.5. Research objective: Applying ICN to IoT
According to its creators, ICN is designed to fit the way we use the internet better than IP currently does.
The use of named data and distributed network layer caching may provide a more efficient utilization of
network resources due to the stateful forwarding plane which allows data to be retrieved from caches
close by the requester, while also providing a higher content delivery performance in terms of content
retrieval delay. Since the IoT is expected to connect billions of devices to the internet, a resource-
efficient network paradigm is needed to cope with the corresponding enormous traffic increase. IoT
deployments also typically follow a distributed data generation and retrieval paradigm, which could
benefit from ICN’s in-network caching approach and stateful forwarding logic. This thesis focuses on
assessing whether ICN is advantageous for the IoT in these aspects, by comparing an ICN approach
to an IP approach for IoT applications. In particular, this thesis addresses the following main research
question, which is supported by three sub-research questions.

• Which technology performs better according to predefined metrics, to what degree and in which
scenarios?

– Which architectures for both the IP and ICN approach should be used?
– Which relevant IoT scenarios should be defined for a fair comparison between ICN and IP?
– Which metrics are relevant for the targeted comparison in IoT scenarios?

1.6. Thesis outline
This thesis is structured as follows. Chapter 2 describes the relevant prior art in the context of ICN
for IoT and describes how this thesis contributes to this line of research. In Chapter 3 the selected
scenarios are introduced, including the method used to make the selection. In Chapter 4, the perfor-
mance evaluation methodology is outlined, along with the implementation model that was needed for
carrying out the evaluation. Chapter 5 presents and analyses the results of the performance evaluation
and Chapter 6 concludes this thesis with a summary of the findings and a sketch of future research
directions.
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Literature review

This chapter presents a thorough review of the state of the art in the research field of applying ICN to
IoT. The goal of this effort is to discover the research themes covered by previous work and identify
promising areas where further work is required and where a meaningful contribution can be made.
Section 2.1, introduces these research themes and describes them by discussing the most relevant
articles. Based on the analysis done in Section 2.1, the chosen theme for this thesis is presented in
Section 2.2, along with its contribution with respect to previous work.

2.1. Research done in the ICN for IoT field
We have identified 65 scientific publications which cover subjects related to the ICN for IoT research
field. From an analysis of these papers we have derived seven categories, or themes, for the ICN
research on IoT. Figure 2.1 below provides a visual representation of these themes and the work done in
each of them by means of color-coding based on the amount of scientific publications in each respective
theme. A sheet which shows the mapping of these 65 papers to the different categories is included in
Appendix A.

Figure 2.1: Identified research themes in the ICN for IoT field. The category colour defines the number of papers which cover
this specific subject, green: 0-5 papers, yellow: 6-10 papers and orange: >10 papers.

In the following, we will describe the focus of the research done within each category and highlight the
papers providing the most significant contributions.

2.1.1. Routing and forwarding
ICN deployments require special routing and forwarding algorithms which are able to find the most
suitable next hops for each Interest message. Instead of finding paths to specific hosts such as in
IP, ICN routing protocols need to find the best route to one or multiple producers/caches for each data
name. Research on routing and forwarding in the ICN for IoT field mainly focuses on developing energy-
efficient routing and forwarding schemes which can be used on constrained IoT devices. As can be
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concluded from Figure 2.1, this is one of the two most popular research themes. Authors typically focus
on finding the most energy-efficient balance between signalling traffic and the use of traffic flooding,
mostly for mesh type networks. The work done in this category may be classified into blind forwarding
and aware forwarding [19]. Blind forwarding algorithms typically rely on computationally inexpensive
(controlled) flooding of data over a network, with limited signalling overhead. With aware forwarding,
routing and forwarding strategies aim at gathering higher level information about, for example, the
network topology, and use this information to implement efficient forwarding, typically at the cost of
having more signalling overhead.

Examples of aware forwarding strategy proposals are [20] and [21] . In [20] the authors propose
a technology called GRMR: Greedy Regional Multicast Routing, which uses local multicast tree con-
structions to find the most efficient routes. In [21] the authors present a hybrid combination of aware
and blind forwarding. In [22] two blind forwarding strategies are proposed, Vanilla Interest Flooding
(VIF) which floods interests over the network and Reactive Optimistic Name-based Routing (RONR)
which creates FIB entries after a single interest flooding. An adaptive forwarding scheme is developed
by [23], which lets IoT nodes with the highest battery charge perform the flooding operation.

2.1.2. Architectures
As can be seen from Figure 2.1, a large fraction of the papers covering ICN for IoT research study
the development of new architectures. The researchers aim to design mechanisms to apply and adapt
the ICN paradigm to a certain, typically already existing, scenario or technology. Most of the times,
these architectures are roughly based on the principles of information centric networking defined by
Van Jacobson [3]. However, in some cases, the authors propose fundamental changes to the ICN
paradigm, such as eliminating ICN’s one-Interest one-Data policy, to support a specific use case. In
these cases the authors typically focus on high-level design rather than thorough experimentation with
the newly proposed architecture.

Among the papers defining new architectures [24–30], the most relevant to our research questions
are [28] and [29]. In [28] an architecture is developed to support the deployment of ICN for the IoT in
5G cellular networks. The authors develop a controlled Shared Caching System (SCS) for Fixed and
Mobile Converged (FMC) networks. Another interesting proposal is [29], where architectures combining
ICN, SDN and IoT are introduced. Multiple architectures are analysed which combine ICN and SDN
into Sensing As A Service (SAAS) [30] cloud paradigms.

2.1.3. Caching strategies
A less popular research theme is the development of optimised caching strategies for the IoT. The
design of caching strategies may not be seen as an ICN-specific research challenge, since caching
is already studied and adopted in a wide range of applications. Caching stategies for IoT applications
can be optimised for specific IoT aspects, such as traffic patterns and device constraints. We can iden-
tify two main aspects in caching strategies, namely cache decision strategies and cache replacement
strategies. A cache decision strategy decides whether incoming Data messages need to be cached.
This decision may be taken based on predefined criteria, for example, randomly, based on the pop-
ularity of a certain Data message or on the current contents of the cache. A probabilistic approach
is shown in [23], which allows caching of incoming data to be decided based on a random variable.
The presented approach is compared with the common ‘cache everything’ strategy. A more advanced
caching policy is proposed in [31], where the decision to cache a certain piece of data is based on the
weighted sum of the battery life, cache occupancy, and the remaining time until the Data is considered
stale.

The second aspect of caching strategies is the cache replacement strategies. These policies come
into action when a cache reaches its full occupancy. When a new Data message arrives and if the cache
decision strategy decides to cache that particular data, then this packet may need to take the place of a
previously cached one. The cache replacement strategy has to decide which Data message to replace,
based on some predefined logic. An example of a cache replacement strategy for IoT applications
called Max Diversity Most Recent (MDMR) is proposed by [32]. The MDMR strategy aims to maximise
the availability of data from multiple producers in a single cache. When a new Data message arrives,
the oldest Data from the same producer is replaced. If there is no data from this producer in cache,
then the oldest Data from another producer will be replaced.
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2.1.4. Naming conventions
How Data messages should be named is still an open challenge for ICN applications in general and
for IoT applications in particular. Typically, authors acknowledge the design problem of naming con-
ventions, but still leave it as future work. In [33] some important research challenges are described for
defining names in IoT applications, such as: “How to deal with the typically long names in IoT appli-
cations?”, “Should we name data based on metadata?” and “How should we deal with dynamic data
that is changing over time?”. Many of these challenges have still not been addressed in ICN for IoT
proposals.

2.1.5. Security
The third most popular research theme is security. As explained in Section 1.2.1, ICN does not use
secured connections such as in IP, but uses content-based security where individual Data messages
can be encrypted and self-verified. This requires the development of new security technologies and
protocols. The use of robust security technologies is especially important in IoT applications since IoT
devices may gather sensitive private information.

Nine, from the total of 65 papers, focused on security aspects of ICN for IoT applications. A broad
spectrum of security issues have been addressed in literature ranging from authentication and autho-
risation processes of new ICN-enabled IoT nodes [34, 35], to complete NDN security architectures
[36, 37]. In [34] the ‘OnboardICNg’ authentication and authorisation protocol is presented which uses
a central authentication server. The authors of [35] compare the ‘OnboardICNg’ protocol with an au-
thentication protocol using asymmetric encryption, which eliminates the need for having a central au-
thentication server. It is shown that this advantage comes at the cost of a higher latency and energy
usage due to the more resource-intensive cryptographic operations.

In [38] Attribute-Based Encryption (ABE) for IoT applications is described, which allows to make
cached encrypted Data messages available to multiple users. When a Data message is encrypted at
the Producer, ABE can be used to specify certain users (with certain attributes) which must be able to
decrypt the message from the sensor node. This technology allows multiple consumers to retrieve and
use encrypted Data messages from network caches.

2.1.6. Mobility
Several IoT use cases include mobile nodes. For instance, a tracking device may switch multiple
times between different connection points when its tracking the location of some asset. ICN natively
supports consumer mobility. A consumer can just retransmit its interest when it connects to a new
point of attachment and continue to receive and request data along the new path. Producer mobility
is not natively supported by the ICN architecture. If a producer moves, routing entries in FIBs need
to be updated. ICN nodes will otherwise forward interests to old producer locations which are still
present in their FIBs. Producer mobility support is a fundamental challenge of the ICN architecture
and is therefore not specific for IoT applications. In survey paper [39] an overview is given of multiple
proposed solutions. The authors identify four types of solutions to support producer mobility in ICN.

• Mapping-based solutions These solutions use a so-called rendezvous (RV), which keeps track of
the current location of the producer. When a producer moves to a different location it has to report
its new point of attachment to the RV. A consumer then may consult the RV to retrieve the new
location/name of the mobile producer.

• Tracing-based solutions Tracing-based solutions also use an RV and additionally benefit from NDN’s
stateful forwarding plane to update the producers location. Interests for the data of the mobile
producer are forwarded to the RV. The mobile producer regularly sends special trace command
interest messages to the RV to retrieve these pending Interests.

• Data spot In some specific applications a data spot approach can be used. This technique uses ICN
names which are coupled to geographical locations. An example can be /RWS/a4/hmp45_4/Temp,
which requests the current temperature at a specific location along highway A4. Any node that is
currently at this location may satisfy this request.
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• Data depot This mobility technique uses a central depot which stores all data of mobile producers.
Mobile producers will send all generated data to this fixed depot node. All Interests for mobile
producer data messages are satisfied by the data depot.

Although producer mobility is not an IoT-specific problem, efficient mobility solutions should be
developed for resource-constrained nodes. Producer mobility support for IoT applications is still a
relatively unexplored research theme.

2.1.7. Comparison with IP solutions
Only two of the 65 covered papers attempt to perform a comparison between ICN and IP for IoT use
cases, to find out whether ICN really improves network performance in IoT applications [22, 40]. In [40]
a very simplistic topology is used for the comparison and NDN is compared with an IP-based protocol
stack which is not optimized for IoT applications. In [22] NDN is compared with a representative IoT-
optimised IP stack, but only a single artificial use case is covered. Both papers lack any descriptions
about the used traffic patterns and popularity distribution. Moreover, both papers cover only cover
one single use case. Most importantly, no scenario is considered where multiple IoT deployments are
interconnected via the realistic internet-like topologies. Therefore it can be concluded that a thorough
comparison of ICN and IP for IoT applications is still missing in literature.

2.2. Focus of this thesis
The literature review showed that comparing ICN and IP for IoT is still a largely unexplored field. Yet,
understanding how ICN performs compared to IP is a very important aspect to tackle, if ICN ever wants
to take a dominant role as network protocol for the IoT. In this thesis we make a first important step into
this direction by benchmarking ICN’s performance against that achieved by traditional IP in a range
of relevant IoT scenarios, because it can be seen as the first and foremost key unanswered research
question regarding the usage of ICN for the IoT. In fact, any follow-up research on, for example, mobility
support in IoT applications may only be relevant if the ICN paradigm is proven to be worthwhile.
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Comparison methodology

Comparing the performance of ICN and IP for IoT applications requires the definition of several scenar-
ios. The scenarios will be based on realistic IoT use cases and use state of the art implementations of
ICN and IP for IoT. In this way, a representative comparison can be ensured. This chapter will describe
the process of selecting and defining these relevant scenarios.

Section 3.1 introduces the method used for selecting IoT use cases, which will serve as a basis in
Section 3.2 to create the comparison scenarios. Section 3.2 will also describe the process of selecting
appropriate metrics which will be used for our comparison.

3.1. IoT Use Cases
As mentioned in Chapter 1, the Internet of Things is a popular topic in scientific literature with currently
already over 27,000 contributions. Nevertheless, we could hardly find any research providing a quali-
tative overview of different IoT use cases and applications. One of the studies which does provide such
an overview is the McKinsey report on IoT [12]. In this work, over 300 IoT use cases were mapped
onto nine different categories, as previously described in Section 1.3.1.

The authors estimate the economic potential for each category by using economic modelling tech-
niques. We use this document to select two promising use cases to be used for our comparison.
According to the McKinsey report, the IoT will provide a potential economic impact of 3.9 trillion to
11.1 trillion USD in the year 2025. Two-thirds of the economical value created by IoT deployments
will originate in business-to-business (B2B) situations. So most impact will be concentrated around
IoT applications in commercial environments such as factories, work sites and production locations.
The remaining one-third of the value resides in the consumer market which comprises, for example,
wearable devices, health care and ‘smart home’ products.

Based on the insights from the McKinsey report, for our comparison we choose one consumer use
case and one business use case. Additionally, to ensure that we cover a wide spectrum of scenario
aspects, to cater for a large part of possible IoT applications. We therefore choose the scenarios in
such a way that extensive sensitivity studies for both scenarios cover a wide range of IoT deployments.

From the consumer market use cases we choose the ‘smart home’ use case since it has a big
estimated impact [12]. This scenario also allows us to cover monitoring use cases, which can be
found in several IoT settings such as the city, vehicles, wearables and office settings from [12]. In a
smart home, all kinds of ordinary appliances are connected to each other and to the internet. Smart
thermostats can use temperature information from sensors in different rooms to only warm up certain
low temperature rooms, and in that way save energy. Lights can be dynamically switched on and off
based on the location of the home owner. This can be done with, for example, motion sensors which
also can be used for security purposes. Following the same reasoning for the B2B use cases, we
select the smart factory use case based on the estimated impact [12]. Moreover, this scenario allows
us to cover process optimisation applications which are also present in many IoT applications such as
the worksites setting, outside setting and retail setting from [12]. The smart factory use case focuses
on optimising operations by continuously monitoring parts of the production process, and to use this
information to actively perform adjustments. In [12], a real-life example is presented where humidity
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sensors are used to optimise the quality of paint jobs at the production facility of General Motors. Car
parts are routed to the best possible location based on this sensor data.

