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SUMMARY

Dikes are crucial for the protection against floods. One of the ways in which dikes can fail
is by the instability of the inner slope. Credible probabilities of failure for slope stability
are essential for the safety assessment of existing dikes and the design of dike reinforce-
ments. However, large uncertainties in soil properties of the dike and the subsoil often
lead to high failure probabilities for slope stability of dikes (just like other geotechnical
failure mechanisms). Uncertainties in soil properties mainly arise from limited data and
can be reduced by obtaining more information. However, the uncertainty reduction that
can be achieved with conventional methods such as soil investigation is limited by the
amount of soil investigation that can reasonably be carried out. For further reduction
of uncertainties and improvement of failure probability estimates, also other sources of
information will have to be considered.

This dissertation focuses on improving failure probability estimates by using ob-
served behaviour and performance of dikes. Examples of performance information are
survived loads such as flood water levels or proof loads, and measurements during such
loading conditions. The research uses Bayesian analysis to account for one or more
performance observations or measurements in estimating failure probabilities. Using
multiple case studies, this research identifies the observations and success factors lead-
ing to significantly lower failure probabilities. Furthermore, Bayesian decision analysis
was used to consider the cost-effectiveness (Value of Information) of performance infor-
mation, to determine which strategy of dike reinforcement and/or uncertainty reduction
leads to the lowest overall cost to comply with a given safety level.

The first source of performance information considered in this research is the sur-
vival of the construction phase of dikes, the so-called ’proven strength’. Successful con-
struction of this usually large load on a soft subsoil leads to a reduction in uncertainty
of the soil properties. Depending on the situation, the probability of failure can reduce
by more than a factor 10. The impact on the failure probability and a design is especially
significant when the load effects during construction differ little from the future flood
situation that is being assessed, such as is the case for dikes on soft subsoils.

In addition to ’proven strength’, settlement measurements during the construction
of a dike can be included to improve estimates of the probability of failure. In contrast
to survival information, incorporating settlement measurements can also lead to higher
failure probabilities, if settlements are larger than expected based on prior data. Settle-
ment measurements lead to significant uncertainty reduction for stability especially if
the uncertainty in the degree of over-consolidation of soft subsoil layers is large, which
affects both settlement and stability.

Other sources of information for slope stability are pore pressure monitoring and
proof loads. The cost-effectiveness of these measures depends on the expected uncer-
tainty reduction and the costs involved in obtaining the data, such as investment costs
and potential damage by proof loading. Proof loading appears to be cost-effective for
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vi SUMMARY

relatively expensive dike reinforcements of several million euros per kilometre of dike
in combination with low risk of damage due to proof loading (e.g. as a result of con-
tingency measures and damage control). Decision analysis enables to determine the
optimal strategy for combinations of dike reinforcement and investing in performance
information to comply with a given safety level. Pre-posterior decision analysis can be
used to determine the optimal proof load for which the expected total costs are the low-
est. Decision analysis also allows to identify the most effective method for uncertainty
reduction and the optimal sequence of measures.

Incorporating multiple data of the behaviour and performance of dikes thus im-
proves estimates of the failure probability for slope stability, leading to better safety
assessments and more efficient design of dike reinforcements. The cases considered
in this dissertation suggest that savings of several million euros per kilometre dike rein-
forcement are possible (10-35% compared to the current dike reinforcement costs), for
the Dutch situation with typically relatively high cost of dike reinforcements compared
to the costs and risks of obtaining performance information. The use of performance
information therefore contributes to improving the efficiency of managing flood risk in
the Netherlands, and in particular the dike reinforcements in the Dutch Flood Protection
Programme.

This research was carried out as part of the All-Risk programme which supports the
Dutch Flood Protection Programme in implementing the new safety standards for flood
protection. The programme, aimed at the development of new methods aim to improve
the efficiently of investments for flood protection, is largely funded by NWO, the Dutch
Research Council, and supported by contributions of numerous end-users.



SAMENVATTING

Dijken zijn cruciaal voor de bescherming tegen hoogwater. Een van de manieren hoe
een dijk kan falen is door het instabiel worden van het binnentalud: macro-instabiliteit.
Geloofwaardige faalkansen voor macro-stabiliteit zijn essentieel voor de veiligheidsbe-
oordeling van bestaande dijken en het ontwerp van dijkversterkingen. Grote onzeker-
heden in de eigenschappen van de dijk en de ondergrond leiden echter vaak tot hoge
faalkansen voor macro-stabiliteit van dijken (net zoals andere geotechnische faalmecha-
nismen). Onzekerheden in grondeigenschappen komen voornamelijk voort uit beperkte
gegevens en zijn reduceerbaar door meer informatie in te winnen. De onzekerheidsre-
ductie die met conventionele methoden zoals grondonderzoek bereikt kan worden is
echter begrensd door de redelijkerwijs uit te voeren hoeveelheid grondonderzoek. Voor
verdere reductie van onzekerheden en verbetering van faalkansschattingen zal dus ook
gekeken moeten worden naar andere informatiebronnen.

Dit proefschrift richt zich op het verbeteren van faalkansschattingen door gebruik te
maken van geobserveerd gedrag van dijken. Voorbeelden van gedragsinformatie zijn
overleefde belastingen zoals hoogwater of proefbelastingen, en metingen gedurende
dergelijke belastingsituaties. In dit onderzoek wordt Bayesiaanse analyse gebruikt om
faalkansen te berekenen die rekening houden met een of meerdere gedragsobservaties
of metingen. Met behulp van meerdere case studies identificeert dit onderzoek de obser-
vaties en succesfactoren die leiden tot significant lagere faalkansen. Vervolgens is met
behulp van Bayesiaanse beslisanalyse de kosteneffectiviteit (Value of Information) van
gedragsinformatie beschouwd, om te bepalen welke strategie van dijkversterken en/of
onzekerheidsreductie leidt tot de laagste totale kosten om te voldoen aan een vastgesteld
veiligheidsniveau.

De eerste bron van gedragsinformatie die in dit onderzoek beschouwd is, is het
overleven van de aanleg van dijken, de zogenaamde ’bewezen sterkte’. Het succesvol
opbrengen van deze doorgaans flinke belasting voor de slappe ondergrond leidt tot een
reductie van onzekerheid in de grondeigenschappen. Afhankelijk van de situatie kan de
faalkans meer dan een factor 10 lager zijn. De impact op de faalkans en een ontwerp is
vooral significant wanneer de belastingeffecten tijdens aanleg weinig verschillen van de
toekomstige hoogwater situatie die beoordeeld wordt, zoals bij dijken op slappe onder-
gronden.

Naast ’bewezen sterkte’ kunnen ook metingen van de zetting tijdens de aanleg van
een dijk worden meegenomen om schattingen van de faalkans te verbeteren. In tegen-
stelling tot informatie van overleven, kan het meenemen van zettingsmetingen ook lei-
den tot hogere faalkansen, als er meer zetting optreedt dan verwacht op basis van alleen
vooraf beschikbare gegevens. Zettingsmetingen leiden vooral tot significante onzeker-
heidsreductie voor stabiliteit als de onzekerheid in de mate van overconsolidatie van
slappe grondlagen groot is, welke zowel zetting als stabiliteit beïnvloedt.
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viii SAMENVATTING

Andere bronnen van informatie voor macrostabiliteit zijn waterspanningsmonito-
ring en proefbelastingen. De kosteneffectiviteit van deze maatregelen hangt af van de
verwachte onzekerheidsreductie en de kosten gemoeid met het inwinnen van de gege-
vens, zoals investeringskosten en potentiële schade bij proefbelastingen. Proefbelastin-
gen blijken kosteneffectief voor relatief dure dijkversterkingen van meerdere miljoenen
euro per kilometer dijk in combinatie met lage risicokosten van schade door proefbe-
lasten (bijvoorbeeld als gevolg van beheersmaatregelen). Beslisanalyse maakt het mo-
gelijk om te bepalen wat de optimale strategie is van combinaties van dijkversterken en
investeren in gedragsinformatie, om een vastgesteld veiligheidsniveau te bereiken. Pre-
posterior beslisanalyse kan gebruikt worden om de optimale proefbelasting te bepalen,
waarvoor de verwachte totale kosten het laagst zijn. Beslisanalyse stelt ons ook in staat
om te identificeren welke methode voor onzekerheidsreductie het meest effectief is, en
om te bepalen wat de optimale volgorde van maatregelen is.

Het meenemen van meerdere gegevens over het gedrag en de prestatie van dijken
leidt dus tot betere schattingen van de faalkans voor macro-stabiliteit, wat leidt tot be-
tere veiligheidsbeoordelingen, en efficiëntere ontwerpen voor dijkversterkingen. De be-
schouwde casussen in dit proefschift suggereren dat besparingen van enkele miljoenen
euro per kilometer mogelijk zijn (10-35% ten opzichte van de huidige dijkversterkings-
kosten) voor de Nederlandse situatie, met typisch relatief hoge kosten voor dijkverster-
kingen ten opzichte van de kosten en risico’s voor het inwinnen van gedragsinformatie.
Het gebruiken van gedragsinformatie draagt dus bij aan het verbeteren van de efficiëntie
van de beheersing van overstromingsrisico’s in Nederland, en in het bijzonder de dijkver-
sterkingen in het Hoogwaterbeschermingsprogramma.

Dit onderzoek is uitgevoerd als onderdeel van het All-Risk programma dat het Hoog-
waterbeschermingsprogramma ondersteunt bij de implementatie van de nieuwe veilig-
heidsnormen voor waterveiligheid. Het programma, gericht op de ontwikkeling van
nieuwe methoden om investeringen voor waterveiligheid efficiënter te maken, is gro-
tendeels gefinancierd door NWO, de Nederlandse Organisatie voor Wetenschappelijk
onderzoek, en ondersteund met bijdragen van een groot aantal eindgebruikers.
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1
INTRODUCTION

An instrument too often overlooked in our technical world is a human eye connected to
the brain of an intelligent human being.

Ralph Peck

Dikes play a pivotal role in the protection of people and goods against flooding in flood
prone countries such as the Netherlands. One of the ways how dikes fail, is through insta-
bility of the inner slope. Estimates of the probability of slope instability of dikes involve
high uncertainty. Those estimates can be improved by considering additional informa-
tion contained in observations of the performance of dikes. This chapter introduces the
research topic and its relevance, and it provides an overview of the research questions and
main contributions of this dissertation.
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2 1. INTRODUCTION

1.1. RELEVANCE OF FLOOD PROTECTION IN THE NETHERLANDS
Around 60% of the Netherlands is vulnerable to flooding. A major part of the country
is below the mean sea level, and other parts of the country are liable to floods from
high river discharges (ENW, 2017), see Figure 1.1. A large-scale flood has disastrous
consequences for the Netherlands, as it disrupts large parts of the society and leads
to considerable damage to buildings, roads, and the environment. Besides the direct
damage, flooding also negatively affects economic welfare because approximately 70%
of the Gross Domestic Product is generated in these areas (MinIE, 2015). Moreover, a
flooding results in many casualties and loss of lives because over 9 million people live in
flood prone areas in the Netherlands.

A sufficiently safe and reliable flood protection system is thus pivotal for the Nether-
lands. The flood defence system is assessed for compliance with the required safety level
at least once in 12 years. As of 2017, new safety standards have been defined. Contrary to
the former safety standards which were based on the exceedance frequency of hydraulic
loads, the current safety standards are defined in terms of acceptable probabilities of
flooding, based on different risk acceptance criteria, namely individual risk, economic
risk, and societal risk, see (ENW, 2017; Jonkman et al., 2018).

Figure 1.1: Map of the Netherlands showing the maximum flooding depth. Data source: Climate Impact Atlas.
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By 2050, all flood defences must comply with the new safety standards. That means,
the failure probability ought to comply with the acceptable failure probability require-
ment. With over 3000 km in length, earthen dikes form the largest part of the Dutch
primary flood protection system. The system further consists of dunes and numerous
other structures, such as flood gates and storm surge barriers.

Anno 2021, a large share of the dikes does not comply with the safety standards,
see Figure 1.2. Mainly dikes sections in the river area have an estimated probability
of failure that is several times higher than the acceptable probability. Therefore, more
than 1600 km of dikes need reinforcement until 2050 (HWBP, 2020). The Dutch Flood
Protection Program (in Dutch: Hoogwaterbeschermingsprogramma (HWBP)) coordi-
nates these dike reinforcement projects. Especially in densely built areas, space for dike
heightening and widening is limited, making dike reinforcement projects complex. Con-
sequently, the costs are high and there is a continuous search for opportunities to make
flood protection more efficient. The All-Risk research project (of which this research
is part of) supports the HWBP with the implementation of the new safety standards
by developing knowledge and enhanced methods which ought to contribute to a more
efficient flood risk management.

Deterministic and semi-probabilistic methods can be used to estimate failure prob-
abilities, but are typically based on conservative assumptions for the uncertain parame-
ters, and can hence lead to conservative estimates of the safety. Full-probabilistic meth-
ods, on the other hand, provide less biased estimates because all uncertainty can be

Figure 1.2: Safety assessment per dike segment, status of October 2021. Green and yellow dike segments
comply with the safety standards, orange and red do not. Source: Waterveiligheidsportaal (2021)
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considered explicitly. Probability estimates can be improved by including additional in-
formation using Bayesian inference. Improved probability estimates result in enhanced
safety assessments of existing dikes and dike reinforcements.

One of the most important failure modes of earthen flood defences is instability of
the inner slope: the mass-movement of a soil wedge along a sliding plane at the land-
side slope of a dike, see Figure 1.3. When water levels rise, pore water pressures in and
under the dike increase, decreasing effective stresses and shear strength. The driving
moment of the soil mass can cause the exceedance of the maximum shear resistance
along a sliding plane, causing a large soil mass to slide off. After slope instability, dikes
may be damaged to such an extent that it cannot withstand the flood water level, for
example when the crest height is decreased or when the vulnerable dike core material is
exposed. Under conditions of high water levels and wind waves, wave overtopping and
subsequent instabilities can lead to a dike breach (‘t Hart et al., 2016). All these processes
must be taken into account to estimate the probability of flooding, for example using
event trees, see among others Calle et al. (2003); Kanning et al. (2019); Van der Krogt
et al. (2019); Van der Meer et al. (2019). As slope instability is an important initiating
mechanism of dike failure, this dissertation focuses on the probability of occurrence of
slope instability. Throughout this dissertation, ’failure probability’ refers to the probabil-
ity of occurrence of this geotechnical failure mode, and not the probability of flooding.
Also, the term ’reliability’ is often used in this dissertation, which is a decreasing function
of the failure probability.

Figure 1.3: Instability of the inner slope of the Westfriese Zeedijk near Sint Maarten in Noord Holland on 15
September 1994 (source: Deltares Visuals)
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1.2. OBJECTIVE AND RESEARCH QUESTIONS
Estimates of the reliability of slope stability are crucial for safety assessments of dikes
and for the verification of reinforcement designs. For reliability analyses it is essential to
employ probability theory, which requires quantification of the uncertainties involved,
e.g. by means of probability distributions. For the stability of dike slopes on soft soils,
the undrained shear strength of soft soil layers underneath is one of the most important
input parameters. The knowledge about this parameter is usually based on prior knowl-
edge from design codes (such as Eurocode 7 (CEN, 2004) or ISO2394 (Phoon and Retief,
2016)) or data from local soil investigation.

As slope stability involves a volume of soil, cone penetration tests (CPTs) are often
used to estimate the undrained average shear strength because the measurements are
virtually continuous over depth. To estimate undrained shear strength from cone resis-
tance, a transformation model is needed, for example site-specifically calibrated with
shear tests and CPTs in close proximity. In that case, various error sources (due to spatial
variability, measurement errors and statistical uncertainty) propagate through the trans-
formation model into the total uncertainty of the estimated spatial average undrained
shear strength (e.g. Cao et al. (2017); Phoon and Kulhawy (1999a,b)). For adequate
estimates of the total uncertainty of the spatial average, it is important to account for
the different error sources appropriately.

From the Bayesian view on the concept of probability, probability reflects the degree
of belief about a state of nature depending on the available information as elaborated
by Baecher (2017). In the contexts of flood risk, an annual failure probability of a dike
section is not the frequency of failure, but the chance that failure occurs at the consid-
ered section in a given year. The Bayesian view on probability that is adhered to in this
work also implies that the estimates are no ’true’ or ’fixed’ values, but change with new
information.

Large uncertainty can lead to high failure probabilities for slope stability (compared
to the safety standards). Unlike aleatory uncertainty (actual randomness), epistemic
uncertainty (due to a lack of knowledge) can be reduced with additional information
(e.g., Baecher and Christian (2005); Straub and Papaioannou (2015); Papaioannou and
Straub (2012). Additional soil investigation can reduce uncertainty, but the reduction
in uncertainty is bounded by the amount of soil investigation that is practically feasible.
Observations of historical or past performance can lead to significant uncertainty reduc-
tion and improved estimates of the failure probability. The degree to which epistemic
uncertainty can reduce, depends on how informative the observation is.

Observations that relate to the performance of slope stability of dikes are the survival
of loading conditions. Survival observations can be used to improve the estimates of
failure probability for future conditions by incorporating the information into the re-
liability analysis through Bayes Theorem (Bayes, 1763). For dikes, it was shown that
incorporating survival information in the reliability analysis may lead to lower failure
probabilities, especially if a critical load was survived, see Zhang et al. (2011); Schweck-
endiek et al. (2014); Li et al. (2015). The construction phase is one such critical load
condition, because raising the embankment increases the driving force, and excess pore
water pressures result in lower strength. So we want to know how to incorporate ’con-
struction survival’ in the reliability estimates, and in which cases the information leads
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to a significant update of the reliability.
Also other observations are available during the construction, for example settle-

ment measurements and pore pressure monitoring. Incorporating information from
multiple observations reduces uncertainty further compared to single sources of infor-
mation. At the same time, the computational cost to estimate the (updated) probability
of failure increases with the amount of information considered. Especially when the
model runs require a few seconds or more, solving this reliability updating problem
becomes very challenging, highlighting the need for efficient algorithms.

In contrast to conventional sources of information (e.g. site investigation), perfor-
mance information is a direct observation of the performance (the stability of the slope),
and therefore, it should be particularly valuable. Performance observations such as
historically survived water levels are often readily available, or can be obtained by for
example proof loading. Yet, proof loading and pore pressure monitoring are costly mea-
sures, so the cost-effectiveness needs to be evaluated. Bayesian Decision Theory (Raiffa
and Schlaifer, 1961) can be used to determine the Value of Information of performance
information, and to determine the optimal strategy of investing in uncertainty reduction
and reinforcing dikes, leading to the lowest Total Cost.

In general, reducing uncertainty with readily available or cheap to obtain perfor-
mance observations, can lead to more efficient flood risk management. Though the
concepts and techniques of (pre-)posterior analysis and Bayesian decision analysis are
available, the effect and cost-effectiveness of considering survival information during
the construction phase and multiple sources of performance information are not ex-
amined so far. The objective of this dissertation is thus to improve probabilistic safety
assessments of dike slope stability by considering performance information. The main
research question and sub-questions are defined as follows:

How does performance information affect reliability estimates for dike slope stability?

1. To what extent is the uncertainty in the undrained shear strength reducible?

2. How does the performance information contained in the survival of the construc-
tion phase affect the reliability estimates for slope stability of dikes?

3. What is the effect of combining survival and settlements (multiple performance
observations) during the construction of dikes?

4. How cost-effective are proof loading and pore water pressure monitoring in dike
reinforcements?

1.3. OUTLINE
Each chapter of this dissertation is centred around one research question, each focus-
ing on a specific aspect of improving reliability estimates of slope stability of dikes, see
Figure 1.4.

Chapter 2 provides the relevant background about slope reliability analysis, Bayesian
analysis, and decision analysis. Chapter 3 focuses on establishing the priors for the un-
certainty in the undrained shear strength when estimated from CPTs and a site-specific
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Figure 1.4: Structure of this dissertation

transformation model. The aim is to show to what degree uncertainty in undrained
shear strength is epistemic, and hence, reducible. A method is proposed to estimate the
uncertainty, particularly concentrating on the role of averaging of all spatially variable
error components.

The two next chapters are directed towards improving reliability estimates of dikes
by incorporating the information contained in performance observations. Chapter 4
specifically looks at how to use the observation of ’construction survival’. The proposed
Bayesian Updating approach is demonstrated for several case studies, providing insight
in the conditions influencing the degree to which the reliability changes with new infor-
mation.

Chapter 5 elaborates on the effect of incorporating survival information and settle-
ment measurements during the construction phase to explore the effect of using mul-
tiple performance observations on the reliability analysis. As the analysis is performed
with computationally expensive models, different approximations are used to make the
analysis computationally feasible so that it can be applied in practice too.

Finally, Chapter 6 proposes a framework to evaluate the Value of Information that
is obtained by proof loading and/or pore water pressure monitoring. Using this frame-
work, the cost-effectiveness of proof loading and monitoring for dike reinforcements is
evaluated.
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1.4. ORIGINALITY
The core of the contribution of this work lies in the use of performance observations
for improving reliability estimates for slope stability of dikes. The main novelty is in the
use of observations that have not been considered to date, such as construction survival,
settlement measurements, and the combination of multiple performance observations.
Furthermore, advances have been made in improving prior uncertainty estimates, and
in determining whether uncertainty reduction is efficient for flood risk reduction.

The novelty of Chapter 3 is in the extensive analysis of how the total uncertainty of
prior estimates is composed of various errors, when using a site-specific transformation
model to estimate soil properties with indirect measurements such as CPTs. Specifically,
the degree to which averaging of various random and systematic errors plays a role in
estimating the total uncertainty of spatial average parameters had not been addressed
conclusively in literature as now also acknowledged by Van den Eijnden and Hicks (2019)
and Ching et al. (2020).

The criticality of slope stability during the construction of embankments is widely
known, but the impact of considering this survival information on reliability estimates
had never been demonstrated quantitatively for dike slope stability. Chapter 4 exten-
sively investigates this source of information and the effect of reliability updating with
different design flood water levels, and for different standard dike types.

The novelty of Chapter 5 is in the combination of multiple performance observations
(slope stability survival and settlement) during the construction of dikes, using geotech-
nical models with the same level of complexity and computational expense as in practice.
Though the application of nested simulation methods for solving the Bayesian inference
problem is quite common in cosmology and particle physics (Feroz et al., 2009), their
application in reliability analysis of civil engineering problems is new.

The application of decision theory and pre-posterior analysis in Chapter 6 has led
to original insights in the role that proof loading and pore pressure monitoring can play
in dike improvement projects in terms of benefits, costs and risks. Also the Value of
Information analyses on using both these measures in combination, and how decisions
for one measure influence the VoI of another were novel.

The various fictitious but realistic cases throughout this dissertation provide insights
into the parameters and conditions determining the impact of reliability updating. The
case study of the Eemdijk test dike demonstrates that the methods can also be applied to
real conditions, as encountered in dike safety assessments and reinforcement projects.

1.5. ALL-RISK PROGRAMME
This research is part of the All-Risk programme which supports the Dutch Flood Protec-
tion Programme with implementing the risk-based safety standards for flood protection.
The research aims to develop new methods for improving the efficiency of investments
for flood protection. The All-Risk programme is carried out by five different universities
in the Netherlands in cooperation with a large network of over 30 national and interna-
tional partners consisting of government agencies, research institutes and companies.
The programme is largely funded by NWO, the Dutch Research Council, and supported
by contributions of numerous end-users.
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BACKGROUND AND METHODS

Probability theory is nothing but common sense reduced to calculation.

Pierre-Simon Laplace

This dissertation aims at improving reliability estimates for slope stability of flood defences
by reducing uncertainty with performance information. This chapter provides the rel-
evant background of uncertainty, Bayesian reliability updating, and Bayesian decision
making. Several overarching topics are introduced such as safety assessment of flood
defences in the Netherlands, prior and posterior analysis, reliability methods, limit state
formulations for slope instability, and the framework for Bayesian decision analysis.

9
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2.1. SAFETY ASSESSMENT OF FLOOD DEFENCES
The Water Act (Waterwet, 2021) sets out the new flood protection standards which are
based on acceptable risk (individual, economic, and societal). The acceptable flood
probability offers a basic level of protection based on Local Individual Risk (in Dutch:
Lokaal individueel Risico (LIR)), and a higher level of safety where economic and societal
costs of flooding are relatively high. The acceptable annual probabilities of flooding are
sometimes referred to as the ’requirement’ or the ’target probability’, denoted by PT, or
in terms of the reliability index βT , see Equation 2.1, where Φ−1 is the inverse of the
standard normal distribution.

βT =Φ−1 (1−PT) . (2.1)

Flood defences are large systems with multiple sections, and can fail due to different
failure modes. The failure probability of a dike segment is therefore calculated per failure
mechanism and per dike section, and afterwards combined into a system probability.
The failure probability is commonly estimated for cross-sections of approximately 50m
wide, and are representative for a section of roughly 100-1000 m long, see Figure 2.1.

Where flood defences in the Netherlands do not comply with the safety standards,
dikes need reinforcement. It is, however, difficult and time consuming to find an optimal
design given the local boundary conditions of each dike section, meeting the required
reliability on a system level, though a first proof of concept is presented in Klerk et al.
(2021)). Therefore, a simplified approach is to break down the maximum failure proba-
bility for the (series) system into requirements for independent elements, such as dike
sections and failure modes, see e.g. Jongejan et al. (2020):

PT,section,mode =
ω ·PT

Nlength
. (2.2)

Here ω defines the fraction assigned to an independent failure mode, and Nlength the
number of equivalent independent dike sections to account for the length-effect, see
Kanning (2012); Schweckendiek et al. (2013); Jongejan et al. (2020). Nlength depends on

segment

section

cross-section

Figure 2.1: Definitions of cross-section, section, and segment in a dike system.
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a, the fraction of the length of a dike segment susceptible to the failure mode, and b the
length of one independent equivalent dike section, see Equation 2.3. For slope stability
of dikes the default starting point is ω = 0.04, a = 1/30, and b =50 m, see TAW (1989);
WBI (2013); Jongejan (2017). A target reliability for slope stability at a section level is the
starting point in this dissertation.

Nlength = 1+a ·Lsegment/b. (2.3)

2.2. RELIABILITY ANALYSIS

2.2.1. PRIOR PROBABILITY OF FAILURE
In reliability analysis we estimate the probability of the event of failure F. When the
function g (x) < 0 describes the performance of the system (based on an outcome (reali-
sation) of a stochastic input x), the event of failure is defined as F = {

g (x) < 0
}
. The failure

probability P f is calculated as follows:

P f = P (F) =
∫

g (x)<0
fX(x)dx, (2.4)

where fX is the probability density function (pdf), X a vector of random variables, and x
a realisation.

2.2.2. RELIABILITY METHODS
Equation 2.4 can be solved by numerical integration, but other methods and algorithms
are more efficient to estimate P (F). This section states common and popular methods
used in this dissertation, not to give a full overview of possible methods. A compre-
hensive overview can be found for example in Melchers and Beck (2018); Lemaire et al.
(2009).

Crude Monte Carlo (CMC) is a simulation method based on the Laplace formulation
P (F) = n(F)/N (Laplace and Truscott, 1951). For N → ∞, the method is exact. An im-
plementation to estimate the failure probability with Monte Carlo using the indicator
function 1[·] is:

P̂ f =
1

N

N∑
i=1

1
[
g (xi) < 0

]
. (2.5)

The ˆ denotes an estimate for the failure probability. The relative error of P̂ f is esti-
mated using Equation 2.6. It follows that the relative error in the probability is less than
5% if the number of failing realisations is larger than 400, for an example.

VP̂ f
=

√
var

[
P̂ f

]
E

[
P̂ f

] =
√

P̂ f
(
1− P̂ f

)
/N

P̂ f
≈ 1√

N · P̂ f

. (2.6)

Plenty of variants on CMC are available, mostly to reduce the required sample size
to estimate the probability with the same accuracy, for example Monte Carlo Impor-
tance Sampling (MCIS), Directional Sampling, or adaptive versions (Grooteman, 2011;
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Figure 2.2: Definitions of FORM for two dimensions in standardized normal space

Waarts, 2000). MCIS is implemented similar to Monte Carlo, but using weight factors,
wi = f (X)/ f∗(X) to correct for a different sampling pdf f∗ instead of f in Chapter 4.

Another noteworthy reliability method is subset simulation (Au and Beck, 2001),
which has been demonstrated as one of the most efficient and robust reliability methods,
for reliability problems with large dimensions, low failure probabilities, and Bayesian
Updating, for example in Papaioannou et al. (2015); Jiang et al. (2018); Betz et al. (2018);
Van den Eijnden and Hicks (2017); Ahmed and Soubra (2012); Hsu and Ching (2010);
Au et al. (2007). In subset simulation, the failure probability P (F) is calculated by the
product of the conditional failure probabilities of multiple intermediate failure events
(Au and Beck, 2001), see Equation 2.7.

P (F) = P (F1)
m∏

i=2
P (Fk |Fk−1). (2.7)

The failure event F is denoted by a sequence of intermediate events (subsets) satisfying
F1 ⊃ F2 ⊃ ... ⊃ Fk . Markov chains (using the MetropolisHastings algorithm) can be used
to efficiently simulate the conditional samples in each subset (Metropolis et al., 1953;
Hastings, 1970; Papaioannou et al., 2015).

