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SUMMARY

In the past century, numerous iterations of automation have changed our society sig-
nificantly. In that perspective, the professional and personal availability of computing
devices interconnected through the Internet has changed the way we eat, live and treat
each other. Today, the Internet is a service as crucial to our society as public access
to electricity, gas and water supplies. Due to its successful adoption, the Internet now
serves applications that were unthinkable at the time of its initial designs when social
media, online global market places and video streaming were still far out of reasonable
imaginary reach. Early research initiatives worked on realizing a global network of in-
terconnected computers, an aim clearly realized by the successful implementation of
the Internet and the fact that the infrastructure still suffices to provide connectivity to
an unforeseen growth and change in usage. The research field of future Internet aims
at long-term improvements of the Internet architecture, trying to improve the network
infrastructure such that it will also facilitate future growth and applications.

In this dissertation, we have contributed to the field of future Internet by propos-
ing, implementing and evaluating infrastructure improvements. Most of our work re-
volves around Software-Defined Networking (SDN), a network management architecture
aiming at logical centralization and softwarization of network control through the sep-
aration of data plane and control plane functionality. In particular, we have assessed
the feasibility and accuracy of network monitoring through SDN (see chapter 3), as well
as contributed to the robustness and recovery of such networks under topology failure
by speeding up failure detection and recovery (see chapter 4) and precomputation of
network-wide per-failure protection paths (see chapter 5).

In addition to SDN, we have contributed to Information-Centric Networking (ICN),
a network architecture optimizing content distribution by implementing network-layer
forwarding techniques and cache-placement strategies based on content identifiers. We
have contributed to this field by introducing a globally-accessible namespace maintain-
ing a feasible global-routing-table size through separation and translation of context-
related and location-aggregated name components (see chapter 6). Considering the
same demand for centralization and softwarization of network control found in SDN ap-
plies to other network architectures, we have designed a protocol-agnostic SDN scheme
enabling fine-grained control of application-specific forwarding schemes. With our pro-
totype, we evaluate an implementation of such an SDN-controlled ICN, demonstrating
correct functionality in both partial and fully upgraded networks (see chapter 7).

Besides working on future Internet topics, we have also taken a step aside and looked
at more recent Internet architecture improvements. Specifically, we have performed
measurements on the Domain Name System’s Security Extensions (DNSSEC). From these
measurements we provide insight into the level of implementation and correctness of
DNSSEC configuration. Through categorization of errors we explain their main causes
and find the common denominators in misconfiguration (see chapter 8).
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SAMENVATTING

In de afgelopen eeuw hebben verscheidene slagen van automatisering onze maatschap-
pij significant veranderd. In het verlengde daarvan heeft de zakelijke en persoonlijke
toegang tot computerapparaten die met elkaar verbonden zijn via het Internet onze ma-
nieren van eten, leven en omgang veranderd. Vandaag de dag is het Internet net zo
cruciaal voor onze maatschappij als publieke toegang tot elektriciteits-, gas- en water-
voorzieningen. Dankzij de succesvolle integratie van het Internet bedient het nu toe-
passingen die onvoorstelbaar waren ten tijden van de ontwerpfase toen social media,
online globale marktplaatsen en video streaming sites nog ver buiten het redelijke ver-
beeldingsvermogen vielen. De eerste onderzoeksprojecten werkten aan het realiseren
van een globaal netwerk van onderling verbonden computers, welk doel met de succes-
volle uitrol van het Internet en het feit dat deze infrastructuur nog steeds voldoet aan
een onvoorziene groei en verandering in gebruikspatronen duidelijk behaald is. Het on-
derzoeksgebied future Internet richt zich op lange termijn verbeteringen van de Internet
architectuur en tracht hiermee de netwerk infrastructuur dusdanig te verbeteren dat het
ook toekomstige groei en veranderingen kan ondersteunen.