3.2. Comparison approach
This section will present the comparison approach, which is used to define the comparison scenarios
representing the use cases from Section 3.1. In Section 3.2.1 we create a scenario framework by iden-
tifying relevant scenario aspects. Next, in Section 3.2.2 we select the network technologies used in our
comparison. The scenario framework is then used in Section 3.2.3 to define all scenario aspects for the
‘smart home’ and ‘smart factory’ scenarios. Finally in Section 3.2.4 we introduce the Key Performance
Indicators (KPIs) or metrics used.

3.2.1. Scenario aspects
Each comparison scenario is composed out of multiple aspects, for example, the number of IoT nodes,
their topology or the frequency of issued requests. We will identify multiple relevant scenarios aspects
to build a scenario framework. We divided the parameters into three different groups, namely topology
related aspects, traffic patterns and node characteristics. An overview of the identified scenario aspects
can be found in Table 3.1.

Topology
We want to compare ICN and IP for IoT using a realistic network topology. We therefore follow the
approach of having multiple IoT islands each connecting multiple IoT nodes. These IoT islands are
connected to the internet via special gateway routers. The gateway routers are able to communicate
with both a conventional network and the IoT nodes which typically use a special radio access technol-
ogy and network stack. The IoT nodes are also able to communicate with other IoT nodes in the same
island directly. In a ‘smart home’ scenario an IoT island may represent one home, while in a ‘smart
factory’ scenario an IoT island may only cover a small part of a factory hall.

IoT islands
Every IoT island comprises a fixed number of IoT nodes per scenario. We call this scenario aspect:
Number of IoT nodes per island. The second parameter which has influence over the number of nodes,
is the number of IoT islands, and it defines the total number of IoT islands in a scenario. Each of the
specific scenarios considered will have different fixed values for these parameters. In Figure 3.1 an
illustrative example is shown of an IoT network where the Number of sensors per island is set to twelve
and the number of IoT islands is set to six.

Backhaul network
The IoT islands are connected to other islands via their gateway router. We call the network which
interconnects multiple IoT islands the backhaul network. For each scenario a different backhaul network

Table 3.1: Overview of identified scenario aspects.

Topology
Number of IoT islands
Number of sensors per island
Number of backhaul nodes

Traffic patterns

Leaf node consumers (CL1)
Gateway consumers (CL2)
Inside island consumers (CL3)
Backhaul network
Data freshness period
Request frequency
Content popularity distribution
Data payload size (bytes)

Node characteristics Cache size (kB/packets)
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Figure 3.1: IoT islands scenario. The picture also illustrates the three different types of consumer locations (CL1, CL2, CL3)

may be chosen. For example, we may want to model a small corporate network for the ‘smart factory’
case or an internet-like topology for the ‘smart home’ scenario. We model the backhaul networks via
random graphs. The IoT islands are connected to a randomly chosen terminal node in the random
graph.

Traffic patterns
Specifying the traffic patterns is one of the most crucial aspects in the design of the comparison sce-
narios. This parameter has a big impact on the results of the comparative study. We borrow the words
consumer and producer from the ICN paradigm, and we use them in both the ICN and IP scenarios.
The node which requests data is called a consumer and the node which creates new data is called a
producer.

Consumer/producer location
Based on the selected IoT use cases, we consider three different types of consumer locations, which
we call CL1, CL2 and CL3.

Consumers with location type CL1 are located at randomly selected leaf nodes in the backhaul
network. These consumers may represent hosts, servers or users outside the IoT islands interested in
sensor data. The second location type is CL2, where consumers reside on gateway nodes. The last
consumer location type: CL3 covers IoT sensors nodes inside the IoT island. This location is relevant
when IoT nodes, which may already have a producer role, are also interested in data from other IoT
nodes. The three types of consumer locations are also shown graphically in Figure 3.1.

IoT sensor nodes are the only nodes in the topology with a producer role, the producers will thus
always reside in the IoT islands.

Data freshness period
The data freshness period is an important parameter for all scenarios where caches are deployed. It
is a setting for the cache of a node and configures the time until cached data is considered stale. If
the data freshness period of data is zero, then nodes are not allowed to cache this data. If the data
freshness period is set to, for example, one second, all caches are allowed to satisfy requests/Interests
with a cached copy of this data for a duration of one second.
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Request frequency
Consumers request data from IoT nodes at specific points in time. For simplicity, we assign a fixed
request frequency to every consumer. A consumer starts to send requests at this frequency after a
randomly chosen initialisation delay. This delayed start prevents that all nodes send requests at exactly
the same time. The requests are issued independently of a successful reception of application data.

Content popularity distribution
Not all data produced by IoT sensors will be of equal importance for data consumers. Some sensors
could provide information which is more popular, resulting in a higher number of consumer requests
for this data. To model this difference in popularity between producer nodes, we define a content
popularity distribution for each comparison scenario. The distribution will be used by the consumer
nodes to decide what data item to request at the fixed intervals defined by the request frequency.

Data payload size
We define the data payload size to be the number of bytes of the raw data requested by the application
layer for both ICN and IP. This data payload size will be defined for every scenario.

Backhaul network IP/ICN
As can be understood, for each scenario, we deploy an IP as well as an ICN network stack to compare
network performance. Additionally, we also cover a hybrid option where ICN-enabled IoT islands are
connected to an IP-based backhaul network. This is a relevant deployment case since it is expected that
ICN will be introduced gradually and will need to be interconnected with the current internet backbone
which uses IP [41].

Node characteristics
The last scenario aspect group comprises all parameters related to node characteristics which may
have impact on the performance of IoT networks.

Cache capability
An advantage of the fact that ICN packets address data rather than hosts is that ICN data packets can
be cached at any place within the network, in order to more efficiently serve future data requests too.
Caches can be deployed on all network nodes which have sufficient storage available. For the IP case
we will also consider scenarios where caching is used, to allow for a fair comparison between ICN and
IP. Caching in IP networks is only possible if specialised higher layer protocols are used. We will select
this IP based communication technology in Section 3.2.2.

Cache size
The cache size for the ICN case is defined in terms of data packets that it can store. This value should
be adapted to the IoT use case based on the device constraints of the IoT node. For the IP case we
will use an equal size cache.

3.2.2. Network model
The selection and definition of the used networking technologies is done using a systematic approach
which follows the layers of the OSI-model. We start off by selecting relevant technologies at the physical
layer and continue towards the higher layers, until the application layer. For each of the OSI layers we
select a network technology fit for the IP case and one fit for the ICN case. To enable a fair comparison,
we select, whenever possible, the same or a comparable technology for the IP case and the ICN case.
An overview of the OSI layers and selected technologies for IP and ICN is reported in Figure 3.2. A
detailed discussion of the choices made is given below.

L1: Physical layer + L2: Data link layer
For the first two OSI layers we use the same protocols for the ICN and IP cases. Specifically, on the
physical layer we use the IEEE 802.15.4 wireless standard [14] to model low power IoT nodes. The
protocol, which has been designed for use in low-rate wireless personal area networks (LR-WPAN), is
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Figure 3.2: Selected network stacks for ICN and IP.

currently used in many IoT network standards such as the Thread network protocol [42], WirelessHART
communication protocol [43] and the well-known ZigBee specification [44]. The IEEE 802.15.4 stan-
dard allows low complexity data reception and transmission at low energy usage making it suitable
for constrained IoT devices. On the data link layer we use the default MAC defined in the 802.15.4
standard.

L3: Network layer
IP
On the network layer we use IPv6 with the 6LoWPAN adaptation layer [45]. This adaptation layer is
needed to allow efficient transmission of IPv6 packets over constrained LR-WPAN links. The IPv6
standard [46] requires the data link layer to be able to transmit IPv6 packets with a size of 1280 octets
in one piece, thus without fragmentation. This requires the 802.15.4 MAC layer to transmit frames with
a payload size of 1280 bytes, which is impossible since the 802.15.4 physical layer has a maximum
transmission unit (MTU) of 127 bytes. Therefore the IETF standardised a special adaptation layer
placed between L2 and L3 of the OSI model, to allow direct end-to-end IPv6 traffic with LR-WPAN
nodes. When an IPv6 packet arrives at a 6LoWPAN enabled IoT island, then the gateway node will
replace the large IPv6 header with a smaller and more efficient 6LoWPAN header, before transmitting
the packet on the 802.15.4 wireless link. The opposite process is executed when packets are sent from
IoT sensors to outside the IoT islands.

ICN
In Section 1.2.2 we have introduced the two main competing ICN implementations from the Content
Centric Networking (CCN) architecture [7] and the Named Data Networking (NDN) architecture [6]. For
this comparison we use the NDN architecture design since it is currently the leading ICN architecture
in literature, and the architecture consequently has the most mature software implementations and
evaluation platforms available.

L4: Transport
IP
When modeling resource-constrained IoT networks, UDP is typically favoured over TCP [22] due to
the lower overhead. The connectionless nature of UDP also enables a more fair comparison with the
equally connectionless approach of ICN.

ICN
ICN follows a different architecture without a separate transport layer, as is depicted in Figure 3.2.
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We therefore do not have to select a L4 network protocol for the ICN scenarios. Moreover, since ICN
addresses names rather than hosts and ports, and given the choice of UDP for the IP case, no additional
transport layer is needed in the ICN case.

L5: Session layer + L6: Presentation + L7: Application layer
IP
Several application layer protocols exist which are suitable for IP-based IoT applications, such as the
Extensible Messaging and Presence Protocol (XMPP) [47], the Message Queuing Telemetry Transport
(MQTT) protocol [48], the Advanced Message Queuing Protocol (AMQP) [49], the HTTP Representa-
tional state transfer (REST) services [50] and the Constrained Application Protocol (CoAP) [51]. The
authors of [52] provide a comprehensive overview of the benefits and drawbacks of these application
layer protocols. CoAP, XMPP and HTTP REST services use a request-response architecture, where a
user can acquire data with custom request messages. MQTT, AMQP and XMPP use a more advanced
publish-subscribe patterns, where users can subscribe for specific content.

To ensure a fair comparison between ICN and IP, we have to select application level protocols with
similar behaviours. Since the NDN architecture does not yet natively support push-based publish-
subscribe traffic patterns, even though efforts currently take place [53] to add this functionality, we
therefore select request-response based protocols for the IP case as well. From this subset of protocols
we opted for CoAP, since it is the most modern IoT-optimised application layer standardised by the IETF
[51].

The CoAP protocol follows the REST model, like HTTP, with support for GET, PUT, POST and
DELETE methods. Users can request data by sending a GET message containing the Uniform Re-
source Identifier (URI) of the data, such as GET/humidity, to an IoT node. The IoT node will then
respond with a CoAP packet containing the data. The CoAP protocol also allows to use caching of
CoAP messages at dedicated caching nodes. For the scenarios in the IP case where caching is used,
we will enable CoAP caching at all gateway routers.

For the sake of comparison between IP and ICN, we assume that consumers know the mapping from
a specific data producer to an IP address and we do not consider the traffic that would be introduced if
DNS services would be used.

ICN
Since the NDN architecture is already built following the request-response model, no additional layer
needs to be introduced below the application layer. Rather, we built a custom application that directly
issues Interest messages for IoT sensor data. We therefore build a custom application based on the
example scripts provided by the NDN implementation [6], that directly issues interest messages for IoT
sensor data.

Similarly to the IP case, where we assumed consumers to know the mapping between IP address
and data producer, for the ICN case we assume that consumers know the name of the data they want
to receive.

3.2.3. Scenario definition
In this section we will use the comparison scenario framework from Section 3.2.1, to define realistic
parameter settings for each of the selected scenarios from Section 3.1. Additionally, we will outline for
each scenario how the differences between ICN and IP, identified in Section 1.4.2, may be be reflected
in the covered scenario.

‘Smart home’: baseline scenario and sensitivity analysis
For the ‘smart home’ use case we define a baseline scenario and a number of scenarios meant for
sensitivity study, where, in each scenario, one of the parameters of the baseline scenario is varied, to
test its effect on both the IP and ICN cases. The baseline and sensitivity study scenarios comprise
six subscenarios (S1-S6 in Table 3.2), which cover all combinations of backhaul networks and cache
configurations. For the IP case, two subscenarios can then be defined: one scenario where caching
is disabled and one scenario where caching is enabled. The ICN case will contain four subscenarios,
since here we also need to cover combinations where ICN is used with an IP backhaul network, as
described in Section 3.2.1. Table 3.2 shows the used parameter settings for both the baseline scenario
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and the sensitivity analysis, which we will discuss further in this section. The sensitivity study column
should be read as follows: each entry in the column typically represents one unilateral variation with
respect to the baseline scenario, with all other aspects are kept the same. The sensitivity study for the
content popularity distribution is an exception to this rule, since we here also use a smaller cache size
to be able to show the differences between the chosen parameter settings.

Topology
We will now discuss the chosen parameter settings for the baseline case, following the order used
in Table 3.2. Our goal is to make the evaluation as realistic as possible. Therefore we do not put
constraints on the number of the IoT islands and the number of the backhaul nodes to be considered.
Obviously, an upper bound will be derived from the technical possibilities of the evaluation platform
that we will choose. This number depends on the constraints imposed by the evaluation platform we
selected (see Section 4.1.2). For the smart home scenario, our platform is able to support a maximum
of 32 islands, connected to a backhaul network with 400 nodes.

Regarding the number of IoT nodes per Island, our goal is to obtain the “correct” order of magnitude.
To achieve this, we consider a ‘smart home’ to have five rooms with each with about five sensors. For
example, three nodes for controlling lights and two sensors (e.g. temperature, humidity) per room. This
leads to a total of 25 IoT nodes per home.

Traffic patterns
We assume there will be two external consumers (CL1) interested in each ‘smart home’ sensor data,
representing remote home owners or servers, and two internal consumers (CL2), to model local data
consumers present in the ‘smart home’ itself. We set the freshness period to five minutes for the ‘smart
home’ case, following the reasoning that data in ‘smart home’ cases such as rooms temperatures are
not considered extremely volatile, since for example, temperature does not change drastically in a five
minute period and longer freshness periods may be allowed.