The First Order Reliability Method (FORM) is a reliability method based on a first-
order approximation of the limit state g (X) = 0 in the standardized normal space, i.e.
an equivalent random variable space consisting independent standard normal random
variables U . According to Hasofer and Lind (1974), the reliability index β is equal to the
shortest distance from the origin to the surface described by g (U) = 0, see Figure 2.2. The
point on the limit state closest to the origin is called the design point.

Fragility curves are a convenient way to calculate the slope reliability of dikes, see
Schweckendiek et al. (2017). Fragility curves describe the conditional failure probability
given a (load) variable, for example the water level h:



2

14 2. BACKGROUND AND METHODS

P (F|h) = P (g (X,h) < 0). (2.8)

Here X is the vector of random variables except for h. The annual probability of failure
is obtained by combining P (F|h) with the pdf of the annual maxima of the load h as
follows:

P (F) =
∫

P (F|h) f (h)dh. (2.9)

Fragility curves can, in principle, be made for any (load) variable. This approach is fol-
lowed in Section 6.3.2.

2.2.3. POSTERIOR PROBABILITY OF FAILURE
Posterior reliability analysis is the procedure to update prior reliability estimates, based
on Bayes’ Rule (Bayes, 1763) and the formulation of conditional probability. Zhang et al.
(2011) distinguish two methods to incorporate additional information using Bayesian
Updating: the indirect method and the direct method, which are discussed below.

DIRECT METHOD FOR RELIABILITY UPDATING

The direct method is a direct application of the Bayes theorem, with F the failure event,
and ε the event of the observation, see Equation 2.10.

P (F|ε) = P (F∩ε)

P (ε)
, (2.10)

The observation event is expressed in terms of an observation function h(x). Depending
on the type of information, the observation is described as follows:

• inequality information; when the observation has information whether or not a
limit state is exceeded, such as survival information: h(x) < 0;

• equality information, when the observation has information about the measured
performance value, such as pore pressure or settlement measurements: h(x) = 0.

For inequality information, we write Equation 2.10 as follows:

P (F|ε) = P (F∩ε)

P (ε)
= P

(
g (X) < 0∩h(X) < 0

)
P (h(X) < 0)

. (2.11)

For equality information, the probability that h(X) = 0 is equal to 0, which makes
it impossible to evaluate. Therefore, the equality information can be transformed into
inequality information (Straub, 2011; Straub and Papaioannou, 2014), so the reliability
updating problem can be evaluated as a standard reliability problem. Here the observa-
tion function is:

h(x,u) = u −Φ−1(c ·L(x)), (2.12)

where u is the outcome of a standard normally distributed random variable, and L(x)
the likelihood of the observation ε: P (ε|x). The scaling constant c ensures that 0 ≤ c ·
L(x) ≤ 1. The Φ−1 is the inverse cumulative distribution function of the standard normal
distribution. An alternative form of Equation 2.12 is

h(x,π) = ln(π)+ l̂ − ln(L (x)) , (2.13)
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in which the logarithm of the observation function is taken. In this notation u is replaced
by a standard uniformly distributed random variable π, and ln(c−1) is denoted by l̂ . In
this formulation the limit state has a more appropriate shape in evaluating P (h(x) < 0),
leading a smoother transition of the failure domains in an implementation with subset
simulation (Betz et al., 2018).

The observation event can also describe multiple independent observations: ε =
ε1 ∩ε2 ∩ .... In this case, h(X) < 0 should be read as

n⋂
hi < 0 with hi the individual limit

state belonging to the observations εi . For equality information, multiple observations
can also be aggregated by multiplying the likelihoods of those observations. L(x) should
then be read as

∏n Li (x).

INDIRECT METHOD FOR RELIABILITY UPDATING

In the indirect method, the parameter distribution fX is first updated to fX|ε, using the
likelihood of the observation ε: L(x) = P (ε|x), see Equation 2.14.

fX|ε(x) = L(x) fX(x)∫
X L(x) fX(x)dx

. (2.14)

Thereafter the probability is recalculated using the updated distribution, using Equation
2.15.

P (F|ε) =
∫

g (x)<0
fX|ε(x)dx. (2.15)

The indirect method is generally favourable when information relates to best esti-
mates, and parameter distributions can be easily reconstructed, for example, through
updated values of the distribution parameters (e.g. Jiang et al. (2020)). For survival ob-
servations (which provide information about inequalities), the likelihood function takes
the value 1 if a realisation is in accordance with the observation, and else 0, as formulated
in Straub and Papaioannou (2015).

2.2.4. NESTED SAMPLING
Equation 2.11 can be evaluated using standard reliability methods. A method that is
specifically suited for Bayesian inference is nested sampling. Nested sampling tech-
niques (e.g. the MultiNest algorithm) are aimed at calculating

∫
X L(x) fX(x)dx and the

posterior distribution fX|ε, and promise to be efficient when the total evidence (the inte-
gral) is low, posterior distributions are multimodal, and in high dimensions.

The basis for the MultiNest algorithm (Feroz et al., 2009) is nested sampling (Skilling,
2004, 2006). With nested sampling the evidence P (ε) =∫

L(x)dY is evaluated by integra-
tion over dY =π(x)dx, the element of prior mass (π) and x a realisation of the unknown
parameters. Notice that the function π is different from the stochastic realisation π in
Equation 2.13. The simplest form to estimate the evidence is to sort the likelihood values
for the realisations x and integrate the likelihood values over Y , see Figure 2.3.

The basic routine of nested sampling starts with an initial set of realisations (so-
called live points) and iteratively stores the realisation with the lowest likelihood. The
sample is replaced with a new sample Yi < Yi−1, where Li > Li−1. By sampling with
the prior density π(x) constrained with Li > Li−1, the new sample automatically meets
Yi < Yi−1, avoiding the sorting of Y . New samples therefore follow the shape of likelihood
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Figure 2.3: Left: Nested likelihood contours sorted to enclosed prior mass Y . Right: integration of the evidence.
Source: Feroz et al. (2019).

contours, see Figure 2.3. The MultiNest algorithm improves the sampling of new points,
through an ellipsoidal rejection sampling scheme. Nested Sampling and the implemen-
tation with rejection sampling is further explained in Skilling (2004, 2006), and MultiNest
in Feroz et al. (2009).

One disadvantage of the nested sampling methods is that there is no rigorous stop-
ping criterion, and that the stopping criterion does not relate to the probability of failure.
The stopping criterion of MultiNest defines the maximum estimated remaining evidence
after iteration i , estimated by Zest = Lmax ·Yi . The algorithm stops with adding points
when the expected evidence contribution from the current set of live points is less than
a user-defined tolerance: log(Zi +Zest)− log(Zi ) < δlogz.

2.2.5. METAMODELING

Metamodels (also known as surrogate models) predict the outcome of a model, based on
only a limited number of evaluations of the actual model, reducing the computational
time. Therefore, metamodels can improve the efficiency of reliability and Bayesian analy-
sis with computationally expensive models. Examples of metamodelling approaches are
(polynomial) response surface methods, Kriging-based methods, or Machine Learning-
based methods. Teixeira et al. (2021) gives a recent overview of different methods, and
Li et al. (2016) gives an extensive literature study of application of response surfaces for
slope reliability.

An efficient metamodelling method for estimating failure probabilities is Active
learning combined with Kriging and Monte Carlo Simulation (AK-MCS) (Echard et al.,
2011). One of the main advantages of AK-MCS is that next added points are targeted
around the limit state, based on the uncertainty estimates based on Kriging and the
learning function. Eijnden et al. (2021) presented a Kriging-based metamodelling ap-
proach especially targeted at (target) reliabilities in the range of 3 . β. 6, models with
10 to 20 variables, and possibly a noisy response, see Figure 2.4.

The Kriging model (Gaussian Process regression) predicts the response of the limit
state function g by a mean function m and a covariance function K (the kernel), such
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Figure 2.4: Example of a Kriging metamodel for prediction of the limit state outcome g (U ). The left pane
shows an example of an overfitted model, the right pane shows an example where overfitting is prevented by
introducing a noise term in the kernel. Source: Eijnden et al. (2021).

that the prediction ĝ (u) = m(u)+K1/2ξ⃗. Herein, K = k(u,u|⃗θ), is the kernel matrix with θ⃗

internal shape parameters of the kernel, and ξ⃗ a standard normal multivariate.
The metamodel ĝ (u) replaces the actual limit state function g (x) in the evaluation of

the failure probability using Equation 2.4. The formulation is in standard normal space
with uncorrelated variables U by transforming the stochastic parameters X from (corre-
lated) parameter space to standard normal space. Basically, one can use any simulation
model to evaluate the failure probability in combination with a metamodel. The imple-
mentation of Eijnden et al. (2021) obtained efficient results using an adaptive multiple
importance sampling. For the scientific background and details regarding the imple-
mentation, refer to Eijnden et al. (2021).

2.3. SLOPE RELIABILITY

2.3.1. SLOPE STABILITY MODELLING
Slope stability can be analysed using various methods such as analytical methods (e.g.
Limit Equilibrium method (LEM)) or numerical methods (e.g. Finite Element Methods
(FEM) (e.g. Griffiths and Lane (1999); Griffiths and Fenton (2004)), Finite Difference
Methods, or Material Point Methods (Wang et al., 2016; Remmerswaal et al., 2021)). In
this dissertation we use the Limit Equilibrium method because it is attractive in terms of
computation time. Other advantages of the LEM method compared to more advanced
models are its simplicity and robustness (Juang et al., 2018), the relatively extensive verifi-
cation with case histories, and the LEM method is very common in engineering practice.

LEM analysis considers the equilibrium of a soil mass. The ratio of mobilized shear
force and the available shear force along a potential slip plane (Fellenius, 1936) indicates
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Figure 2.5: Uplift-Van slip plane (dashed) with an active and passive circular part and a horizontal pressure bar

the stability, expressed by a factor of safety (Fs ). This dissertation considers the equi-
librium in 2-D plain strain conditions, based on the method of slices (Morgenstern and
Price, 1965). Many methods exist to analyse slope stability, see (Bishop, 1955; Spencer,
1967), and Van (2001) (Figure 2.5) among others. The methods mainly differ in the as-
sumptions regarding the shape of the slip plane, the interslice forces, and the require-
ments concerning the force balances. In this dissertation, the D-Stability software with
Bishop and Uplift-Van method is used for stability calculations with LEM. For the imple-
mentation, reference is made to Brinkman et al. (2018); Deltares (2019).

Soil strength can be modeled with different constitutive models, such as Mohr-
Coulomb among others. When it comes to slope instability and ultimate limit states,
the critical state concept suits well to a situation of continuous shear deformation along
an entire slip plane (with large strains and no peak strength) according to the Critical
State Soil Mechanics (CSSM) framework (Schofield and Wroth, 1968). In this concept,
the shear strength for drained soils such as sand can be calculated using a critical state
friction angle ϕcs. For undrained soils such as clay or peat, the undrained shear strength
(su) can be modelled with the Stress History and Normalized Soil Engineering Proper-
ties (SHANSEP) formulation (Ladd and Foott, 1974), see Equation 2.16. The SHANSEP
formulation is also well suited for stability analysis of staged construction.

su =σ′
v ·S ·OC Rm . (2.16)

where, S = undrained strength ratio for normally consolidated soil, m = strength increase
exponent, and OC R = over-consolidation ratio, being the ratio of in situ vertical effective
stress σ′

v and preconsolidation stress σ′
p =σ′

v+POP , where POP = pre-overburden pres-
sure.

2.3.2. PERFORMANCE FUNCTION
Since the factor of safety Fs indicates the ratio of resistance over load, instability occurs
in a perfect model if Fs < 1.0. Contrary, a slope is stable if Fs ≥ 1.0. To account for
model error, Fs is multiplied with a model uncertainty factor for stability ms, for which
a realisation ms < 1.0 indicates a model that over-predicts the stability. Accordingly, the
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limit state function g for failure is defined as:

g (x) = Fs ·ms −1. (2.17)

Herein, x is a realisation of X, with X the vector of all (random) variables. In this nota-
tion Fs is the stability model, which depends on all input parameters (i.e. soil parameters,
pore pressures, etc.) of the model x, except ms. For survival information, generally the
information is that g (x) ≥ 0, which can also be rewritten in an observation function h,
for which survival information is h(x) < 0.

h(x) = 1−Fs ·ms. (2.18)

2.4. UNCERTAINTY AND SPATIAL VARIABILITY
For slope stability the uncertainty is mainly in soil properties (Christian et al., 1994),
which are uncertain because of spatial variability, measurement error, sparse data, and
transformation error (e.g. Baecher and Christian (2005); Cao et al. (2017); Phoon and Kul-
hawy (1999a,b). A state of the art overview of the implications of spatial variability and
uncertainty in geotechnical properties and models is given by ISSMGE-TC304 (2021).
Furthermore, the flood water level and the accompanying decrease of soil shear strength
due to higher pore pressures is uncertain, and also model uncertainty is significant in
slope instability models (e.g. Zhang et al. (2014); Juang et al. (2018)).

Generally, uncertainty is divided in two categories: variability, and uncertainty orig-
inating from lack of knowledge (e.g. Van Gelder (2000)). Variability, often indicated as
inherent uncertainty, or aleatory uncertainty, refers to randomness, like the outcome of
a throw of a dice. Variability can be further split into variability in space and in time. Soil
properties, for example, vary in space, but are usually constant in time. Contrary, the
maximum water level in a year varies per year, but will not differ much from place to
place. Another possibility is to classify uncertainty to where the uncertainty originates
from, e.g. from model error, measurement error, or statistical errors, and to what degree
the errors are random (scatter) or systematic (bias).

The above classifications are no fundamental properties of parameters, but a choice
of how we model the uncertainty in our (reliability) problems (Kiureghian and Ditlevsen,
2009). Most parameters important for slope stability analysis are time-invariant soil
properties, for which the properties are correlated between the moment of observation
and the moment of assessment. This is denoted by the auto-correlation ρk = 1 for a fully
correlated (time-invariant) parameter k. So, though the soil properties vary in space,
the value at a specific location is mainly uncertain due to lack of knowledge, and hence
it is reducible. Some stochastic properties, however, are uncorrelated in time, such as
the annual maximum of the flood water level (which determine the pore pressures influ-
encing the stability). For those time-variant properties, the auto-correlation ρk = 0 and
realisations in time are stochastically independent.

Soil properties are variable in space, because of various processes during the for-
mation process (e.g. Lumb (1966)). The impact of spatial variability on geotechnical
engineering problems is widely recognised, see for example Fenton and Griffiths (2002);
Griffiths et al. (2009); Hicks and Samy (2002); Cho (2007); Ahmed and Soubra (2012)).
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Spatial variability can be modelled explicitly in slope stability using random fields with
the statistical properties mean, variance and scale of fluctuation (Vanmarcke, 1983). For
slope stability the total shear strength along a slip plane is the parameter of interest. For
volumes of soil larger than the correlation distance, short-scale fluctuations will aver-
age. The spatial average can be approximated by applying variance reduction, e.g. the
variance reduction factor Γ2 (Vanmarcke, 1977, 1980).

In this dissertation the (local) average soil properties along a slip plane are approx-
imated by modelling average values for statistically homogeneous soil layers (e.g. geo-
logical deposits) in a cross-section. The choice to approximate the average along a slip
plane by a layer-average, assumes full averaging of all fluctuations, which is a reason-
able assumption when the vertical scale of fluctuation is much smaller than the vertical
dimension of the slip plane in the layer of interest, which is usually the case in slope
stability problems (see the summary of reported scales of fluctuation in De Gast (2020)).

The above assumption ignores the effect that slip planes tend to be attracted to
weaker zones, especially when the correlation distances of shear strength are in the
same order as the volume of the mechanism considered (Ching et al., 2017; Zhu et al.,
2019; Varkey et al., 2019). In slope stability of dikes, this effect mainly plays a role in the
horizontal parts at the bottom of the slip plane, when it crosses a continuous weak zone
of several meters. However, the influence of weak-zone seeking is typically relatively
small when the total uncertainty is dominated by epistemic uncertainty such as trans-
formation uncertainty, measurement uncertainty, and statistical uncertainty (Tabarroki
et al., 2021), which is the case for the layer-average estimates in this dissertation.

The horizontal scale of fluctuation in the direction along a dike (or line-infrastruc-
tures) is typically tens of meters (Van Duinen, 2019), which implies that independent
sections or reaches are in the order of fifty to hundred meters. The result of the a-priori
reliability analyses based on local cone penetration tests or regional mean and variability
of spatial averages, are thus representative for sections in the order of fifty to hundred
meters. Notice that settlement information such as used in Section 5.3 for reliability
updating may be representative of shorter reaches because the phenomenon is more
local and less subject to spatial averaging in horizontal direction.

2.5. BAYESIAN DECISION ANALYSIS
Bayesian decision analysis concerns the logical analysis of choices and actions, under
uncertain conditions about the state of the world and the outcomes of foreseen experi-
ments and actions. Utility theory (Neumann and Morgenstern, 1947) forms the basis for
optimizing decisions based on maximization of utility. In this dissertation this theory is
used to optimise the costs of dike reinforcement (costs are negative utility). The experi-
ments we consider aim to reduce uncertainties and adjust the subjective failure probabil-
ities based on performance information. The actions aim to reinforce (strengthen) dikes,
decreasing the failure probability such that a certain target reliability is met. Specifi-
cally for considering experiments and actions that affect subjective probabilities, pre-
posterior analysis in combination with decision trees is used (Raiffa and Schlaifer, 1961;
Benjamin and Cornell, 1970; Thöns, 2017).

The general decision problem of Raiffa and Schlaifer (1961) considers the choice an
action a ∈ A, where the outcome of that action depends on the uncertain ’state of the
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c(e,z,a,θ)

Figure 2.6: General decision tree

world’ θ, and where the uncertainty about the state can be reduced by undertaking an
experiment e ∈ E , at a certain cost. The outcome of the experiment (e.g. a measurement)
z ∈ Z is used to make a better decision on the action to take. The decision problem is
visualized in a decision tree in Figure 2.6. The optimal strategy is defined as the set of an
experiment and action (e∗, a∗) maximizing the utility, or minimizing the total expected
cost:

C (e∗, a∗) = min
e,a

E [c (e, z, a,θ)]. (2.19)

The outcome of the experiment and actions depend on the uncertain state of the world.
The total cost is therefore uncertain. When only prior information about the state is
available, the expected cost is calculated using the prior probability density fΘ(θ):

C (e, a) = E [c (e, z, a,θ)] =
∫

c (e, z, a,θ) fΘ (θ)dθ. (2.20)

When a measurement z is obtained, the prior knowledge on θ is updated, and the ex-
pected cost is calculated based on posterior probability distribution fΘ(θ|z), see Equa-
tion 2.21.

C (e, a) =
∫

c (e, z, a,θ) fΘ (θ|z)dθ. (2.21)

The formulation of Equation 2.21 applies to the situation where the outcome of the
experiment z is known, which is not the case when we still have to decide whether to
conduct the experiment. So, to determine the optimal strategy in advance, all possi-
ble outcomes z are accounted for in advance using pre-posterior analysis (Raiffa and
Schlaifer, 1961; Benjamin and Cornell, 1970; Thöns, 2017). Here each possible outcome
z is mapped into an action a|z using decision rules a = d(e, z). A decision rule is thus
obtained by a posterior analysis, conditional on the presumed measurement. Then by
integrating over all possible z, weighted with the likelihood of observing z, we obtain the
expected total cost based on pre-posterior analysis. The total expected cost function to
be minimized is:

C (e,d) =
∫

c (e, z,d(e, z),θ) fΘ (θ)dθ. (2.22)

The difference in expected cost and benefits with an experiment (C (e,d)) and without
(C0(d)) an experiment is called the Value of Information (VoI) (Raiffa and Schlaifer, 1961):

V oI =C0(d)−C (e,d), (2.23)

for which the decision analysis is aimed at maximizing the VoI.
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While in theory randomness is an intrinsic property, in practice, randomness is
incomplete information.

Nassim Nicholas Taleb

Quantitative reliability analysis of slope stability starts with establishing prior estimates
of the uncertainty of geotechnical parameters. This chapter presents a method to esti-
mate the spatial average undrained shear strength using cone penetration tests, and the
uncertainty involved. Special attention is paid to the degree to which the uncertainty is
epistemic (and hence reducible) by examining the extent to which the contributing error
sources are epistemic, or intrinsically variable. This chapter specifically deals with trans-
formation models calibrated with local data, as cone penetration tests are often used to
establish priors for reliability analyses of slope stability of linear infrastructures such as
dikes; the proposed methods and data are also used in chapter 4 and 5.
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3.1. INTRODUCTION
For the reliability based design and assessment of slope stability of dikes it is common
to use cone penetration tests (CPTs) to estimate the undrained shear strength of soft
soil layers because CPTs provide insight in the spatial variability of soil layers in vertical
direction and the associated spatial averaging. To estimate soil properties from indirect
measurements such as cone resistance, we need transformation models. A site-specific
transformation model can be calibrated with laboratory tests on soil samples from bor-
ings at the site. This approach is efficient because we do not need a boring at all locations
where a CPT was done, and borings are typically more labour intensive and more expen-
sive than CPTs.

In using transformation models, we have to account for transformation uncertainty.
If local data are used to calibrate an empirical transformation model, the various er-
rors in local data also propagate into the transformation uncertainty, see Figure 3.1. In
practice it remains challenging to properly quantify the transformation uncertainty. In
particular it is difficult to distinguish between spatially variable components and ran-
dom errors which are subject to spatial averaging, and systematic errors which are not.
This chapter unravels the role of (spatial) averaging in the uncertainty of the spatially
averaged undrained shear strength when using a site-specific transformation model for
undrained shear strength from cone resistance to answer the sub-question:

To what extent is the uncertainty in the undrained shear strength reducible?

Section 3.2 investigates how to estimate the (de-trended) spatial average from CPTs
using existing statistical approaches to quantify the uncertainty. It furthermore demon-
strates those approaches for a synthetic random field example. Section 3.3 and Section
3.4 explore how the different error terms propagate into the transformation uncertainty
and the estimates of the spatial average, for a synthetic random field example. Section
3.4 also proposes method to estimate the uncertainty in the spatial average at locations
of interest with a CPT, accounting for the averaging of random errors and accounting for
systematic errors. We also propose a method to estimate the spatial average and the un-
certainty in the spatial average at other locations in the same statistically homogeneous
deposit, based on the observed variability of multiple CPTs. The methods are demon-

Inherent 
variability

In-situ and/or laboratory 
measurements

Data scatter

Inherent 
variability

Measurement 
errors

Statistical 
uncertainty

Transformation 
model

Transformation 
uncertainty

Estimated soil 
propertySoil

Figure 3.1: Overview of geotechnical uncertainties (Cao et al., 2017), adapted from Phoon and Kulhawy (1999a)
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Figure 3.2: Schematic overview of a 2-D site (length and depth). Top: variability of the depth-average param-
eter (red) in horizontal direction. Bottom: scatter around the local depth-average over the thickness of a soil
layer (blue). Figure adapted from Calle et al. (2021).

strated for case data of Eemdijk in Section 3.5, whereafter the results are summarized
and the sub-question is answered.

3.2. CHARACTERIZING THE SPATIAL AVERAGE USING CPTS
In linear infrastructure projects, we often want to estimate the depth-average parameter
of a soil layer at different locations across a site. Usually a soil layer is a geological de-
posit that is present over a site of about 1 to 10 km, at least for long linear infrastructures
such as dikes, roads or railways. At each location where a CPT is available (depicted
with circles in the schematic in Figure 3.2), the estimated depth-average shear strength
is applicable to a cross-section, and the cross-section is representative for a horizontal
section or reach shorter than the horizontal scale of fluctuation. At locations without a
CPT, the depth-average can be estimated based on the statistics of the entire site, when
the soil layer is statistically homogeneous.

The uncertainty of geotechnical parameters stems from various sources, see Section
2.4. According to, among others, Phoon and Kulhawy (1999a,b), the total uncertainty
is a combination of the uncertainties from the various sources, see Figure 3.1. Phoon
and Kulhawy (1999b) propose to apply variance reduction (as proposed by Vanmarcke
(1977)) to the variance related to spatial variability (σ2

spatial), and add the remaining vari-

ances to determine the total uncertainty:

σ2 = Γ2 ·σ2
spatial +σ2

measurement +σ2
statistical +σ2

transformation. (3.1)
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Essentially, determining the total variance as in Equation 3.1 implies the assumption
that measurement uncertainty, statistical uncertainty and transformation uncertainty
relate to systematic errors, which are not subject to (spatial) averaging. While this as-
sumption is certainly conservative in the sense that it will lead to a high uncertainty es-
timate in engineering applications, the question is whether these error terms should be
considered as entirely systematic and not subject to spatial averaging. And furthermore,
what difference it would make in terms of probability distributions and characteristic
values, if the assumption of the errors being systematic is relaxed. In this chapter this is
demonstrated for the example of site-specific transformation models.

3.2.1. LOCATIONS WITH A CPT
The undrained shear strength at a location with a CPT can be estimated from cone resis-
tance using a transformation model, see Equation 3.2. Here, sI

u is the indirectly measured
undrained shear strength, qnet the normalized cone resistance (cone tip resistance qc

corrected for pore water pressures u2 through the cone factor aCPT and normalized for
the in-situ vertical stress σv0: qnet = qc+u2 ·(1−aCPT)−σv0), and Nkt the transformation
model parameter.

sI
u = qnet

Nkt
. (3.2)

The depth-average (denoted by a bar) parameter of a soil layer in CPT j , (s̄I
u,j) is

estimated by the numerical mean of all CPT measurements N j in that CPT (typically
every 2 cm), see Equation 3.3 and Figure 3.2. Note that for the remainder of this chapter,
also the term spatial avarage is used for the depth-average.

s̄I
u,j =

1

N j

i=N j∑
i=1

sI
u,j,i. (3.3)

In line with Phoon and Kulhawy (1999b), the uncertainty in the estimated spatial
average is the linear sum of measurement error (bias), transformation error, and statisti-
cal uncertainty, where the error terms are assumed to be independent, see Equation 3.4.
Notice that the contribution of spatial variability is absent in the uncertainty estimate,
as the spatial average is directly determined from the measurement.

σ2
s̄I

u,j
=σ2

meas.,sys. +σ2
trans. +σ2

stat.. (3.4)

The statistical uncertainty in Equation 3.4 can be estimated from the scatter around
the spatial average and the number of measurements: σstat. =σsI

u,j
/
√

N j , where σsI
u,j

the

observed scatter around the spatial average, and N j is the number of measurements in
one CPT. The total uncertainty Equation 3.4 can thus be written:

σ2
s̄I

u,j
=σ2

meas.,sys. +σ2
trans. +

σ2
sI

u,j

N j
. (3.5)

Theoretically, the observed data scatter around the spatial average (σsI
u,j

) stems from

small-scale vertical spatial variability and random measurement errors (white noise).
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The small-scale spatial variability can be estimated from the total point variance if we
assume that the total point variance of the site σ2

spat. is the linear sum of the fluctuations

around the spatial average in vertical direction σ2
f and the fluctuations of that spatial

average σ2
av: σ2

spat. = σ2
f +σ2

av. This concept of a ’composite random field model’ (see
Calle et al. (2021)) is illustrated in Figure 3.2 where blue dashed lines indicate the local
fluctuations and the black line the fluctuation of the spatial average. When we substi-
tute the definition of the variance reduction function (Vanmarcke, 1977) (Γ=σav/σspat.)
into that equation, we obtain an expression for the expected variance around the spatial
average in a CPT, as function of the total spatial variability: σ2

f = (1−Γ2) ·σ2
spat..

The random measurement error (εqnet ) is an independent error source and typically
modelled as multiplicative error. Hence, we write the two sources leading to the total
observed scatter in terms of the coefficient of variation (CoV) V , V = σ/µ. A theoretical
estimate for the data scatter around the spatial average is thus:

σsI
u,j
= s̄I

u ·
√

(1−Γ2) ·V 2
spat. +V 2

εqnet
. (3.6)

In practice it is challenging to distinguish the contributions of spatial variability and
measurement error, and to estimate the data scatter by Equation 3.6. Therefore, we
propose to simply estimate the statistical uncertainty in Equation 3.4 from the observed
(total) variance in CPT j . In Section 3.2.3 (Figure 3.3) we compare this estimate with the
’true known’ uncertainty of the spatial average (based on the difference between s̄I

u,j and
s̄u,j for a random field example with synthetic data.

σ2
sI

u,j
= 1

N j −1

i=Nj∑
i=1

(
sI

u,j,i − s̄I
u,j

)2
(3.7)

Note that random errors average, but we still have to account for systematic errors in
the uncertainty estimate, see Van den Eijnden and Hicks (2019). For the remainder in this
chapter, the term random error is used for white noise in the individual measurements
and systematic error for a bias in a CPT or for the entire field (i.e. site).