In dit proefschrift hebben we bijgedragen aan dit veld door het voorstellen, imple-
menteren en evalueren van infrastructurele verbeteringen. Het meeste van ons werk
draait om Software-Defined Networking (SDN). Deze network management architectuur
doelt op centralisatie en softwarisatie van netwerk controle door middel van een schei-
ding tussen de data en controle functies. In het bijzonder hebben we de haalbaarheid en
nauwkeurigheid van netwerk monitoring door middel van SDNs beoordeeld (zie hoofd-
stuk 3), bijgedragen aan de robuustheid en herstelvermogen van dergelijke netwerken
wanneer zich topologische fouten voordoen door het versnellen van foutdetectie en om-
leiding (zie hoofdstuk 4) en het voorberekenen van netwerk-brede fout-omleidingen (zie
hoofdstuk 5).

Aanvullend op SDN hebben we bijgedragen aan Information-Centric Networking
(ICN). Deze netwerk architectuur optimaliseert content distributie door het implemen-
teren van netwerklaag forwarding technieken en caching strategiën op basis van content
identificatoren. We hebben hier aan bijgedragen met het introduceren van een globaal
toegankelijke naamruimte die een aanvaardbare globale forwarding tabel grootte onder-
houdt middels scheiding en vertaling van context-gerelateerde en locatie-geaggregeerde
naamcomponenten (zie hoofdstuk 6). Aangezien eenzelfde vraag naar de centralisa-
tie en softwarisatie van netwerk controle uit SDN toepasbaar is op andere toekomstige
Internet architecturen, hebben we een protocol-onafhankelijk SDN schema ontworpen
die fijnmazige controle over toepassing-specifieke forwarding schema’s mogelijk maakt.
In ons prototype evalueren we een implementatie van een SDN gecontroleerd ICN en
tonen we functionaliteit in zowel gedeeltijk als volledig geupgrade netwerken (zie hoofd-
stuk 7).

xiii



xiv SAMENVATTING

Naast het werk op toekomstige Internet architecturen, hebben we ook een stapje op-
zij genomen en gekeken naar meer recente verbeteringen aan de Internet architectuur.
Met name hebben we metingen uitgevoerd aan de Domain Name System’s Security Ex-
tensions. Deze meetresultaten bieden inzicht in de mate van implementatie en juistheid
van diens configuratie. Door categorisatie van fouten leggen we hun voornaamste oor-
zaken bloot en vinden we de gemeenschappelijke delers in misconfiguratie (zie hoofd-
stuk 8).



1
INTRODUCTION

October 29, 1969, University of California, Los Angeles, "lo", the first characters sent over
the first link of the ARPANET, a computer network that we now call the first Internet [1].
In fact, had the system not crashed after the first two characters, the first message sent
would have read "login". However trivial sending such a message correctly appears to
us today, it took until 1994 before reliable consumer access through dial-up connection
became available. Today, access to reliable broadband access is common in most devel-
oped countries.

Since its inception, the Internet has dramatically changed how we live, communi-
cate and perform many types of transactions. Even in the background, invisible to our
phone and computer screens, the Internet plays an important role and has become a
critical infrastructure in society supporting almost any communication-assisted trans-
action thinkable. All types of database management and transactional services, rang-
ing from airline bookings, road traffic monitoring, bank and stock market transactions,
distribution warehouse management, distribution of radio from studio to antenna and
even the planning software that delivery express services use to instruct the postal carri-
ers where to deliver the next package. Anywhere where a computer-like device commu-
nicates with another computer-like device, the communication network is in one way or
another supported by what we call the Internet.

Despite its popularity, the underlying network architecture facilitating the Internet
has not changed conceptually. In the meantime, the high availability of such a high-
speed network has led to an unforeseen high usage. Where the first protocol implemen-
tation could facilitate at most 65,536 hosts [2]1, an estimated 1.3 billion IP addresses
showed signs of activity in 2012 [5] and reports predict over 3 billion active users in 2015
[6][7]. Moreover, we use the Internet in ways unforeseen by its original specifications
and design. The Internet Protocol (IP) was designed as a host-to-host message passing

1In fact, this is already the circa-1977 design adopting 16-bit destination addresses. An earlier design dating
back to 1970 showed 256 possible hosts through 8-bit destination addresses [3], while an early RFC from 1971
refers to upgrading the Interface Message Processer (IMP) from 3 to 4 hosts "caused a rather large internal
change" [4].

1
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2 1. INTRODUCTION

system where users can send one-time messages from one host to another in an almost
telegraph-style manner.