We then have to define the content popularity distribution for both the IP and NDN scenarios. We
have spent a considerable amount of effort researching appropriate popularity distributions for IoT
applications. We found that most literature on IoT traffic modelling is focussed on the arrival process of
IoT traffic [54–56], and not necessarily on the distribution of requests for certain content which we are
after. Following the suggestions of the IETF document [57] regarding ICN evaluation methodologies, we
selected a popularity distribution typical for web-based internet traffic, which follows a Zipf distribution.
The Zipf distribution makes use of a ranked list of data elements. The data with the highest popularity
has the highest rank 𝑖 = 1, the data with the second-highest popularity has rank i = 2, etc. The
probability that a node requests data with a rank= 𝑖, then equals:

𝑝(𝑖) = 𝐾
𝑖 (3.1)

where

𝐾 = ∑ is the Normalisation parameter

𝑁 = Total number of content chunks
𝛼 = Distribution parameter

According to [57], realistic values for 𝛼 lie between 0.64 and 0.84 for web-based applications. We
set 𝛼 = 0.64 and use the sensitivity analysis to see the effect of this parameter on the performance of
both IP and ICN networking paradigms.

For simplicity, we use a fixed request frequency for requests submitted by data consumers. We
assume that a consumer may want to know the room temperatures on an hourly basis, resulting in an
order of ten requests per hour. Every consumer is therefore assigned a fixed request frequency of ten
requests per hour. As mentioned in Section 3.2.1, a hybrid deployment of using ICN islands in an IP
network is considered to be a realistic possibility for the uptake of ICN. We therefore use an IP backhaul
in our baseline scenario. A native ICN backhaul will be covered in our sensitivity study.

In resource-contained IoT applications the transmitted data is typically small. For the payload size
we also want to obtain the ‘correct’ order of magnitude. In the ‘smart home’ case, sensor data be
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transmitted in a single message requiring typically a few bytes. Only the raw measurement data is
transmitted, since the data itself can be identified by the URI/name. We therefore use an application
layer payload size of 5 bytes.

Node characteristics
Based on the memory size of a polular Zigbee module [58], we set the cache size for the IoT node to 32
kB, which corresponds to roughly 600 NDN data packets. For the IP caching subscenarios, we use the
same cache sizes on the gateway routers. For the sensitivity study we will also consider cases where
the cache sizes can only store a low number of data messages, to see how this affects the network
performance.

‘Smart home’: Covered differences between ICN and IP
Most of the identified differences between ICN and IP from Section 1.4.2 may be addressed by this
scenario. The advantage of having fixed-length IP addresses compared to possibly longer length ICN
names, may be verified by examining the used network bandwidth. The advantage of having a state-
ful forwarding plane in ICN may in this scenario be evaluated, since the Zipf popularity distribution is
used. This increases the chance that multiple users are interested in the same data, allowing stateful
forwarding techniques such as interest aggregation to come into action. The third difference we iden-
tified, relates to application layer vs. network layer caching. In this scenario, the advantage of having
network layer caching may be demonstrated in subscenario S6 with an ICN backhaul network. Network
layer caching allows here to deploy caching on nodes in the backhaul network. In this ‘smart home’
scenario, we will cover topologies where ICN-enabled IoT islands are used in combination with an IP
backhaul. This allows us to evaluate the drawback in terms of bandwidth usage of having to send ICN
messages over an IP network.
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‘Smart factory’: baseline scenario and sensitivity analysis
We use this scenario to compare the network performance of ICN and IP for a special use case where
IoT nodes are also interested in data from other nodes. This corresponds to the operations optimisation
use case described in Section 3.1. The data transmission frequency is typically higher in ‘smart factory’
scenarios and there are more strict requirements on data freshness. The role of the IoT islands is
different for this use case, since we use the fact that IoT deployments in industrial environments use
multiple islands to cover different areas in the same factory. This difference will mainly be reflected in
the calculation of the content popularity distribution. As for the ‘smart home’ scenario, we will cover both
caching subscenarios as well as subscenarios where caching is not used. For this specific scenario,
the subscenarios without caching represent delay-sensitive optimisation processes, which require fresh
and therefore non-cached data. The subscenarios with caching represent delay tolerant optimisation
processes, which do allow the use of cached data. The used parameters are indicated in Table 3.3.

Topology
In a ‘smart factory’ scenario very high numbers of sensors are deployed on a small area. We reflect this
in our choice for the number of IoT nodes per Islands, by using the highest possible nodes per island.
The chosen evaluation platform described in Section 4.1.2, allowed us to use 50 IoT nodes per island
in this scenario. The number of islands was also set to the highest possible number, which equals five,
when 50 IoT nodes are deployed per island. We reduced the size of the backhaul network to 20 nodes
to resemble a small corporate network.

Traffic patterns
In this ‘smart factory’ scenario, we consider the case whose goal is to optimise certain production
processes. IoT nodes are in this scenario continuously generating and exchanging information with
other nodes in the production process. For the consumer locations parameter we therefore focus on
consumers which are located inside the IoT Islands (CL3). We set the number of consumers to 25 for
our baseline scenario to allow reasonable experiment durations for the baseline and most sensitivity
studies. With considerable effort we also completed simulations for 30, 40 and 50 consumers in the
sensitivity analysis.

We set the data freshness duration to one second, because sensor data in these production en-
vironments is typically volatile. The content popularity distribution is now calculated over all available
contents in the IoT Islands, since the IoT nodes now can request data from multiple other sensor islands.
We set the request transmission frequency to one request per second since industrial applications typ-
ically use high update frequencies [59]. The backhaul network no longer represents the internet, rather
it now represents a factory backhaul network. A realistic random graph will be used to represent this
smaller corporate network. For the payload we again use a size of 5 bytes.

Node characteristics
The cache size is again set to the RAM size of the earlier mentioned ZigBee module, which is 32 kB
[58]. This corresponds to roughly 600 NDN data packets.

‘Smart factory’: Covered differences between ICN and IP
The ‘smart factory’ scenario the one that may benefit more of an ICN approach rather than an IP
approach. Compared to the ‘smart home’, this scenario may also address the benefit of having caching
on the IoT sensor nodes themselves. The network layer caching enables in this case that an Interest
may be satisfied by caches at four distinct locations. The Interest may be satisfied by the IoT node’s
own cache, the gateway router of the IoT island of the consumer, one or multiple caches in the backhaul
network or a cache at the gateway router of the producer.



3.2. Comparison approach 23

Ta
bl

e
3.

3:
‘S

m
ar

tf
ac

to
ry

’p
ar

am
et

er
se

tti
ng

s.

B
as
el
in
e
sc
en

ar
io

Se
ns

iti
vi
ty

an
al
ys
is

U
se

d
L3

-te
ch

no
lo

gy
in

Io
T

is
la

nd
s.

IP
IC
N

IP
IC
N

Su
bs

ce
na

rio
na

m
e

S1
S2

S3
S4

S5
S6

S1
S2

S3
S4

S5
S6

C
ac

hi
ng

7
3

7
7

3
3

7
3

7
7

3
3

Ba
ck

ha
ul

ne
tw

or
k

IP
IP

IC
N

IP
IC

N
IP

IP
IC

N
IP

IC
N

N
um

be
ro

fI
oT

is
la

nd
s

5
1,

2,
10

,2
0,

50
N

um
be

ro
fs

en
so

rs
pe

rI
oT

is
la

nd
50

25
0,

12
5,

25
,1

2,
5

N
um

be
ro

fI
oT

no
de

s
of

ty
pe

:
(C

L1
,C

L2
,C

L3
)

(0
,0

,2
5)

(0
,0

,1
0)

,(
0,

0,
20

),
(0

,0
,3

0)
,(

0,
0,

40
),

(0
,0

,5
0)

D
at

a
Fr

es
hn

es
s

pe
rio

d
(s

)
N

/A
1

N
/A

N
/A

1
N

/A
0,

5,
30

,6
0,

30
0

N
/A

N
/A

0,
5,

30
,6

0,
30

0

0,
5,

30
,6

0,
30

0
C

on
te

nt
po

pu
la

rit
y

di
st

rib
ut

io
n

(Z
ip

f(𝛼
))

0.
64

0,
0.

5,
0.

84
,1

R
eq

ue
st

fre
qu

en
cy

(re
qu

es
ts

/h
)

36
00

-

D
at

a
pa

yl
oa

d
si

ze
(b

yt
es

)
5

-
C

ac
he

si
ze

(p
ac

ke
ts

)
0

60
0

0
0

60
0

0
0,

10
,

10
0,

10
00

,
20

00

0
0

0,
10

,
10

0,
10

00
,

20
00

0,
10

,
10

0,
10

00
,

20
00



24 3. Comparison methodology

3.2.4. Key Performance Indicators (KPIs)
According to the creators of the ICN paradigm, the use of named data and caching should allow for
a more efficient use of network resources, while also providing a higher content delivery performance
[3]. Since the IoT is expected to connect billions of devices to the internet, a resource-efficient network
paradigm is needed to cope with the corresponding traffic increase.

To test which of the two network paradigms (ICN or IP) is most efficient for IoT, we need to define
metrics or key performance indicators (KPIs) that are relevant for the IoT. In this study we will use five
KPIs.

• End-to-end delay
• Hop count
• Network usage
• Cache hit ratio
• Cache capacity usage

A relevant aspect to measure when comparing ICN and IP is content delivery performance. ICN may
be able to reduce content delivery times by caching data close to consumers, since the requested data
may be cached close by, resulting in lower content delivery times. We verify this claim by measuring
the end-to-end delay which we define as the elapsed time between the transmission of the data request
and the reception of the corresponding data. Additionally, we also measure the hop count.

Since the IoT is expected to lead to the production and distribution of enormous amounts of data,
our next metric will be the average network usage. The average network usage is calculated as a sum
of all bytes transmitted on each link divided by the total simulation time. When, for example, a 1 kB
packet travels over five links, then the corresponding average network usage can be calculated to be
5 kB divided by the simulation time. We compute the average network usage for both ICN and IP in all
scenarios to verify to what extent ICN may help to reduce the used network resources.

Furthermore, we will use two metrics related to caching to examine the difference between IP
caching (centralized, at the application layer) and ICN caching (distributed, at the network layer). The
cache hit ratio metric is the ratio between the number of requests satisfied by a producer and the
number of requests which are satisfied by a cache. The cache capacity usage metric, represents the
time-averaged usage of available cache storage. For example, a cache capacity usage of 50% may
indicate that the cache was on average half full during the experiment.



4
Implementation

The goal of this chapter is to describe the work done to implement the comparison scenarios from
Chapter 3. Specifically, in section 4.1, we identify multiple evaluation platforms and we select the
most suitable platform for our comparison. Section 4.2 describes the process of implementing the
comparison scenarios in the chosen evaluation platform.

4.1. Evaluation platform selection
In order to compare ICN and IP under the scenarios defined in Chapter 3 and measure the KPIs de-
scribed in Section 3.2.4, we need to evaluate those scenarios in a realistic platform which enables ex-
periments of a reasonable scale. We will first compare multiple evaluation platforms in Section 4.1.1,
and use this overview to find the best evaluation platform for our comparison in Section 4.1.2.

4.1.1. Overview of available evaluation platforms
We identify two different types of platforms: testbeds and simulators/emulators, which we will describe
individually.

Testbeds
A testbed is a small-scale deployment of, in this case, IoT sensor nodes which allow to gather real-
life measurement results, by using real applications and networking stacks. The biggest advantage
is the representativeness of the measurement results, since, compared to simulations, typically fewer
assumptions and simplifications are done to perform experiments. The biggest drawbacks are the
typically fixed topology and hardware implementations of the testbed. Moreover, working with testbeds
also places limits on the flexibility of the scenarios which can be evaluated, as well as on the size of
the network that can be considered. The costs of setting up and maintaining a testbed can also be an
important drawback. We only consider open and actively maintained IoT testbeds. In [60] and [61] an
overview is given of multiple open IoT testbeds. Of the testbeds mentioned in those studies, only two
testbeds are still operational at the time this assessment was done.

FIT IoT Lab
The FIT IoT-LAB testbed [62] is a large scale open testbed containing 2331 nodes at eight different
locations in France and Germany. The facilities can be used free of charge. The nodes are positioned
at fixed locations and have varying performance. Three types of sensor nodes can be used at different
locations, each having different computational capabilities. All nodes use the IEEE 802.15.4 standard
as their physical layer protocol and are connected in a mesh topology. Users can upload their custom
firmware directly to the sensor nodes via a web page and schedule experiments when resources allow.

w-iLab.t
The w-iLab.t testbed [63] comprises 60 IoT nodes deployed in a mesh topology. The testbed is located
in Zwijnaarde, Belgium and allows researchers to have full control over the testbed facilities. Similar

25
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to the FIT IoT Lab testbed, users are able to upload their own custom firmware to the web-portal. The
IoT nodes support the use of IEEE 802.15.4 and Bluetooth standards. Additionally, 16 IoT nodes are
connected to mobile robots which can move freely between the stationary nodes.

Simulators and emulators
Typical advantages of simulators over testbeds are flexibility and extensibility. New features can be
quickly added at relatively low costs and the possibility of running parallel simulations speeds up experi-
ments execution considerably. The biggest drawbacks are the potential loss of precision and relevance
caused by (over)simplifications and modelling. Another challenge is introducing randomness into sim-
ulations, needed when performing statistical analyses. As done for the testbeds, we only consider
simulators and emulators which are still actively maintained by their creators or community.

OMNett++
The OMNett++ discrete-event network simulator [64] is written in C++ and uses separate functionality
modules for simulations. The most important functionality module is the INET framework which im-
plements common network stacks and physical layer protocols. It is one of the few simulators with a
graphical user interface. One of the externally available modules called CCN-lite [65] provides an ICN
implementation for the simulator. The authors indicate that their implementation is far from complete
and does require extra work for real use.