3.2.2. LOCATIONS WITHOUT A CPT
When there is no CPT available in a section, an estimate for the shear strength could be
based on the other CPTs across the site, see Figure 3.2. In a statistically homogeneous
layer, our best estimate for the spatial average at a location without a CPT, is the mean
value of the spatial averages from M CPTs across the site:

µs̄I
u
= 1

M

j=M∑
j=1

s̄I
u,j. (3.8)

We can estimate the uncertainty in the spatial average at a location without a CPT
from the variance of the spatial averages from multiple CPTs, accounting for statistical
uncertainty in the mean value (the term

(
1+ 1

M

)
):

σ2
s̄I

u
=

(
1+ 1

M

)
· 1

M −1

j=M∑
j=1

(
s̄I

u, j −µs̄I
u

)2
. (3.9)
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The aim is to investigate the effect of random errors in contrast with the assumption
of only systematic errors. So, to have a clear comparison, we base ourselves on the same
assumptions as Phoon and Kulhawy (1999a): a linear combination of spatial variability
and error terms:

σ2
s̄I

u
= Γ2 ·σ2

spat. +σ2
meas.,sys +σ2

trans. +σ2
stat.. (3.10)

3.2.3. SYNTHETIC RANDOM FIELD EXAMPLE

The approach to estimate the uncertainty according to Equation 3.5 is evaluated with a
synthetic random field example with an assumed perfect transformation model (Vεt = 0).
For the sake of a good comparison, we use synthetic data for which we generate the true
but subsequently unknown values for the undrained shear strength su and errors, and
compare the estimated uncertainty in the spatial average with the observed variability.

To this end, we generate a stationary Gaussian random field of 200×2000 (v×h) cells,
representing a site with a 2 m thick soil layer over 2 km length, with Circulant Embedding
(Kroese and Botev, 2015). The field size and resolution is expected to be large enough to
sample enough independent samples and small enough to be computationally efficient.
The soil property in the synthetic true field is normally distributed with mean value
µsu

= 20kPa and standard deviation σsu
= 4kPa. In this example it is ignored that most

geotechnical parameters are non-negative and therefore other probability distributions
might be more suitable. The assumption of a statistically homogeneous random field
with constant mean is justified if the field data is de-trended. A squared exponential
correlation function is applied with a horizontal and vertical correlation length of re-
spectively 25 m and 0.25 m (equivalent with δh = 44m and δv = 0.44m), consistent with
literature (among others, Phoon and Kulhawy (1999a); Li (2017)). From the true known
field su, the measured field for the indirect measurement qnet is generated, according to
Equation 3.11.

qnet = su ·Nkt ·εqnet . (3.11)

The example considers a perfect transformation model with a deterministic value of
Nkt = 20. The multiplicative random measurement error εqnet is modelled by a normal
distribution with mean value 1 and the CoV Vεqnet

is varied. The depth-average shear

strength s̄I
u,j is estimated according to Equation 3.3, and the uncertainty in the spatial av-

erage σs̄I
u,j

is estimated by Equation 3.5 (using Equation 3.7 to quantify the contribution

of the statistical uncertainty). The analysis is done for a layer thickness of 0.2 , 1.0 and
2.0 m and a measurement interval of 0.02 m, such that Nj = [10,50,100]. The estimated
uncertainty is compared with the modelled uncertainty in this synthetic example: i.e.
the standard deviation of the difference between the estimated and the ’true known’
spatial average s̄I

u,j − s̄u,j.

The estimated uncertainty coincides well with modelled uncertainty when there is a
random error, see Figure 3.3. As the random error increases, it dominates the estimated
statistical uncertainty. When there is no random measurement error, the estimate based
on Equation 3.5 shows a slight difference with the true uncertainty, because it cannot be
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Figure 3.3: Estimated uncertainty of the indirectly estimated spatial average from a CPT compared to the actual
uncertainty modelled in the synthetic example.

traced what part of the observed scatter is due to random errors, and what part is due to
spatial variability.

3.3. TRANSFORMATION UNCERTAINTY OF A SITE-SPECIFIC

TRANSFORMATION MODEL
The example in Section 3.2.3 assumes a perfect transformation model, which is unre-
alistic but serves the purpose of clarification. When we use a ’generic’ transformation
model from literature it is likely that the empirical model is biased for an entire site
(Ching et al., 2016). This systematic transformation uncertainty should be accounted
for in the estimated spatial average parameter, see Equation 3.5.

Fundamentally, transformation uncertainty is a model uncertainty. In principle,
model error is meant to cover the model prediction errors for perfectly known model in-
puts (Ching and Phoon, 2014). In practical terms it is, however, impossible to determine
model uncertainty in a clean fashion, nor transformation uncertainty for that matter, be-
cause such perfect conditions are not available. For instance, it is practically impossible
to calibrate a site-specific transformation model where two paired measurements are at
exactly the same location. Therefore, spatial variability causes additional error in the
transformation uncertainty estimate. Moreover, there is measurement error in both CPT
and laboratory measurements, which will have random and systematic components.
This section analyses the propagation of these extraneous errors into the uncertainty
of the transformation model parameter to explore to what degree transformation error
is ultimately random or systematic.
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For transformation models calibrated and used at a specific site, no systematic biases
are expected for the entire site (Ching and Phoon, 2020). However, locally, the transfor-
mation model parameter may deviate from the site-average. The transformation model
error is most certainly spatially variable because it is, at least to some degree, due to
missing factors that are spatially variable, such as over consolidation ratio, water content
and plasticity index. Since the stress state (e.g. loading history) is constant in a vertical
profile, we assume that the transformation error is largely systematic per CPT, supported
by Ching et al. (2016) where it was showed that the vertical scale of fluctuation of the
transformation error is relatively large compared to the layer thickness. Because the
horizontal distance between CPTs is usually larger than the scale of fluctuation of e.g. the
stress state, we expect the transformation error is independent between CPTs. Hence we
can justify the assumption that the transformation error is fully correlated in depth, and
independent per CPT, at least for practical engineering purposes.

3.3.1. CALIBRATION OF THE TRANSFORMATION MODEL

To calibrate an empirical transformation model for undrained shear strength sI
u from

normalized cone tip resistance (Equation 3.2), we pair the measured cone resistance
with direct (laboratory) measurements from (nearly) the same location (qnet,i; sD

u,i). We
can obtain the transformation model parameter Nkt from a linear regression analysis on
n pairs from different locations within the same site (and deposit). The residuals repre-
sent the variability in sI

u for a given value of qnet. Under the assumption of a constant
CoV, we can write VNkt = VsI

u
. Note that because of soil mechanical considerations, the

regression line is forced through the origin.
Two regression methods are compared: minimizing the standard deviation (SD) and

minimizing the coefficient of variation (CoV), see Equation 3.12 and 3.13, respectively. If
the variability around the regression line is constant, minimizing the SD should be the
correct regression method; if the scatter around the regression line increases with the
mean, minimizing the CoV should be the better option.

σsI
u
=

√√√√ 1

n −1
·

i=n∑
i=1

(
sD

u,i −qnet,i/N̂kt

)2
. (3.12)

VsI
u
=

√√√√ 1

n −1
·

i=n∑
i=1

(
sD

u,i −qnet,i/N̂kt

qnet,i/N̂kt

)2

. (3.13)

3.3.2. ERROR PROPAGATION INTO THE TRANSFORMATION MODEL
Since there will always be a non-zero distance between direct and indirect measure-
ments, spatial variability will propagate in the transformation model (parameter). Also
measurement error and transformation error propagate into the transformation model.
Assuming that these errors are independent, the uncertainty in the transformation
model parameter Nkt can be written as linear sum of the independent contributions:

V 2
Nkt

=V 2
spat. +V 2

ε
sD
u
+V 2

εqnet
+V 2

εt
. (3.14)
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Figure 3.4: Schematic representation of the simulated random fields and transformations.

The contribution of the spatial variability to the transformation uncertainty can be
estimated using the semi-variogram:

Vspat. =
√

2 ·V 2
su
· (1−ρ

(
∆x,∆y

))
. (3.15)

For the measurement and transformation errors, we expect that only random errors and
spatially variable errors lead to variability of the indirectly measured undrained shear
strength. Therefore, V 2

su
, V 2

εqnet
, and V 2

εt
in Equation 3.14 relate to the random and spa-

tially variable errors. For errors in the independent variable (cone resistance), we also
expect a bias due to the nature of the regression analysis, see e.g. Greene (2002).

Systematic measurement errors in the CPT measurements (such as a bias in the
pressure transducer or incorrect zero point calibration) do not add to the variability in
the transformation model, but will lead to a higher or lower value of the transformation
model parameter. However, the measurements are still correlated to the correct direct
measurements and therefore, systematic measurement errors in the CPT measurements
cancel out if we use equally biased measurements with a biased transformation model.
Systematic measurement errors in the direct measurement however, are problematic,
because those lead to a non-quantifiable bias in the transformation model.

3.3.3. RESULTS SYNTHETIC RANDOM FIELD EXAMPLE
The calibration of the site-specific transformation model is demonstrated for the syn-
thetic random field example from Section 3.2.3. We sample random fields for the direct
measurement sD

u and the indirect measurement qnet from the random field with true
known values su. Random measurement errors (e.g. sample disturbance) and model
errors are added to the samples according to Equation 3.16 and 3.17. Then we select n
independent locations with sufficient inter-distance where we pair the measured shear
strength with the measured cone resistance, and perform a regression analysis to obtain
the estimate for the transformation model parameter, see Figure 3.5.

sD
u = su ·εsD

u
. (3.16)

qnet = (su · (Nkt ·εt)) ·εqnet . (3.17)

First, we consider an ideal transformation model with a deterministic value of Nkt =
20 and perfect measurements (Vεqnet

= Vε
sD
u
= Vεt = 0). The transformation model for
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Figure 3.5: Direct and indirect measurements (circles and crosses, respectively) from synthetic random fields.

the site is calibrated with 25 CPTs (minimum spacing 50 m) and 25 laboratory test at
arbitrary depths (see Figure 3.4). We estimate the transformation model parameter from
the slope of the regression (Figure 3.6a): N̂kt = 1/0.05 = 20. The scatter in the regression
is zero due to the absence of measurement and transformation errors.

Furthermore, we investigate the effect of the above mentioned errors on the cali-
brated transformation model parameter N̂kt and the uncertainty. We compare the vari-
ability obtained from the regression VsI

u
with the estimate based on Equation 3.14. To

that end, we assume a horizontal distance between direct and indirect measurements
of 1.0 m and vary the vertical distance between 0 and 0.20 m. For the other errors we
assume CoV between 0 and 0.2 under the following assumptions:

• random measurement error in the direct measurement: εsD
u

normally distributed
with mean value 1 and CoV Vε

sD
u

.

• random measurement error in the indirect measurement: εqnet normally dis-
tributed with mean value 1 and CoV Vεqnet

• spatially variable transformation error: εt normally distributed with mean value 1
and CoV Vεt

For the case with Vε
sD
u
= 0.1, Vεqnet

= 0.1, and Vεt = 0.1, the results of a simulation are

shown in Figure 3.6b. Notice that the total scatter is relatively large, compared to the spa-
tial variability in sI

u itself. It is quite common that the epistemic uncertainty dominates
the spatial variability in geotechnical engineering.

Figure 3.7 shows the results for N̂kt and VNkt for 1000 random fields. On average,
the transformation model parameter is biased for both regression methods. This bias is
caused by the scatter due to spatial variability, random measurement error in the cone re-
sistance and transformation error. The uncertainty in the transformation model param-
eter (and variability in the indirectly measured undrained shear strength) is estimated
to be: VNkt =

p
0.112 +0.12 +0.12 +0.12 = 0.21 and is in accordance with the observed

uncertainty in Figure 3.7.
Notice that random measurement errors in the shear strength from laboratory tests

lead to scatter, but do not contribute to the bias, contrary to random measurement errors
in the cone resistance. Compared to the statistical uncertainty, regression with minimiz-
ing SD is virtually unbiased for a Gaussian (normally distributed values) field, see Figure
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Figure 3.6: Calibration of the transformation model parameter. Dashed lines indicate the 90% confidence
bounds.

Table 3.1: Average results for 1000 times repeated calibration of the transformation model parameter and
uncertainty, for different combinations of errors and using two different regression methods.

Modelled extraneous errors Regression method Expected
uncertaintyError term CoV ∆x =1 m Minimizing CoV Minimizing SD

εsu εqnet εt ∆y Nkt VNkt
Nkt VNkt

VNkt

Case 1 0 0 0 0 20 0.01 20 0.01 0.01
Case 2 0.05 0.05 0.05 0.05 19.6 0.11 20.1 0.11 0.10
Case 3 0.10 0.10 0.10 0.1 18.7 0.21 20.6 0.23 0.21
Case 4 0.15 0.15 0.15 0.15 17.1 0.31 21.2 0.39 0.30
Case 5 0.20 0.20 0.20 0.2 15.3 0.40 22.1 0.59 0.40

3.6b. The results for N̂kt and CoV with different values of the CoV of the error terms are
shown in Table 3.1.

It is found that the variability in indirectly measured undrained shear strength (or
uncertainty in the transformation model parameter) obtained by minimizing SD, is on
average slightly higher than what was expected based on the modeled errors. The dif-
ference increases with increasing variability and can likely be attributed to additional
model error due to the regression method.

The statistical uncertainty in N̂kt is a systematic error and depends only on the num-
ber of independent measurement pairs. For this example, the uncertainty is Vtrans.,stat. =
VNkt /

p
n. Note, that multiple measurement pairs in one CPT can be not fully indepen-

dent, because they can have a correlated error. If the soil property in the random field is
assumed to be log-normal distributed, it is found that both methods are equally biased.
In this case there is no preference for one of the two regression methods.
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Figure 3.7: Results of the 1000 times repeated calibration of the transformation model parameter, using two
different regression methods.

3.4. ESTIMATING THE UNCERTAINTY IN THE SPATIAL AVERAGE
For most geotechnical problems we are interested in spatial averages, for example, along
a shear plane. The approaches proposed in literature in this respect consider only the
averaging of the true spatial variability (Phoon and Kulhawy, 1999a,b; Vanmarcke, 1977),
yet also other random (i.e. non-systematic) errors are also subject to averaging, at least
when multiple measurements are available. Applying Equation 3.1 straightforwardly
leads to an overestimation of the total uncertainty. Arguably, the systematic error com-
ponent of the transformation uncertainty, is the uncertainty we are actually facing when
executing a geotechnical analysis based on indirect measurements.

We propose two methods to estimate this systematic uncertainty in the transfor-
mation model parameter. The first is more theoretically founded, and is based on the
estimated contribution of random and systematic components in the total uncertainty.
The second is more empirically, and is based on the observed data from the field. Sub-
sequently we investigate the appropriateness of the uncertainty estimates by analysing
the difference between the indirectly estimated spatial average and the true known value
Special attention is paid to the difference between random, systematic and spatially vari-
able errors. In estimating the spatial average, it is differentiated between locations where
a CPT is present and locations without.

3.4.1. PROPOSED METHOD

As argued above, only the systematic part of the transformation model parameter consti-
tutes the uncertainty in the spatial average. To estimate this systematic part, we assume
that the total variance in the transformation model parameter consists of a random and
a systematic part: V 2

Nkt
=V 2

Nkt,sys.+V 2
Nkt,rand.. We introduce the ratio of random variability

and total point variability: r = V 2
Nkt,rand./V 2

Nkt
, such that the systematic component in

the transformation uncertainty can be estimated as follows: V 2
Nkt,sys. = (1− r ) ·V 2

Nkt
. The
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random and total part in the variability follow from Equation 3.14:

r =
V 2

spat. +V 2
εsu

+V 2
εqnet

V 2
Nkt

. (3.18)

The systematic part of the transformation uncertainty in the indirectly estimated
spatial average can be estimated using Equation 3.19. Here the term 1/n accounts for
the statistical uncertainty in the estimate value of Nkt, due to the limited number of data
points. The statistical uncertainty is also a systematic uncertainty.

σtrans. =µs̄I
u
·
√

V 2
Nkt,sys. +V 2

Nkt,stat. =µs̄I
u
·
√

(1− r )+ 1

n
·VNkt . (3.19)

In practice, we often do not have quantitative information on the random (and sys-
tematic) error. and thus values of r will have to be based on expert judgement. To get a
rough estimate of r we propose an alternative approach to estimate the value of r based
on the observed variability of the indirectly measured undrained shear strength. We
can write the total point variability of the indirectly measured undrained shear strength
of the entire site as the summation of random and a systematic variance, i.e. fluc-
tuations around the spatial average in CPT j and fluctuations of the spatial average:
σ2

sI
u
=σ2

sI
u,j

+σ2
s̄I

u
, see Figure 3.2. Then, the ratio r can then be rewritten as follows:

r ≈
σ2

sI
u,j

σ2
sI

u

. (3.20)

This estimate for the share of random and systematic uncertainty in the transforma-
tion model parameter is dependent on the spatial variability, through the total uncer-
tainty (Equation 3.6 and Equation 3.5). Hence, the estimated value according to Equa-
tion 3.20 may deviate from the definition in Equation 3.18. However, when epistemic
uncertainty is dominant in the total uncertainty (which is often the case in geotechnical
engineering, see e.g. Nadim (2015)), then the difference is small.

Including the estimated systematic transformation uncertainty in the uncertainty
estimate of the spatial average for a location with a CPT (Equation 3.5) leads to:

σ2
s̄I

u,
= 1

N j
·σ2

sI
u,j
+σ2

meas.,sys. +
(
µs̄I

u
·
√

(1− r )+ 1

n
·VNkt

)2

. (3.21)

The uncertainty in the spatial average at locations without a CPT is estimated by
Equation 3.9. Since this uncertainty is based on the spatial average (of indirect measure-
ments), it includes the averaging of random errors and true spatial variability already.

3.4.2. RESULTS SYNTHETIC RANDOM FIELD EXAMPLE
The proposed approach is demonstrated for the synthetic random field in Section 3.3.3.
We use the calibrated transformation model factor from the 1000 random fields to esti-
mate the spatial average undrained shear strength at locations with and without a CPT.
For locations with a CPT, the uncertainty in the spatial average (s̄I

u,j− s̄u,j) is shown by the
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Figure 3.8: Uncertainty and variability of the spatial average estimated using indirect measurements.

histogram in 3.8a. Taken across all sites, the transformation model is virtually unbiased,
reflected in the histogram centred around 0. However, for estimates at specific locations,
the uncertainty is larger than only the expected statistical uncertainty (the blue line) due
to the spatially variable transformation model error, which is systematic per location.

The estimate for the systematic part of the transformation uncertainty based on the
imposed random errors (values in Table 3.1) using Equation 3.14: r = (0.112+0.12+0.12)/
(0.112 + 0.12 + 0.12 + 0.12) = 0.76, shown by the green line. The factor r based on the
variability of the indirect measurements: r ≈ σ2

sI
u,j

/σ2
sI

u
= 0.80, shown by the black line.

We find that the estimate of r with the second method is higher than the value obtained
by Equation 3.18, because the ratio of local point variance and total point variance
comprises, besides averaging of random errors, also averaging of true spatial variability.
Therefore, the systematic part in the transformation uncertainty is underestimated by
Equation 3.20. In this numerical example where epistemic uncertainty is dominant, the
difference between the two methods is negligible (green versus black lines in Figure 3.8a).

For estimating the spatial average undrained shear strength at locations without a
CPT, we estimate the variability of the indirectly estimated spatial averages for 1000 ran-
dom fields. The found variability is shown by the histogram in Figure 3.8b. Besides the
spatial (average) variability, it also contains systematic uncertainty because estimates at
individual locations are biased (see Figure 3.13a). The green and black line depict the un-
certainty estimates using Equation 3.10, with the estimated values for r using Equations
3.18 and 3.20. The magenta line shows the estimated uncertainty according to Equation
3.9: the estimate based on the observed variability. The results are in line with each other
for this example, which substantiates the appropriateness of the proposed approach.

3.4.3. PRACTICAL IMPLICATIONS
The presented method appropriately accounts for averaging of both spatial variability
and random errors in the uncertainty estimate of the spatial average from indirect CPT
measurements. The present example has contemplated one end of the spectrum in the
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Figure 3.9: Comparison presented method with established method.

sense that measurement errors have been assumed entirely random (i.e. white noise).
On the other hand, assuming these errors entirely systematic as done in Phoon and
Kulhawy (1999b) is conservative. The comparison in Figure 3.9, in terms of 5%-quantile
characteristic values, su,kar., shows that there is considerable margin between these two
assumptions. Even with half of the measurement error being systematic and half ran-
dom, it is still likely that a substantial part of the transformation uncertainty is random,
because of spatial variability in the transformation model.

3.5. CASE STUDY: EEMDIJK
The results so far only considered synthetic data - in this section we investigate the impli-
cations for a case study of a real site. Here a site-specific transformation model was used
to infer the undrained shear strength from CPTs. The case study demonstrates what the
impact is of using a more differentiated approach of separating random and systematic
uncertainty. The following proposed step-wise approach is followed:

1. Calibrate a site-specific transformation model based on n pairs of cone resistance
and laboratory tests. Obtain the estimate of Nkt and the uncertainty in this param-
eter VNkt using Equation 3.13.

2. Estimate the share of random error in VNkt , preferably using Equation 3.18. A rough
estimate can be made using Equation 3.20 when the random errors are dominant.

3. Determine the systematic part of the transformation uncertainty by accounting
for averaging of random errors, and by accounting for statistical uncertainty in the
site-specific transformation model parameter, using Equation 3.19.
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Figure 3.10: Satellite image of the test site during site preparation. The black lines indicate the intended ring
dike. The red dots indicate the location of the CPTs, the open circles the borings.

4. Determine the total uncertainty in the depth-average undrained shear strength for
locations with a CPT using Equation 3.21, and for locations without a CPT using
Equation 3.9.

3.5.1. CASE DESCRIPTION

The case study concerns a full-scale test of two dikes, one conventional dike and one
dike reinforced with a sheet pile wall. Both dikes were loaded until failure, with the main
objective of validating models for slope failure of dikes with and without sheet piles. For
more information on the ’Eemdijkproef’, see Lengkeek et al. (2019).

The test dike was built in several construction stages to avoid disturbances in the sub-
surface by slope instability. Therefore, the stability was analysed during the construction
phase, and the undrained shear strength was estimated across the site of approximately
100×100 m, see Figure 3.10.

The site is located in Eemdijk (The Netherlands). The surface level is around the
Dutch vertical datum Amsterdam Ordnance Datum (in Dutch: Normaal Amsterdams
Peil (NAP)): at −0.1 m NAP. The subsoil consists of a 1.5 to 2.0 m thick (organic) clay layer,
an approximately 2.5 m thick peat layer and a Pleistocene sand layer of 6 m, see Figure
3.11.
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Figure 3.11: Cone resistance qc [MPa], sleeve friction fs [MPa] and friction ratio Rf [%] of 12 CPTs at the test
site.
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Figure 3.12: Cone resistance qc [MPa], sleeve friction fs [MPa] and friction ratio Rf [%] of 12 CPTs at the test
site.

3.5.2. SITE-SPECIFIC TRANSFORMATION MODEL FOR UNDRAINED SHEAR

STRENGTH
At the site, 12 pairs of mechanical borings and Class 1 CPTs with u2 water pressure mea-
surements were carried out (see locations in Figure 3.10) and used to derive the vertical
soil profile, see Figure 3.11. The ground water table is around 0.75 m NAP, therefore the
top part of the clay layer is unsaturated, which is reflected in a higher cone resistance.

Of seven clay and seven peat samples from the borings, the in-situ undrained (critical
state) shear strength is measured in the laboratory with Unconsolidated Undrained triax-
ial compression (TXC) (TXC-UU) and direct simple shear (DSS) tests. These direct mea-
surements of the shear strength (sD

u ) are paired with the normalized cone resistance qnet

of the CPT at nearly the same location and depth as the direct measurement, see Figure
3.12. The transformation model parameter is derived using linear regression, as shown
in Equation 3.12. The result is shown in Figure 3.12 and the uncertainty is depicted by the
90% confidence interval. To avoid large statistical uncertainty due to a limited number
of data points, both the TXC and DSS tests are used for the transformation model for
clay.

3.5.3. UNCERTAINTY IN THE DEPTH-AVERAGE UNDRAINED SHEAR

STRENGTH
Using the empirical transformation model, the depth-average undrained shear strength
in the clay and peat layer is estimated. Figure 3.13a and 3.13b show the uncertainty calcu-
lated using Equation 3.5 and 3.19 for CPT LKMP27. The black and red lines exemplify the
assumptions of an entirely random (r = 1) or entirely systematic (r = 0) transformation
uncertainty, respectively. The choice for either of both assumptions significantly impacts
the 5% characteristic value.

A more realistic estimate of the systematic transformation uncertainty is made us-
ing Equation 3.18. Based on the assumptions that the random measurement error in
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Figure 3.13: Uncertainty in the depth-average undrained shear strength in clay and peat layer at CPT LKMP27.

cone resistance and laboratory tests is respectively 1% and 5%, and the spatial variability
contributes 5% random error in the transformation model, this yields a value of r =p

0.052 +0.012 +0.052/0.19 = 0.38 for the transformation model for peat and r = 0.51
for clay. The corresponding estimated uncertainty is shown by the blue line in Figure
3.13a and Figure 3.13b. For the considered CPTs, this more realistic assumption of the
systematic transformation uncertainty leads to approximately 10% higher characteristic
values compared to a conservative assumption of the transformation uncertainty being
entirely systematic.

If r is approximated based on the ratio of local variance versus total point variance
(Equation 3.20), we find a ratio of 0.64 for both the clay and peat layer (coincidentally).
The approximation underestimates the systematic transformation uncertainty because
the approximation falsely includes spatial averaging (just like the example in Section
3.4.2), and does not account for random errors in direct measurements. However, the
difference between the two approaches is not very large, but it underlines that a larger
part of the uncertainty may be random.

The CPTs are used to determine the shear strength in the (NE-SW oriented) cross-
sections. Each cross-section is representative for a section of approximately the distance
between the CPTs. For the sections at the head sides of the ring dike (without a CPT),
the depth mean are estimated using Equation 3.9. Based on the results of 10 CPTs,
the average shear strength is 9.4 kPa and 10 kPa for the clay and peat layer, respectively.
The estimated uncertainty is 1.3 kPa and 1.8 kPa, respectively. Note that two CPTs are
excluded from the statistical analysis, because these locations have a different stress
history, because these locations were pre-loaded by an old embankment.

3.6. SUMMARY AND RECOMMENDATIONS
This chapter shows that we can use direct measurements (e.g. laboratory tests) and
indirect measurements (e.g. CPTs) from a site to calibrate a site-specific transforma-
tion model. This site-specific transformation model can be used to estimate the spatial
average of the soil parameter of interest using indirect measurements, which are often
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cheaper and provide better spatial coverage. A virtually unbiased transformation model
for a site can be obtained by linear regression, contrary to generic transformation mod-
els, which are biased for the entire site.

We demonstrated that the uncertainty in the transformation model parameter con-
tains random errors, which are subject to averaging in estimating the spatial average.
Therefore, we should not only account for spatial averaging of the actual soil heterogene-
ity, but also for averaging of random measurement errors. The remaining component in
the uncertainty of the indirectly estimated spatial average is the statistical uncertainty of
the transformation model, and the locally unknown bias in the transformation model.

This systematic component of the uncertainty in the site-specific transformation
model can be estimated using information on the contributions from random and sys-
tematic errors involved (Equation 3.18), or based on the ratio local versus total (site)
point variance Equation 3.20). For the CPTs considered in the Eemdijk case study, such
a realistic assumption of the systematic transformation uncertainty leads to approxi-
mately 10% higher characteristic values compared to conservative assumptions of the
transformation uncertainty being entirely systematic. Therefore, we should not only
focus our site investigation on estimating the heterogeneity of the subsoil, but also on
differentiating between systematic and random errors, e.g. by repetitive laboratory mea-
surements or analysing the spatial variability of the transformation error.

The considerations and results imply that there are several possibilities to reduce the
uncertainty in the indirect estimate of the undrained shear strength (or any other param-
eters obtained in a similar manner). One option is to minimize the distance between a
direct and indirect measurements, as spatial variability propagates into transformation
uncertainty. Because the transformation model error is largely systematic in a vertical, it
is recommended to add direct measurements at different CPTs/boreholes, rather than
at different depths in the same vertical. Reducing measurement error helps too, but
particularly the bias in direct measurements is to be avoided.

3.7. CONCLUDING REMARKS
In addition to adequately establishing the uncertainty of geotechnical parameters using
CPTs, for Bayesian analysis and reliability updating it is important to know to what extent
the uncertainty reducible is. This chapter unravelled the role of (spatial) averaging in
the uncertainty of undrained shear strength obtained with site-specific transformation
models to answer the question:

To what extent is the uncertainty in the undrained shear strength reducible?

The uncertainty in the spatially averaged undrained shear strength arises from sev-
eral components. Spatial variability, measurement error, statistical error, and transfor-
mation error all contribute to the total uncertainty. Although spatial variability does
lead to variation of soil properties over space, the properties at a specific location are
constant. The estimates, however, exhibit a considerable epistemic uncertainty because
all error sources contributing to the total uncertainty of the spatial average are due to a
lack of knowledge, and thus the uncertainty is in principle reducible.
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IMPROVING DIKE RELIABILITY

ESTIMATES BY INCORPORATING

CONSTRUCTION SURVIVAL

When utilizing past experience in the design of a new structure we proceed by analogy
and no conclusion by analogy can be considered valid unless all the vital factors involved

in the cases subject to comparison are practically identical. (...) Hence our practical
experience can be very misleading unless it combines with it a fairly accurate conception

of the mechanics of the phenomena under consideration.