By now, the usage of the Internet has outgrown the original specifications of IP. Be-
sides the exponential growth in users, the way the Internet is used has also changed sig-
nificantly. While IP still serves host-to-host messages, we tend to use it in terms of con-
nections, sharing files and watching or listening to content distributed from one source
to many viewers and listeners instead. These functionalities have been implemented
as layers on top of IP2. The higher the layer, the more difficult it becomes to optimize
the computer network for the functions described in that layer. In case of the highest
layers, this is even prevented through legislation in many countries, forbidding network
providers to inspect data that might contain privacy sensitive information.

However, the information stored in the higher layers is necessary to analyze con-
tent flows, optimize their respective paths and reduce bandwidth consumption through
caching. Current Content Distribution Networks perform a fair job by keeping requests
close to the requesters through a number of techniques such as propagating anycast IP
addresses and applying geographical filters on top of the Domain Name System. How-
ever, these services need a multitude of complicated systems to guarantee functionality,
such as load balancers, intrusion detection systems, denial of service mitigation sys-
tems and internal content replication services and respective policies. Implying high in-
vestments acquiring and maintaining these systems, content distribution networks are
costly to deploy and hence are only available to large publishers or service subscribers.

Instead, the field of Information-Centric Networking (ICN) proposes an architectural
change to the Internet architecture in which the use of pseudo-connections is replaced
with a network layer that requests content directly, hence allowing the network to be
optimized for content distribution instead. ICNs allow providers to optimize content
streams and place network caches at any point in their network and allow any publisher
from consumer to enterprise to benefit from these in-network caches. Most ICN imple-
mentations, such as Content-Centric Networking [9], Named Data Networking [10], the
Publish/Subscribe Paradigm [11] and NetInf [12], however, are not yet in a production-
ready state. Among others, problems exist regarding global naming and addressing con-
ventions, growing routing table complexity and the transition procedure from the Inter-
net Protocol to another.

Besides a large increase in the number of users and how users perceive and use
the network, the administration and management has also become much more com-
plicated. At its high tide, ARPANET hosted a little over 200 computers divided over 57
routers, a number that is easy to oversee and manage. Even then, a contemporary rout-
ing protocol was in place to discover network topology and compute shortest paths be-
tween hosts, thriving for optimal usage of the network.

Now that the Internet has grown and continues to expand, a variety of distributed
routing protocols are in place finding appropriate paths to deliver connectivity to users.
Some network providers’ networks have grown so large, that they are employing different
administrative domains within their networks to be able to handle the complexity. Still,
they struggle to achieve a good overview of network usage and perform flexible planning
of network resources. As such, network design and realization remains a very static pro-

2As described by the layered OSI model [8] described in chapter 2.
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cess, whereas providers wish to introduce more control and flexibility to cost-effectively
exploit their networks.

Traditionally, computer networking devices such as switches and routers both func-
tionally handle network traffic and distributively derive a common network configu-
ration. The field of Software-Defined Networking (SDN) proposes a system where the
distributed nature of forwarding and routing protocols is split into two strictly distinct
data and control planes. In these planes, switches revert to operating the data plane,
while centralized network controllers operate the control plane. As such, switches are
restricted to plainly forwarding packets, while controllers monitor data plane activities,
compute correct network paths, configure switches accordingly and reconfigure them
when necessary. The centralized network gives operators the opportunity to perform
network configuration from a centralized perspective without the necessity to configure
lots of distributed nodes whenever a small change in configuration needs to occur.

Computer networks are sensitive to failures, a property that also compromises the
robustness of SDNs. Given that any device or link will statistically break at some point
in time, protection from these failures is crucial. However, current routing protocols are
"slow" in detecting failures and need time to converge to new functional paths between
hosts. Faster failure detection protocols exist, such as BFD [13] and Ethernet OAM/CFM
[14], but instead of offering network-wide coverage, those often operate on a host-to-
host basis. Operating those from and to every node in the network implies a high config-
uration complexity and communication overhead and thus does not provide an archi-
tecturally scalable solution.

Finally, security and privacy concerns have recently been troubling the Internet. Al-
though security- and privacy-improving solutions exist, those are often applied at the
application level and thus only offer the implemented level of security and privacy for
that particular application. Furthermore, the trustworthiness of security- and privacy-
improving solutions in applications varies and is difficult to evaluate for end users. For
optimal security and privacy protection the Internet needs to have mechanisms imple-
mented from an architectural perspective, rather than leaving implementation to the
application design process.