Cooja: The Contiki Network Simulator
Cooja [66] is a simulator which emulates IoT nodes running the Contiki operating system. It therefore
allows to run simulations with real-life network stacks and software implementations. The Cooja net-
work emulator supports simulation of wireless sensor networks connected in a mesh topology and is
not built to also simulate larger interconnected sensor domains. The main drawback of this simulator,
in relation to our study, is that only an outdated and experimental CCNx implementation is available for
the Contiki operating system [66], which is used by the Cooja simulator. Moreover, there is hardly any
documentation available describing the functionality and use of this software.

miniNDN
The miniNDN emulation tool [67] is an extension to the well-known Mininet software [68]. MiniNDN
uses virtualisation to emulate multiple NDN hosts on a single machine. This has implications on the
size of the networks being tested since all nodes are virtualised by a single machine. The emulator
uses the complete NDN software suite built and maintained by the NDN consortium. Wireless networks
are not modelled well by miniNDN, since virtual ethernet links are used to model connections.

ndnSIM (NS-3)
The developers of the ndnSIM (NS-3) simulator [69, 70] managed to integrate the main building blocks
of the NDN implementation: the Named Data Networking Forwarding Daemon (NFD) and the Named
Data Netowrking c++ library (ndnx-cxx), into the popular NS-3 simulator, while still preserving nearly
all functionalities. This adaptation creates the possibility to use NDN as a L3-protocol with the vari-
ous networking protocols and technologies already integrated in NS-3. The discrete-event simulator
provides support for heterogeneous network simulation, which also allows the simulation of larger back-
haul networks. Users need to write simulation scripts in C++ to define the topology and network stacks
used.

NS-3 DCE
NS-3 DCE (Direct Code Execution) [71] is a special version of NS-3 which is able to execute kernel
space or user space networking protocols directly in the simulator. It is then possible to use the ex-
isting implementations for the NDN architecture in a simulation scenario. This direct code execution
framework does provide extra flexibility at the cost of having less optimised simulations. This raises
scalability issues and limits simulations to a small number of nodes.
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Icarus
The Icarus simulator [72] is written in Python and is built to verify and test the performance of caching
strategies. The simulator does not implement a specific ICN architecture and networks are modelled
at a high level of abstraction. This also implies that the Icarus simulator currently is not capable of
simulating real ICN deployments for IoT applications.

4.1.2. Evaluation platform selection
We select the most suitable evaluation platform for our study based on the support for the defined
comparison scenarios in Chapter 3. The evaluation platform should be able to model the chosen
networking technologies for the defined topologies. Moreover, it should be possible to evaluate the
comparison scenarios with the key performance indicators from Section 3.2.4. We analysed for each
platform whether these requirements are met (Table 4.1).

Looking at Table 4.1, it becomes clear that the Icarus emulator and the MiniNDN software are not
suitable for our comparison due to the lack of support for our selected physical layer protocols. If we
also consider the necessary IP technologies, we can conclude that only the FIT IoT LAB testbed, the w-
iLab.t testbed, the ndnSIM (NS-3) simulator and the Cooja emulator allow the use of the three selected
networking technologies.

From the mentioned platforms, an ICN implementation is only available for both testbeds and the
ndnSIM (NS-3) simulator. The simulator uses the complete software package built and maintained by
the NDN consortium, while the testbeds use the CCN-Lite [65] implementation.

Furthermore, the evaluation platform should support experiments with IoT islands connected via a
realistic backhaul network, as we defined in Chapter 3. In an IoT island, wireless IoT nodes connect to
a central gateway router. This gateway router connects to other IoT domains via a wired network. Table
4.1 indicates that IoT island topologies can be evaluated with the FIT IoT LAB testbed. Topologies with
wired backhaul networks used in our comparison scenarios are however not supported. The NS-3
based ndnSIM (NS-3) simulator does provide the tools to model IoT island topologies and backhaul
networks. So the ndnSIM (NS-3) simulator is the most suitable platform for our comparison so far.

The last row in Table 4.1, lists the evaluation platform support for the KPIs defined in Section 3.2.4.
It can be seen that all platforms are able to perform measurements with our used metrics, including
the ndnSIM (NS-3) simulator. Based on the arguments given above, we conclude that the ndnSIM
(NS-3) simulator is indeed the most suitable platform for our comparison study, since it meets all our
requirements. We will therefore use this platform for our study.

Table 4.1: Evaluation platform features comparison.

Testbed Simulator Emulator

FIT IoT LAB w-iLab.t OMNet++ ndnSIM (NS-3) NS-3 DCE Icarus Cooja MiniNDN

L1 technology IEEE 802.15.4 3 3 3 3 3 7 3 7

IP features
6LoWPAN 3 3 3 3 7 7 3 7
IPv6 3 3 3 3 3 7 3 3
CoAP 3 3 7 3 3 7 3 3

ICN features NDN/CCN
stack CCN-Lite CCN-Lite (CCN-Lite) NDN CCNx 7 7 NDN

Topology support IoT islands 3 7 3 3 3 7 7 7
Backhaul network 7 7 3 3 3 7 7 7

Network usage 3 3 3 3 3 3 3 3
Hop count 3 3 3 3 3 3 3 3

KPI’s End-to-end delay 3 3 3 3 3 3 3 3
Cache hits 3 3 3 3 3 3 3 3
Cache utilisation 3 3 3 3 3 3 3 3

4.2. Simulation scenario implementation
This section will describe the steps taken to implement the comparison scenarios from Chapter 3 in the
NS-3 based ndnSIM simulator which was chosen in Section 4.1. NS-3 uses separate modules to model
individual network technologies and applications. A simulation script can be used to combine these
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submodules into one custom simulation model, which can be used to perform measurements. The
goal of this section is to describe the creation of these simulation scripts and to present the necessary
configurations and adaptations to the simulator.

We will first describe, in Section 4.2.1 and Section 4.2.2, the work done to implement the IP stack
and NDN stack specified in Section 3.2.2 in the simulator. In Section 4.2.3, we wil describe how we
modelled hybrid ICN deployments where ICN islands are connected via IP networks. The methodology
of setting up simulations will be presented in Section 4.2.4.

4.2.1. IP stack implementation
We will describe the IP stack implementation using a bottom-up approach where we start at the physical
layer, and move towards to the application layer. We follow the comparison scenario design described
in Section 3.2.1 and Section 3.2.2.

L1: Physical Layer + L2: MAC layer
IEEE 802.15.4 physical layer
The IoT Islands need to use the IEEE 802.15.4 communication protocol at the physical layer. We
implement this specific technology by using the lr-wpan NS-3 module [73]. This module follows the
802.15.4-2006 standard, which prescribes operation in the unlicensed 868-868.6 MHz (Europe), 902-
928 MHz (USA) and the global 2.4 GHz frequency bands. The NS-3 model uses the 2.4 GHz band,
allowing a maximum data rate of 250 kbit/s. The channel is modelled as an additive white Gaussian
noise (AWGN) channel and the modulation method used follows the standard, which defines the use
of offset quadrature phase-shift keying (OQPSK).

Furthermore, the standard defines two different classes of devices. The first type is called the full
function device (FFD), which can be used in any topology and can act as the core of a star network. The
second type is called the reduced function device (RFD), which uses a low-profile stack implementation
and can only be used as a leaf node. Every network can have one personal area network (PAN)
coordinator, which must be a FFD. This device typically serves as the center of the network providing
coordination services to network nodes. The lr-wpan NS-3 model does not (yet) model different device
roles and uses the FFD-role for all devices.

In our simulation model, we use one single gateway per IoT island with both a 802.15.4 radio and a
wired network interface to connect to other networks. The IoT sensor nodes are placed in a grid pattern
and are all in range of the central gateway. Nodes can communicate directly with other nodes in the
same IoT island without the need to contact the gateway first.

IEEE 802.15.4 MAC layer
At the MAC layer, there is currently only one single MAC implementation available for the lr-wpan
module [73]. This MAC layer assumes the radio to always be in ’listening’ mode when the node is not
transmitting. In constrained IoT applications it is common to switch off the radio when no packets need
to be received or transmitted, in order to save energy. It is important to use a smart strategy to decide
when to go into sleep mode, since no packets can be received when a node is sleeping and packet
loss may occur.

MAC layer protocols which allow sleeping patterns are not yet available for the NS-3 simulator.
There is currently one radio duty cycling (RDC) MAC protocol in development, which is based on the
ContikiMAC RDC protocol [74]. This MAC protocol in development also comprises the implementation
of an energy measurement toolbox for the 802.15.4 protocol, which supports the simulation of energy
consumption at the radio level. The module is currently being reviewed by the NS-3 maintainers and will
likely be integrated in a future NS-3 release. We merged the latest version of this unfinished module
with the ndnSIM simulator, to see whether we already could use it for our study. We managed to
successfully deploy this implementation in the ndnSIM simulator and we solved two bugs in the model’s
finite state machine implementation. However, after several tests with large topologies we came to the
conclusion that this module is not yet suitable for our study, since it affected the simulator’s stability
and performance. Therefore we decided to leave energy usage experiments as future work since it
may provide intersting results related to power requirements of the more advanced stateful forwarding
plane and complicated message format of NDN. For this study we use the default MAC implementation
[73].
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Backhaul network
We model the backhaul network by using an external topology generator called BRITE [75]. According
to its creators, BRITE was developed to provide a universal topology generator capable of generating
representative internet topologies for multiple simulation platforms.

We use BRITE to generate the random graphs for the backhaul networks of our covered scenarios.
In the ‘smart home’ scenario, the backhaul network should represent an internet like topology and in
the ‘smart factory’ scenario it should represent a corporate network.

To model the internet-like backhaul networks we use BRITE’s top-down model [75]. This model
uses two hierachical topologies, which comprise an autonomous system (AS) topology and a router-
level topology, shown in Figure 4.1. An autonomous system can be seen as a subpart of the internet
under a single administrative control, which can be for example an internet service provider [76]. First
the top-level AS topology is generated, where each node represents a single AS network. Then for
each AS node, a different random graph model is used to generate the autonomous system inside
network. The IoT islands are connected to a randomly selected leaf node in one of the router level
topologies.

Figure 4.1: The used top-down internet topology. Picture from BRITE manual [75].

To model the topologies, we can choose from two different types of random graphs, the Barabási–
Albert graph [77] and the Waxman graph [78]. We select the Waxman graph to model the router level
topologies, since it is considered to be a representative model for intra-domain networks [79]. The
‘smart factory’ scenario only uses this router level topology. The Waxmann graph can be constructed
by placing 𝑁 nodes randomly on a two dimensional plane. The probability of having a link between
nodes 𝑢 and 𝑣 can then be calculated by Expression (4.1):

𝑝(𝑢, 𝑣) = 𝛽𝑒 (4.1)

where

𝛼 = Waxman parameter (0 ≤ 𝛼 ≤ 1)
𝛽 = Waxman parameter (0 ≤ 𝛽 ≤ 1)
𝑑 = Euclidean distance between nodes nodes 𝑢 and 𝑣
𝐿 = Maximum euclidean distance between any two nodes in the graph.

Expression 4.1 indicates that, given a set of node locations, the Waxman graph requires two parameters
𝛼 and 𝛽. The value of 𝛼 determines the relative number of short links and long links. A lower value for 𝛼
results in many relatively short links. The parameter 𝛽 correlates to the link density of the graph. When
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𝛽 is increased, then the link density of the graph increases. The real value of 𝛼 and 𝛽 is dependent on
the modelled autonomous system. In [80] maximum likelihood estimation is used to to estimate these
parameters for a number of real-life networks from the Internet Topology Zoo database [81]. We use the
parameter estimation of the UUNet network, to calculate suitable values for the BRITE configuration.
We calculated that the corresponding Waxman parameters for our simulation set-up are 𝛼 = 0.64 and
𝛽 = 0.47.

For the modelling of the AS-level topology, which we additionally need for the ‘smart home’ scenario,
we use the Barabási–Albert graph. The model uses an incremental approach to add nodes one by one
to a graph. In this graph type, new nodes are more likely to connect to nodes with a higher degree1. A
newly added node 𝑢 is connected to 𝑚 existing nodes with a probability given by Expression 4.2.

𝑝(𝑣) = 𝑑
∑ 𝑑 (4.2)

where

𝑑 = Degree of node v.
∑ 𝑑 = Sum of the degree of all nodes in the currently existing network.

For our simulations we set 𝑚 = 2, to model the internet’s AS topology [82]. So every new node will
initially connect to two nodes, with a specific probability defined by Expression 4.2. When the AS level
graphs and the intra-domain graphs are generated, the next step is to connect both graphs. A link in
the AS-level topology does not map directly to a specific node-to-node connection on a router level.
The BRITE topology generator combines both topologies by connecting two randomly selected nodes
from two AS domains which are connected in the AS-level graph. The used BRITE configuration file
can be found in appendix B.1.

L3: Networking and Routing
6LoWPAN
We use the 6LoWPAN module from the NS-3 simulator [83], to act as an adaptation layer between the
802.15.4 MAC layer and the IPv6 networking layer. We used the default module settings, which include
HC1 header compression [45] and UDP checksum compression.

IPv6
On top of the 6LoWPAN layer we use the NS-3 IPv6 module [84]. We used the default module settings,
with the exception of some parameters of the Neighbour Discovery protocol (NDP). The NDP is an ad-
vanced version of Address Resolution Protocol (ARP) in IPv4, and its task is to discover the roles and
L2 addresses of neighbouring hosts and routers. Hosts send neighbour solicitations messages to dis-
cover L2 addresses of a host in the same subnetwork. The addressed host responds with a Neighbour
discovery message to exchange L2 addresses. The L2 address is cached to reduce the transmission
of Neighbour Solicitation (NS) messages. The entry is considered stale after a fixed time, and a new
NS message must be transmitted. While experimenting with the NS-3 IPv6 module, we noticed that the
neighbour advertisements are sometimes not correctly interpreted causing unnecessary packet loss.
We prevented this from happening by increasing the REACHABLE_TIME parameter in the IPv6 imple-
mentation. This reduces the number of needed Neighbour Solicitation messages since the neighbour
discovery entries are valid for a longer time.

Routing
As mentioned in Chapter 3, we do not focus on comparing the efficiency of routing of IP against ICN.
Rather, in our study we make the assumption that routing information is known before the simulation of
the scenario starts. This could be achieved when global routing is used in the NS-3 simulator. Unfortu-
nately, global routing is not available for IPv6 simulations and is only available for IPv4. We therefore
had to implement our own solution. Specifically, we use an initialisation time before a simulation run
starts. During this time a real routing protocol is used to populate the routing tables. When the sim-
ulation starts, the routing protocol is switched off and the routing table entries are used for the rest of
1The degree of a node equals the number of edges incident to a node.