Karl von Terzaghi, 1939

The construction of dikes on soft soils is one of the possibly critical loading conditions to
which dikes and the subsoil are subjected. The observation of survival of the construction
contains information about the minimum strength along the slip plane, and can be used
to reduce uncertainty, and update the failure probability. This chapter investigates how
this performance information affects the reliability estimates for slope stability of dikes,
using Bayesian updating to incorporate the information into the reliability analyses.

This chapter is based on Van der Krogt, M.G., Schweckendiek, T. and Kok, M. (2021). Improving dike reliability
estimates by incorporating construction survival, Engineering Geology, 280, 105937.
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4.1. INTRODUCTION
Incorporating survival information in probabilistic analyses can significantly reduce un-
certainty and hence significantly improve reliability estimates for slope stability (Zhang
et al., 2011; Li et al., 2015; Schweckendiek, 2010; Schweckendiek et al., 2014). The degree
to which the new information leads to significant uncertainty reduction (the informa-
tiveness of an observation) depends, broadly speaking, on the plausibility of that observa-
tion, in relation to the hypothesis. Based on earlier findings (Zhang et al., 2011; Schweck-
endiek, 2010; Schweckendiek et al., 2014), a significant reliability update is mainly to be
expected when extreme loading conditions are survived. Observations of survived load-
ing conditions such as extreme flood water levels are rare, and hence, not always avail-
able. Instead, we may consider another potentially critical and more widely available
loading condition for dikes: the construction. During the construction of embankments
on soft soils in general, and dikes in particular, the stability typically reaches critical lev-
els. The main cause is the resulting excess pore water pressure in the foundation as the
embankment is raised. Baecher and Ladd (1997) showed that performance information
of survived construction stages can be used to update the slope stability predictions in
later construction stages. That case study, however, only considered the stability during
the construction, not flood loading.

The objective of this chapter is to examine how the survival of the construction stage
can be used to improve the reliability estimates of dike slopes in flood conditions. The
main question is formulated as:

How does the performance information contained in the survival of the construction
phase affect the reliability estimates for slope stability of dikes?

To answer the research question, this chapter is structured as follows. First, we
compare the factors of safety at the end of construction with the factors of safety in
flood conditions for a range of hypothetical cases of typical dikes in Section 4.2. This
indicates for which cases the construction of a dike is a critical loading condition, and
hence if survival of that situation is valuable information to consider in the reliability
analysis. Section 4.3 proposes a practical approach to incorporate construction survival
in the probabilistic analysis of a dike in flood conditions using Bayesian updating, to
investigate the effect for different cases, under various hypothetical survived conditions
in Section 4.4. Furthermore, Section 4.5 presents the results for the recently constructed
Eemdijk test dike from Section 3.5, demonstrating the practical applicability of the pro-
posed approach. The chapter concludes with a summary and a discussion on how the
approach can be applied in practice, which further developments are desirable, and how
the performance information can be further used to optimize flood risk management.

4.2. DIKE CONSTRUCTION AS CRITICAL LOADING CONDITION
The construction of a dike is one of the loading conditions to which a slope and subsoil is
subjected, when regarding the safety with respect to slope stability (U.S. Army Corps of
Engineers (USACE), 2003). Raising an embankment leads to excess pore water pressures
in soft soil foundation layers (see Figure 4.1), resulting in low effective stresses. Due
to feasibility and economic reasons, critical levels of stability (low factors of safety) are
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often accepted during the construction of dikes, all the more because potential damage
in terms of loss of life and injuries during construction is usually low, compared to the
potential flooding damage at design conditions.

If the construction of a dike is a critical loading condition, then survival of this
loading condition provides additional information about the shear strength properties
involved. The corresponding information of construction survival is that the factor of
safety must have been greater than 1.0 at the time of the observation. Field observations
to substantiate observations of construction survival can be the absence of cracks or
excessive deformations, or other monitoring indicating that a rotational shear failure
was not initiated under de observed loading conditions (Tavenas et al. (1979) describes
some of those).

The question is, however, what information does construction survival provide about
the reliability under the design loading conditions of a dike, namely flood loading. Al-
though flood loading and the construction seem to be two different loading conditions,
they are in fact quite similar. First, because the main load effect in terms of increased
pore water pressures is, in principle, comparable. Second, because the failure mode is
similar, in terms of potential slip planes intersecting the dike body and mostly the same
subsoil layers.

There are, of course, differences, which make it impossible to use the survival infor-
mation in a deterministic approach, while it can be done in Bayesian analysis. For exam-
ple, the pore water pressures during flood loading are induced by seepage and mainly
affect the dike body. The pore water pressures in the soft foundation soil are typically
less affected, depending mainly on the flood duration. In contrast, the main increase
in pore pressure during construction occurs in the soft soil foundation below the dike.
Differences can be treated in Bayesian analysis, for example, by using the information of
construction survival for updating the time-invariant soil parameters, instead of relating
the information to the stress-dependent shear strength. Moreover, slightly lower effec-
tive stresses do not necessarily lead to significantly lower undrained strength of over-
consolidated soil when using Critical State Soil Mechanics (CSSM) and Stress History
and Normalized Soil Engineering Properties (SHANSEP), as pointed out by Shewbridge

b) Loading condition A
    End of construction, partial 
    consolidation (e.g. 50% or 75%)

a)  Initial condition

Total stress

Pore water pressure

Excess pore water pressure 
due to embankment raise

c) Loading condition B
    Fully consolidated (100%)
    Daily water level

d) Loading condition C
    Fully consolidated (100%)
    Flood water level

Legend
Phreatic level

Head level in sand subsoil

Sand (dike)

Clay (blanket)

Sand (subsoil)

Figure 4.1: Overview of different loading conditions of a sand dike (with clay cover) on a soft soil blanket layer
and sand subsoil. The typical failure mode (slip plane) is indicated with the dashed line.
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Case  1  2 3 4 5 
Dike Clay Clay Sand Clay Sand 
Subsoil  Clay on sand  Clay on sand  Clay on sand  Sand Sand 

Figure 4.2: Overview of characteristic dike profiles. Grey and green indicate clay soil (for the dike core and
subsoil, respectively). Yellow and orange indicate sand soil (for the dike core and subsoil, respectively).

and Schaefer (2013). Thus, the undrained shear strength is also approximately the same
in both loading conditions.

4.2.1. DETERMINISTIC CASE STUDY

In order to sort out in which situations the construction phase is indeed a critical load-
ing condition, we compare the factors of safety for five hypothetical, typical dike cross
sections (outlined in Figure 4.2). These cases cover different combinations of subsoil
(thick clay layer on sandy subsoil, thin clay layer on sandy subsoil, and only sand subsoil)
and dike material (clay or sand with a clay cover). For the cases with a clay layer, we
distinguish cases with normally consolidated (NC) versus over-consolidated (OC) soil.
All cases involve a dike height of 4.0 m and a 1:4 slope (v:h). The five cases certainly do
not cover all possible cases, but the cases are typical for the Dutch situation, and also
characteristic for other locations, especially in deltaic areas.

The soil shear strength is modelled according to the CSSM framework (Schofield and
Wroth, 1968) because the critical state concept suits best to a situation of continuous
shear deformation along an entire slip plane (with large strains and no peak strength).
The shear strength of the sand foundation layer and the unsaturated part of the dike
body are modelled with a critical state friction angle ϕcs. The undrained shear strength
(su) of saturated clay is modelled with the SHANSEP formulation (Ladd and Foott, 1974),
see Equation 2.16.

The probability distributions of the soil properties (see Table 4.1) are chosen such
that they represent realistic probability distributions. Spatial variability is implicitly
modelled in the parameter distributions, by modelling spatial average soil properties.
The probability distributions resemble values which are typically encountered in the
field, in line with values reported in various case studies: e.g., Berre and Bjerrum (1975);
Ochiai (1980); Ladd (1991); Baecher and Ladd (1997); Watabe et al. (2002); Stuedlein et al.
(2012); De Koning et al. (2019).

The factor of safety Fs has been examined for three consecutive loading conditions,
see Figure 4.1b-d) and listed below:

• (A) end of construction, partially consolidated,

• (B) fully consolidated, daily water levels,

• (C) fully consolidated, flood water levels.
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Table 4.1: Probability distributions of soil properties used in the case studies.

Soil Volum.
weight
γsat./γunsat.
[kNm−3]

Normally
consolidated
undrained shear
strength ratio S
[−]

Strength
increase
exponent m
[−]a

Pre-
overburden
pressure
POP b [kPa]

Critical state
friction angle
ϕcs[◦]

Dike Clayc 17/17 Log-normal
µ 0.30, σ 0.03

Deterministic
0.80

Log-normal
µ 32.0, σ 3.2

Dike Sand 17/19 Log-normal
µ 32.0, σ 3.2

Clay NC 14/14 Log-normal
µ 0.30, σ 0.03

Deterministic
0.80

Log-normal
µ 10.0, σ 2.0

Clay OC 14/14 Log-normal
µ 0.30, σ 0.03

Deterministic
0.80

Log-normal
µ 30.0, σ 6.0

Sand 18/20 Log-normal
µ 35.0, σ 1.75

a Realisations of S and m might be negatively correlated, however, we neglect this effect because the influence
of m is typically small (for this reason m is modelled deterministically).
b The pre-overburden pressure refers to a the initial situation, before construction of the dike. A NC
POP =10 kPa, OC R ≈ 1−3 and OC POP =30 kPa, OC R ≈ 3−5 situation is distinguished.
c Saturated Dike Clay is modelled using SHANSEP parameters S, m and POP (or OC R), unsaturated Dike Clay
is modelled using a critical state friction angle ϕcs.

Loading condition A is immediately after finishing the construction of the dike. As
a result of the staged construction process, excess pore pressures are still present in the
clay foundation layers. The degree of consolidation (i.e. the dissipated excess pore water
pressures in the foundation) are typically based on actual pore water pressure data, for
real-life situations. For the hypothetical cases we assumed typical average degrees of
consolidation of 50% and 75% to study the sensitivity to this parameter. Although the
actual excess pore pressure varies with depth, we model a constant excess pore water
pressure distribution over the soil layer. This represents the average degree of consolida-
tion along potential slip planes. The phreatic level at the end of construction is assumed
to be at surface level, and the dike body unsaturated. The construction is assumed to be
with a new material with no significant unsaturated contribution to the shear strength
(e.g. no suction forces) leading to the assumption that the unsaturated contribution in
the construction phase is neglected. A sensitivity analysis in Appendix A shows that the
assumption may have small impact but it does not lead to different conclusion.

Loading condition B is defined as the situation in which the subsoil has been fully
consolidated. In this situation all excess pore pressures have dissipated (i.e. the degree
of consolidation is 100%). The phreatic level is at surface level, identical to loading condi-
tion A. Loading condition C considers the dike with a fully consolidated subsoil in flood
conditions, with steady-state seepage conditions (i.e. largely saturated dike body and
increased head in the foundation layers, schematically indicated in Figure 4.1d).

The slope stability has been calculated with the LEM Bishop (Bishop, 1955), using the
D-Stability software (Brinkman et al., 2018). Advantages of the LEM method compared
to more advanced models are its simplicity, robustness, and the favourable computation
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Loading condition A. End of construction (50% consolidated)
Loading condition A. End of construction (75% consolidated)
Loading condition B. Fully consolidated, daily water conditions
Loading condition C. Fully consolidated, flood conditions

Figure 4.3: Factor of safety for slope stability considering different loading conditions for various typical dike
profiles with NC and OC subsoil. For dikes on clay subsoil (cases 1-3), the stability at the end of construction
is much lower than during flood conditions.

time. Although advanced methods might predict deformations of a slope better, they
usually require more computation time and are less robust (e.g. Juang et al. (2018)).
Moreover, the deformations are not of interest in this chapter, since the main focus is on
predicting the slope stability. The factors of safety Fs presented throughout this chapter
are calculated with the expected values of all random variables. Excess pore water pres-
sures during construction are taken into account in the calculation of the effective stress
per slice. Seepage is considered through a gradient over the slices in the LEM model.

Figure 4.3 confirms that the slope stability increases with increasing consolidation
from loading condition A to B, for dikes on clay (cases 1-3). For a sand foundation layer,
we consider no significant excess pore pressures. Hence, there is no difference in Fs

between loading conditions A and B in cases 4 and 5.

The most important observation in reliability updating context is that the stability
at the end of construction is critical (Fs close to 1.0), or in any case more critical than
during flood conditions. For dikes on a clay foundation (cases 1-3), the Fs in loading
condition A is lower than the Fs in loading condition C, in almost all cases. The reason is
that for dikes on a clay foundation the subsoil is not fully consolidated at the end of the
construction, unlike for sand. Hence, cases 4 and 5 do not show a lower stability at the
end of construction than during flood conditions.

For dikes on a thin soft soil foundation (case 2), the difference in Fs between the
end of construction and flooding conditions is less than in case 1 and 3. The reason is
that water pressures in the foundation sand layer during floods have a greater influence
on the stability in case 2. For dikes on sufficiently thick soft soil foundation layers, we
may expect that incorporating construction survival will yield an increased reliability
estimate. Vice versa, for the dikes on sand subsoil, we do not expect a significant effect
on the reliability, and therefore cases 4 and 5 are not considered in the further analysis.
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4.3. RELIABILITY UPDATING USING CONSTRUCTION SURVIVAL

To incorporate construction survival in the probabilistic analysis of a dike in flood condi-
tions, a practical approach is proposed based on probabilistic slope stability calculations
using FORM and Bayesian updating (Section 2.2).

For the envisaged application, we define the stochastic variables Xa for a dike in the
assessed flood conditions, and Xs for the survived construction. Notice that Xa and Xs

contain the same variables, but they represent the states of the variables at different mo-
ments in time, namely the assessed flood conditions and survived construction. Many of
them are time-invariant soil properties which are modelled as fully correlated between
the assessed flood conditions and the survived construction. Other variables (such as
pore pressures) are independent/uncorrelated between the assessed and survived situa-
tion.

Let F be the event of slope failure in the assessed loading condition B or C (i.e., daily
or flood water level, respectively), where g (xa) the domain of failure in the assessed
loading condition, and xa a realisation of Xa. The probability of failure (further referred
to as prior probability) is given by Equation 2.4, with fXa the probability density of Xa.
Similarly, let ε be the event of construction survival (the evidence), thus where h(xs) < 0
is the domain of survival with the survived loading conditions, and xs a realisation of Xs.
The probability of survival is given by by Equation 2.4, with fXs the probability density of
Xs.

As the main attention is to the reliability update in this chapter, the direct method
of Bayesian updating is used to incorporate construction survival in the probabilistic
analysis (see Section 2.2.3). The posterior failure probability is thus calculated according
to Equation 2.10 and Equation 2.11.

4.3.1. IMPLEMENTATION WITH CRUDE MONTE CARLO

The posterior probability can be estimated using CMC by counting the number of reali-
sations in the failure domain, where we only take into account the realisations for which
the construction has been survived. Thus if g (xa,i) < 0, where g (xs,i) ≥ 0 for realisations
xa,i and xs,i. Using the indicator function 1[·], we estimate the posterior probability as
follows:

P (F|ε) ≈
1
n

∑i=n
i=1 1

[
g (xa,i) < 0∩h(xs,i) < 0

]
1
n

∑i=n
i=1 1

[
h(xs,i) < 0

] . (4.1)

Although a single slope stability calculation to evaluate the limit state function g or
h does not require much computation time, evaluating a large sample becomes com-
putationally expensive – especially for low probabilities. Therefore, we propose an ap-
proximation to evaluate the outcome of g (xa,i) < 0 and h(xs,i) < 0. To that end, we first
replace g (xa,i) < 0 and h(xs,i) < 0 by indicator functions χF,i and χε,i , respectively. Since
indicator functions only take values 1 or 0, the AND-gate (∩) can be replaced by the
logical operation of a parallel system: a multiplication. The 1/n terms drop from the
equation, and the posterior probability of failure is written as follows:
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P (F|ε) ≈
∑i=n

i=1 χF,i ·χε,i∑i=n
i=1 χε,i

. (4.2)

We approximate the outcome of the indicators χF,i and χε,i based on the prior prob-
abilities for failure and survival. This is done by comparing realisations of the standard
uniform variables v1 and v2 with the previously calculated probabilities P (F) and P (ε):

χF,i = 1[v1,i < P (F)],and (4.3)

χε,i = 1[v2,i < P (ε)]. (4.4)

This principle is similar to generating random realisations using the inverse cumu-
lative distribution function. The main advantage of this method is that we only have to
carry out stability analyses to estimate P (F) and P (ε), and not P (F|ε). The P (F) and P (ε)
may be evaluated for example by methods that require fewer model evaluations, such as
FORM (Hasofer and Lind, 1974).

Since Xa and Xs are correlated due to the subset of time-invariant variables they have
in common, the realisations of the limit state functions g (xa) and h(xs) are correlated.
This correlation is taken into account by simulating equally correlated values of v1,i and
v2,i . In fact, this is the application of the EPM (Roscoe et al., 2015) for calculating system
probabilities from the linearised limit state in the design point. The correlation ρv1,v2

can be estimated from the influence coefficients αk of the FORM calculation of P (F)
and P (ε) for all parameters k, considering the autocorrelation of those parameters ρk ,
see Equation 4.5. The autocorrelation depends, among others, on which parameters are
variable in time, as discussed in the next section. The effectiveness of the practical ap-
proach using indicators and the approximation of the correlation is discussed in Section
4.4.4.

ρvi ,v2 ≈
∑
k
αa

k ·αs
k ·ρk (4.5)

4.3.2. REDUCIBLE UNCERTAINTY
Although the survived and assessed situations are largely comparable, mainly because
the soil properties are time-invariant, there are differences between the two situations.
Therefore, we cannot guarantee with certainty that any flood situation will be survived
when the construction was survived, even though the calculated Fs would suggest a less
critical loading under flood conditions. The extent to which uncertainty in all stochas-
tic variables in Xcan be reduced (and reliability can increase) depends on whether the
uncertainty in the parameters is epistemic, and hence, reducible, and whether the pa-
rameters are time-invariant, or not. To this end, we distinguish between random vari-
ables addressing predominantly epistemic uncertainty (due to a lack of knowledge) and
random variables modelling aleatory uncertainty (i.e. actual randomness in time).

The uncertainty in soil properties is arguably of predominantly epistemic nature be-
cause most uncertainty relates to a lack of knowledge, for example due to limited soil
investigation, see Chapter 3. Soil properties are also assumed to be time-invariant, i.e.



4

54 4. INCORPORATING CONSTRUCTION SURVIVAL

identical in the survived and assessed situation. For other stochastic parameters the
values can differ between loading conditions, for example the phreatic level, the shear
strength of unsaturated versus saturated clay, and the model uncertainty factor. Hence,
information on the survived conditions does not give information about those parame-
ters in flood conditions. The autocorrelation between realisations of variables in flood
conditions and survived conditions is taken into account by the autocorrelation ρk in
Equation 4.5 in Section 2.4.

4.4. CASE STUDY: CHARACTERISTIC DIKES

In the next sections, the proposed approach is applied to several case studies to analyse
the impact of incorporating construction survival in the reliability estimate. This section
examines the impact of incorporating construction survival in the reliability estimate for
daily conditions and in flood conditions (loading condition B and C) for the characteris-
tic dike profiles. To that end, the reliability (conditionally to daily and flood water levels)
is estimated with and without construction survival. First the case input is described,
then the reliability results are presented. Next, a sensitivity study regarding different sur-
vived conditions is presented to address the influence of OC and NC soil on the reliability
update. Then the effectiveness of the proposed approach is discussed. The last section
summarizes the influences of the specific dike profiles on the reliability updating.

4.4.1. CASE DESCRIPTION

The prior probability of slope instability (conditional on the considered loading condi-
tion) is estimated using FORM because it can reach accurate results with limited compu-
tational time, (e.g., De Koker et al. (2019); Huber et al. (2016); Kanning et al. (2017)). The
prior probability distributions are shown in Table 4.1. In this study we use a log-normal
distribution with µ = 1.0 and σ = 0.05 for the model uncertainty factor for stability ms.
We assumed an unbiased model, since most of the model error contributions (3D-effects,
appropriateness of strength data, strain-compatibility, etc.) are likely to cancel each
other out (Ladd and Degroot, 2003). The standard deviation (SD) represents a central
value in the range from 0.02 to 0.10 found in literature (e.g., Azzouz et al. (1983); Christian
et al. (1994); Ladd and Degroot (2003)).

The soil properties S, m, POP , and ϕcs are assumed to be time-invariant parameters,
for which full autocorrelation in time is assumed (ρk = 1). The phreatic level (and pore
water pressures) are assumed to be time-variant, so these were independently modelled
in the assessed and survived situation (ρk = 0). The model uncertainty is assumed to
be uncorrelated in time (ρk = 0). Although the model errors in the LEM method and
software will be correlated over time to some extent, the model uncertainty may also
cover differences between the observed and future situation which are not correlated
in time. Therefore, a realistic auto-correlation will not be 0 nor 1. We choose here
the conservative side, to not overestimate the effect of updating in this regard. Along
the same line, we assumed the drained strength parameter ϕcs and undrained strength
parameters (S, m, POP ) of the same soil are uncorrelated, although the drained and
undrained strength could exhibit a correlation to some extent.
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4.4.2. RELIABILITY RESULTS

Figure 4.4 shows the reliability index for the considered cases, with and without incorpo-
rating construction survival. The results are presented for the survived conditions where
50% of the pore pressures are dissipated at the end of the construction. Incorporating
construction survival leads to an increase in reliability in all cases, but the reliability
updating effect differs from case to case. For the daily water level, the posterior prob-
ability of failure is a factor 10 to 1000 lower than the prior probability of failure (0.45 to
1.7 in terms of the reliability index). For the flood water level, the reduction in failure
probability is a factor 2 to 70 (0.04 to 1.3 in terms of the reliability index).

The impact on the reliability at flood conditions is lower than conditional on the daily
water level. This is mainly a result of a lower correlation between the design situation and
the survived situation, because the load effects (specifically the pore water pressures)
are different between the situations. For example, in case of thin blanket layers, such as
in case 2, pore water pressures in the sand foundation have a large effect on the shear
strength, which makes flood loading conditions quite different from the construction
conditions. Consequently, the survival of the construction provides little extra informa-
tion about the stability in flood conditions, and therefore, the impact on the reliability is
low.

The results, however, are presented conditional to the water level, whereas the total
probability of failure is the probability-weighted sum of the conditional failure proba-
bilities for all water levels in the relevant range; two of which are considered by loading
condition B and C. To provide a rough estimate of the total annual failure probability for
the characteristic dike cases, we combined the conditional failure probabilities P (F)|h
with the pdf of the water level fh , using Equation 2.9. We use a Gumbel-distributed
probability distribution of the water level based on the assumption that the flood level
of loading condition C corresponds to an exceedance probability of 1/100 per year. Due
to the larger effect of the survival information on lower water levels (which have the
highest probability density), the annual reliability increases significantly, see Table 4.2.
This demonstrates that the increase in the total reliability can be still significant, even
though the effect of reliability updating on the conditional reliability for flood conditions
is limited.

4.4.3. INFLUENCE OF OC AND NC SOIL ON THE RELIABILITY UPDATE

It is striking that the reliability update in all cases with NC soil is much higher than in
the cases with OC soil. This is explained by the relatively high probability of failure for
the dikes on weak NC soil considered in this example, compared to dikes on OC soil, see
Table 4.2. This is in accordance with the Fs close to 1.0 during construction, see Figure
4.3. It confirms earlier findings that the reliability update depends among others on the
criticality of the survived situation.

However, remarkably, it turns out that the update generally is higher in the cases
with OC soil, at least when looking at roughly equally critical survived situations. This
follows from a sensitivity study to the effect of different degrees of consolidation at the
end of construction on the reliability update. Figure 4.5 shows the results of this study
with first the probability of failure at the end of construction (a), and subsequently the
updated reliability for daily (b) and flood conditions (c) when that survived degree of
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Figure 4.4: Prior and posterior reliability index of slope stability (with and without construction survival with
50% consolidation at the end of the construction, respectively). Results are shown conditional to daily (left)
and flood water levels (right). The bars show the results obtained with the proposed simplified method in this
chapter; the horizontal black lines show benchmark results obtained with MCIS.

Table 4.2: Failure probability at the end of construction, and prior and posterior annual reliability estimates of
slope stability for the characteristic dike profiles considered.

Failure probability P f
during construction

Annual reliability index βa

of the assessed situation
Ratio prior vs.

posterior
failure

probability
Loading condition A
End of construction

A priori (without
construction

survival)

A posteriori (with
construction

survival)

Case 1, NC 0.49 2.97 4.26 146
Case 1, OC 0.02 4.04 4.52 9
Case 2, NC 0.21 3.37 3.96 10
Case 2, OC 0.01 4.23 4.40 2
Case 3, NC 0.49 2.93 4.49 476
Case 3, OC 0.02 4.01 4.57 12
a probability-weighted sum of the conditional failure probabilities for all water levels

consolidation is incorporated.
From Figure 4.5a, it can be read at what degree of consolidation the probability of

failure is more or less equal, and thus at which conditions the situations are equally
critical. A failure probability of 0.01–0.05 is found at a degree of consolidation of 80% for
the NC cases, and 50% for the OC cases in Figure 4.5a. When regarding these survived
conditions specifically, the posterior failure probabilities for dikes on NC soil are approx-
imately a factor 4 lower than the prior failure probabilities, compared to roughly a factor
10 for dikes on OC soil, see Figure 4.5b and c. The main reason for the larger update is
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Figure 4.5: Influence of the survived degree of consolidation at the end of construction on the updated reliabil-
ity for slope stability of different cases. The left graph (a) shows the probability of failure after construction, the
middle graph (b) the updated reliability index conditional to daily water level, the right graph (c) conditional
to flood water levels.

that the total uncertainty is larger for dikes on OC soil, which is discussed in more detail
in the next section. The analysis further shows that significant reliability updates are
possible, even when the probability of failure during construction is lower than 0.05; to
our judgement a reasonable and generally accepted safety level during construction.

4.4.4. ACCURACY OF THE SIMPLIFIED METHOD
To demonstrate the accuracy of the proposed approach based on the indicator function
(using Equation 4.2), the results were benchmarked with MCIS. The calculation of the
failure probability is similar to Equation 4.1, but with importance weighting factors cor-
recting for the shifted sampling distributions (shifted to the FORM design point of the
prior analysis). The results of the proposed method are in reasonable accordance with
the MCIS results, depicted by black horizontal lines in Figure 4.4.

From the MCIS it also follows that the correlation between realisations of the limit
state functions g (xa) and h(xs) is very similar to the estimate based on Equation 4.5. For
example for case 1 NC, the Pearson correlation coefficient between loading condition
B and A based on MCIS is 0.72, The estimate using Equation 4.5 is 0.73. For loading
condition C and A, the correlation coefficient is 0.56 based on MCIS, and 0.58 based
on Equation 4.5. Notice that the correlation coefficient in the considered cases mainly
depends on the choice about the autocorrelation of parameters (ρk ). The contribution
of a different importance of parameters in both calculation is minor. Similar results are
found for the other cases. The proposed approach is therefore a convenient, practical
alternative for estimating low posterior conditional probabilities of failure.

The Monte Carlo analysis further provides insights in how the information contained
in the survival of construction leads to uncertainty reduction. Figure 4.6 shows the MCIS
realisations for case 1 NC and OC, for the two parameters which have (a priori) the
largest influence on the failure probability: the POP and the S-ratio of the clay layer.
The figure highlights the samples of the MCIS analysis which are not consistent with the
observation, for which h(xs,i) > 0. From the figure, two things are be concluded.
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Figure 4.6: Joint probability density (grey shading) for undrained shear strength ratio (S) and POP values.
Blue dots show all MCIS samples, yellow dots show only realisations that are not consistent with the survived
construction (i.e. for which h(xs,i) > 0.

First, the survival information relates to realisations at the low end of the joint pa-
rameter distribution, reflected in a lower density of the tail of the joint parameter distri-
butions. Specifically for the latter, it is not straightforward to reconstruct the posterior
probability distributions including the survival information, without losing information
about the induced partial cross correlation due to the exclusion of samples in the joint
tail.

Second, there is a difference in uncertainty reduction between the NC and OC case.
For the OC case the uncertainty reduction is mainly in the tail of the S and POP of the
clay layer. For the NC case, the uncertainty reduction in POP is less, and the update
relates mainly to the S parameter. The main reason is that the uncertainty in preconsol-
idation is large for OC soils, whereas preconsolidation does not play a role for NC soil
as the preconsolidation is almost directly exceeded by the embankment raise. For the
NC case, the shear strength is therefore only determined by the relatively less uncertain
undrained shear strength ratio (S).

4.4.5. SUMMARY OF CASE STUDY RESULTS
Based on the presented results, the following conclusions are drawn regarding the influ-
ence of the considered characteristic dike cases on the reliability update:

• For dikes on a sand foundation (case 4 and 5), the construction is not a critical
load because excess pore water pressures dissipate almost instantaneously during
construction. Hence, no reliability update is expected from incorporating con-
struction survival for these cases.
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• In case 2, the presence of a relatively thin clay blanket layer leads to considerably
different pore water pressures in the subsoil at flood loading conditions than dur-
ing the survived conditions. This limited similarity between loading conditions
results in a lower reliability update effect.

• For the specific cases considered, the effect of incorporating construction survival
turned out to be generally larger for dikes on OC than on NC soil, for the same criti-
cality of stability during construction. The main reason is the larger uncertainty in
properties of OC soil, allowing for (and leading to) more uncertainty reduction. In
the cases with dikes on NC soil, the uncertainty was smaller, thus less uncertainty
could be reduced.

• No firm conclusions can be drawn about the influence of different dike materials.
Although differences in the response to flood levels and difference in probability
distributions are expected to have a different impact on the reliability update, the
considered cases were too limited to draw conclusions. Moreover, for the con-
sidered cases, the main uncertainty is not in the dike material, but in the shear
strength of the soft soil blanket. Hence, the reliability update in both cases is
mainly due to uncertainty reduction in the soft soil parameters, not the dike mate-
rial parameters.

4.5. CASE STUDY: EEMDIJK
This section demonstrates the application of the proposed approach to the Eemdijk test
dike. The case study is already introduced in Section 3.5. In contrast to the previous sec-
tions, this case study uses the actual data from site investigation and pore water pressure
monitoring.

4.5.1. CASE DESCRIPTION
The dike, built of clean sand, 5.3 m high and slope 1:2 (v:h), was constructed in multiple
stages (see Figure 4.8) with no excessive deformations or cracks being observed. During
construction, pore water pressures were continuously measured in the clay and peat
layers at multiple locations. The undrained shear strength was estimated by CPTs using
a site-specific transformation model, see Section 3.5. The other soil properties were
obtained from laboratory tests (Deltares, 2018), prior to the construction of the test dike.
The stochastic soil properties used for this case study are shown in Table 4.3.

4.5.2. RELIABILITY RESULTS
Following the proposed approach, we calculate the prior reliability (without construc-
tion survival) and posterior reliability (with construction survival) of the test dike. The
design conditions comprise different flood water levels and fully consolidated subsoil,
as if the dike had been built as flood defence. The survived conditions are based on the
actual measurement data acquired during construction Lengkeek et al. (2019); Van der
Krogt (2018). This involves data such as the geometry, phreatic level and the excess pore
water pressures over the soil layers. The degree of consolidation below the dike was ap-
proximately 60%. The Uplift-Van model (Van, 2001) was used because of the possibility
of uplift at the toe.
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Figure 4.7: Aerial photo of the Eemdijk ring-shaped test dike, with slope instability of the conventional (ground)
dike (left). The test dike with sheet pile, is located on the right side. Photo courtesy of Eric Feijten / NOS
(Feijten , Photographer)

Construction stage 5
Construction stage 4
Construction stage 3
Construction stage 2
Construction stage 1

Construction stage 9
Construction stage 8+7
Construction stage 65.3 m + N.A.P

4.8 m + N.A.P
0.0 m + N.A.P

Clay

Peat

Pleistocene Sand

Toe excavation

21.0 m 9.2 m 6.0 m 12.0 m

Sheet pile

CL Clay cut off wall

Piezometer

Figure 4.8: Schematic overview of cross-section A-A’, see Figure 4.7. The blue dotted line indicates the phreatic
level during the failure test. Heights relative to NAP.

Figure 4.9 shows that the failure probability for the daily phreatic level reduces signif-
icantly (factor 13 lower) by considering the survival of the last two construction stages.
The effect of incorporating the survival information on the failure probability is negligi-
ble for design conditions with fully consolidated subsoil and a very high phreatic level,
due to the low similarity with the survived conditions. This is in line with the determin-
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Table 4.3: Soil properties of the Eemdijk test site Deltares (2018)

Soil Property Symbol Distribution Mean Deviation Type
Auto-
correlation

Dike Sand Friction angle ϕcs Log-normal 35.0 1.5 SD 1
Clay NC shear stress ratio S Log-normal 0.38 0.05 SD 1
Clay Strength increase exponent m Log-normal 0.91 0.02 SD 1
Clay below cresta Undrained shear stress (CPT) su Log-normal 13.2 0.14b CoV 1
Clay below toea Undrained shear stress (CPT) su Log-normal 6.2 0.14b CoV 1
Peat NC shear stress ratio S Log-normal 0.50 0.04 SD 1
Peat Strength increase exponent m Log-normal 0.87 0.03 SD 1
Peat below cresta Undrained shear stress (CPT) su Log-normal 24.6 0.19b CoV 1
Peat below toea Undrained shear stress (CPT) su Log-normal 12.0 0.19b CoV 1
Sand Aquifer Friction angle ϕcs Log-normal 35.0 1.5 SD 1
Model uncertainty factor Uplift-van (Van Duinen, 2015) ms Log-normal 0.995 0.033 SD 0

a The mean undrained shear strength under the dike crest differs from the toe as the area below the crest had
been preloaded by an old, meanwhile removed dike.
b The uncertainty in the indirectly measured undrained shear stress (using CPT) before construction at a
specific location is largely epistemic, since it includes a large transformation error (Van der Krogt et al., 2018;
Van der Krogt and Schweckendiek, 2019).

Table 4.4: Factor of safety (Fs) in different loading stages and different phreatic levels. Mean values of the soil
parameters are used.

Phreatic level [m NAP]
Loading stages +0.25 +1.0 +2.0 +3.0

Construction, 4.8 m bank height 1.03
Construction, 5.3 m bank height 1.02
Failure test 1.02 1.00 0.95 0.87
Failure test + toe excavation 0.92 0.90 0.85 0.76
Fully consolidated state (hypothetical) 1.17 1.13 1.05 0.94

istic analyses reported in Table 4.4 as the factor of safety in the design conditions itself,
is lower than the stability during construction.

In terms of the criticality of the survived situation (Fs close to 1.0), and the lower
similarity of the extreme situation with respect to the survived situation, the results of
the Eemdijk case study are most similar to Case 2 (thin blanket layer) of the character-
istic dikes considered in Section 4.4. The effect of the reliability update for the Eemdijk
case study is a little less than for the characteristic case study, presumably because the
prior uncertainty is lower due to relatively extensive site investigation. Nonetheless, the
transformation uncertainty is still present and reduces if we incorporate the information
of the survived construction.

These results, however, are conditional failure probabilities. Therefore, we com-
bine the conditional reliability indices in Figure 4.9 with a pdf of the phreatic level (the
phreatic level virtually being the response to flood loading). A Gumbel distribution with
annual exceedance probabilities of 1/2 and 1/100 for phreatic levels of +1.0 m NAP and
+2.0 m NAP, respectively, results in a total prior annual reliability index of 1.59, and a
total posterior annual reliability index of 2.51. This is a reduction in failure probability of
almost a factor 10.

Similar to the cases of characteristic dikes in Section 4.4, the reliability estimate
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Figure 4.9: Prior and posterior reliability index conditional to the phreatic level of a hypothetical design situa-
tion with a fully consolidated subsoil. Error bars show the influence of uncertainty in the measured pore water
pressures (one standard deviation lower or higher) on the calculated posterior reliability.

weighted with pdf of the water level improves significantly, despite an insignificant re-
duction of the conditional failure probability at high water levels (i.e. design conditions).
Again, the overall effect is due to the reduced conditional probability of failure for lower
water levels, which are more similar and less critical than the observed loading condi-
tions.

The effect of uncertainty in the measured excess pore water pressures at the survived
loading conditions is investigated through a sensitivity analysis. From the data, the vari-
ation of the excess pore water pressure across the site is estimated 3 kPa. The influence
on the posterior reliability of a 3 kPa higher or lower pore water pressure appears to be
very limited, see the error bars in Figure 4.9. In addition, the results obtained with CMC
using Equation 4.1, are in good accordance with the proposed approximation method.

4.5.3. IMPROVED PREDICTION FOR FAILURE TEST

Instead of the dike being an actual flood defence (on fully consolidated soil as considered
above), the failure test was executed directly after the last construction stage, without full
consolidation. The slope failure of the test dike was induced by increasing the phreatic
level in the dike body, and additionally by excavating a trench adjacent to the dike toe,
see Figure 4.8. Consequently, the stability in terms of Fs during the failure test was lower
than during construction, see Table 4.4. Nevertheless, the dike was critically loaded dur-
ing construction (Fs was close to 1.0), thus considering construction survival should also
improve the predicted performance during the failure test.

The reliability update for the failure test is depicted by the fragility curves (empirical
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Figure 4.10: Prior and posterior fragility curves of the failure test. Red lines indicate the prior and posterior
estimate for the phreatic level triggering failure (at which P (F) = 0.5). The blue line indicates the phreatic level
at which the test dike actually failed.

cdfs) in Figure 4.10. The empirical cdfs does not show a sharp cut-off at the survived
phreatic level during construction, but a gradual reduction of probability density at
low phreatic levels, and a redistribution of density mass over the higher phreatic levels,
due to the differences in loading conditions between the failure test and the survived
construction. Although the effect of considering construction survival is limited for the
overall reliability (reduction by factor 2), the graph clearly shows the reduction of uncer-
tainty by incorporating the construction survival. For example, it can be derived that the
phreatic level at which P (F) = 0.5 (i.e. approximating the most likely loading condition
triggering failure) increased from +1.0 m NAP (a priori) to +1.7 m NAP after updating.

In the test, the slope eventually failed at a phreatic level of +2.9 m NAP. Hence, we
may conclude that the prediction of failure could be improved by using the information
from the construction phase, even though we remain with an under-estimation of the
slope resistance after updating.

4.6. CONCLUSION

As survival information promises to lead to reliability updates, and specifically the infor-
mation contained in the survival of the often critical construction phase, we strived to
answer the following sub-question:

How does the performance information contained in the survival of the construction
phase affect the reliability estimates for slope stability of dikes?
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This chapter developed a practical method to incorporate the observation of con-
struction survival in the reliability analysis. Depending on the subsoil and loading con-
ditions, incorporating this survival information can lead to a significantly higher poste-
rior reliability, especially for dikes on undrained subsoil. The main reason is that the
construction of dikes on soft soils is a critical loading condition, and the stability directly
after construction is often lower than during the design flood conditions.

For several characteristic dike profiles, the (conditional) probability of failure re-
duced by a factor of 10 to 1000 for relatively low water levels. For high water levels
representing design flood conditions, the impact was less significant with a reduction
by a factor of 2 to 10. Primarily as a result of lower correlation or similarity between the
survived and the assessed conditions. Nevertheless, the total dike reliability estimate
(e.g., annual) can improve significantly because it considers the entire range of poten-
tial flood levels. Herein, extreme flood stages have a low probability of occurrence, and
hence, a lower weight in the total reliability estimate.

The results obtained from the proposed approximation approach based on FORM
calculations agree well with results obtained from Monte Carlo simulations, for con-
ditional probabilities for the cases presented in this chapter. Therefore, the proposed
approach is a convenient, practical alternative for estimating low probabilities. The use
of surrogate-models for slope stability calculations (e.g. Jiang et al. (2015); Li et al. (2016))
may allow evaluation of Bayes rule (Equation 2.11) directly, improving computational
efficiency while using less approximations.

The case studies provide insight into the factors determining a significant reliabil-
ity update. We highlight two of those. The first prerequisite to be met is that the as-
sessed and survived situations need to be a high degree of similarity, in the simplified
method depicted by a high correlation. A second condition is that sufficient knowledge
is available about the survived conditions, because large uncertainty about the survived
conditions (due to limited availability of data) reduces the impact of the survival obser-
vation. An example is the contribution of unsaturated conditions to the shear strength,
which was neglected in the examples. The influence of unsaturated conditions on the
reliability update is investigated by a sensitivity study, demonstrating that additional
unsaturated strength reduces the effect of reliability updating, but not completely. To
assess whether incorporating construction survival can improve the reliability estimate
in practical projects, we recommend analysing first how critical were the loading condi-
tions during construction, compared to the design loading conditions, in terms of the
respective factors of safety. And thereafter, to consider whether the two loading condi-
tions are sufficiently similar, in terms of the critical slip circle and the influence of the
parameters involved.

The results indicate that dikes on soft soil blankets that survived the construction
will generally have a higher reliability than the reliability of the design based on prior
knowledge. For existing dikes, incorporating the information of construction survival
in the reliability analysis can therefore significantly improve safety assessments. As the
survival information is typically available over distances longer than a slip plane, the
results (e.g. posterior reliability or updated estimates of the local average properties) are
representative for horizontal sections that can be considered as homogeneous in terms
of the schematized properties (typically in the order of hundreds of meters). To update
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the reliability of larger sections e.g. when survival information is available along longer
stretches, Bayesian analyses must be performed for multiple cross-sections.

For new dikes and dike reinforcement projects, designs can be optimized by antici-
pating the survival of the construction stage, using pre-posterior analysis, see Appendix
A. The design, the criticality of the loading condition during construction, the required
monitoring (e.g. pore water pressures), and contingency actions (e.g. stopping crite-
rion) become then elements in the optimization. Bayesian decision theory (Raiffa and
Schlaifer, 1961) and the Observational Method (Peck, 1969; Spross and Johansson, 2017)
provides an appropriate risk-based framework to consider whether the expected bene-
fits in the design outweigh the additional risk of failure during construction. Chapter 6
further elaborates on this concept.





5
MULTI-SOURCE PERFORMANCE

INFORMATION FOR SLOPE

RELIABILITY UPDATING

Science never solves a problem without creating ten more.

George Bernard Shaw

By considering observations of the performance of dikes, epistemic uncertainty reduces
and estimates of the failure probability improve. Uncertainty can be further reduced by
considering multiple performance observations, from different sources. This chapter in-
vestigates the effect of settlement measurements and survival during the construction of
dikes on the reliability estimates by using Bayesian analysis. We also explore workable
approximation methods Bayesian analysis with geotechnical models used in practice, for
which evaluation of a large number of realisations is computationally challenging.
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5.1. INTRODUCTION
In Chapter 4 it was shown that incorporating construction survival information using
Bayesian Updating increases reliability estimates because survival of critical loads typi-
cally contains information about the minimum strength of the soil and affects the tail of
the joint probability density function (pdf) of the parameters. However, still considerable
uncertainty in the parameters remains, reflected by the posterior (updated) probability
distributions.

Uncertainty can be further reduced by incorporating additional performance infor-
mation that is available during the survived construction. Another source of informa-
tion of the embankment construction are settlements during and after the raise of the
embankment. The settlement is among others influenced by the preconsolidation of the
soil, see Figure 5.1. In reliability analysis for slope stability where su is calculated within
the LEM model using the SHANSEP formulation (Equation 2.16), preconsolidation is
one of the main uncertain parameters. Settlement measurements over time can reduce
uncertainty in the preconsolidation stress, and hence update the reliability estimate for
slope stability.

In addition, combining the observations of settlement and survival should reduce un-
certainty further because they are from different sources. Furthermore, settlements are
’equality information’ which should lead to uncertainty reduction and updated values
for best estimates (shifted mean), contrary to survival information which is ’inequality
information’ and for which the update mainly relates to the tail of the joint probability
distributions. Settlement and survival information are thus complementary sources of
information, and the combination of equality and inequality information may be specif-
ically useful for uncertainty reduction.

Some examples of incorporating multiple measurements in the application of
geotechnical engineering are given by Vardon et al. (2016); Li et al. (2018); Peng et al.
(2014); Zheng et al. (2018); Sun et al. (2019). None of the examples, however, considers
the combination of equality and inequality performance information. Moreover, the
examples are not focused on improving failure probability estimates. This chapter ex-
amines how multiple performance observations such as survival and settlement during
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Figure 5.1: Typical settlement development of soft soil (depicted by the strain of a soil layer) due to effective
stress increase ∆σ′. The preconsolidation stress is indicated with σ′

p.
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the construction phase can improve reliability estimates, using Bayesian updating. The
research question is formulated as follows:

What is the effect of combining survival and settlements (multiple performance ob-
servations) during the construction of dikes?

To answer this question, we estimate the failure probability with single and multiple
performance observations, using Bayesian updating. Straightforward reliability meth-
ods are ineffective for estimating low probabilities of failure and multiple observations
due to the computation time of limit equilibrium state models for slope stability analysis
and the models for settlement prediction (simple geotechnical models with computa-
tion times of at least several seconds), contrary to closed form solution as used in e.g.
Spross and Larsson (2021). In order to achieve practically tractable computation times
we use approximations for estimating the posterior probability of failure conditional to
all observations: P (F|ε1, ...,εn). Here F indicates failure (instability), and εi , ...,εn the
observations of survival and settlements.

Among the various reliability methods (of which some are introduced in Section
2.2.2), there is no obvious candidate to solve the reliability updating problem with mul-
tiple observations of different sources and different types. While not the main goal of
this chapter to make an extensive performance comparison of methods for estimating
the posterior probability, we investigate the most interesting possibilities to examine
the effect of incorporating multiple performance observations, from multiple sources,
and being of the equality and inequality type. In addition, we consider methods that,
in addition to be feasible for academic research, are also practically workable in engi-
neering practice, i.e. that the analysis is performed within one working day on a desktop
computer, and is sufficiently accurate to compare with reliability requirements.

We consider subset simulation as one of the most effective simulation methods
for estimating small probabilities, also dealing with Bayesian Updating (Straub (2011);
Straub and Papaioannou (2014); Betz et al. (2018)). Secondly we consider the MultiNest
algorithm (Feroz et al., 2009) as particularly promising method to efficiently estimate
the total evidence, with low likelihoods. Finally, we follow an approach using a kriging-
based metamodelling approach for reliability analysis, Efficient and Robust Reliability
Analysis for Geotechnical Applications (ERRAGA), which drastically decreases the num-
ber of model evaluations (Eijnden et al., 2021). The comparison with CMC serves the
primary goal of investigating the impact of considering the combination of survival and
settlement information. In addition, the CMC serves a secondary goal to give recom-
mendations about the tested reliability methods, for application of Bayesian Updating
in geotechnical engineering practice.

This chapter is structured as follows: Section 5.2 outlines the different methods and
implementations to calculate the posterior probability of failure. The envisaged meth-
ods are applied to a case study in Section 5.3, to examine the effect of incorporating sur-
vival and settlement observations for the case study of the Eemdijk test dike. Section 5.4
contains a further interpretation of the results and findings, and 5.5 finally answers the
research question and gives recommendations and directions for further developments.
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5.2. INCORPORATING SURVIVAL AND SETTLEMENT

OBSERVATIONS
To examine the effect of considering survival and settlement observations, we recalcu-
late the probability of failure conditional to both observations. As in Chapter 4, F is
the event of slope stability failure, ε1 the event of construction survival, and ε2 the ob-
servation of settlement during construction. To estimate the posterior probability of
failure P (F|ε), where ε = ε1 ∩ε2, three limit state equations are relevant: g (x) for failure
(Equation 2.18), h1(x) for construction survival (Equation 2.18), and h2(x) for settlement
observations during construction, derived from Equation 2.12:

h2(x) = u −Φ−1 (c ·L (x, sobs)) . (5.1)

Herein, is L(x) the likelihood of observing a settlement:

L(x) =φ

(
s(x)− sobs

ϵsett

)
, (5.2)

with s(x) the calculated settlement for a realisation x and sobs the observed settlement.
The function φ is the pdf of the standard normal distribution, and ϵsett is the standard de-
viation of the measurement error. This implies a normal distributed, unbiased measure-
ment error, which is independent from measurement to measurement. The constant c
in Equation 5.1 is a scaling factor, defined by the reciprocal of the maximum likelihood,
thus c = ϵsett/φ(0). In case multiple independent measurements are available, the total
likelihood is calculated by the multiplication of the individual likelihoods

∏n
i L(x, sobs,i ).

According to Equation 2.11, the posterior probability is evaluated by:

P (F|ε1 ∩ε2) = P (g (x) < 0∩h1(x) < 0∩h2(x) < 0))

P (h1(x) < 0∩h2(x) < 0))
. (5.3)

To evaluate Equation 5.3 with simulation methods (Monte Carlo and subset simula-
tion), we use the max of the limit state realisations to evaluate the ∩-gate.

P (F|ε1 ∩ε2) = P (max
(
g (x),h1(x),h2(x)

)< 0)

P (max(h1(x),h2(x)) < 0)
. (5.4)

For the implementation with Crude Monte Carlo, the probability is calculated using
Equation 5.5, with the indicator function 1[·].

P (F|ε) ≈
1
n

∑i=n
i=1 1

[
max

(
g (xi),h1(xi),h2(xi)

)< 0
]

1
n

∑i=n
i=1 1[max(h1(xi),h2(xi)) < 0]

. (5.5)

In the implementation with subset simulation, the numerator and denominator in
Equation 5.4 are calculated separately and divided afterwards. Within the implementa-
tion using a metamodel, the limit state functions are replaced by surrogates ĝ (x), ĥ1(x),
and ĥ2(x), using a Kriging-based metamodel, see Section 2.2.5.

The implementation to calculate the failure probability using MultiNest (Feroz et al.,
2009) is slightly different because the MultiNest algorithm is aimed at calculating the to-
tal evidence. Since the realisations of the nested sampling comply with the posterior dis-
tribution, and the weights wi are already normalized with the total evidence (

∑
wi = 1),
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the posterior failure probability is calculated by summing the weights of the realisations
in the failure domain:

P (F|ε) =
i=n∑
i=1

wi ·1
[
g (xi) < 0

]
(5.6)

5.3. CASE STUDY: EEMDIJK
This section describes the results of incorporating settlement information and survival
information during the staged construction of the Eemdijk test dike. The case study
considers the stability at two locations across the test site (location 38 and 39, see Figure
3.10). At both locations the dike survived the construction and settlements are measured.
The case study is already introduced in Section 3.5 and 4.5.

5.3.1. CASE DESCRIPTION
Prior information of the geotechnical parameters of the entire site, and the information
of the staged construction phasing is taken from Deltares (2018); Van der Krogt (2018).
The vector X denotes the 18 stochastic time-variant and time-invariant variables (mod-
elled by the autocorrelation) for soil strength and stiffness in the three soil layers, see
Table 5.1 and Table 4.3.

Contrary to 4.3, the strength-increase exponent m and properties of the sand aquifer
are taken as deterministic value (mean) because the influence is negligible. The model
uncertainty of the 2D plane strain settlement model is taken by a Log-normal distri-
bution with mean 1.0 and standard deviation 0.05, in accordance with the results of
Muhammed et al. (2020), in absence of values for soft soil in ISSMGE-TC304 (2021).

The stiffness parameters are derived from (K0-)constant rate of strain tests. A cross-
correlation was found between the data points of the laboratory test results for the iso-
tache model parameters a, b, and c, which are modelled accordingly in X, see Table
5.2. The consolidation is calculated using Darcy’s consolidation model using a strain

Table 5.1: Stiffness properties of the Eemdijk test site Deltares (2018)

Soil Property Symbol Distribution Mean Deviation Type
Auto-
corre-
lation

Clay Pre-overburden pressurea POP Log-normal 17.1 5.6 SD 1
Isotache swelling index a Log-normal 0.014 0.004 SD 1
Isotache compression index b Log-normal 0.155 0.025 SD 1
Isotache creep constant c Log-normal 0.011 0.004 SD 1
Initial permeability ke0 Log-normal 1.0 ·10−9 0.5 CoV 1
Permeability strain factor ck Log-normal 0.3 0.3 CoV 1

Peat Pre-overburden pressurea POP Log-normal 8.7 5.2 SD 1
Isotache swelling index a Log-normal 0.045 0.013 SD 1
Isotache compression index b Log-normal 0.332 0.048 SD 1
Isotache creep constant c Log-normal 0.035 0.007 SD 1
Initial permeability ke0 Log-normal 1.0 ·10−8 0.5 CoV 1
Permeability strain factor ck Log-normal 0.26 0.3 CoV 1

a POP prior to the construction of the dike.
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Figure 5.2: Staged construction settlement model and stability model. Dashed and dash-dotted lines indicate
the shallow and deep failure mode for the slope stability. Clay layer is indicated by a green color, the peat layer
is indicated by an olive color.

dependent permeability that decreases with the void ratio.

Table 5.2: Correlation between isotache parameters for clay (left) and peat (right), found between the data
points of the laboratory test results.

Clay a b c

a 1 0.21 0.47
b 0.21 1 0.85
c 0.47 0.85 1

Peat a b c

a 1 0.53 0
b 0.53 1 0
c 0 0 1

The probability density functions of the soil parameters describe the uncertainty of
the locally unknown depth-average value. As the uncertainty was estimated from labora-
tory tests from the entire site, it includes spatial variability. However, the local average is
constant over time so the uncertainty in the local average is reducible. The uncertainty
furthermore includes statistical uncertainty due to a limited number of measurements.

For the survival observation, we consider only the most critical construction stage
at t=147 days, with the survived conditions as described in Section 4.5.2. The stability
is assessed at t=224 days; the day the dike was tested, with the phreatic level at 1.0 m
NAP. We evaluate the effect of survival and settlements for a fixed slip plane through the
dike and clay layer underneath, see Figure 5.2. The impact of other potential slip planes
is discussed in Section 5.4.1. Notice that the prior reliability estimate differs from the
results in Section 4.5.2 because the POP in this study is based on laboratory tests only,
and not based on local CPTs.

The settlement is calculated in 20 time steps from the start of the construction (t=0
days) until the successful construction of the full embankment (t=147 days), taking into
account all construction stages. For the settlement observation we consider the settle-
ment at both locations, at t = 94 days and t = 147 as independent measurements. The
measurement error of the settlements (ϵsett) is taken by a CoV of 0.02, based on the
reading accuracy of the measurement and deviation (root-mean-square error) of the
individual measurements compared to the calculated settlement curve with the best fit
in Figure 5.3.
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Figure 5.3: Calculated settlements for 100 realisations based on prior information (grey), calculated settle-
ments based on the expected values (black), and the actual measurements of two locations at the site. For the
Bayesian Updating, only the measurements at t=94 and t=147 days are used, indicated by dash-dotted lines.

5.3.2. RESULTS
Following the implementation described in Section 5.2, the reliability for slope stability
was estimated for two different locations, incorporating the survival and settlement in-
formation at each location. The subset size for subset simulation and the number of
live points for MultiNest were set to 1000 , such that a reasonable computation time was
reached on normal workstation (maximum 1 day calculation time). For the metamodel
a 60 initial realisations were selected, and 60 additional realisations. For Crude Monte
Carlo 800000 realisations were taken to obtain a sufficiently reliable benchmark (3 weeks
calculation time).

PRIOR STABILITY AND SETTLEMENT ANALYSIS

The prior reliability index β for a slip circle through the clay layer was found 1.93 using
Monte Carlo. The subset simulation, the analysis with the MultiNest algorithm, and
the analyses with the metamodel were repeated 4 times to evaluate the variability and
potential bias related to the chosen methods. The repeated results show some scatter,
but on average the results agree well with the Monte Carlo. The results obtained with
the metamodel show the least scatter among the different runs, see Figure 5.4. The
calculated settlements for 100 realisations based on the prior information are shown
grey in Figure 5.3. The black line indicates the calculated settlement for the expected
values of the stochastic parameters.

POSTERIOR STABILITY ANALYSIS

To update the failure probabilities for stability at the two locations across the site, we con-
sidered the construction survival and the settlement measurements at the two locations.
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Figure 5.4: Reliability result for slope stability based on prior information, and posterior information, incorpo-
rating settlement measurements (left) and settlement and survival information (right). Results of 4 indepen-
dent runs are shown by dots, and in boxplots. Results are conditional probabilities (daily water level).

The measured settlements are shown in Figure 5.3, one location representing an above
average, and one representing a below-average settlement compared to the expected
value.

Incorporating the settlement measurements of location 39 (less settlement than ex-
pected) increases the reliability for stability at that location (the cross-section indicated
in Figure 3.10), while incorporating the settlement measurements of location 38 (more
settlement than expected) decreases the reliability estimate of the local stability, see the
left panel in Figure 5.4. This is expected because stability and settlement are typically
negatively correlated through the influence of the preconsolidation.

Due to the Bayesian updating, many realisations were rejected from the Monte Carlo
reliability analysis. From the only 20000 samples which were not rejected, approximately
400 samples failed, so the numerical accuracy is approximately VP̂ f

≈ 0.05. Each result of

the 4 repeated analyses with subset simulation, MultiNest, and the metamodel is plotted
with a black dot in Figure 5.4, and for better interpretation the results are also shown in
boxplots. The middle lines of the boxplots describe the median values of the estimated
reliability index.

The impact of the settlement measurements on the reliability estimate for stability
is limited for this case. The increase and decrease of the failure probability is approxi-
mately 25% (from 0.027 to 0.035 and 0.020, respectively). The decrease in failure proba-
bility is relatively low due to the low correlation between stability and settlement in the
considered case (Pearson correlation coefficient −0.10). Though the results of subset
simulation, MultiNest, and ERRAGA show some scatter among different runs, the me-
dian value seems unbiased compared to the Monte Carlo benchmark. The scatter of
subset simulation is consistent with the results reported in Straub et al. (2016).

Combining the information of settlement and survival of the most critical construc-
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tion stage, leads to further uncertainty reduction. For the stability at locations 38 and 39,
the posterior reliability considering both settlement and survival information is higher
than the posterior with settlement information only, see the right panel in Figure 5.4.
For location 38 the survival information compensates for the decrease in reliability due
to settlement information, compared to the situation where only only prior information
is used. Hence, combining different sources of performance information still leads to
lower posterior failure probabilities. The results obtained with MultiNest and Subset
Simulation show some scatter but seem unbiased, the results obtained with ERRAGA
seem to under-predict the reliability slightly.