4.2. Simulation scenario implementation 31

the simulation. This feature was implemented using the only IPv6 routing protocol currently available
in NS-3 called RIPnG [85]. We updated the implementation to allow more frequent gratuitous Re-
sponse Message transmissions. Moreover, we changed the RIPnG module to support larger networks
by increasing the fixed maximum hop count.

L4-L7: CoAP applications
In Section 3.2.2, we decided to use the CoAP protocol as the application layer protocol for the IP
scenarios. This protocol is currently not part of the NS-3 simulator and we therefore had to build our
own implementation.

We based our design on the udp-echo-server [86] and udp-echo-client [87] model scripts, part of
the NS-3 simulator. The UDP client script must be adapted to allow the transmission of CoAP GET
messages which should follow the Zipf popularity distribution specified in Section 3.2.3. The CoAP
server application should be able to receive CoAP requests and to respond with the appropriate CoAP
response message. We also had to build a special CoAP gateway application, which is able to cache
CoAP messages at the IoT Island gateway router.

CoAP client
The CoAP client needs to send a CoAP GET message for the requested content, for example, GET/TEMP
to the correct CoAP server. Our modelling approach is to calculate the total size of a CoAP GET mes-
sage with a known payload and to add this to the payload of the UDP packet. We have calculated the
size of this CoAP GET message by following the CoAP message format specified in the CoAP IETF
standard [51], which is illustrated in Figure 4.2. The size of the non-optional header can be calculated
by adding the sizes of the fields from the first row from Figure 4.2. This first row contains the CoAP
protocol version (2 bits), the message type (2 bits), the token length (4 bits), the request code which
indicates the message type (8 bits) and the message id (16 bits) which is used to identify duplicate
messages. So the total size of the compulsory header equals 4 bytes.

Figure 4.2: CoAP Message format. Picture from IETF CoAP standard [51].

We also have added the optional token field to total header size, since the standard requires the
CoAP GET messages to have a token which is used to match requests and response messages.
The token should be unique for every concurrent transmission between a source/destination pair. The
standard specifies a variable token size of 0-8 bytes which can be chosen based on the application
specifics. Smaller tokens result in a lower protection against request-response mismatches, while a
longer token causes extra overhead. The CoAP IETF standard [51] prescribes that a token should be at
least 4 bytes long when the node is connected to the internet. This should improve security by reducing
the risk of response spoofing [51]. We therefore choose to use a token length of 4 bytes, which is also
sufficient to prevent duplicate tokens in our scenarios. The options field should contain the URI of the
requested content. Which has a one byte identifier and a variable URI size. The last row containing
the end-of-options indicator (0xFF) and payload field are not used in a CoAP request message. We
can now conclude that a CoAP request message with a GET method is 8 bytes long, excluding the
URI. For the URI we use ”SensorData/x” which we also use a a name for the ICN scenarios to keep
the comparison fair. The x denotes the requested content number. The payload which we will add to
the UDP message will be 8 bytes + size(URI) long.

The CoAP client requests content based on the chosen Zipf popularity distribution. The ndnSIM
simulator provides example applications for NDN simulations which use a Zipf-Mandelbrot popularity
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distribution [88]. We integrate the functions related to the generation of a Zipf distribution into the
CoAP client application. The last part of the URI, the requested content number, is defined by the Zipf
distribution.

CoAP server
The CoAP server application needs to receive CoAP request messages and then needs to send a
CoAP response packet with the requested data. We calculate the size of this packet by summing
the compulsory header of 4 bytes, token of 4 bytes and the end-of-options market of 1 bytes. This
results in an overhead size of 9 bytes. So the UDP payload for a CoAP response should be 9 bytes +
size(requested content) long.

CoAP caching gateway
The CoAP IETF standard [51] also provides a description on the use of caching CoAP response mes-
sages at dedicated CoAP nodes. A CoAP caching gateway may satisfy a CoAP request if it has a
cached CoAP response message available. The CoAP standard also prescribes the use of a fresh-
ness technique similar to ICN’s data freshness duration. A CoAP server may specify for each CoAP
response a data freshness duration after which the response should be considered stale.

We implemented the CoAP caching gateway, by modifying our CoAP server application. The new
application will cache every incoming CoAP response message until the cache reaches its full occu-
pancy. The Least Recently Used (LRU) cached entry will then be replaced if a new CoAP response
comes in. We selected these strategies, because the NDN implementation uses the same caching
policies. The CoAP caching gateway application is installed on all IoT island gateway routers, when
we consider cases with IP caching enabled.

4.2.2. NDN stack implementation
We will also describe the NDN stack implementation using a bottom-up approach where we start at the
physical layer, moving towards the application layer. We again follow the comparison scenario design
described in Section 3.2.1 and Section 3.2.2.

L1: Physical Layer + L2: MAC layer
We use exactly the same topologies and backhaul network as we did for the IP case described in
Section 4.2.1.

L3: Networking and Routing
The NDN layer can directly be deployed on top of the 802.2.15.4 MAC layer and does not require any
special adaptations. As we mentioned in Section 4.2.1, we do not want to compare the efficiency of the
routing protocols available for NDN and IP. Therefore, we use the global routing option available for the
NDN stack. The FIBs from all nodes are populated with the shortest routes to the content producers,
before a simulation is initiated.

L4-L7: ICN applications
The NDN consumers use the ‘Zipf-Mandelbrot’ application [88] to transmit Zipf distributed interests.
Very few changes were needed to deploy the Zipf-Mandelbrot application for our scenarios. We used
the names which are similar to the URI’s we used for the IP scenarios. Every producer can supply a
single data packet with name ”SensorData/x” where x again will be replaced by a draw from the Zipf
distributed content list. The NDN producers use the default producer application [89].

4.2.3. ICN over IP
In our scenarios we cover two different types of ICN deployments, a native ICN case where both the
backhaul nodes and the IoT Islands are using ICN and a hybrid scenario where ICN islands are con-
nected via an IP backhaul. The latter case is considered to be more realistic in the short term, since it
does not require the entire internet to support ICN protocols at the network layer. In this section we will
first introduce several ICN over IP deployment configurations, subsequently we will describe our ICN
over IP modelling approach.
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ICN over IP deployment configurations
A common solution to allow the transmission of ICN packets over the internet, is the use of UDP tunnel-
ing [90]. The interconnection of ICN islands is then accomplished by manually setting up UDP tunnels.
ICN interests or data messages are encapsulated in UDP packets, traverse the internet and are un-
packed at the receiving ICN gateway node. Figure 4.3 illustrates this encapsulation process. The NDN
testbed [6] is currently using this type of UDP tunneling. A more advanced solution is proposed in
[41], where software-defined networking is used to automatically configure UDP tunnels between ICN
domains.

Figure 4.3: UDP encapsulation of NDN packets between two L2 ICN islands.

A different approach was recently presented by Cisco called Hybrid ICN (hICN) [91], where ICN
packets are structured in such a way that they comply with the IP packet format. All ICN features such
as name-based forwarding and reactive caching are preserved and the IP address is used as a name.
IP routers can forward hICN messages in exactly the same way as normal IP packets, since there is
no difference in the packet format. Only special routers equipped with a hICN forwarding module are
able to perform ICN specific features such as caching and interest aggregation. This work is still in an
early phase and implementation details, as well as experimental results have not been disclosed.

In our simulation study, we will focus on UDP tunnelling. Since only a high-level design of hICN is
released, it is not possible to simulate and compare this approach in detail and we leave this as future
work.

Modelling approach
Initially, the opportunity of modelling the real encapsulation process of NDN messages into UDP packets
was investigated. It was found that UDP tunnelling is currently not supported by the NS-3 simulator
and a new module had to be built. The UDP encapsulation process of NDN messages therefore needs
to be implemented from scratch. Moreover, the dynamic translation between names and IP addresses
in simulation scenarios would also require the design and implementation of a DNS-like application.

We used a different modelling approach with a similar accuracy and representativeness, but with
a more efficient implementation process. The native NDN deployment case where all nodes are NDN
compatible, was taken as a baseline for the encapsulation modelling. The baseline deployment was
modified in a way to best resemble a hybrid IP configuration. The modelling method enabled us to
simulate UDP encapsulation without the need to build a name-to-IP translation module.

When an interest or data message encapsulated in a UDP packet is transmitted over an IP network,
it will not be cached and no forwarding decisions will be based on the ICN messages enclosed. We
therefore disable caching for all backhaul nodes for this configuration. The second important feature
of ICN which will not be available in ICN-as-an-overlay networks is the aggregation of interest mes-
sages. When multiple interests arrive at the same node for the same content, a single PIT entry will be
generated for both interests. When a matching data packet arrives, the node will forward this packet
to both interested consumers. As mentioned earlier, this aggregation is not available when a data or
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interest message is enclosed in an UDP packet and we need to disable this feature for the backhaul
nodes. We implemented this by adding an extra random name component to the interest message
when the node is forwarded by a gateway node. Two interests for the same data are then unlikely
to be combined in backhaul PIT nodes, since they will have a different extra name component with
high probability. he extra added name component is removed when the ICN message arrives at the
gateway node connecting the backhaul to the ICN islands.

The encapsulation in UDP packets also results in extra packet overhead due to the required extra
headers. We therefore have to add this extra payload to the interest and data messages. For this
purpose, we reuse the extra name component to resemble the extra data overhead. We set the size of
the name component to be equal to the size of a IPv6 header and a UDP header combined. We define
this name component size to be 48 bytes, since an IPv6 header is at least 40 bytes and a UDP header
is 8 bytes.

4.2.4. Simulator set up
Simulation duration settings
For both the NDN and IP simulations the data producers and consumers applications are started after
120 seconds. We do this to allow our custom routing solution the necessary time to fill all routing
tables for the IP cases. We verified that the routing protocol indeed converges after 120 seconds for
all covered scenarios. At t=120s, the applications start transmitting and receiving packets.

The simulation durations is fixed to 50,000 seconds of simulated time. We analysed the conver-
gence for the covered metrics and we found that steady state behaviour can be observed for all our
scenarios after 10,000 seconds of simulation time. We therefore only use measurement data from
10,000 to 50,000 seconds in our parsing scripts [92].

Confidence intervals and random number generator
We run all simulations scenarios ten times with different random seeds and use the obtained perfor-
mance results to derive 95 percent confidence intervals. A fair comparison between ICN and IP requires
that all simulation aspects are the same for ICN and IP for a given scenario. This also results in the
fact that all simulation aspects which are randomly chosen such as the topologies, should be the same
for ICN and IP for equal random seeds. So when we run ten iterations of one IP scenario, the same
simulation environment should be used when we run ten iterations of the ICN scenario. We accomplish
this by using the substream feature of the NS-3 simulator. When declaring a random variable in the
simulator, it is possible to assign a specific substream to this specific variable. When two instances
of the same simulation with the same random seeds are used, a fixed random substream will ensure
that the same random numbers will be sampled for both cases. We use this feature for all randomly
chosen scenario aspects such as topology and transmission frequency, to ensure equal configurations
for both ICN and IP.

4.2.5. Source code
To ensure reproducibility of the results, we released our used simulation scripts to the public [93]. The
simulation script which can be seen as the top level entity combining the different used and developed
modules, is composed out of three main files. These files can be found in the ”Scratch/wsn-iot-v1”-
folder. The wsn-iot-v1.cc file contains all configurations for both the IP as well as the ICN scenarios.
Functions applicable to both ICN and IP are implemented in the ”g_header.cc”-file. All ICN related
stacks, functions and configurations are included in the ndn-header.cc file. The separate IP related
implementations can be found in ip-header.cc.
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Results and analysis

The goal of this section is to present the results of the simulation study and to analyse the observed
trends. As discussed in Section 3, we have defined two main scenarios covering a ‘smart home’ use
case and a ‘smart factory’ use case.

5.1. Smart home
For the ‘smart home’ scenario, specified in Section 3.2.3, we simulated both a baseline scenario and
performed a sensitivity analysis. We first describe the baseline scenario results in Section 5.1.1 and
discuss the sensitivity analysis results in Section 5.1.2.

5.1.1. Baseline scenario
We start by describing the results for the baseline ‘smart home’ scenario.

End-to-end delay
We present the end-to-end delay results in a so-called violin plot which can be seen in Figure 5.1. The
violin plot uses kernel-density estimation (KDE) to illustrate the underlying distribution of the plotted
data. Compared to the empirical probability density function, the KDE uses kernels to smooth the
resulting estimate [94]. The KDE is rotated and mirrored on two sides of a vertical axis. Our violin
plots also show the 90th percentile, 10th percentile and average value of the data for every covered
scenario. We will first compare the covered subscenarios where caching is disabled and we will cover
the subscenarios with caching enabled in a separate paragraph.

No caching
The IP and ICN violins show two distinct regions in the KDE. A lower part which is centred around 8
ms and a stretched region with a peak around 40 ms. This ‘smart home’ baseline scenario assumes
consumers located in the backhaul network (CL1) and consumers located at the gateway routers (CL2).
The delays in the lower region around 8 ms originate from consumers close to or at the gateway, and
the stretched higher region comprises delays experienced by nodes in the backhaul network.

If we compare the IP with the ICN subscenarios, we see that the use of an ICN network instead of an
IP network does not significantly reduce the average, 10th delay percentile and 90th delay percentile.
There is also no clearly noticeable difference between the ICN cases with either an IP or ICN backhaul.

Caching enabled
If caching is enabled for the IP case, we see a reduction of 3 ms for the average delay. This reduction
can be explained with help of the KDE. If we compare the IP with caching violin with the IP without
caching violin, we notice that the KDE is stretched to 0 ms if caching is enabled. Since the IP caches
are only deployed on the gateway routers, this 0 ms delay can only occur when a gateway router issues
a request for data which is available in its own cache. This can be the case if data has earlier been
requested by other consumers. The KDE peak at the delay region around 8 ms can be attributed to
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requests originating from the gateway router which cannot be satisfied from the cache. Furthermore,
we see that the upper delay region, residing above the average, has slightly more weight at lower delay
values compared to the IP without caching subscenario. Requests from consumers in the backhaul
network may be satisfied from the gateway routers cache, eliminating the need to forward the request
to the IoT nodes over the constrained 802.15.4 interface.

When caching is enabled for the ICN cases we see similar effects occurring for the ICN with IP
backhaul subscenarios, as for the IP subscenario. The KDE is stretched to 0 ms and weight of the upper
delay region is moved to a lower value. We also see a comparable reduction for the average delay of 3
ms when caching is enabled for the ICN subscenarios. The ICN subscenario with ICN backhaul shows
the largest average delay reduction of 5 ms when caching is used, compared to the ICN subscenario
without caching. In this specific subscenario, backhaul nodes are also able to interpret and cache ICN
messages and no encapsulation overhead is needed. An Interest message may therefore also be
satisfied by a backhaul node.