UNCERTAINTY REDUCTION

The CMC analysis provides insight into the uncertainty reduction and the resulting relia-
bility increase for stability. The settlement measurements mainly lead to a small shift of
the cumulative density function, to the lower side in case of high settlements (location
38), and to to the higher side in case of low settlements (location 39), see the left panel in
Figure 5.5. The right panel in Figure 5.5 visualizes the effect of survival: where settlement
information tends to shift the density function, survival information tends to reduce the
density in the tail of the distribution, see the dark grey line in Figure 5.5. The dark blue
line indicates the combined effect of settlement measurements and survival informa-
tion, showing that both the equality and inequality data contribute to the uncertainty
reduction at the lower tail of the cdf of the factor of safety Fs.

The little influence of the settlement observation on the stability in this case study,
is also reflected in the posterior probability density functions of the parameters after in-
corporating settlement measurements, see Figure 5.6. The largest uncertainty reduction
appears in parameters which have no influence on the slope stability, such as the initial
porosity (e0) and the permeability (ke0 ). These parameters are updated more than the
preconsolidation (POP ), mainly due to the high prior uncertainty.

Note that settlements measurements can fluctuate over shorter length scales. This
limits the representativeness a measurement at a location and hence the result of the
Bayesian analysis to distances within the auto-correlation length of the settlements. For
use of settlement measurements for reliability updating of longer reaches of dike, multi-
ple settlement measurements are thus necessary over a shorter distance.

5.4. DISCUSSION

5.4.1. OTHER SLIP PLANES
The results in Section 5.3.2 are, conditional to a fixed slip circle through the clay layer.
An instability can, however, take any form, so ideally we evaluate the stability of all
slip planes. To check whether other slip planes have a considerable contribution to
the failure probability, we analysed a second potential slip plane: a deep failure mode
intersecting the clay and peat layer of the subsoil, see the dash-dotted line in Figure 5.2.
The prior reliability conditional to this slip plane is 2.70. The contribution of this slip
plane to the total failure probability is thus negligible.

The impact of considering settlements for this deep slip plane is similar to the results
for the shallow slip plane, see Figure 5.7. As the stability analysis now benefits also from
uncertainty reduction of the POP of the peat layer (see Figure 5.6), the reliability update
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Factor of Safety Factor of Safety

Figure 5.5: Fitted cumulative density (cdf) of the factor of safety with and without settlement information (left),
and the combined effect of low settlement observation and survival information. Shallow failure mode through
clay layer.

is a little larger. The increase and decrease of the failure probability is approximately
25-50% (from 3.5 ·10−3 to 5.5 ·10−3 and 2.7 ·10−3 for location 38 and 39 respectively).

It strikes that the MultiNest analyses (purple in Figure 5.7 show much more scatter
than the results with subset simulation and ERRAGA, for the considered case. This re-
sults in inaccurate reliability estimates. The reason is that the reliability estimate using
MultiNest is heavily dependent on the number of failed samples in the initial set of live
points (1000). As the (prior) reliability for the deep failure mode is already much higher
than the shallow failure mode, there is a very low number of failed samples in the first set
of live points (only 2, see the left panel in Figure 5.8). Because the algorithm samples only
new realisations with a higher likelihood, hardly any new samples in the failure domain
are simulated, contrary to subset simulation (see the right panel in Figure 5.8).

5.4.2. PERFORMANCE OF RELIABILITY METHODS
Even with the relatively simple geotechnical models we used in this chapter (which re-
quire approximately 1 s to run), the total computation time of the analyses is long but ac-
ceptable, see Figure 5.9. In engineering practice, however, more advanced geotechnical
models are often used (e.g. with Finite Element Methods (FEM)), requiring more com-
putation time. Computation times in the order of several days for a subset simulation
or analysis MultiNest may be acceptable for academic research, but are not desirable in
engineering practice. Basically, only implementations with metamodels seem suitable
for applying Bayesian analysis in those situations. Actually, when a manifold of observa-
tions are to be considered in the analysis, implementations with metamodels seem the
only realistic option. The next subsections give specific recommendations per method.

SUBSET SIMULATION

We chose an implementation in which we combine the limit states for failure, settlement
measurements, and survival into one limit state function, and where we calculate the
numerator and denominator of the Bayesian equation separately. This implementation
requires only two subset simulations to estimate the updated probability. In this imple-
mentation it is important to normalise the individual limit state functions to prevent bias
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Figure 5.6: Local posterior pdfs of the settlement parameters after incorporating settlement measurements.
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Figure 5.7: Reliability result for slope stability. Fixed deep slip circle through clay and peat layer. Results are
conditional probabilities (daily water level).
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Figure 5.8: Realizations in MultiNest and subset simulation for the deep failure mode. Darker colors indicate
subsequent live points in the MultiNest analysis (left) and subsequent subsets in the subset simulation (right).

in the results, because the selection of new seeds for subsequent subset runs depends on
the limit state value. This normalisation would not be relevant if we followed a sequen-
tial Bayesian Updating framework (Cao et al., 2016; Straub et al., 2016), where P (F|ε) is
calculated from the conditional samples in the last step of the calculation of P (ε). The
latter may involve more subset simulations, and hence more calculation time.

We chose a subset size of 1000 , leading to considerable scatter in the results among
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Figure 5.9: Calculation time of the Bayesian reliability analysis with different methods.

different runs. A larger subset size might work better with a combination of multiple
limit states. A sensitivity analysis with a subset size of 3000 , shows that the scatter over
different runs decreases, so the bias of a single analysis decreases too.

MULTINEST

From Section 5.4.1 follows that the results obtained with MultiNest seem to be (on av-
erage) unbiased but are heavily dependent on the number of failed samples initially
sampled. To use MultiNest as a method for solving reliability problems with low prior
failure probabilities, adaptions are needed to increase the number of samples in the
failure domain, for example using Importance nested sampling Feroz et al. (2019). Here,
wi = wi ,MN · wi ,IS with wi ,MN the MultiNest weight factor, and wi ,IS = π(xi)/π′(xi) the
importance weight factor with π and π′ the actual and proposal pdf, respectively.

An initial trial was made using a variance increase of a factor 1.5 in standard normal
space on all parameters, resulting in more failure samples. The accuracy of the failure
probability was not substantially better than the calculation without variance increase.
We recommend to explore adaptive importance sampling methods that can be better
tailored at shifting or inflating particular probability distributions.

ERRAGA
The implementation with ERRAGA is clearly the best in terms of total calculation time
and the number of model evaluations, see Figure 5.9. Overfitting of the metamodel
was prevented by adding a noise term in the kernel and the UNIS learning function (see
Eijnden et al. (2021)) was found to be effective in selecting new samples that contribute
most to reducing the prediction uncertainty for the limit states for failure and survival.
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Yet, the reliability results show some scatter and seem to under-predict the poste-
rior reliability, possibly due to large uncertainty in the metamodel for the settlement
observation (ĥ2). Therefore improvements are needed to improve the fit of the limit state
function for settlement, and to reduce the uncertainty on prediction of the metamodel,
for example through the settings of the learning function, with another learning function,
or with a different kernel. Generally, increasing the number of model evaluations also
reduces uncertainty in the prediction, however, based on the uncertainty estimates of
the metamodel, it does not seem likely that adding model evaluations will improve the
results for this case study.

5.5. CONCLUDING REMARKS
This chapter showed that reliability estimates for slope stability improve further by
combining the information of survival and settlement during the construction of dikes.
Survival information and settlement information are complementary because the both
sources of information are from different sources (independent data). Moreover, survival
information is inequality data, for which the uncertainty reduction happens in the tail of
the joint probability distribution, and settlement information is equality data, which up-
dates the best estimates of the settlement and stability prediction. Thus, the uncertainty
reduction affects the probability of failure in two ways.

Though the correlation between settlement and stability is not very large, the es-
timated probability of failure in the considered case study was between 25 and 50%
higher or lower (factor 1.2-1.5) depending on the settlement measurement. Settlement
measurements may lead to more uncertainty reduction for stability when the correla-
tion between settlement and stability is larger. For example if the uncertainty and the
relative influence of the degree of over-consolidation of soft subsoil layers is larger in
both models, or when there are more ’shared’ parameters affecting both settlement and
stability.

There are practical limits to adding more information from additional observations
and from multiple sources, namely the computational feasibility of such Bayesian reli-
ability analysis in practice. Because, for each piece of information that is added, the
number of required realisations increases drastically. With geotechnical models that
require only a few seconds to calculate, most standard reliability methods become com-
putationally intractable, and implementation of the Bayesian analysis is only practically
feasible using metamodels. This is particularly the case for the safety assessment of flood
defences and other geotechnical constructions in the Netherlands, with high target reli-
abilities (low probabilities of failure). A point of attention for using settlement measure-
ments to update reliability is that the result of the Bayesian analysis is typically limited to
the auto-correlation distance of settlements. In order for the reliability updating result
to be representative for longer reaches of dike, settlement measurements of multiple
locations are thus required.
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COST-EFFECTIVENESS OF

PERFORMANCE INFORMATION FOR

DIKE REINFORCEMENTS

Today’s posterior is tomorrow’s prior.

Dennis Lindley

If performance information is available, it generally leads to more credible estimates of
the failure probability. However, sometimes performance information is not yet available,
and it requires an investment to obtain performance information. For example, setting
up a monitoring campaign or carrying out proof loading involves investment cost, and
proof loading comes with the additional risk of damage if a test fails. Whether it is cost-
effective to invest in obtaining performance information depends on the investment costs
and the benefits in terms of lower construction reduction costs. In this chapter the cost-
effectiveness is evaluated of uncertainty reduction by proof loading and pore pressure
monitoring in dike designs which take into account performance information.

This chapter is based on Van der Krogt, M.G., Klerk, W. J., Kanning, W., Schweckendiek, T. and Kok, M. (2020).
Value of Information of Combinations of Proof Loading and Pore Pressure Monitoring for Flood Defences.
Structure and Infrastructure Engineering, 1–16.
The research underlying this chapter was conducted as a joint project of Wouter Jan Klerk and Mark van der
Krogt. Both researchers contributed equally to the research and the journal article.

83

https://doi.org/10.1080/15732479.2020.1857794


6

84 6. COST-EFFECTIVENESS OF PERFORMANCE INFORMATION

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Framework to support decision-making . . . . . . . . . . . . . . . . . . . . 86

6.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.2 Implementation of risk reduction strategies . . . . . . . . . . . . . . . . 93

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.4 Towards practical implementation of the Decision framework . . . . . . . . 102

6.3.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



6.1. INTRODUCTION

6

85

6.1. INTRODUCTION

Insufficient safety against slope instability is traditionally remedied by increasing the
resisting weight at the passive side of the slip plane, for example by decreasing the slope
angle or by constructing a stability berm at the inner toe of the dike toe. The optimal
reliability targets (see Section 2.1) are the starting point for the required safety of a rein-
forcement design. When space is available, reinforcing dikes is relatively cheap as the
construction and material costs of soil are low. However, when space is scarce (e.g. in
densely built areas like the Netherlands), reinforcement can become highly expensive.
For example because adjacent home owners have to be moved and compensated, or
because other design options are applied such as expensive sheet pile walls and di-
aphragm walls. In such cases, methods for reducing uncertainty might result in lower
reinforcement costs because the required reliability can be achieved at much lower cost.
For example, a less costly reinforcement method becomes feasible, or the reinforcement
of certain dike sections becomes unnecessary.

As performance information can reduce uncertainty and improves reliability esti-
mates of dikes, it is an interesting alternative or addition to traditional ways of strength-
ening dikes to resolve insufficient safety for slope stability. However, performance infor-
mation is not always yet available. For example when the construction of a dike reinforce-
ment has not started, or when we consider to impose a proof load (an example of a proof
load of dikes is shown in Figure 6.1). The question arises when obtaining performance in-
formation is cost-effective, because the potential savings must outweigh the additional
costs of, and relating to, obtaining the performance information. For example the costs
of carrying out proof loading, and the failure costs if the load is not survived, must be
balanced by the potential savings in terms of lower construction cost and reduced flood

Figure 6.1: Example of proof loading of dikes. Photo courtesy of Michiel van der Ruyt / Deltares
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risk. For proof loading this balance is particularly interesting because both the amount of
information and the risk of failure increase with an increasing (proof) load. This chapter
explores the cost-effectiveness of performance information obtained with proof loading
and monitoring, in optimizing the strategy for reinforcing dikes (leading to the lowest
Total Cost (TC) involving all costs and benefits). The sub-question to be answered is:

How cost-effective are proof loading and pore water pressure monitoring in dike rein-
forcements?

First, this chapter presents the decision framework to evaluate the benefits of proof
loading and pore pressure monitoring for dike reinforcements in Section 6.2. Thereafter
a case study is presented in which a dike is subjected to proof loading by raising the
phreatic level, and/or monitoring of pore pressures in Section 6.3. A simplified version
of the decision framework is also used in an additional case study in Appendix A where
it is explored whether a faster construction phasing is cost-effective.

6.2. FRAMEWORK TO SUPPORT DECISION-MAKING
To evaluate the benefits of pore pressure monitoring and proof loading Bayesian pre-
posterior analysis is used, see Section 2.5. Decision trees are the most common ap-
proach to visualise and structure pre-posterior decision analysis (Raiffa and Schlaifer,
1961; Spross and Johansson, 2017; Thöns, 2017). A decision tree shows a sequence of
decision (choice) nodes and outcomes (chance). Decision nodes are typically choices
made by a decision maker as part of some (optimized) strategy, such as the decision to
do proof loading. Chance nodes are outcomes of choices and depend on the action and
prior information on the state of the system, for instance failure after a proof load test.

A disadvantage of a decision tree is that it can become cumbersome to visualise
and solve if many sequential decisions are considered, in such cases other approaches
such as influence diagrams (i.e., an extension of Bayesian networks) are more adequate
(Luque and Straub, 2019), possibly combined with heuristic decision rules. This study
considers three decision options (proof loading, monitoring and dike reinforcement),
hence a decision tree is well suited. Figure 6.2 presents the decision tree for the sequen-
tial decision strategy of proof loading, pore pressure monitoring and dike reinforcement,
denoted with p, m, and a, respectively. Note that a specific sequence for proof loading
and pore pressure monitoring is assumed, the effect of reversing the sequence is dis-
cussed in Section 6.3.4.

The first step is the decision whether to execute a proof load test of a certain mag-
nitude p ∈ P. The outcome zp (a survived or failed proof load test) depends on the
magnitude of the proof load and the prior belief fX(x) on the random variables in X. The
higher the magnitude of the survived test load (i.e. the artificially induced phreatic line),
the more uncertainty is reduced, and the higher the updated reliability. On the other
hand, the higher the magnitude of the survived test load, the higher the probability that
the test is not survived. In that case the dike is damaged and needs to be reinforced
immediately and the part of the section that was proof loaded has to be repaired such
that extra costs are incurred.

After deciding whether to do a proof load test (and on the magnitude of the test load),
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Figure 6.2: Decision tree for a sequential decision on proof loading, monitoring, and reinforcement of a dike
section. The decision tree is a graphical presentation of the choices p ∈ P, m ∈ M, and a ∈ A, and chances
zp ∈ Zp, and zm ∈ Zm.
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it can be decided to invest in pore pressure monitoring (m ∈ M) in order to reduce uncer-
tainty on the response of the phreatic line to outside water levels. Again, two outcomes
are possible: either an observation is made or not. The observation zm depends on the
belief after proof loading fX|zm (x). Whether an observation is made in the considered
time period depends on whether the water level exceeds a certain threshold required
to obtain useful measurements (Frangopol et al., 2008; Klerk et al., 2019). Note that the
probability of making and observation is time-dependent: the longer the monitoring
period, the higher the probability of a useful observation, opposite to a proof load test
which is time-independent.

After the outcome of the monitoring, the dike is improved to the required target relia-
bility level using decision rules that translate combinations of outcomes of proof loading
and monitoring to actions: d(Zp,Zm) = A, where for an individual decision rule d it holds
that d ∈ d(Zp,Zm) = A. Note that through an action a ∈ A also some design variables in X
can be adapted (e.g., the length of the stability berm).

The cost of a branch in the decision tree is determined by the costs of every in-
dividual step and the expected damage given the performance θ (failure/no failure):
c(p, zp,m, zm,d ,θ). The cost of the optimal strategy c(p∗,m∗,d∗) can be computed by
combining the cost of different branches over the possible outcomes:

c(p∗,m∗,d∗) = min
p∈P,m∈M,d

EΘ|X
[
Ezm|X

[
Ezp|X

[
c
(
p, zp,m, zm,d ,θ

)]]]
. (6.1)

Specifically in this case study, the cost of a strategy c(p,m,d) is defined by the sum of
costs of each step in the decision tree (decision and outcome):

c(p,m,d) = Ip ·Cproofload + Im ·Cmonitoring+∫(
P (S|p ∩x) ·Crepair +Creinforcement(d ,x)+Cfailure(d ,x)

)
fX(x)dx,

(6.2)

where Ip and Im are indicator random variables (value 0 or 1) that indicate whether
proof loading or monitoring is done. C parameters indicate different cost components.
The cost components of proof loading and monitoring are independent of the prior be-
lief fX(x). There are three cost components that depend on the prior belief: the cost of
failure after a failed proof load test, where P (S|p ∩x) is the probability of not surviving a
proof load with magnitude p, and Crepair are the repair costs. The costs of reinforcement
Creinforcement depend on decision d and the realisation x. The annual failure probabil-
ity is assumed to be constant in time. Thus, for the Present Value of the failure costs
Cfailure(d ,x) an infinite time horizon can be considered, such that:

Cfailure(d ,x) = P (F|d ,x) ·D

r
, (6.3)

where Cfailure(d ,x) is the cost of failure in AC for an infinite time horizon, D is the
expected damage in case of a flood (in AC), r is the annual discount rate, and P (F |d ,x)
is the annual failure probability given an action following from decision rule d and a
realisation of the set of random variables x. A reference period of 1 year is assumed,
in line with common practice for flood defence structures. It should be noted that in
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some cases for geotechnical structures use of other reference periods might be more
adequate (Roubos et al., 2018), and for instance the time factors provided in Diamantidis
et al. (2019) may be applied. The cost of the reference strategy without monitoring and
proof loading is defined as c0(d), the cost of a strategy of proof loading, monitoring, and
reinforcing is defined as c(p,m,d), so the Value of Information (VoI) of proof loading
and/or monitoring can be computed by:

V oI = c0(d)− c(p,m,d) (6.4)

The next subsections go into the choices the decision maker is faced with in more
detail.

STEP 1: DOING A PROOF LOAD TEST (P )
Proof loading involves imposing a representative design load on the dike body, for exam-
ple a high phreatic line (see Figure 6.5). If such a proof load is survived, it proves that
there is a minimum resistance along a slip plane. Conversely, when the dike fails under
the conditions of the proof load test, it reveals that the structure was not safe enough.
Note that a higher proof load yields more information, but also results in a higher risk of
failure during the test. The outcome of the proof load test is used to update the failure
probability based on the outcome zp of the proof load test.

The updated failure probability is directly calculated by applying Bayes rule (Equa-
tion 2.11):

P (F|zp) = P (F∩ zp)

P (zp)
, (6.5)

where the observation of no instability at a proof load level p is noted by zp. The perfor-
mance function for stability at a proof load level p is denoted here by h(X, p) < 0. It is
noted that a proof load test does not update all parameters, for example for those related
to response of the phreatic line to an extreme flood water level (e.g., the head level in the
aquifer below the soft soil blanket or pore pressures in the dike body in flood conditions)
no additional information is obtained.

STEP 2: SETTING UP A PORE PRESSURE MONITORING CAMPAIGN (M )
After or instead of proof loading, uncertainty can be reduced by setting up a pore pres-
sure monitoring campaign. Pore pressure monitoring aims to reduce uncertainty about
the response of the phreatic line in the dike. The parameters characterizing this response
are part of the belief fX|zp (x), where conditioning on zp is not needed if proof loading was
not done beforehand. If a pore pressure monitoring campaign yields an observation zm,
fX|zp (x) can be updated to a posterior estimate including zm, according to Equation 2.14:

fX|zp∩zm (x) =
P (x∩ zm) fX|zp (x)

P (zm)
=

L(x) fX|zp (x)∫
X L(x) fX|zp (x)dx

. (6.6)

Here L(x) is the likelihood P (zm|x) calculated with the updated probability distribu-
tion fX|zp (x). The posterior probability of failure with monitoring and proof load is calcu-
lated using Equation 2.15, with the posterior pdf fX|zp∩zm . Note that the parameters in X
related to the response of the phreatic line are now directly updated, as there are direct
observations of input parameters, contrary to proof loading.
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As was indicated by Klerk et al. (2019), an important parameter for pore pressure
monitoring is the probability that a useful observation is obtained. Often discontinuities
in a dike body (e.g., an older clay dike), or different permeability values in general can
result in different responses of the phreatic line for different outside water levels, and
therefore, an observation zm is to give more useful information if measurement condi-
tions are closer to design conditions. To incorporate this, it is assumed that a valuable
measurement (i.e. uncertainty reduction) is only obtained if the annual maximum water
level h exceeds a predefined threshold water level hthresh during monitoring. Thus the
probability of obtaining a valuable measurement zm can be computed using the follow-
ing formula:

P (valuable observation zm) = 1−Fh(hthresh)t (6.7)

where Fh is the cumulative density function of the annual maximum outside water
level, and t the duration of monitoring in years.

STEP 3: DIKE REINFORCEMENT (A)
In practice, numerous reinforcement measures are available to increase the stability of
dikes, for example: stability berms, sheet pile or diaphragm walls, or soil anchoring
techniques. Here, only the most common (and often cheapest) method of stability berm
construction is considered. Adding a stability berm at the inner toe of the dike increases
the weight on the passive side of the slip plane and increases the resisting shear stress.

The target reliability that has to be satisfied after a dike reinforcement is often
predetermined, and typically based on an optimization of various risk indicators and
costs of reinforcement (e.g., Eijgenraam et al. (2017); Voortman (2003); Vrijling (2001)).
If the reliability of dikes is changing significantly in time, one also has to consider
reinvestments. However, due to the dependence of slope stability reliability on time-
independent ground-related uncertainty, slope stability of dikes (and other geotechnical
structures, e.g. Roubos et al. (2018)) is typically rather time independent. Therefore, in
an economic optimization one can estimate the annual target reliability by considering
an infinite time horizon, such that the optimal level of protection βT, follows from the
following minimization:

βT = argmin
β

(
C (β)+ Φ−1(β) ·D

r

)
(6.8)

where D is the annual expected damage in case of flooding, r is the annual discount
rate and C (β) is the cost of achieving a certain reliability index. Notice that this formu-
lation assumes a situation where the reliability target is prescribed by a standard. A
situation where the reliability target is case-specifically optimized using a cost-benefit
analysis is further addressed in the sensitivity analysis in Section 6.3.3.

6.3. CASE STUDY
This case study considers pore pressure monitoring of the position of the phreatic line
and proof loading by raising the phreatic line in the dike, as the phreatic line is one of
the main factors causing slope instability. Pore pressure monitoring is aimed at reducing
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uncertainty on the position of the phreatic line (Koelewijn et al., 2013), representing the
response of pore water pressures in the dike body to hydraulic loads. Such responses are
typically dependent on the hydraulic conductivity of the dike material, which is often
heterogeneous hence uncertain due to the limited amount of measurements that are
available.

An important aspect of pore pressure monitoring is that the information obtained
(resulting in uncertainty reduction) is dependent on the water levels observed during
the monitoring period (Klerk et al., 2019; Schweckendiek et al., 2014). In some cases, for
instance at locations with a large tidal range, frequently occurring situations are similar
to design conditions, resulting in significant uncertainty reduction. At other locations,
such as the river dikes regarded in this case study, conditions leading to large uncertainty
reduction occur less often. Consequently, the longer the monitoring period, the higher
the probability of obtaining useful information that can be used to reduce uncertainty,
as was shown by Frangopol et al. (2008) and Klerk et al. (2019).

Proof loading in this case study consists of a controlled experiment to artificially raise
the phreatic line. We assume a successful test in the sense that it always succeeds in
increasing the water pressures to the desired level, throughout the dike body. Note that
proof loading only reduces uncertainty in the (variables relating to the) overall resistance,
conditional to the imposed proof load. It does not lead to additional knowledge about
the actual response of the phreatic line to flood conditions. Thus, pore pressure moni-
toring and proof loading are complementary.

6.3.1. CASE DESCRIPTION
The reference case is a dike section of 1 km in length, inspired by an actual dike section
currently being reinforced. It is slightly simplified such that it contemplates a typical
dike section in the Dutch riverine area. The dike cross section, displayed in Figure 6.3,
consists of a traditional clay dike which has been reinforced with sand in the past. It is
assumed that the dike is scheduled for reinforcement in 5 years as it currently does not
meet the safety standard. Until that time there is opportunity to do a proof load test and
pore pressure monitoring to reduce uncertainty on the resistance parameters and the
position of the phreatic line in the dike body, respectively. The goal is to determine the
optimal course of action for the coming 5 years.

The dike consists partly of clay and partly of sand, has a crest level at +14.0 m ref.
(reference level), a landside elevation of +6.0 m ref., an inner slope of 1:3 (v:h) and is
situated on (Holocene) clay layers on top of a (Pleistocene) aquifer. A cross-section
of the considered dike is shown in Figure 6.3. The strength of the soil is modelled ac-
cording to the CSSM (Schofield and Wroth, 1968) with a critical state friction angle (φcs)
or undrained shear strength (su) calculated using the SHANSEP formulation (Ladd and
Foott, 1974), see Equation 2.16. Note that a high phreatic line leads to higher pore pres-
sures, thus lower su, and lower stability (Fs). Additionally, the stability decreases because
a higher phreatic line corresponds to a higher weight of the dike body. Table 6.1 lists
the input probability distributions for parameters in the reference case. The probability
distributions for these spatially averaged soil parameters are derived from regional data
for typical geological deposits of the Dutch situation, see RWS (2019).

1Note that µ is the mean value, not the lognormal distribution parameter, CoV is the coefficient of variation.
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Figure 6.3: Cross section of the considered case study. Blue lines indicate the simplified schematization of the
phreatic line for different response factors ap (at an extreme water level).

Table 6.1: Random variables in the reference case.

Property Symbol Unit Soil type Distribution1

Normally consolidated
undrained shear
strength ratio

S - Clay, silt and sand Lognormal(µ=0.36, CoV=0.15)
Clay, organic Lognormal(µ=0.29, CoV=0.15)
Clay, silt Lognormal(µ=0.32, CoV=0.25)

Strength increase
exponent

m - Clay, silt and sand Lognormal(µ=0.84, CoV=0.05)
Clay, organic Lognormal(µ=0.93, CoV=0.05)
Clay, silt Lognormal(µ=0.83, CoV=0.05)

Pre-overburden
Pressure at daily stress
conditions (no flood)

POP kPa Clay, silt and sand Lognormal(µ=27.0, CoV=0.45)
Clay, organic Lognormal(µ=27.0, CoV=0.45)
Clay, silt Lognormal(µ=27.0, CoV=0.45)

Critical state friction
angle

ϕcs
◦ Dike, sand Lognormal(µ=32.6, CoV=0.05)

Dike, clay Lognormal(µ=35.0, CoV=0.05)
Clay, silt and sand Lognormal(µ=32.3, CoV=0.05)
Sand, Pleistocene Lognormal(µ=35.0, CoV=0.05)

Model factor stability
model

ms - Lognormal(µ=0.995,
CoV=0.033)

Parameter for
phreatic line

ap - Uniform(a=0.5, b=0.95)

Water level h m
ref.

Gumbel(loc=11.9, scale=0.2)

In the case study, only monitoring of the phreatic line in the dike body is considered,
not of the pore water pressures in other soil layers. The position of the phreatic line in
the dike at flood conditions typically depends on the permeability of the dike material
which is often heterogeneous and uncertain. Especially when a dike has a long history
of reinforcements with various materials, the phreatic line is uncertain. For example
the considered case study of a traditional clay dike reinforced with sand. Therefore, the
position of the phreatic line in steady state seepage conditions is parametrised, using an
uncertain response factor (ap). The response factor represents the degree of saturation
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of the dike body at the inner crest line, in response to an extreme water level. Values can
range between ap = 0 (phreatic level at the landside elevation level) and ap = 1 (phreatic
level equal to the outside water level). For intermediate values of ap, the phreatic line
is interpolated accordingly, see Figure 6.3. Because the dike body will always saturate
to some degree, and in case of a fully saturated dike (ap = 1) other mechanisms such as
micro-instability become dominant, the value of ap is limited between 0.5 and 0.95. The
bounds represent realistic values based on physical considerations. Furthermore, the
lower bound has a limited influence on the reliability, indicated by the results in the next
paragraph.

6.3.2. IMPLEMENTATION OF RISK REDUCTION STRATEGIES

To facilitate the probability updating outlined in Section 6.2, fragility surfaces are de-
rived, where the failure probability is conditional to response factor ap and the water
level h, analogous to Equation 2.8 for fragility curves with one parameter. The fragility
surfaces are derived both for the prior situation, and the situation posterior to surviving
a certain proof load level p. Figure 6.4 shows this fragility surface, plotted in terms of
reliability index for convenience. The reliability is calculated at discrete intervals of h
and ap, and linearly interpolated to obtain intermediate values. The fragility surface
directly shows the influence of the response factor ap (mainly at high water levels), and
clearly illustrates the potential benefit of reducing uncertainty herein. Separate fragility
surfaces β(h, ap) are derived for berm lengths of 5, 10, 15, and 20 m. For other values
fragility surfaces are interpolated or extrapolated. Integration of the prior fragility sur-
face with the prior probability distribution of ap and h along the lines of Equation 2.9,
results in a prior failure probability of 2.7×10−4 per year (β= 3.46).

PROOF LOADING

Proof loading is done by artificially raising the phreatic line in the dike by infiltrating
water into the dike from the crest (similar to Van Hoven and Noordam (2018)), see Figure
6.5. Survival of the situation with an imposed phreatic level leads to a higher reliabil-
ity because of an implicit update of the probability density of soil parameters involved
(which are a subset of X). The higher the phreatic level, the larger the uncertainty reduc-
tion, and hence, the larger the reliability update; but also the higher the probability the
proof load is not survived.

Contrary to the phreatic level in flood conditions (dependent on amongst others the
flood water level, the duration of the flood wave, and permeability of the outer slope
cover layer), the phreatic level during proof loading is induced/imposed by infiltrating
water into the dike using e.g. infiltration wells or an irrigation system (see van Van Hoven
and Noordam (2018) for pictures). Therefore, the outcome of the proof load test (and
hence the updated reliability) is independent of the response factor ap, and the posterior
reliability β conditional to ap: β|ap =−Φ−1(P (F|zp, ap)).

Figure 6.4 shows that a significantly updated reliability for water levels lower than the
survived proof load of +12.5 m ref. is to be expected. The reliability update is relatively
larger for lower values of ap. This is in line with expectations because the survived proof
load becomes more valuable if a high phreatic line is less likely. Note that the failure
probability for water levels lower than the survived proof load level is not reduced to 0
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Figure 6.4: (left) Prior and posterior fragility surface (in terms of reliability index β) of the water level h and re-
sponse factor ap, for the considered case study without berm. The overall reliability index (integrated with the
prior probability density of ap and h) is 3.46. (right) Relationship between berm length and overall reliability
index β for the prior situation and posterior after a proof load level of +12.5 m ref.

Legend

Pore water pressure sensor (piezometer)

Proof load phreatic line

Possible slip planes

Figure 6.5: Overview of the positioning of sensors installed for pore water pressure monitoring, and the im-
posed phreatic level during a proof load test. The larger black line indicates the slip plane relevant for flooding,
the smaller slip plane is relevant for failure of the proof load test but does not cause flooding.

(infinite beta) because of irreducible uncertainty.
It is assumed that the proof load is applied over a stretch of 100 m length. This is

considered representative for the 1 km dike section because of a limited variation in
the dike body in longitudinal direction as a result of the quite recent reconstruction
with sand, see Figure 6.3. The total cost of a proof load test is assumed to be 500000AC
consisting of costs for equipment required for infiltration, monitoring during the test,
emergency measures to mitigate slope failures induced by the test and analysis of the
test results. It is assumed that the test is carried out in a period where a potential failure
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does not cause flooding. Therefore, the costs of not surviving a proof load only consist
of repairing the damaged slope. These costs are estimated to be 2000000AC, based on
the costs of full reconstruction of the existing dike over a length of 100 m. Additional
costs such as follow-up damage to buildings, transportation infrastructure, agricultural
areas etc. are disregarded in this case study. For damage during a proof load test (Crepair)
occurrence of each slip circle (also very shallow) is considered as failure, contrary to
flooding. For flooding damage (D) only larger slip circles which will lead to flooding of
the hinterland are considered, as is depicted in Figure 6.5. After a proof load test failure,
no pore pressure monitoring is done.

PORE PRESSURE MONITORING

Pore pressure monitoring is carried out by measuring the phreatic line in the dike body
(see Figure 6.5 for location of sensors). The measurement will lead to an update of the
probability distribution of ap (ap ∈ X). Because of the chosen limits of the prior distri-
bution of ap it is assumed that the posterior distribution of ap is a truncated normal
distribution with µ the observed value (i.e., based on possible state), standard deviation
σ= 0.05 and upper and lower bound equal to the upper and lower bound of the uniform
prior. The value of σ accounts for measurement errors and transformation errors, and
corresponds with a standard deviation of 0.3 m in the position of the phreatic line. This
value is in accordance with commonly found values in the Dutch practice (Kanning and
Van der Krogt, 2016).

Due to the old clay dike located in the cross section the sensors will only yield rele-
vant results if the water level is somewhat above the crest of the old clay dike (see Figure
6.3, it is assumed that this threshold is +12.2 m ref. (0.2 m above the top of the clay).
With the local probability distribution for water levels, and 5 years of monitoring the
probability that a relevant observation is obtained is 67% (using Equation 6.7).

While not explicitly modelled, the costs are based on plans for measuring the entire
section including redundancy in measurements and multiple cross-sections with sen-
sors. The cost of pore pressure monitoring is estimated at 100000AC for 5 years and in-
clude cost for installation, maintenance, decommissioning and analysis of the obtained
data, based on the number of sensors in Figure 6.5, installed at two cross-sections.

DIKE REINFORCEMENT

The reliability requirement for the dike section is determined based on the level of pro-
tection with minimal total cost (see Equation 6.8). This value is derived based on the
prior fX(x). The costs for reinforcement are shown in Figure 6.6, both for the reference
case and some alternatives that will be used in a sensitivity analysis. Except for alterna-
tive 2, these curves have been derived using KOSWAT, a software program used for cost
calculations for dike reinforcements in the Netherlands (Deltares, 2014). Only reinforce-
ment through a stability berm is considered (see Figure 6.3 for dimensions). The costs
are calculated using Equation 6.2. Note that the risk in the 5 years before reinforcement is
not considered, as this is the same for each strategy (and thus does not lead to differences
in VoI).
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Figure 6.6: Different cost functions for dike reinforcements.

Table 6.2: Cost/Benefit parameters.

Parameter Description Unit Value

r Annual discount rate - 0.035
D Damage in case of flooding millionAC 5000
Crepair Cost of repair after failed proof load test millionAC 2.0
Cmonitoring Cost of 5 years of pore pressure monitoring millionAC 0.1
Cproofload Cost of proof load test millionAC 0.5
σ Uncertainty in observation of ap - 0.05
hthresh Minimum water level for a useful observation m +ref 12.2

6.3.3. RESULTS
We compare the total life cycle cost of the dike for three cases with and without proof
loading and monitoring, with a conventional strategy of only reinforcing, in order to
explore the conditions for which to invest in uncertainty reduction for dikes.

REFERENCE CASE

First, it is evaluated whether proof loading and/or pore pressure monitoring reduces
overall total cost for a reference case. Here, a proof load test where the phreatic line is ar-
tificially increased to +12.5 m ref. is considered. For 5 years of monitoring the probability
of having a useful observation is 67%. The parameters used for the cost benefit analysis
are shown in Table 6.2.

Figure 6.7 shows total cost and VoI (see Equation 6.4) for all combinations of proof
loading and monitoring, compared to a conventional strategy without monitoring and
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Figure 6.7: Total Cost (TC) (left) and Value of Information (VoI) (right) per strategy for the reference case. Colors
indicate what the contribution is of different components to the TC (left) and VoI (right). The VoI for each
strategy (the sum of the components) is calculated relative to the conventional strategy.

proof loading. Both monitoring and proof loading reduce total cost, with the optimal
strategy being a combination of proof loading and monitoring (VoI = 4.6 MAC). For the
optimal strategy the reduction in total cost is 31% compared to a conventional reinforce-
ment, strategies with only proof loading or monitoring have a lower but also positive VoI.
The most important component for the VoI is the reduction in construction cost, which
significantly outweighs the costs of monitoring and proof loading.

OPTIMIZATION OF PROOF LOAD LEVEL

Although Figure 6.7 clearly shows that a combination of monitoring and proof loading
is an effective approach to reduce total cost, another important choice is the phreatic
level that is to be tested. While lower levels will result in a smaller reduction of uncer-
tainty, higher levels have higher uncertainty reduction but also the added risk that the
dike section fails during the test and has to be repaired. Figure 6.8 shows the relation
between phreatic level in the proof load test and the VoI. The red line indicates the VoI
for different combinations of proof loading and monitoring, for which the optimum is
at a proof load phreatic level +13.0 m ref.. If no monitoring is done, the optimal proof
load level is +13.5 m ref. (see yellow bars). However, combined with monitoring, the VoI
is highest with a lower proof load level. For proof load levels above +13.5 m ref., the VoI
becomes negative because of the high risk of failure during the test (i.e., there is a critical
proof load level where the VoI = 0).

Another interesting observation is that in this case the VoI of monitoring after a proof
load test (purple bars) is higher than the VoI without a preceding proof load test (left
purple bar). Thus, the monitoring becomes more valuable after reducing uncertainty
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Figure 6.8: Value of Information (VoI) related to the level of the proof load test. Red line indicates the VoI for
a combination of proof loading and monitoring, yellow bars indicate the value of a proof load test without
monitoring. Purple bars indicate the added value of monitoring after a proof load test.

through proof loading. Obviously, this can differ per case, and it is also dependent on for
instance the shape of the relationship between construction cost and berm length.

SENSITIVITY ANALYSIS

Dike sections that are part of longer dike segments can differ significantly. This section
discusses several of these differences encountered in practical situations, and their influ-
ence on the VoI, namely:

• Influence of the reliability requirement: in many practical cases reliability require-
ments are not based on an economic optimization, such that the VoI might be
different.

• Influence of different soil parameters: different locations can have significantly
different mean values and variance of soil parameters, such that the benefits of
different types of uncertainty reduction might shift.

• Influence of different cost functions: due to local circumstances (e.g., density of
adjacent buildings) costs of reinforcement can vary, which can influence the VoI.

A proof load level of +13.0 m ref. is assumed in all cases of the sensitivity analysis, which
is (close to) optimal in all cases and strategies (see also Figure 6.8).

Influence of the reliability requirement
In the reference case an optimal target reliability level is determined based on a total
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cost minimization using prior information. In reality, the section studied is part of a
larger flood defence system where other safety requirements (e.g., loss-of-life) might be
dominant, or requirements are based on general codes. It would therefore be unlikely
that the safety standard is exactly economically optimal for this specific dike section,
with its specific characteristics. Figure 6.9a and 6.9b show a comparison of total cost
and Value of Information for 4 cases: the reference case with optimized target reliability
based on the prior information (βT = 4.13), a case with 10 times higher requirement
(βT = 4.63), 10 times lower requirement (βT = 3.56), and a case where the optimal target
reliability is determined based on the posterior information after a proof loading and/or
monitoring.

Without monitoring, the cases with lower and higher reliability requirements are sig-
nificantly more expensive in terms of total cost. For the case with a higher requirement
this is mainly caused by higher reinforcement costs, whereas for the case with a lower
requirement this is due to higher risk costs. As reinforcement costs for the case with a
higher requirement are still high after monitoring, the VoI is limited for this case. For
the case with a lower requirement, the VoI of a combination of a proof loading and pore
pressure monitoring is very high. The reason is that in case of very unfavourable values
of ap (and therefore high risk costs), observations are very valuable. In addition, it is
prevented that an insufficiently safe dike is constructed as a result of an already too low
reliability requirement.

The most efficient strategy in terms of total cost is if proof loading and monitoring
are combined with a posterior optimal reliability requirement. Concretely, the optimal
target reliability to be met after the dike reinforcement is determined based on the poste-
rior information after monitoring and/or the proof load test (using Equation 6.8), rather
than the prior information. Consequently, the optimized target reliability depends on
the obtained information zp and zm, and the determination of βT becomes a part of the
decision rules d(Zp,Zm) in the decision tree. Hence, each branch in the decision tree can
have a different βT, dependent on the observations. This is slightly more efficient than
having a requirement based on prior information, especially in case of a very favourable
or unfavourable outcome after monitoring, because the change in expected reinforce-
ment cost can be adjusted in the posterior optimization of the requirement. It has to be
noted that the differences with the reference case with (prior) optimized βT are limited,
but it demonstrates that using a suboptimal target reliability has a large influence on the
results of a Value of Information analysis.

Influence of different soil parameters
The reference dike section is characterised by relatively large uncertainties in soil param-
eters, and therefore the VoI of both proof loading and monitoring is found to be relatively
large. However, not all dikes might have such large uncertainties, and therefore the VoI
is assessed for two other cases: dike section A with lower uncertainty in soil parameters
and a prior reliability index of 3.99, with a target reliability of 4.07. Hence, there is only a
small reliability deficit, that would in practice likely be accepted as is. Section B also
has relatively low uncertainty in soil parameters but lower mean values, so the prior
reliability index is 3.61, with a target reliability of 4.02. Figure 6.9c and 6.9d show the
Total Cost and VoI for each dike section for 4 different strategies.
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Figure 6.9: Total Cost (TC) and Value of Information (VoI) for different target reliability values (panes a and b),
for different dike sections (panes c and d) and for different reinforcement cost functions (panes e and f). Proof
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Figure 6.10: Fragility curves at the design point water level, showing an increasing dependency for the response
factor ap(hreatic) after proof loading (steeper curve).

Compared to the reference case, section A has considerably lower total cost as it is
much closer to the target reliability (so the construction costs are much lower). At the
same time, the VoI for proof loading is negative, which is due to the fact that the initial
reliability is relatively high and the influence of soil parameter uncertainty is limited.
Therefore a high proof load has to be applied to learn anything, which results in a higher
probability of failure during the test. Thus, for this section proof loading adds very lim-
ited value. Although the uncertainty of soil parameters for section B is similar to that of
section A, the fact that the initial reliability is lower results in a small but positive VoI for
proof loading.

For pore pressure monitoring the VoI is positive in all cases. While the absolute VoI
for section A is quite low compared to the other cases, relatively, monitoring reduces total
cost by 22%. One thing that is quite apparent for the reference case is that the relevance
of monitoring increases significantly once it is combined with a proof loading, which is
not the case for the other cases with lower uncertainty in soil parameters. This can be
explained as follows: a priori, the reliability in the reference case is hardly influenced by
the response factor ap, whereas, a posteriori, the reliability is dependent on the response
factor. This is shown by a less steep fragility curve for the reference case in Figure 6.10.
The curves are plotted conditional to the design point (i.e. most probable failure point)
of the water level such that it best illustrates the contribution to the failure probability.
So the results show that when geotechnical uncertainty is the dominant uncertainty in
the prior failure probability (as it is only in the reference case), pore pressure monitor-
ing is less effective than proof loading. After proof loading, geotechnical uncertainty is
reduced, and pore pressure monitoring becomes much more effective.
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Influence of different cost functions
Local differences in density of buildings, land prices, and available space for reconstruc-
tion, can significantly influence the costs for reinforcing dikes using stability berms. The
reference dike section is considered for three different cost functions (see Figure 6.6).
Figure 6.9e and 6.9f show total cost and Value of Information for the three different
functions. Alternative 2 has relatively large benefits for proof loading, compared to the
reference case (relative to total cost). This is caused by the lower marginal cost of the
berm inAC/m after proof loading, due to the fact that part of the cost function is less steep
than the reference case. However, for alternative 2 the benefits of monitoring are much
larger if the reliability requirement is optimized based on the posterior information after
monitoring, rather than the prior information. Note that the same holds for alternative 1,
but results are not shown. The reason is that the marginal costs of reinforcement differ
per berm length. Henceforth, if the posterior reliability estimate differs significantly
from the prior estimate, the marginal costs of reinforcement might change significantly
as well. As a consequence, the initial reliability requirement might be suboptimal given
the obtained information. Thus, especially if a cost function is highly non-linear, such a
posterior optimization of the target reliability might yield significant benefits.

6.3.4. TOWARDS PRACTICAL IMPLEMENTATION OF THE DECISION FRAME-
WORK

This case study demonstrates that in most cases pore pressure monitoring and proof
loading yield a positive VoI for dikes that are sensitive to slope stability failures. How-
ever, proof loading is not economically efficient in all cases, and in some cases also pore
pressure monitoring has very limited benefits. In a practical situation, decision makers
therefore have to carefully consider what are the uncertainties that dominate the relia-
bility, and from that determine measures to reduce these uncertainties (if available). For
example, the design point (the approach used in this case study, see Figure 6.10) can
provide indications to estimate the relative influence of different uncertain parameters,
after which the proposed decision tree framework can be used to structure sequential
decisions.

This case study only considered slope stability failures, whereas in practical situa-
tions there are often multiple failure modes that can be of relevance. Considering mul-
tiple failure modes will change the VoI for reduction of uncertainties in slope stability
reliability, for instance if an increase in crest level is also required to mitigate risks from
overtopping failure. However, the presented framework facilitates such a straightforward
extension.

The failure probabilities in different years are assumed to be uncorrelated in this
case study. While this is in line with common practice in flood defence reliability analy-
sis, knowledge uncertainties on soil parameters are typically correlated in time. Conse-
quently the future failure probability might be overestimated in cases with large knowl-
edge uncertainty, most notably the case without uncertainty reduction. However, as the
failure probabilities are relatively small, the overall effect is expected to be small as well
(Klerk et al., 2018; Roubos et al., 2018).

In practice, reliability requirements are often prescribed by law, and are not necessar-
ily derived solely on a local optimization of total cost, for instance requirements to loss
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of life can also determine the target reliability. The sensitivity analysis in Section 6.3.3
shows that this can have a large influence both on total cost and on Value of Informa-
tion. Aside from different target reliability levels that are optimal for prior information,
a case where the target reliability level is optimized based on the posterior information
after reducing uncertainty is also presented. It is found that this increases the VoI, in
particular if the marginal cost of a dike reinforcement varies for different dimensions of
the reinforcement (i.e., different increases in berm length). Specifically for cases with
highly non-linear cost functions or jumps in cost functions, a local optimization based
on posterior information after uncertainty reduction efforts can increase the effective-
ness of uncertainty reduction, and flood risk management in general. The cases in this
case study do not explicitly consider a fixed cost component, which could slightly lower
the marginal costs. However, if 3 millionAC starting costs are added to the reference case
the influence on VoI is still minor. Analysing different cost functions is straightforward
within the presented framework.

While the influence of several important influential factors is explored, some are not.
First of all, repair costs and other costs involved with proof loading can differ signifi-
cantly depending on the design of the test. For example, damage and repair costs can be
much larger than solely costs for fixing the dike itself, for instance if buildings are close
by. In addition, there could also be immaterial consequences of a failing proof load test.

Secondly, it is assumed that proof loading is executed first, and after that pore pres-
sure monitoring. However, in practice it might also make sense to alter the sequence
of testing, for instance if it is expected that the outcome of pore pressure monitoring
is already sufficient to ensure that the target reliability is met. Such strategies can be
incorporated in the presented framework as well.

A third point concerns the inclusion of other methods for uncertainty reduction,
most notably carrying out additional site investigation. This case study, in comparison
to other decision analysis on reduction of geotechnical uncertainty (e.g., Schweckendiek
and Vrouwenvelder (2013); Spross and Johansson (2017)), does combine multiple se-
quential uncertainty reduction effects. However, in a practical consideration also other
approaches for uncertainty reduction such as additional soil investigation should not
be overlooked and included in the analysis if they are found to be relevant based on
an analysis of the most influential uncertainties. Next to that, it has to be noted that
this chapter does not include potential uncertainty reduction on dike body permeability
through a proof load test. This is an assumption that might influence the VoI estimates
for the proof load test and in reality at least some information on this permeability might
be obtained.

Spatial variability of the dike body in longitudinal direction might hinder the extrap-
olation of proof load test results from cross-section to dike section. In the present case
study, it is assumed that the tested section is representative for the full dike section
because of the relatively recent reconstruction of the inner slope. However, in other
practical situations, additional site investigation might be required to substantiate the
representativeness of the tested section, or else it remains uncertain how to translate the
test results to other parts in longitudinal direction. Such site investigation efforts could
then also be considered as a step in the presented framework.

Practical applications of pore pressure monitoring might or might not concern cross-
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sections with a threshold, such as the old clay dike in the cross section considered in
this study. If there is not such a clear threshold, including monitoring can be done in a
similar manner, although more monitoring outcomes have to be considered than merely
(no) observation. Another point of attention is that in this case a useful observation is
obtained at a water level that occurs approximately once per 5 years. There might be
situations where useful observations are less (or more) frequent, which obviously has
an influence on the VoI of pore pressure monitoring. These considerations have been
elaborated further in Klerk et al. (2019). The presented framework using a decision tree
approach does facilitate adding additional outcomes or changing the threshold level.

6.3.5. SUMMARY AND CONCLUSION

This case study demonstrates the applicability of a decision tree framework in a sequen-
tial application of methods for reduction of geotechnical uncertainty. This framework
can answer the question under what conditions to invest in different measures to re-
duce uncertainty for a dike section. The considered uncertainty reduction measures are
a proof loading, which consists of artificially infiltrating the dike body with water and
thus increasing the phreatic level in order to reduce uncertainty in soil properties, and
pore pressure monitoring to reduce uncertainty in the response of the phreatic level to
extreme hydraulic loads.

It is found that a strategy consisting of a proof load test and/or pore pressure monitor-
ing has a positive VoI. The effectiveness of both methods depends greatly on the specific
case. The relative reduction in total cost for the cases considered in this chapter ranges
between 11% and 60% (on average 35%), of which the main contribution is a reduction
in construction costs. However, the optimal strategy is not the same in all cases. Proof
loading is most beneficial for cases where the uncertainty in soil properties is dominant
and where the initial reliability is relatively low. Obviously the potential benefit must
outweigh the additional risk of a failing proof load test and its costs. Pore pressure
monitoring is most beneficial for cases where the uncertainty in the phreatic response is
dominant.

Additionally, the influence of several factors is considered through a sensitivity anal-
ysis. The main findings are enlisted in Table 6.3, together with practical advice and re-
marks for implementation. For example, it is found that the choice of the target reliability
requirement has a large influence on the estimate of the VoI. Therefore it is important
that reliability requirements are adequately chosen, either by economic optimization
or by other (optimized) requirements (e.g., Individual Risk). Only then the value of
measures to reduce uncertainty can be quantified properly. Typically target reliability
requirements are determined upfront (i.e., before monitoring and or proof load testing),
but in this case study it was also considered whether optimizing reliability requirements
after obtaining additional information improves decisions. It is found that this is typi-
cally the case, which is in line with the findings that a suboptimal choice of reliability
requirements can obscure the results of the Value of Information analysis.

Decision makers can determine which measure might be worthwhile to consider in a
VoI analysis by first identifying the dominant uncertainties determining the probability
of failure. For example, plotting the conditional failure probability in fragility surfaces
(as demonstrated in this case study) is found to be an effective and practical approach
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Table 6.3: Overview of influential factors for decisions on proof loading and/or pore pressure monitoring.
Some of these factors are influenceable by the decision maker (e.g., the proof load level), others are au-
tonomous (e.g., amount of geotechnical uncertainty). For each factor a positive impact is named and potential
remarks for practical implementation are given.

Influential
factors for
decision

Positive impact Remark

Proof load
level

Higher proof load, more un-
certainty reduction.

The increased risk of failure does not always
outweigh the potential benefits, especially if
consequential damage is high.

Optimization
of target reli-
ability before
uncertainty
reduction

Can lead to significant re-
duction of total cost

In practice only possible if economic risk is
the governing risk indicator rather than e.g.,
individual risk.

Optimization
of target reli-
ability after
obtaining
information

Reduction of total cost
through inclusion of
obtained information in
target reliability

If target reliability was already optimized this
will only be beneficial in very specific cases
where information results in a posterior that
strongly differs from the prior.

Larger
geotechnical
uncertainty

Proof loading is more effec-
tive

Pore pressure monitoring might become at-
tractive only after reducing geotechnical un-
certainty. It is recommended to determine the
sequence of measures based on their relative
uncertainty contribution and consider other
methods (e.g., site investigation).

Higher con-
struction cost
of stability
berms

Uncertainty reduction
methods are more attractive
as the benefits are larger.

Other methods for reinforcement might be
more effective.

in identifying whether the soil properties or pore pressure are the dominant uncertainty;
and thus whether to invest in proof loading or pore pressure monitoring. It was also
shown that, in cases with large geotechnical uncertainty, the value of monitoring in-
creases after a proof load, which demonstrates the relevance of considering multiple
methods for uncertainty reduction in a single decision tree. In case other failure modes
also have a significant contribution to flood risk, it is recommended to extend the ap-
proach to include these failure modes in the analysis.

Overall, this work puts in evidence to decision makers the criticality of carefully con-
sidering how and which uncertainties can be reduced, which is essential in achieving
efficient flood defence asset management.
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6.4. CONCLUDING REMARKS
This chapter aimed at answering the following research question:

How cost-effective are proof loading and pore water pressure monitoring in dike rein-
forcements?

Bayesian decision analysis and pre-posterior analysis were used to provide insight in
the factors that determine the cost-effectiveness of these uncertainty reduction methods.
The main conclusions are:

• Proof loading and pore water pressure monitoring are typically cost-effective for
dike sections in the Netherlands because the reduction of reinforcement cost is
significant: up to 5 millionAC per km in the considered case study. Also, the invest-
ment costs are relatively low.

• Deliberately taking more risk through proof loading is worthwhile when the risk of
failure during proof loading is not too large or when the risk is mitigated, and when
the costs of traditional dike reinforcements are relatively high. Therefore, proof
loading is especially interesting in dike reinforcements with space constraints,
where expensive structural solutions would otherwise be required.

• Monitoring and proof loading are aimed at different uncertainties to reduce, and
hence they are complementary. The results imply that different measures should
be targeted at reducing different uncertainties. When time constraints limit the
number of measures that can be implemented, the measure should be aimed at
reducing the dominant uncertainty (i.e. the uncertainty that dominates the failure
probability).
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CONCLUSION

We need to carry out a vast amount of observational work, but what we do should be
done for a purpose and done well.

Ralph Peck
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7.1. FINDINGS
The aim of this dissertation was to improve reliability estimates for dike slope stability
through considering performance information. The main question was "How does per-
formance information affect reliability estimates for dike slope stability?".

In summary, by incorporating the information of survived (proof) loads and monitor-
ing during the construction of dikes, reliability estimates become more credible, safety
assessments improve, and design of dike reinforcements can be made more efficient.
The cases considered in this dissertation suggest that savings of several million euros
per kilometre dike reinforcement are possible (10-35% compared to the current dike
reinforcement costs), for the Dutch situation with typically relatively high cost of dike
reinforcements compared to the costs and risks of obtaining performance information.
Even when it takes money or risk to obtain the performance information, a strategy
with obtaining performance information can be cost-effective, and thus improve the effi-
ciency of flood risk management. Four sub-questions were defined each centred around
a specific aspect. The following paragraphs state the main findings for each research
question.

To what extent is the uncertainty in the undrained shear strength reducible?

Quantitative reliability analysis of slope stability requires establishing prior estimates
of the uncertainty of geotechnical parameters. For updating reliability estimates with
additional information, uncertainty needs to be reducible, i.e. epistemic. The main un-
certainties that affect the failure probability of slope instability are soil properties such
as the undrained shear strength. The undrained shear strength is often derived from
indirect measurements like cone penetration tests (CPTs) using transformation models.

The uncertainty in the spatially averaged undrained shear strength, when using
transformation models calibrated with local data arises from several components. Spa-
tial variability, measurement error, statistical error, and transformation error all con-
tribute to the total uncertainty. Although spatial variability does lead to variation of
soil properties over space, the property at a specific location is constant (but uncertain).
The estimates, however, exhibit a considerable epistemic uncertainty because all error
sources contributing to the total uncertainty of the spatial average are due to a lack of
knowledge, and thus the uncertainty is in principle reducible.

The components contributing to the uncertainty of the transformation model are
partially random and partially systematic. The random errors (e.g. measurement error,
and due to spatial variability) are subject to averaging in estimating the spatial average.
The remaining components in the uncertainty of the indirectly estimated spatial average
for locations with a CPT, are the local bias in the transformation model and the statistical
uncertainty.

The findings imply that there are several possibilities to reduce the (prior) uncer-
tainty in the indirect estimate of the undrained shear strength (or any other parameters
obtained in a similar manner). One option is to minimize the distance between a direct
and indirect measurements, as spatial variability propagates into transformation uncer-
tainty. Another option is to add direct measurements at different CPTs/boreholes, rather
than at different depths in the same vertical, because the transformation model error is
presumably systematic in one vertical (due to the same stress history).
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How does the performance information contained in the survival of the construction
phase affect the reliability estimates for slope stability of dikes?

Survived loads are a source of performance information that is informative for the sta-
bility of dikes. For dikes on soft soils, the stability during the construction stage is often
critical. The survival of that loading condition with high excess pore pressures induced
by raising the embankment contains information to update reliability estimates. Since
the information regards survived conditions, the reliability always increases. The esti-
mated failure probability can be more than a factor 10 lower if the observed survival
during construction is incorporated (i.e. the non occurrence of instability). The degree
to which epistemic uncertainty reduces (and thus the reliability increases), depends on
the degree of criticality of the survived conditions and the degree of similarity between
the survived and assessed situation.

The criticality relates to the extent to which stability in the survived situation is close
to failure. For dikes on soft soils such as clay or organic soils, this is typically the case, due
to excess pore pressures by incomplete consolidation during the raise of the embank-
ment. For dikes constructed on highly permeable soils such as sand, the pore pressures
during construction dissipate right away, and the stability during the construction is not
a critical load. The degree of similarity refers to the failure mode, the loading condition,
and the relative influence of uncertain parameters between the situations being assessed
and the situation which is survived. The reliability update is significant when the uncer-
tain parameters are largely epistemic, and when the failure mode in both conditions is
similar, such as for dikes on soft subsoils.