If we compare the IP with caching subscenario with the ICN with caching subscenarios, we can
conclude that an ICN deployment with IP backhaul does not improve the delay significantly. When
the backhaul is implemented using ICN, the deployment of ICN then may allow a minor average delay
improvement of just 3 ms compared to IP. Moreover, the 90th delay percentile is in this case reduced
by a modest 1 ms if ICN with caching is deployed. In this ‘smart home’ scenario such a small end-to-
end delay reduction may not be relevant due to the scenario specifics, which do not require low delay
values.

Figure 5.1: Delay results for the ‘smart home’ baseline scenario. The blue shape shows the kernel density estimate (KDE) for
the delay distribution. The error bars indicating the 95% confidence intervals for the average delay are not visible due to their

small size.

Hop count
We also considered the hop count metric for this ‘smart home’ scenario. The results for this graph are
very similar to the delay results since they are strongly correlated. The hop count can therefore be
seen in the appendix in Figure C.1.
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Network usage
We will now consider the network usage for this ‘smart home’ scenario, from which the results can be
seen in Figure 5.2. We defined the average network usage in Section 3.2.4 as the sum of the total
number of bytes transmitted on each link divided by the simulation time.

Figure 5.2: Network usage results for the ‘smart home’ baseline scenario.

No caching
For the subscenarios with disabled caching, it can be seen that the network usage is significantly higher
for the ICN(IP) network compared to the native IP deployment. The average network usage is for this
case increased by 44% if an ICN(IP) implementation is used instead of an IP deployment. This increase
is mainly caused by the overhead introduced by the UDP encapsulation in the backhaul network. When
we compare the IP subscenario without caching with the ICN(ICN) deployment without caching, we do
see a significant reduction of 32% in network usage when the ICN(ICN) network is used.

Caching enabled
We see only a small reduction of 6% in the average network usage when caching is enabled for IP
compared to the native IP case. This is a reasonable result since the IP caching deployment only uses
caching at the gateway routers. This caching technique may reduce the number of hops by a maximum
of one, when the transmission between the gateway router and the IoT nodes is not needed due to a
cache hit.

For the ICN subscenarios with IP backhaul, we also see a network usage reduction when caching is
enabled compared to the ICN(IP) network without caching. The reduction for this case is 4%. A larger
reduction in network usage can be seen for ICN(ICN) subscenarios. The use of caching for these
subscenarios results in an average network usage reduction of 20%. Since backhaul nodes are able
to interpret and cache ICN messages, a cache hit in the backhaul may save multiple transmissions to
the IoT islands thereby reducing the average network usage.

As discussed in Section 1.5, the average network usage is a very important metric for IoT appli-
cations, since it is expected that a very large number of IoT devices will be connected to the internet.
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From the results in Figure 5.2 we can conclude that for this ‘smart home’ scenario, an ICN deployment
with ICN backhaul is the most resource efficient solution. The ICN(IP) subscenario is considered to be
the most realistic short-term ICN deployment which can be easily connected to the current internet. For
the average network usage metric, we can say that such a deployment actually increases the average
network usage.

Cache hit ratio
Six pie charts in Figure 5.3 show the results for the cache hit ratio, which we defined in Section 3.2.4 to
be the ratio between the number of requests satisfied by a producer and the number of requests which
are satisfied by a cache.

Figure 5.3: Cache hit ratios for the ‘smart home’ baseline scenario. The width of the confidence intervals for these results is +/-
0.2%.

No caching
The pie charts presenting the cache hit ratio for subscenarios where caching is disabled show a trivial
result: all requests/Interests are satisfied by a producer.

Caching enabled
For the subscenarios with caching enabled, it can be noticed that the cache hit ratio is comparable
at about 35% for all cases with caching. For the IP and ICN(IP) subscenarios this is a logical result,
since the consumers in this ‘smart home’ scenario either reside at the gateway router or in the backhaul
network. For both IP and ICN(IP) a request/Interest can then be satisfied by the gateway router if it
has the data available or the producer in the IoT island. The request/Interest will not be satisfied in the
backhaul since these subscenarios do not use caching in the backhaul network. Due to this similarity
and the equal caching strategies, a similar cache hit ratio can be observed for these subscenarios in
this ‘smart home’ scenario.



5.1. Smart home 39

When we do have caching in the backhaul with the ICN(ICN) subscenario we see that the cache
hit ratio only improves by about 1% compared to the ICN(IP) subscenario. So it can be said that the
probability that a request/Interest can be satisfied by a cache is nearly equal for all subscenarios, but
that the performance improvement is mainly influenced by the location of the caches which satisfy the
requests/Interests.

Cache capacity usage
In Section 3.2.4 we defined the cache capacity usage as the time-averaged usage of available cache
storage. For the IP subscenario with caching enabled a single bar is used to indicate the cache capacity
usage at the IoT island gateway routers. For the ICN subscenarios, the average cache capacity usage
is given for nodes in the backhaul network, gateway routers and IoT nodes. For the caches in the
backhaul we calculate the average over all caches which stored one or more data packets during the
simulation. We also plotted the maximum cache capacity usage, which is the highest observed cache
capacity usage during the simulation. The results for this ‘smart home’ scenario can be seen in Figure
5.4.

Figure 5.4: Cache capacity usage results for the ‘Smart home’ baseline scenario. The black error bars indicate the 95%
confidence intervals for the average cache capacity usage

No caching
When caching is disabled there will obviously be no cache capacity usage. For clarity we therefore left
out these results in Figure 5.4.

Caching enabled
If we look at the subscenarios with caching, we see that only a very small percentage of the cache
capacity is used. A cache size of 32 kB (600 packets) is therefore already more than enough for this
‘smart home’ scenario.

The IP subscenario with caching shows that only on average 1.4% of the cache capacity is used
at the gateway routers. For the ICN(IP) case we a similar percentage for the average and maximum
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cache capacity usage at the gateway. The selected ICN implementation, described in Section 3.2.2,
uses a cache everything strategy to decide whether a data message should be cached. All incoming
data messages received by the IoT nodes will therefore be added to the nodes’ caches. This behaviour
can be seen in the graph, since also the IoT nodes actively cache data. The backhaul nodes do not
cache data in the ICN(IP) subscenario since the backhaul uses IP to forward packets.

The ICN(ICN) subscenarios show comparable results for the gateway routers and IoT nodes. The
important difference is visible for the backhaul nodes which now also actively cache data. It must be
noted that, as we already mentioned in Chapter 3, we also set the cache size of the backhaul nodes
to size specified in the scenario. Backhaul nodes and routers are typically less constrained and have
more storage available than our selected 32 kB (600 packets). However, the results show that very
small cache sizes are already sufficient for this ‘smart home’ scenario.

5.1.2. Sensitivity analysis
In this sensitivity analysis, multiple parameters of the baseline scenario are varied, to test its effect on
the KPIs in both the IP and ICN cases. In this section we will present the sensitivity study results from
the ‘Smart home’ scenario. An overview of the covered scenario aspects can be seen in Table 3.2.

Consumer location
In Chapter 3, we have defined three consumer location types. Consumers with CL1 reside in the
backhaul network, consumers with CL2 are situated on the gateway routers and consumers with CL3
are inside the IoT islands. Since the baseline ‘smart home’ scenario uses a combination of consumers
at CL1 and CL2, we use this sensitivity study to see the effect of the consumer location on our covered
metrics. The results for this sensitivity study are pictured in Figure 5.5.

CL1
When we look at the end-to-end delay for consumers at CL1 in the top left corner of Figure 5.5, we
see that most of the subscenarios provide a similar delay with overlapping confidence intervals. The
only exception is the ICN(ICN) deployment with caching enabled. This specific scenario provides the
lowest delay. An explanation can be given with the help of the hop count graph. The average hop count
is equal for all subscenarios where caching is disabled, since all requests can only be satisfied from
the producers in the IoT islands. This difference in delay is not caused by a lower required number of
hops, but only by technology-specific aspects such as packet sizes in the backhaul. For the IP caching
and ICN(IP) caching subscenarios, we see a similar reduction in the average hop count, because both
deployments can only benefit from caches deployed at the gateway routers. The ICN(ICN) subscenario
with caching has the highest reduction in delay because also the lowest number of hops are required,
due to the availability of caches in the backhaul. The average network usage in the top right corner of
Figure 5.5 shows that the ICN(IP) deployment with and without caching has the highest network usage,
as we discussed earlier, this is caused by the encapsulation of ICN messages into UDP packets. The
IP subscenarios have a lower network usage. The ICN(ICN) subscenarios have the lowest network
usage. From the cache hit ratio graph in the lower left corner, we see that consumers at CL1 have
an overlapping ratio of satisfied requests/Interests. The average and maximum cache capacity usage
graphs, show that the ICN(ICN) deployment has the highest cache capacity usage. This is caused by
the backhaul nodes which may cache data for multiple IoT islands.

CL2
Gateway consumers experience a much lower delay compared to consumers at CL1, since the data can
be requested from the producer within a single hop. The relative delay reduction when caching is used
is much larger, since a cache hit prevents the need to send a request/Interest into the network. This
is also confirmed by the fact that hop count is less then 1 for the caching subscenarios. The network
usage is now in-line with the ordering of the delay and hop count results, because the requests/Interests
and data messages do not have to traverse the backhaul network. The cache hit ratio graph and cache
capacity usage graphs show similar results as for CL1.

CL3
Consumers with CL3 are located inside the IoT domain and will in this ‘smart home’ scenario request
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Figure 5.5: Sensitivity study results, with different data consumers varied. The 95% confidence intervals are indicated with
error bars. Baseline scenario consumer locations: two consumers at CL1 and two consumers at CL2.

data from other IoT nodes. If we look at the end-to-end delay, it can be seen that the delays for both
IP subscenarios are equal. IoT nodes can now directly request data from other IoT nodes without the
need to first contact the gateway router. IP caching will therefore not provide a performance increase for
consumers at CL3. Since requests/Interests originating from consumers inside the IoT domain do not
have to cross the backhaul, it can be noted that the ICN(IP) results are equal to the ICN(ICN) results. If
we look at the ICN subscenarios without caching we see that the end-to-end delay is reduced compared
to IP, while the hop count is equal. When caching is enabled in the ICN subscenarios, a small reduction
in delay and hop count can be observed, this is due to the fact that IoT nodes are able to cache data
that they are relaying for other nodes, thereby increasing data availability within the IoT island. A future
request originating from the application running on this IoT node, may then be satisfied from the data
in cache, eliminating the need to forward the request into IoT island. The average network usage is
again low because all traffic stays inside the IoT islands. ICN caching at the node level helps reducing
the average network usage, due to the possibility of satisfying interests/requests from the node’s own
cache. From the cache hit graph we see that the cache hit ratio is again similar to the ratios observed
for CL2 and CL1. Also for the average and maximum cache capacity usage we see similar results as
for CL2.

Number of consumers
We also varied the number of consumers which are interested in the data of a ‘smart home’. We limit
this sensitivity study to consumers at CL1, since this is a realistic location for an increasing number
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of consumers. The results are shown in Figure 5.6. When we look at the end-to-end delay, we see

Figure 5.6: Sensitivity study results, when the number of CL1 consumers is increased. The 95% confidence intervals are
indicated with error bars. Baseline scenario consumer locations: two consumers at CL1 and two consumers at CL2.

that the delay increases when the number of consumers increase for the IP and ICN(IP) subscenarios.
An increase in the total number consumers will also cause an increase in the traffic load in the IoT
islands, causing a busier channel and hence increased end-to-end delays. Deploying caching at the
gateway routers does reduce the experienced latency. The ICN(ICN) deployment with caching behaves
differently. From the graph it can be seen that the delay decreases when the total number of consumers
increases. When more Interests are issued for the same data, the chance that an interest may be
satisfied by a cache in the backhaul increases. This is also confirmed by the hop count which shows a
decrease for increasing traffic load. The data may thus be found closer to the consumer. The average
network usage graph shows a similar ordering of the subscenarios. When the number of consumers
is increased we see that the ICN(ICN) deployment makes the most efficient use of the resources and
therefore the network usages increases at a lower pace than for the other subscenarios. The average
cache capacity usage shows that ICN(ICN) has on average the most data in cache. Backhaul nodes
equipped with caches may store data from multiple ‘smart homes’ resulting in a higher cache capacity
usage.

Data freshness period
Data may be cached for a duration specified by the data freshness period. After this time, the cached
data is considered stale and the data is removed from the cache. We varied the data freshness period
to see the effects on our covered key performance indicators. The results can be seen in Figure 5.7.

We start by looking at the end-to-end delay results in the top left corner of Figure 5.7. We first notice
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Figure 5.7: Sensitivity study results, when the data freshness duration is changed. The 95% confidence intervals are indicated
with error bars. Baseline data freshness period is indicated with vertical dotted line.

the trivial result that the delay for the subscenarios where no caches are deployed, is not influenced
by the data freshness period. If we look at the IP subscenario with caching, we see that the delay for
a freshness setting of five minutes is already reducing the end-to-end delay by 2 ms. When the data
freshness period is further increased and thus allowing data with a longer lifetime to satisfy the request,
we see that the end-to-end delay is further decreased. The ICN(IP) subscenario has a similar delay
course to the IP caching case, since the scenario specifics of having consumers in the backhaul and on
the gateway combined with the use of a ICN(IP) usage, do not allow the specific foreseen advantages of
ICN to come into action. When the freshness duration setting is increased in the ICN(ICN) subscenario,
we see a steeper decrease in the end-to-end delay, since now also the backhaul nodes are equipped
with caches.

Similar behaviour can be seen in the hop count graph. The IP with caching and ICN(IP) with caching
networks need a similar amount of hops to satisfy the consumers requests/Interests. For the ICN(ICN)
subscenario with caching we see that the hop count decreases at a higher rate due to the larger number
of distributed caches in the backhaul.

The average network usage in the top right corner, illustrates that the use of an ICN(IP) network with
or without caching uses the most network bandwidth for all covered settings of the freshness period.
A lower network usage may be observed for the IP subscenarios and the ICN(ICN) deployments have
the lowest network usage.