The results indicate that no noticeable effect on the reliability is expected in situa-
tions where, for example, the soil blanket layer uplifts due to high pore pressures below
the soft soil layer blanket, or when the design situation concerns extremely high phreatic
levels due to overtopping waves. In such situations the construction survival is less infor-
mative. When considering a Bayesian analysis, a good indicator to examine the degree
of similarity between the two situations is the correlation between the two limit states
based on the FORM design points.

The findings also suggest that a higher raise of the dike than necessary for the design
height can be considered to test the strength of the dike for stability, as long as the risk of
failure outweighs the benefits in terms of an optimized design. The investigated exam-
ples indicate that significant reliability updates are possible, even when the probability
of failure during construction is lower than 5%; a reasonable and generally accepted
safety level during construction. Information about what conditions have been survived
is necessary; practically this entails measurements of the (excess) pore pressures and the
imposed load of the embankment raise.

In conclusion, incorporating the information of construction survival can signifi-
cantly improve safety assessments of existing dikes. As the survival information is typi-
cally available over distances longer than a slip plane, the results (e.g. posterior reliability
or updated estimates of the local average properties) are representative for horizontal
sections that can be considered as homogeneous in terms of the schematized properties
(typically in the order of hundreds of meters). The results also imply that in practice,
many dikes have a considerably higher reliability than what they were designed for.
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What is the effect of combining survival and settlements (multiple performance obser-
vations) during the construction of dikes?

Reliability estimates for slope stability improve further by combining the information
of survival and settlement during the construction of dikes. Survival information and
settlement information are complementary because the both sources of information are
from different sources (independent data). Moreover, survival information is inequality
data, for which the uncertainty reduction affects the tail of the joint probability distri-
bution, and settlement information is equality data, which updates the best estimates
of the settlement and stability prediction. Thus, the uncertainty reduction affects the
probability of failure in two ways.

Though the correlation between settlement and stability is not very large, the es-
timated probability of failure in the considered case study was between 25 and 50%
higher or lower (factor 1.2-1.5) depending on the settlement measurement. Settlement
measurements may lead to more uncertainty reduction for stability when the correla-
tion between settlement and stability is larger. For example if the uncertainty and the
relative influence of the degree of over-consolidation of soft subsoil layers is larger in
both models, or when there are more ’shared’ parameters affecting both settlement and
stability.

There are practical limits to adding more information from additional observations
and from multiple sources, namely the computational feasibility of such Bayesian reli-
ability analysis in practice. Because, for each piece of information that is added, the
number of required model evaluations increases drastically. With geotechnical models
that require only a few seconds to calculate, most standard reliability methods become
computationally intractable, and implementation of the Bayesian analysis seems only
practically feasible using metamodels. This is particularly the case for the safety assess-
ment of flood defences and other geotechnical constructions in the Netherlands, with
high target reliabilities (low probabilities of failure). A point of attention for using settle-
ment measurements to update reliability is that the result of the Bayesian analysis is typ-
ically limited to the auto-correlation distance of settlements. In order for the reliability
updating result to be representative for longer reaches of dike, settlement measurements
of multiple locations are thus required.

How cost-effective are proof loading and pore water pressure monitoring in dike rein-
forcements?

Proof loading and monitoring reduce uncertainty, and thus improve reliability estimates.
If dikes are strengthened to meet the required reliability (as defined by safety standards),
dike designs that account for performance information will be - on average - smaller
and less costly than conventional dike designs. However, whether the investment in
proof loading or monitoring is worthwhile depends on the additional costs, for example
the risk of a failing proof load. Because both the benefits (lower construction cost) and
the costs (executing a proof load test and the risk of a failing test) increase with higher
imposed proof loads, the cost-effectiveness is not straightforward.

The cost-effectiveness of proof loading and monitoring was evaluated using Bayesian
Decision analysis. Proof loading and pore water pressure monitoring are typically cost-
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effective for dike sections in the Netherlands because the reduction of reinforcement
cost is significant and the investment costs are relatively low. For example in the consid-
ered case study, the Total Cost reduces with 1.5–5 million AC per km for strategies with
monitoring and/or proof loading, which is a 10-35% reduction compared to current dike
reinforcement costs. Furthermore, the sensitivity analyses suggest savings ranging from
11% to 60% (on average 35%), mainly due to a reduction in dike reinforcement costs.

Deliberately taking more risk through proof loading is worthwhile when the risk of
failure during proof loading is not too large or when the risk is mitigated, and when the
costs of traditional dike reinforcements are relatively high. Therefore, proof loading is
especially interesting in dike reinforcements with space constraints, where expensive
structural solutions would otherwise be required. The results demonstrate that mon-
itoring is more beneficial in combination with proof loading than without because the
relative influence of pore pressure uncertainty increases after proof loading. This implies
that different measures should be targeted at reducing different uncertainties.

The results of the sensitivity analyses show that the choice of the target reliability
strongly influences the Total Cost. If the chosen target is higher than the economic opti-
mum (for example because it is determined by other risk factors such as individual risk
or societal risk), the Total Cost is higher through higher construction costs. If the chosen
target is lower than the economic optimum, flood risk damage has a higher contribution
to the Total Cost. In such cases the Total Cost can significantly be reduced by choosing
higher reliability targets. The Total Cost is lowest if proof loading and monitoring is com-
bined with economically optimized target reliabilities based on posterior information.
The sensitivity analysis with respect to target reliability (factor 10 higher/lower) shows
that while the Total Cost and Value of Information do change significantly, the Value of
Information remains positive, indicating the combination of measures remains worth-
while.

7.2. RECOMMENDATIONS AND FURTHER RESEARCH
Based on the results and findings, this section formulates recommendations for improve-
ments and further research.

• To improve prior estimates of uncertainty, (site) investigation should be aimed
at reducing the systematic uncertainty (since random errors average), for exam-
ple by repeating tests, and verifying results with different tests. For site-specific
transformation models, we recommend to further investigate the extent to which
transformation models are systematically or locally biased.

• This dissertation used performance information to update local spatial average
soil properties, for sections that can be considered as homogeneous in terms of
the schematized properties (typically in the order of hundreds of meters). It is
recommended to investigate the effect of reliability updating when heterogeneity
is explicitly modeled with auto-correlations instead of implicitly with local average
properties. Specific attention should there be given to the difference in the auto-
correlation of spatial variable components and epistemic uncertainties, and for
what distance the performance information is representative.
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• Additionally to investigating the effect of performance information with explicit
modelling of heterogeneity, it is recommended to investigate how performance
information can improve estimates of the usually very uncertain auto-correlation
distance. For example the survival information during construction or historic
floods is typically available over longer distances, which might improve estimates
for the auto-correlation distance of the failure mechanism (length-effect). Settle-
ment measurement with high spatial resolution might be of use to update correla-
tion lengths of individual parameters such as the overconsolidation.

• Model uncertainty strongly affects reliability estimates. It is therefore recom-
mended to investigate the extent to which the model uncertainty varies randomly
or is systematically biased, and thus to what extent the model uncertainty is re-
ducible.

• In order to optimally use the information contained in observations of the con-
struction phase, it is essential to choose settlement and stability models such that
the factors influencing both processes are appropriately captured in both, in order
to fully reflect the degree of mutual correlation. The shared influence factors or
parameters mostly concern the degree of over-consolidation and the permeability
(and consolidation coefficients) governing the pore pressure response to external
loading.

• The approximations for reliability updating using FORM and metamodels worked
well with straightforward limit states such as only survival information, but not so
well irregular limit states and combinations thereof such as settlement and suri-
val. For Bayesian analysis in broader application in geotechnical engineering it
is recommended to further explore the performance with more complex models,
computationally demanding models, and combinations of multiple observations
and limit states.

• The MultiNest algorithm is suitable for Bayesian updating, however less suitable
for reliability analysis because the algorithm is not aimed at finding samples in the
failure domain. Combining Multinest with Importance Sampling, and defining
a convergence criterion on the probability of failure (in stead of the remaining
evidence) can be an improvement. Another option to consider is ellipsoidal nested
sampling to improve the selection of new samples in subset simulation.

7.3. RECOMMENDATIONS FOR VALORISATION IN PRACTICE
This dissertation is part of the All-Risk research programme which supports the Dutch
Flood Protection programme (in Dutch: Hoogwaterbeschermingsprogramma, HWBP)
with the implementation of the new safety standards. The primary goal of the HWBP is
to ensure that all primary flood defences comply with the new safety standards before
the year 2050. For that, many dike reinforcements are planned in the coming years. The
HWBP is working towards this goal under the motto ’slim, sober en doelmatig’ (English:
smart, frugal, and efficient), of which ’frugal and efficient’ relates to the cost of dike
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reinforcement, mentioned in the Water Act. ’Smart’ was added recently1 to give room
for ambitions to also improve spatial quality and improve the integration in the environ-
ment of such large and complex infrastructural projects.

The transition to safety standards defined in terms of acceptable probabilities of
flooding offers great opportunities to improve flood risk management. In essence, this
dissertation contributes to improved efficiency of flood risk management in the Nether-
lands in three ways. First, the probabilistic analyses of case studies of typical dike sec-
tions in the Netherlands provide insights in the dominant uncertainties to be reduced
to obtain more credible probability estimates. Usually these are the local soil properties
and the load effects. Secondly, this dissertation shows that performance information
reduces uncertainty, and improves probability estimates. So, information during the
construction of dikes, monitoring data, and proof loading can improve safety assess-
ments. And lastly, this dissertation provides a framework to assess the cost-effectiveness
of performance information in combination with dike reinforcement, in order to decide
whether or not it is worthwhile to invest in performance information. The following
paragraphs go further into detail how to utilize the concepts and knowledge developed
in this dissertation in practice.

• Cone penetration tests are often used in dike reinforcement designs to estimate
the undrained shear strength of soft soil layers. The transformation models
needed to estimate soil properties based on cone resistance are often calibrated
with local data, and involve large uncertainty. Chapter 3 presents a method to
appropriately account for averaging of random errors and spatial variability. An al-
ternative simplified method to roughly estimate the uncertainty is also presented.
Recommendations for the use of local transformation models dike assessments
and dike reinforcement projects are: 1) minimize the distance between a CPT and
a borehole to prevent spatial variability to propagates into the transformation un-
certainty, and 2) calibrate transformation models for statistically homogeneous ge-
ological deposits (on a regional scale) with sufficient independent measurements.
Concretely, it is better to use multiple boreholes sufficiently distanced, rather than
multiple measurements within one borehole. At least 10 but preferably 15-20 bore-
holes are recommended to decrease statistical uncertainty.

• The use of performance information during construction of dike reinforcements
(such as the survival of the construction phase in Chapter 4 and measurements of
settlement after raising dikes in Chapter 5) is important information for reducing
uncertainties. Information about the construction phasing such as the embank-
ment raise over time and excess pore pressures should be collected and used to
optimize the design during the dike reinforcement, as it generally leads to less
required space and less costly dike reinforcements. Settlements measurements
can also be used to estimate the survived excess pore water pressures from the
consolidation. The case studies in this dissertation and the HWBP are focused
on primary flood defences in the Netherlands, however, the findings are also of
particular importance to secondary/regional flood defences because the extreme

1Beleidsreactie advies College van Rijksadviseurs over ruimtelijke kwaliteit in het hoogwaterbeschermingspro-
gramma

https://www.rijksoverheid.nl/documenten/brieven/2020/11/04/bijlage-2-beleidsreactie-advies-college-van-rijksadviseurs-over-ruimtelijke-kwaliteit-in-het-hoogwaterbeschermingsprogramma
https://www.rijksoverheid.nl/documenten/brieven/2020/11/04/bijlage-2-beleidsreactie-advies-college-van-rijksadviseurs-over-ruimtelijke-kwaliteit-in-het-hoogwaterbeschermingsprogramma
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situation might have a higher degree of similarity with the survived situation for
those cases.

• Dike reinforcements that have already started (and where the surviving construc-
tion phase and other performance information during construction are not taken
into account) can benefit from performance information in future safety assess-
ments. This may result an extension of the lifetime, which is particularly interest-
ing in the light of accelerated climate change, probably leading to changing bound-
ary conditions such as additional sea level rise and more extreme flood events.
A requirement is the availability of soil investigations, as-built information, and
monitoring of pore water pressures, settlements and displacements during the
construction phase. Such data is crucial to be able to continuously improve the
understanding of dikes and to keep enhancing safety assessments. It is strongly
recommended to continue monitoring pore pressures and settlements even af-
ter the dike reinforcement, as this performance data is invaluable for calibrating
models and increasing knowledge about dikes on the long term in line with the
recommendations of ENW2 concerning long-term monitoring.

• Adopting a more critical staged loading schemes can be attractive to obtain a larger
reliability update, and thus a less costly design. Such an approach is particularly
interesting at locations with low consequential damage (no direct flooding, no
damage to pipes, houses, etc.) and where otherwise expensive design solutions
are needed. The variable size of a reinforcement design is expected to fall within
the usual ’bandwidth’ for the required space of a dike reinforcement. For practical
implementation it seems reasonable that both the benefits and any additional risk
are for the account of the financing institution. It is desirable that the uncertainty
reduction from construction survival can be taken into account in easier ways (for
example in practical guidelines), so the approach is widely accepted and also at-
tractive to contractors (as dike reinforcements may involve less work after all).

• The decision tree framework presented in Chapter 6 seems very suitable for assist-
ing dike managers and technical managers of dike reinforcements with deciding
on what methods for uncertainty reduction are expected to be cost-effective. In
particular, proof loading is efficient when geotechnical uncertainty is dominant
in the failure probability estimates and where the risks of proof loading are low
or can be mitigated. In dike reinforcements with space constraints, where expen-
sive structural solutions would otherwise be required, it is typically worthwhile to
obtain performance information by proof loading. Though applying a proof load
to every dike is not feasible, proof loading has great potential as tailored solution
for small dike sections where otherwise unrealistic, technically challenging, and
expensive solutions would be required.

• Notice that implementation of proof loading and adopting a more critical staged
loading scheme to optimize dike designs should always be conducted in conjunc-
tion with monitoring and a contingency plan. The Observational Method (Spross

2ENW advies 17-19: Beter Leren Keren door veldmetingen en monitoring
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and Johansson, 2017; Nicholson et al., 1999; Peck, 1969) provides a theoretical
framework for this and is highly recommended.

• Finally, this dissertation stresses the importance of performance information like
survival observations and monitoring for later use. Future flood risk management
will be directed towards continuously updating the remaining life time of the flood
defence. That requires the possibility to retrieve and reuse historic information at
later stages, thus requires rigorous data storage and management.
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A
PRE-POSTERIOR ANALYSIS:

DIKE REINFORCEMENT WITH

CONSTRUCTION SURVIVAL

INTRODUCTION
Chapter 4 concluded that dikes that are successfully built, generally have a higher pos-
terior reliability than what they were designed for. Thus, the reliability is higher than
the target reliability, and therefore, not optimal. This case study demonstrates how the
information of the survival of the construction phase can be used to optimize dike de-
signs, and whether it is cost-effective to adopt a more risky construction phasing as it
results in more uncertainty reduction, but also in higher chances of failure during the
construction.

The decision problem is formulated as follows. The case study considers a typical sit-
uation of a dike that needs to be raised to prevent overtopping, and needs to be strength-
ened with respect to the slope stability. Traditionally, dikes are strengthened before the
dikes are raised, as this is the safest building sequence. In such situations, the survived
situation is not a critical loading situation and incorporating the survival information
barely effects the posterior reliability. Therefore a dike reinforcement based on posterior
information will not be notably different from a design based on prior information.

In this case study we investigate an alternative construction sequence of first raising
the dike, and then strengthen it, see Figure A.1. This reversed construction phasing
is more risky because the stability will be lower during construction. However, if the
construction is survived, the reliability can significant increase, see Kentrop (2021). The
higher reliability requires a less wide stability berm to meet a fixed reliability target. The
question is, however, if the reversed construction phasing is worthwhile the additional
risk.
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Figure A.1: Traditional building sequence of first constructing stability berm and then raising the dike (top),
and more risky building sequence of first raising the dike and then constructing a stability berm (bottom).

METHOD
Whether the reversed construction sequence is cost-effective depends on different fac-
tors, among others, the probability of failure during construction, the costs of damage
related to failure, and the savings of a cheaper dike design. To investigate the cost-
effectiveness of such a pre-posterior design of a dike reinforcement compared to a con-
ventional strategy based on prior information, we adopt a simplified version of the deci-
sion framework introduced in Section 6.2.

To investigate the sensitivities and circumstances that lead to whether pre-posterior
dike reinforcements are cost efficient, we compare the costs of a design based on prior
information with a traditional construction phasing (s1), and a pre-posterior design in-
corporating the information of survived construction with a reversed construction phas-
ing (s2). Similar to Equation 6.2, the expected direct cost of a strategy is calculated as
follows:

E [c(si )] =Creinforcement(d(si ))+Cdamage ·P (S|si ) (A.1)

With d the decision rule determining the reinforcement action a needed to meet
the reliability target after incorporating the information of the survived construction,
see Figure A.3. In this case: the required width of the stability berm. Cdamage is the
cost of damage and repairs related to instability during the construction (including the
construction cost of a new dike in case the proof load fails). Note that we keep the
contribution of flood risk out of the equation because it does not differences between
the direct cost of a strategy, since in both situations we reinforce the dike to the same
target reliability. We also assume that reversing the construction phasing does not lead
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Figure A.2: Cross section of the case study in daily (left) and flood conditions (right).

to additional costs for example due to differences in total duration (for consolidation
and settlements).

To optimize the dike design, we account for the survival of the construction stage in
advance. In fact, we want to determine the design for which the (pre-)posterior reliability
meets the target reliability. The same Bayesian updating method is used as in Chapter 4,
but in stead of looking at newly built dikes, we look at existing dikes on soft soil founda-
tions. Though this may lead to less critical stability situations than new dikes, it leads to
a larger degree similarity between the survived and future situation.

CASE DESCRIPTION
The case study is a fictitious existing dike of clay/silt with a slope 1:3 (v:h) and a initial
height of +4.0 m ref.. The subsoil is a typical Dutch composition of different soft soil
layers: 2 m clay, 3 m peat, 2 m clay, and 0.5 m basal peat, on a Pleistocene sand layer. In
daily circumstances, the phreatic level is around +0.75 m ref.and the head in the soft soil
and Pleistocene sand layer −0.75 m ref.and −1.0 m ref. respectively, see Figure A.2. The
soil parameters are listed in Table A.1.

We regard a situation where the total dike raise is deterministic 0.6 m, and the design
for the slope stability must meet an prescribed target reliability assumed βT=5.04. While
ideally the dike height is also part of the risk optimization, we focus only on the compar-
ison between prior and pre-posterior design for slope stability. To reduce the degrees of
freedom, we only vary the width of the stability berm as measure to solve the stability
deficit, and do not consider other solutions (that may be more efficient in terms of total
cost).

RESULTS
The prior reliability analysis for the slip circle indicated in Figure A.2 results in a reliability
estimate of β=4.6 before the dike is reinforced. Note that this is just slightly below the
target reliability, but the reliability will decrease when the dike is raised. After raising the
dike, the reliability estimate drops to β=3.1. From Figure A.3 it follows that a berm of
4.7 m width is required to reach target reliability after full consolidation.

Incorporating the survival information of the survived construction, following the
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Table A.1: Probability distributions of soil properties used in the case study.

Soil Volumetric
weight
γsat./γunsat.
[kNm−3]

Normally
consolidated
undrained shear
strength ratio
S[−]

Strength
increase
exponent m
[−]

Pre-
overburden
pressure
POP a [kPa]

Critical state
friction angle
ϕcs[◦]

Sand 20/18 Log-normal
µ 35.0, σ 1.5

Peat 10.5/10.5 Log-normal
µ 0.50, σ 0.05

Log-normal
µ 0.85, σ 0.05

Log-normal
µ 10.0, σ 3.0

Basal Peat 11/11 Log-normal
µ 0.50, σ 0.05

Log-normal
µ 0.85, σ 0.05

Log-normal
µ 20.0, σ 6.0

Clay 13/13 Log-normal
µ 0.40, σ 0.04

Log-normal
µ 0.85, σ 0.05

Log-normal
µ 15.0, σ 4.5

Clay
toplayerb

15/15 Log-normal
µ 0.35, σ 0.04

Log-normal
µ 0.85, σ 0.05

Log-normal
µ 15.0, σ 4.5

Log-normal
µ 32.0, σ 2.0

Dike Coreb 17/17 Log-normal
µ 0.32, σ 0.07

Log-normal
µ 0.85, σ 0.05

Log-normal
µ 20.0, σ 6.0

Log-normal
µ 32.0, σ 2.0

a The pre-overburden pressure refers to a the initial situation, before construction of the dike.
b Saturated clay is modelled using Stress History and Normalized Soil Engineering Properties (SHANSEP)
parameters S, m and POP (or OC R), unsaturated clay is modelled using a critical state friction angle ϕcs.
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Figure A.3: Decision rules for the berm design as measure to meet the target reliabliity.

approach of Chapter 4, leads to a significant increase of the reliability estimate, depend-
ing on the modelling choices. If a situation with 50% consolidation is survived (i.e. 50%
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Table A.2: Reliability results posterior analysis. Survived situation with 50% excess pore pressure

autocorrelation
model uncertainty

with survived
construction

with additional strength in unsaturated zone
only during
construction

during construction
and flood

uncorrelated ρ = 0 4.40 3.89 4.60
correlated ρ = 1 3.75 3.44 4.17

excess pore water pressures still present in the subsoil), the failure probability decreases
a factor 15–250 depending on the assumption of the autocorrelation of the model uncer-
tainty, see Table A.2.

The effect of additional strength in the unsaturated zone of the soil on the reliability
update is investigated by a sensitivity analysis. Unsaturated strength has a positive effect
on the stability during construction, making the construction a less critical situation,
and hence less informative. Accounting for the additional unsaturated strength lowers
the reliability updating effect, but does not eliminates it completely: the posterior failure
probability is still a factor 5 lower.

Arguably, if such an additional strength is present during construction, the effect will
also be present to some (and likely lesser) extent during flood. If we take the effects
of unsaturated soil into account in both cases, the effect of reliability updating will be
slightly lower, but de posterior reliability is much higher than in case we do not take it
into account. Therefore, neglecting the influence will lead to conservative estimates of
the reliability.

The decision whether or not to reverse the construction phasing depends on the
one end the savings of the reinforcement, and on the other hand the additional risk
of reversing. In Figure A.4 the total expected direct costs of the strategies are shown
for different reinforcement costs and different damage costs of failure, to analyse the
sensitivity. Equation A.1 was used to calculated the cost. The failure probability during
construction with the ’safe’ construction phasing (strategy 1) is 0.004, with a more risky
construction phasing of strategy 2, the failure probability is 0.11.

To analyse in what situations a more risky construction phasing is typically cost-
effective, we consider four typical situations: high and low damage and repair cost, and
high and low reinforcement cost. High and low damage and repair costs resemble situ-
ations with and without consequential damage to e.g. cables, pipelines, infrastructure,
and nearby buildings. High and low reinforcement costs per meter berm per kilometer
typically resemble situations where space is scarce or not. Figure A.4 shows each of the
four situations, where in each panel the damage/repair cost and reinforcement cost is
fixed to the low and high values.

With increasing cost for the dike strengthening, the benefits of a pre-posterior design
increase. However, Figure A.4 shows that there is a tipping point where it is not worth
to take the additional risk. For example, when the consequential damage is high. The
tipping point is also influenced by the sensitivity to different cost functions of the dike
reinforcement. For ’cheap’ dike reinforcements (e.g. when the construction of a berm
is cheap), the tipping point is already at damage costs 0.5 MAC in this case study. For
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Figure A.4: Sensitivity analysis of total direct costs of a prior and pre-posterior design strategy.

expensive dike reinforcements (e.g. when constructing a berm is expensive because
adjacent home owners need to be compensated), the tipping point is at 5.0 MAC.

Figure A.5 illustrates another typical example of a situation with a discrete cost func-
tion. For example, when a very expensive sheet pile or diaphragm wall (20.0 MAC) is
required if the stability berm width is larger than for example 4.5 m. In that case, a pre-
posterior design is practically always worthwhile.

CONCLUSION
From the sensitivity analysis it follows that when optimizing the total cost, it is worth
accepting a lower stability during the construction, when:

• The damage and repair (risk) of a possible instability is not high, relative to the
reinforcement costs, for example, with a green dike without cables and pipes and
relatively high costs per meter of berm

• There is a jump in the cost function, for example when a hard construction is
needed.

The additional risk can also be reduced by mitigation measures such as monitoring etc.
A pre-posterior design for dike reinforcements should therefore be applied within the
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Figure A.5: Expected Total Cost of a prior and pre-posterior design strategy with a discrete cost function.

framework of the Observational Method in Eurocode 7 (CEN, 2004). Another option to
take advantage of the survived construction is to extend the lifetime, i.e. to extend the
time before a new dike reinforcement has to be carried out. So we can accept a tem-
porarily too high reliability during the lifetime, to be prepared for more extreme climate
scenarios with increasing loads.
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cdf cumulative density function.
CMC Crude Monte Carlo.
CoV coefficient of variation.
CPT cone penetration test.
CSSM Critical State Soil Mechanics.
DSS direct simple shear.
EPM Equivalent Planes Method.
ERRAGA Efficient and Robust Reliability Analysis for

Geotechnical Applications.
FEM Finite Element Methods.
FORM First Order Reliability Method.
HWBP Hoogwaterbeschermingsprogramma.
LEM Limit Equilibrium method.
LIR Lokaal individueel Risico.
MCIS Monte Carlo Importance Sampling.
NAP Normaal Amsterdams Peil.
NC normally consolidated.
OC over-consolidated.
pdf probability density function.
ref. reference level.
SD standard deviation.
SHANSEP Stress History and Normalized Soil Engineering

Properties.
TC Total Cost.
TXC triaxial compression.
VoI Value of Information.
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NOTATION

LATIN
A set of dike reinforcement actions
a decision on dike reinforcement design action (berm length)
aCPT CPT cone factor
ap response factor of the phreatic level to flood water levels
C cost components (proof load, monitoring, repair, reinforcement, failure)
c scaling constant for indirect reliability updating
c0 total cost of the reference case (without proof loading and monitoring)
c cost for each step in the decision tree (decision and outcome)
D annual expected damage flooding
d decision rule
F failure event
Fs factor of safety
h water level
hthresh threshold water level from where valuable measurements are obtained
i numerator for the number of measurements in a CPT, or numerator for

realisation
Im indicator whether monitoring is done
Ip indicator whether proof loading is done
j numerator for CPTs, or numerator for realisation
l̂ maximum log-likelihood value
M number of CPTs
m strength increase exponent SHANSEP
m decision whether or not to invest in pore pressure monitoring
ms model uncertainty factor
N number of measurements in a CPT
n total number of CPTs in the calibration of the transformation model, or total

number of realisations
Nkt transformation model parameter
N̂kt estimated (calibrated) transformation model parameter
OC R over-consolidation ratio
p decision on whether or not to execute a proof load test of a certain magnitude
P f probability of failure
POP pre-overburden pressure
qc CPT cone tip resistance
qnet random field of CPT measurements
qnet,i point measurement cone resistance from CPT
r annual discount rate
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r ratio between random variability and total point variability
S normally consolidated undrained shear strength ratio
S event of survival of a proof load
su random field of undrained shear strength (true known, directly measured, or

indirectly measured)
s̄D

u,j depth average undrained shear strength, directly measured using laboratory
tests

s̄I
u,j depth average undrained shear strength, indirectly measured using CPTs

su undrained shear strength
sD

u,i direct point measurement undrained shear strength (laboratory test)
sI

u,i indirect point measurement undrained shear strength
t duration of monitoring
u standard normal stochastic parameter
u2 CPT pore water pressure measurement
V coefficient of variation (CoV)
v1,i random uniform number in the i th Monte Carlo realization
v2,i random uniform number in the i th Monte Carlo realization
wi importance weight factor for realisation i
X stochastic variables
x realization of random variables
Zm set of all possible outcomes of pore water pressure monitoring
zm outcome of pore water pressure monitoring (observation of phreatic level

reaction to flood)
Zp set of all possible outcomes of a proof load test
zp observation of survival of a proof load test (at the imposed phreatic level)

GREEK

αk FORM influence factor for parameter k
β reliability index
βT optimal target reliability index
χF,i indicator value of failure in the i th Monte Carlo realizatio
χε,i indicator value of evidence in the i th Monte Carlo realizatio
ε evidence/survived event
ε random field of error term
εqnet measurement error qnet

εsu
measurement error su

εt transformation error
Γ2 variance reduction factor
γ volumetric weight
µ mean value
π standard uniform stochastic parameter
Φ−1 inverse standard normal cumulative distribution function
φcs critical state friction angle
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ρ correlation coefficient
σ standard deviation
σ2 variance
σ′

v effective vertical stress
σp pore pressure
σ′

p preconsolidation stress
σv total vertical soil stress
θ performance (failure/no failure)

MATHEMATICAL OPERATORS
1[·] indicator function
f (·) probability density function
g (·) performance function failure
h(·) performance function observation
F (·) cumulative distribution function
L(·) likelihood function
P (·) probability operator
φ(·) standard normal probability density function
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