The cache hit ratio in the lower left corner provides an insight that the fraction of requests/Interests
satisfied by a cache is equal for all freshness settings. We already saw in Section 5.1.1 that this also
was the case for the baseline scenario. From the hop count graph it was clear that the ICN(ICN) has the
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lowest required number of hops to satisfy the Interests compared to all other covered subscenarios.
Nevertheless, we see in this cache hit ratio graph that the same number of requests/Interests were
satisfied from a cache.

When we now look at the average and maximum cache capacity usage graphs, we immediately
notice that the cache capacity is sufficient for all our covered freshness duration settings. When the
data freshness duration is increased, we see that the average cache capacity usage is also increased.
This can be explained by noting that a higher data freshness duration will allow data to stay in the
caches for a longer time period. The caches will therefore on average be filled with more data.

Content popularity distribution
We will now vary the Zipf-parameter (𝛼) from the used popularity distribution function described in
Section 4.2.1. When 𝛼 is set to zero, all data is equally likely to be requested. Increasing 𝛼 will
result in steeper probability mass function, where few data messages have a relatively high probability
to be requested and a lot of data have small request probabilities which is common in the current
internet. We varied 𝛼 between zero and one, since these are realistic values for multiple applications
as described in Section 3.2.3. From the baseline scenario in Section 5.1.1, we know that the selected
cache size of 600 packets can be considered very large for this ‘smart home’ scenario. We initially
conducted this sensitivity study with the baseline cache size and found that there was no significant
effect observable when varying the Zipf parameter for our selected (realistic) values. This is most likely
caused by the fact that the covered values of 𝛼, do not result in significant changes in the behaviour
of the forwarding planes. We will therefore use a small cache size in this sensitivity analysis to see
the effects of the interaction between the content popularity distribution and the cache replacement
strategy. We therefore set the cache size to ten packets for the sensitivity analysis of the content
popularity distribution. The results can be found in Figure 5.8.

From the delay graph it can be seen that a change in Zipf-parameter only has a small effect on the
delay for this ‘smart home’ scenario. For the IP and ICN(IP) we see that the delay is not significantly
changed by changing the Zipf-parameter. The ICN(ICN) with caching subscenario shows a delay re-
duction of 2 ms when 𝛼 is changed from zero to one. When the Zipf parameter is increased more
interests will be issued for similar data, which increases the chance of a cache hit. Since the ICN(ICN)
network allows to cache in the backhaul, this cache hit may occur closer to the consumer. This effect
is also confirmed by the hop count graph, which shows a decrease for increasing 𝛼.

From the average cache capacity usage graph we see that a higher value for 𝛼 results in a lower
average cache capacity usage. When we have a larger value for 𝛼, more requests will be issued for
the same data. There will therefore also be a smaller diversity of data in the caches, causing a lower
cache capacity usage.
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Figure 5.8: Sensitivity study results, when the content popularity distribution is changed. The 95% confidence intervals are
indicated with error bars. Baseline value for Zipf parameter ( ) is indicated with vertical dotted line.

Cache size
The last sensitivity study done for this ‘smart home’ scenario will cover multiple settings for the cache
size. The results can be seen in Figure 5.9.

We use this sensitivity study to find the smallest cache size which is sufficient to provide maximum
performance for both IP and ICN. From the cache hit ratio graph we see that a cache hit ratio is achieved
of 42% when the cache size is set to ten packets, this ratio does not further improve when the cache is
enlarged. If we look at the hop count and delay graph, we can draw a similar conclusion that a cache
size of ten packets is already enough for this ‘smart home’ scenario. The minimum cache size which
allows maximum caching performance in this ‘smart home’ scenario must be of a minimal size of ten
packets. As discussed earlier, the average and maximum cache usage are presented as a percentage
the maximum cache size. This explains the shape of the cache capacity usage graphs, which now
show the relative cache capacity usage for increasing cache sizes. Increasing the cache size beyond
the ‘minimum’ size of ten packets, will result in a lower cache capacity usage percentage since the
same data messages will be stored in a larger cache.
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Figure 5.9: Sensitivity study results, when the cache size is changed. The 95% confidence intervals are indicated with error
bars. Baseline scenario cache size 600 packets.

5.2. Smart factory
For the ‘smart factory’ scenario, specified in Section 3.2.3, we performed both a baseline scenario and a
sensitivity analysis. We first describe the baseline scenario results in Section 5.2.1 and we will present
the the sensitivity study results in Section 5.2.2.

5.2.1. Baseline scenario
Similar to the ‘Smart home’ scenario in Section 5.1, we start by discussing the results of the baseline
scenario. We discuss the results for every covered KPI individually.

Delay
We present the end-to-end delay results in a so-called violin plot, showing the results of the six different
covered subscenarios is pictured in Figure 5.10.

No caching
If we again first compare the cases where caching is not used for both IP and ICN, we see that ICN is
able reduce the average, 10th and 90th delay percentile for both backhaul network types compared to
IP. The average delay improvement is only 9 ms, while the 90th percentile is lowered by 14 ms. This
is in accordance with the plotted kernel density estimate, which for both the IP and ICN cases shows
multimodal distributions. The first peak region which is around 8 ms for IP and 7 ms for ICN, can be
attributed to all requests/Interests issued for content which is available inside the consumers IoT island.



5.2. Smart factory 47

Figure 5.10: Delay results for the ‘Smart factory’ baseline scenario. The blue shape shows the kernel density estimate (KDE)
for the delay distribution. The orange error bars indicate the 95% confidence intervals for the average delay.

It can be concluded that the difference between ICN and IP for this case is minimal. The second region
which comprises the average for both IP and ICN, is the result of requests/Interests for data from other
IoT islands. The ICN subscenarios show a more compact distribution in this second region, resulting in
a lower average delay. This is also reflected by the 90th percentile values. From the ICN subscenarios
it can be concluded that having an IP or ICN backhaul, has no significant impact on the end-to-end
delay for this ‘smart factory’ scenario. From this graph we can conclude that the use of ICN does
improve the delay for our delay sensitive non-caching subscenarios. This delay reduction is relevant
for these delay sensitive ‘smart factory’ subscenarios without caching, where process optimisation is
used to improve production efficiency.

Caching enabled
The IP scenario with CoAP caching enabled, shows a reduced average delay and 90th percentile
compared to IP without caching. From the KDE we see that the ‘waist’ between the upper and lower
delay regions, has increased in size compared to the non-caching IP case. This can be attributed to
the use of gateway caching. The average and 90th delay percentile are both reduced by 8 ms when
CoAP caching is deployed. In contrast to the ‘smart home’ scenario, we no longer observe 0 ms delay.
Consumers reside on the IoT nodes which are not equipped with caches in this IP subscenario, so
requests will always have to be transmitted over the 802.15.4 interface.

For the ICN case, we see a similar effect. When ICN enabled IoT islands are deployed with an
IP backhaul, we can clearly differentiate the requests/Interests which are satisfied from either the IoT
node’s own cache (0 ms), from the gateway router cache (≈ 7 ms) or from a remote gateway router
(> 16 ms). When the ICN Islands combined with an ICN backhaul network are used, we see an extra
peak in the distribution at ≈12 ms. This peak must be caused by Interests which are satisfied by a
backhaul node. The use of a caching enabled ICN network reduces the average delay by only 9 ms
and the 90th delay percentile by 4 ms.

If we compare IP and ICN when caching is enabled, we see that the average delay is reduced by 9-
10 ms when ICN is used, depending on ICN’s backhaul network. The 90th delay percentile is reduced
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by 10-11 ms, depending on the used backhaul network. The 10th percentile of the delay is 0 ms for the
ICN subscenarios, because ICN nodes may satisfy Interests from their own cache.

From this graph we can conclude that the use of ICN does also improve the delay for the delay
tolerant caching subscenarios. The further improved delay reduction when caching is enabled can be
attributed to the ability of IoT nodes, and backhaul nodes to cache data messages. A delay reduction
in this order may however not be significant for these delay tolerant caching-enabled subscenarios.

Hop count
The results for this hop count graph are very similar to the delay results since they are strongly corre-
lated. The hop count violin plot for this ‘smart factory’ scenario is therefore included in appendix Figure
C.2.

Network usage
The average network usage for this baseline ‘smart factory’ scenario is shown in Figure 5.11.

Figure 5.11: Network usage results for the ‘Smart factory’ baseline scenario.

No caching
From the graph it can be concluded that the IP subscenario without caching does have a lower average
network usage than the ICN subscenario with an IP backhaul network. The average network usage is
increased for this ICN case by 12%. When IP is compared to ICN with a native ICN backhaul network,
a 35% reduction in terms average network usage is achieved.

Caching enabled
If we compare both IP subscenarios, we can conclude that the deployment of IP caching lowers the
average network usage by 15%. The ICN network with IP backhaul, is able to reduce the average
network usage by 16% when caching is used compare to the ICN(IP) deployment without caching.
For the ICN subscenario with ICN backhaul, the largest relative decrease in network usage can be
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observed. When caching is enabled, the average network usage is reduced by 24% compared to the
ICN(ICN) subscenario without caching.

We can conclude that the average network usage for the ICN (IP) subscenarios is the largest. If
we want to reduce the network usage for an IP based IoT deployment, we could use IP caching or ICN
with an ICN backhaul network.

Cache hit ratio
Six pie charts in Figure 5.12 show the fraction of requests/Interests which are being satisfied from a
cache.

Figure 5.12: Cache hit ratio for the ‘Smart factory’ baseline scenario. Width of confidence interval is +/- 0.3 %

No caching
The pie charts indicating the cache hit ratio for scenarios where caching is not used again show a trivial
result: all requests/Interests are satisfied by a producer.

Caching enabled
If we compare the IP and ICN cache hit ratio, we see that ICN is able to increase the amount of cache
hit ratio by respectively 7.3% and 7.7% for the ICN(IP) and ICN(ICN) subscenarios. This effect may be
explained by the fact that ICN allows nodes to cache data themselves. When a data message arrives
for a neighbouring IoT node, this message is then actively cached. A future Interest from the IoT nodes
for this data then may be satisfied from the node’s own cache. When caching is also enabled in the
backhaul network in the ICN(ICN) subscenario, we see only a minor increase in the number of cache
hit ratio. This may be explained by realising that Interests satisfied by the backhaul nodes, may also
be satisfied by, for example, a gateway router when caching is disabled in the backhaul. This results in
an end-to-end delay decrease but not in a higher cache hit ratio, since the Interest would nevertheless
be satisfied from a cache. If we compare these cache hit ratios to the ‘smart home’ results, we see that
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the gain between the cache hit ratio of IP and ICN is increased for this ‘smart factory’ scenario. This
can also be explained with the reasoning which is given above. Since the consumers in this scenario
reside inside the IoT islands overhearing all transmissions in the IoT island, a cache hit is more likely
to occur compared to the CL1 consumers in the ‘Smart home’ scenario.

Cache capacity usage
The cache capacity usage results for this ‘smart factory’ scenario are shown in Figure 5.13. The main
conclusion which can be drawn from this graph is that a cache size of 32 kB is sufficient for both ICN as
well as for IP supporting IoT networks. The results show that the cache capacity usage never exceeded
the maximum capacity. The IP subscenario with CoAP caching enabled used on average just 5,4% of
the cache capacity. In our simulations, the maximum cache capacity usage observed was 8.2%. The
ICN subscenario with IP backhaul has a similar cache capacity usage for both the gateway router as well
as the IoT nodes. This is in accordance with the cache everything strategy, where every transmission
in the IoT island is cached by every IoT node including the gateway. We observe a cache capacity
usage of 0% at the backhaul nodes, which is caused by IP not being able to cache ICN packets. When
we look at the ICN subscenarios with ICN backhaul network, similar cache capacity usages for the
gateway routers and IoT nodes can be observed. For this specific case, we additionally see that the
backhaul network also caches ICN messages. The shown confidence interval is considerably larger
than the other shown intervals. When many shortest paths between the IoT islands cross a specific
link, then this link is able to cache a lot of data from multiple islands causing a high cache capacity
usage. This effect is highly dependent on the generated topology, causing a wider confidence interval.
Nevertheless, we observe that both the maximum and average cache capacity usage are well below
the maximum cache capacity, reducing the end-to-end delay as shown in Figure 5.10.

Figure 5.13: Cache capacity usage results for the ‘Smart factory’ baseline scenario. The black error bars indicate the 95%
confidence intervals for the average cache capacity usage.
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5.2.2. Sensitivity analysis
In this sensitivity analysis, multiple parameters of the baseline scenario are varied, to test its effect on
both the IP and ICN cases. In this section we will present the sensitivity study results from the ‘Smart
factory’ scenario. An overview of the covered scenario aspects can be seen in Figure 3.3.

Number of IoT islands
We start by varying the number of IoT nodes per IoT island. We keep the total number of IoT nodes
equal to the maximum value for our simulation platform, which is 250 for this scenario. So if we, for
example, double the number of IoT Islands, then we half the number of IoT nodes per IoT island. The
results can be seen in Figure 5.14. When we look at the end-to-end delay, we see interesting behaviour

Figure 5.14: Sensitivity study results, when the number IoT islands is changed. The 95% confidence intervals are indicated
with error bars. Baseline value for the number of IoT islands is indicated with vertical dotted line.

if we have a small number of islands and thus a large number of nodes per island. The IP subscenarios
show a decreasing trend, where the delay starts high and decreases when the number of islands is
increased. The ICN subscenarios show a different trend, since the delay starts low and increases when
the number of islands is increased. We examined the simulation log files to find a possible explanation
for this behaviour. We found that this effect is most likely caused by ICNs stateful forwarding logic.
When we have a low number of IoT islands, a high number of IoT nodes are in the same IoT island.
There will be a lot of requests/Interests issued, which will be overheard and registered in the PIT of
all IoT nodes. Interest aggregation will prevent the transmission of duplicate Interests for the same
data. When a consumer wants to send an Interest for specific data which already is requested by
another node, it will only result in an updated PIT entry. So less interest transmissions are needed
compared to the number of requests in IP. This will result in a lower traffic load with a less congested
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wireless channel. IP based deployments do not use a stateful forwarding plane with Interest/request
aggregation. Therefore, a lower number of IoT islands with a higher number of IoT nodes will result in
a busier transmission channel causing higher end-to-end delays.

An increase in the number of IoT islands typically results in an increase in the number of hops,
since the IoT nodes are distributed over multiple islands connected to the backhaul network. This is
also clearly shown in the hop count graph. The network usage graph shows a similar ordering as in
the baseline scenario.

When we look at the cache hit ratio graph, a large difference is visible between IP and ICN for a low
number of IoT islands. When we have a small number of islands, IP caching is providing a lower cache
hit ratio compared to ICN because most consumers and producers reside in the same IoT island. The
gateway routers cache will only be consulted when requests are issued for producers in other domains.
When the number of islands is increased we see that the cache hit ratios start to converge since we
then also have a lower number of IoT nodes per island.

The cache capacity usage graphs show that a smaller number of IoT islands will result in a higher
cache capacity usage. When the number of IoT nodes per island is high, more requests/Interests will
be issued in the same IoT island, also resulting in a higher number of received data messages. These
data messages will be received and cached by the IoT nodes, causing a higher cache capacity usage.

Consumer number
The second sensitivity analysis focusses on the number of consumers in the ‘smart factory’ scenario.
The results can be seen in Figure 5.15.

Figure 5.15: Sensitivity study results, when the number of consumers is varied. The 95% confidence intervals are indicated
with error bars. Baseline value for the number of consumers is indicated with a dotted vertical line.
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We will first look into the dependence of the number of consumers on the end-to-end delay. For the
IP subscenario without caching, we see that the delay increases rapidly when the number of consumers
is increased. For example, when the number of consumers is doubled, then the observed traffic load
will also double since there is no stateful forwarding or caching.

The IP with caching and both ICN subscenarios without caching providing lower end-to-end delays,
and the delay increases at a lower rate. When ICN is used with caching enabled, we see an opposite
effect, the delay decreases when the number of consumers is increased. A similar effect was observed
in the ‘smart home’ sensitivity analysis. This can be explained by realising that there will be more
requests for the same data, allowing nodes to continuously have recent data in cache.

When we look at the average network usage we see again the same ordering as in the baseline
scenario. In terms of scalability, it can be said that the ICN(ICN) subscenario with caching uses the
network resources most efficiently when the traffic load increases.

From the cache hit ratio graph we see that the ICN subscenarios have a higher cache hit ratio than
the IP cases with CoAP caching enabled. The average and maximum cache capacity usage increase
when the number of consumers increases. The cache capacity is sufficient for all consumer numbers.

Data freshness period
Data may be cached for a duration specified by the data freshness period. After this time, the cached
data may be considered stale and the data should be removed from the cache. We varied the data
freshness period to see the effects on our covered key performance indicators. The results can be
seen in Figure 5.16.

Figure 5.16: Sensitivity study results, when the data freshness duration is changed. The 95% confidence intervals are
indicated with error bars. Baseline value for the data freshness period is indicated with a dotted vertical line.
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We start this time by looking at the cache hit ratio graph. From this plot it can be seen that a data
freshness period of 60 seconds is already enough to satisfy all Interests from a cache for the ICN
subscenario and 77% of all requests for the IP subscenario. The IP subscenario will never be able
to satisfy all requests from a cache in this ‘smart factory’ scenario, since requests for a producer in
the same IoT island will not cross the gateway. These 23% of requests will therefore be satisfied by
the producer itself. It is also interesting to note that even for the ICN scenario where 100% of the
data messages is retrieved from a cache, that the cache size of 600 messages is sufficient and will be
maximally used for 50%.

If we now look at the end-to-end delay we see a decreasing trend for the IP caching and ICN with
caching subscenarios when the data freshness period is increased. As mentioned earlier, a longer data
freshness period will result in an improved cache hit ratio. Interests or requests may thus be satisfied
by older cached data closer to the consumer. Similar behaviour can be seen in the hop count graph.
The network usage graph also shows that the network usage is reduced when more Interests/requests
can be satisfied from a cache, reducing the number of required hops.

Content popularity distribution
We now look into the dependence of the selected content popularity distribution on the performance of
the covered networking paradigms for this ‘smart factory’ scenario. We do this by varying the parameter
𝛼 of the Zipf distribution described in Section 4.2.1. We initially conducted this sensitivity study with
the baseline cache size and found that there was no significant effect observable when varying the Zipf
parameter for our selected (realistic) values. For this sensitivity study we therefore use the same small
cache size of 10 data messages as in the ‘smart home’ scenario, to make sure that the caches are
continuously filled at their full capacity. The results can be found in Figure 5.17.

The end-to-end delay graph outlines that all subscenarios without caching are not significantly influ-
enced by an increase of the Zipf parameter (𝛼). However, the subscenarios where caching is enabled
do show a decrease of the end-to-end delay for an increasing 𝛼. This can be explained by realising that
an increase in 𝛼 changes the probability mass function of the Zipf distribution since a higher request
probability will be assigned to the highest ranked data, making this data relatively more popular. When
many IoT nodes request similar data, it is more likely that this data is available in a cache. This is also
shown in the cache hit ratio graph, where it is shown that an increase in 𝛼 allows a higher number of
requests to be satisfied from a cache. The cache capacity usage graphs show that the caches use
their full capacity for all covered popularity distributions.

The average network usage graph shows a decrease of the the network usage when the Zipf pa-
rameter is increased. More requests can then be satisfied from caches, requiring fewer transmissions
and thereby lowering the network usage.
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Figure 5.17: Sensitivity study results, when the content popularity distribution is changed. The 95% confidence intervals are
indicated with error bars. Baseline value for Zipf parameter ( ) is indicated with vertical dotted line.

Cache size
The last sensitivity study done for this ‘smart factory’ scenario will cover multiple settings for the cache
size. The results can be seen in Figure 5.18. From Figure 5.18 we can determine how large the
caches should be for our ‘smart factory’ scenario. From the cache hit graph we see that an increase in
cache size from 100 to 1000 data messages does not result in a higher number of requests satisfied
by caching for both IP and ICN. Similar behaviour can be seen in the end-to-end delay, hop count
and average network usage graph where a cache size of 1000 messages does not change the results
compared to a cache size of 100 messages. It can therefore be concluded that the minimal cache size
to be able to fully exploit the benefits of caching will be 100 messages.
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Figure 5.18: Sensitivity study results, when the cache size is changed. The 95% confidence intervals are indicated with error
bars. Baseline value for the cache size is indicated with vertical dotted line.



6
Conclusion and future work

6.1. Conclusion
In this thesis we have presented a comparison of IP and ICN for IoT applications. Our main research
goal is to asses whether ICN is advantageous for the IoT, by comparing an ICN approach for IoT to an IP
approach for IoT applications. We started by defining two relevant IoT scenarios based on the McKinsey
report which describes the most promising IoT use cases for the future [12]. We selected a ‘smart home’
scenario and a ‘smart factory’ scenario, because these scenarios offered the opportunity to cover most
of our scenario aspects, either in the baseline scenario or in the sensitivity study. For the selection of
comparison metrics we first identified the two main advantages of ICN for IoT applications proposed in
literature: ICN should allow a more efficient use of network resources and deliver an improved content
delivery performance. Especially the more efficient use of network resources is an important feature
for IoT applications, since it is expected that a very large number of IoT devices will be connected to the
internet. These expected gains of ICN are due to use of a stateful forwarding plane, which additionally
enables the use of caching at the network layer. To allow for a fair comparison between ICN and IP we
therefore also compared ICN to IP deployments with application level caching. Moreover, we compared
IP to ICN deployments with two types of backhaul networks interconnecting the IoT islands. We covered
an ICN-aware backhaul, capable of interpreting and caching ICN messages. Additionally, we covered
ICN deployments with an IP based backhaul network. This ICN(IP) subscenario is considered to be
the most realistic short-term ICN deployment which can be easily connected to the current internet.
Five metrics were selected, which were used to verify these claims. The improved network efficiency
was examined based on the network usage meric and the improved content delivery performance was
examined with the end-to-end delay. A special cache hit ratio metric combined with the cache capacity
usage metric allowed us to asses the advantages of having caching in IP and ICN deployments. The
NS-3 based ndnSIM simulator was used to perform the experiments, since it offered the most well-
rounded evaluation platform.

In the baseline ‘smart home’ scenario we have seen that ICN is able to provide a small end-to-
end delay reduction compared to IP, for both the caching and non-caching subscenarios. This delay
improvement is very small and not significant for monitoring applications such as in ‘smart homes’.
The most realistic short term application of ICN where it is used on top of IP does not result in a more
efficient use of network resources. Compared to IP the average network usage is increased, when ICN
is combined with IP. ICN can only lower the average network usage when an ICN backhaul is used for
this ‘smart home’ scenario.

From the sensitivity study we can conclude that consumers in the backhaul contribute the most to
the average network usage, especially when ICN with IP backhaul is deployed. When the total number
of consumers increases we see that an ICN(ICN) deployment leads to an improved delay performance
and a reduced network usage. Moreover, we identified that the data freshness period setting and
the content popularity distribution have the strongest impact on the ICN(ICN) scenario with caching
enabled. The IP caching and ICN(IP) deployment with caching have a similar dependency on both
scenario aspects. From the cache size sensitivity study, we were able to conclude that a very small
cache which can store at least ten packets is already sufficient for the ‘smart home’ scenario.
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For the ‘smart factory’ scenario we can conclude that the use of ICN does improve the delay by 9-10
ms for both the caching as well as the non-caching subscenarios compared to IP for the baseline ‘smart
factory’ scenario. This translates to a relative delay reduction of about 25% if ICN and IP are compared
with caching disabled. This average delay reduction is relevant for the delay sensitive ‘smart factory’
subscenarios without caching, where process optimisation is used to improve production efficiency.
When we compare the delay tolerant subscenarios where caching is enabled for both ICN and IP we
see a relative delay reduction of about 35% when ICN is used. The average network usage is again the
highest for the ICN(IP) subscenarios. The largest reduction in network usage of 41% will occur when
ICN is deployed with an ICN backhaul instead of an IP-based deployment. From the sensitivity analysis
we can conclude that ICNs stateful forwarding plane helps to reduce the average end-to-end delay
about a factor six compared to IP when large scale wireless IoT islands are used. Moreover, when the
number of consumers is increased, the ICN deployments provide the lowest end-to-end delay. When
we look at the data freshness period setting and the content popularity distribution, we see that the
relative performance between our covered subscenarios does not change significantly. We also found
that a cache which can hold 100 data messages is already sufficient for the ‘smart factory’ baseline
scenario.

The following main conclusions can be drawn.

• ICN is able to reduce the end-to-end delay for all subscenarios. This delay reduction is however
not overly significant for delay tolerant applications, such as our ‘smart home’ scenario and the
‘smart factory’ scenarios with caching enabled. The delay improvement is relevant for our covered
delay sensitive ‘smart factory’ subscenarios.

• Deploying ICN with an ICN backhaul instead of IP does reduce the network usage for all sub-
scenarios. This is an important benefit since, as mentioned earlier, it is expected that the total
number of connected IoT device will massively increase in the coming years and a resource
efficient solution is needed to deal with this traffic increase.

• The realistic deployment of ICN with an IP backhaul will result in an increase of network usage
for all covered subscenarios, compared to a classical IP deployment. If an end-to-end delay
reduction is not needed, it is better to keep using IP.

• ICN seems to be better suited for scenarios with larger number of users and consumers, as we
saw in our sensitivity study. The use of ICN in small size scenarios such as, for example, farming
scenarios with a low number of consumers may benefit less from an ICN deployment, compared
to a large scale applications such as smart cities with a large number of users and interested
consumers.

6.2. Future work
Future work should focus on covering other IoT scenarios, for example, scenarios where different phys-
ical layer technologies are used, different topologies such as grid-based IoT networks and scenarios
with strict and explicitly known delay requirements.

Our developed simulation model can also be used in the future to compare Cisco’s hybrid ICN (hICN)
implementation [91] to other ICN-over-IP solutions. This new technology may remove the drawbacks
of having a higher network usage when ICN in transported over IP networks, since standard IP packets
are used as ICN messages.

Furthermore, future work may also focus on comparing IoT IP and ICN scenarios which include
mobile nodes. This could be an interesting research direction due to the native consumer mobility
support feature of ICN.
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Table A.1: Sheet with all considered prior art in the literature study.

Title Routing Architecture Caching strategy Naming Security Mobility Comparison Misc Survey
2017-2015

[95]

[96] x x x

[34] x

[97] x

[35] x

[38] x

[98] x x

[24] x x

[99] x

[100] x x

[101] x

[28] x

[102] x x

[103] x x

[33] x

[37] x

[32] x x x

[104] x x

[25] x x x

[105] x

[36] x x

[106] x

[20] x x

[21] x

[107] x

[108] x x

[26] x x

[109] x

[29] x x

[27] x x

[110] x

[111] x

[112] x

[23] x x

[113] x

[31] x

[114] x

[115] x

[116] x x

2014

[40] x

[117] x

[22] x x x

[118] x

[119] x

[120] x x

[121] x

[122] x x x

[123] x x

[124] x x x

[125] x

[126] x

<2014

[127] x

[128] x

[129] x

[130] x

[131] x x x

Total number of papers 12 12 5 8 9 3 5 16 12



B
Implementation

B.1. BRITE configuration
BeginModel

Name = 5
edgeConn = 1
k = −1
BWInter = 1
BWInterMin = 1024.0
BWInterMax = 1024.0
BWIntra = 1
BWIntraMin = 1024.0
BWIntraMax = 1024.0

EndModel

BeginModel
Name = 4
N = 20
HS = 1000
LS = 100
NodePlacement = 1
m = 2
BWDist = 1
BWMin = 1024.0
BWMax = 1024.0

EndModel

BeginModel
Name = 1
N = 20
HS = 1000
LS = 100
NodePlacement = 1
GrowthType = 1
m = 2
alpha = 0.64
beta = 0.47
BWDist = 1
BWMin = 1024.0
BWMax = 1024.0
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EndModel

BeginOutput
BRITE = 1 #1/0= enable / d i sab le output i n BRITE format
OTTER = 0 #1/0= enable / d i sab le v i s u a l i z a t i o n i n o t t e r

EndOutput



C
Results

C.1. ‘Smart home’
Hop count

Figure C.1: Hop count results for the ‘smart home’ baseline scenario. The blue shape shows the kernel density estimate (KDE)
for the delay distribution. The green error bars indicate the 95% confidence intervals for the hop count.
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72 C. Results

C.2. ‘Smart factory’
Hop count

Figure C.2: Hop count results for the ‘smart factory’ baseline scenario. The blue shape shows the kernel density estimate
(KDE) for the delay distribution. The green error bars indicate the 95% confidence intervals for the hop count.
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