In general, we see a recurring pattern of problems that affect Internet architecture
improvements. First of all, the current Internet architecture has had almost half a cen-
tury to be improved to function as effectively as possible. This implies that although
a new architecture may be fundamentally better, in practice it can achieve worse re-
sults since its execution has not been polished to be sped-up as intensively as the cur-
rent architecture. Secondly, often unforeseen requirements complicate implementing
proposed additions to the Internet architecture, a provider will not implement a new
architecture if it cannot perform all, however custom-made or specific, of its current
demands. Finally, once an Internet architecture is fully deployable, network operators
tend to be conservative in learning and implementing new techniques in their produc-
tion networks, hence delaying the Internet architecture’s progress. The last is painfully
proven by the implementation of IPv6 [15], the much-needed successor of the current
de facto standard IPv4, which 17 years after its inception only has an 11 % adoption level
[16][17].
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1.1. DISSERTATION AIM AND OUTLINE
In this dissertation, we research, propose and evaluate network architectures optimizing
the Internet to be capable to perform according to current-day and possible future spec-
ifications. To achieve this goal, we take promising existing candidate architectures, eval-
uate their current state, define areas that need improvement and improve accordingly
to make selected architectures more suitable for actual deployment in computer net-
works. In particular, we look at the very recent emerging fields of Software-Defined Net-
working and Information-Centric Networking, contributing significant improvements
to these fields. We furthermore evaluate already implemented Internet architecture im-
provements such as the Domain Name System Security Extensions. Figure 1.1 shows the
relation between these topics and the chapters.

Chapter 2 presents a literature research summarizing the current Internet architec-
ture and defines the primary concepts of Software-Defined Networking (SDN) and
OpenFlow, a basic insight on which the remainder of this dissertation relies. One of the
main advantages of large-scale SDN deployments is an increase in management flexibil-
ity through improved network monitoring tools and ultimately the possibility to deliver
fine-grained on-demand Quality of Service to customers. As an important step towards
that goal, chapter 3 proposes OpenNetMon, an approach and open-source software im-
plementation monitoring online per-flow metrics such as throughput, delay and packet
loss in SDNs through the OpenFlow protocol.

Chapter 4 introduces the field of network-topology robustness and proposes and by
experiment evaluates our method to achieve protection against network-topology fail-
ures in SDNs. In chapter 5, we design an algorithm and network controller implementa-
tion deriving the corresponding network configuration and path computations.

Chapter 6 takes a step back from Software-Defined Networking and presents the field
of Information-Centric Networking (ICNs), solving the problem of routing-table com-
plexity in globally deployed ICNs while maintaining its location-agnostic nature through
location mappings stored in the Domain Name System (DNS).

Chapter 7 combines the topics of ICN and SDN, showing that the transition proce-
dure from a traditional communication network to an ICN can be significantly sped up
and simplified through an SDN approach. By regarding the ICN as an application served
by an already existing SDN, we implement an ICN through SDN techniques and show
one can already achieve ICN’s benefits without a fully upgraded network.

While the aforementioned chapters focused on improving on-going work, chapter
8 evaluates an already implemented Internet architecture improvement. The evalua-
tion of an already available standard gives insight not only into the capability of Inter-
net Service Providers to change and adapt to new standards, but also into the opera-
tional challenges that future architectural improvements should be able to cope with.
Being a recently adopted Internet architecture improvement, we evaluate the Domain
Name System Security Extensions (DNSSEC). DNSSEC offers a higher level of security
through authentication of DNS, a critical part of the Internet infrastructure. We evalu-
ate its level of (1) adoption, (2) correct implementation by its adopters and (3) show the
consequences and their severeness when misconfigured.

Finally, chapter 9 concludes that it is inevitable for the Internet architecture to be
redesigned and outlines our main findings, recommendations and future work.
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Figure 1.1: Dissertation outline, connection between main topics and core chapters, and overall connection
between topics.
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THE INTERNET

This dissertation discusses our work proposing and evaluating Internet architecture im-
provements. Most of our work focuses on current research trends in future Internet Archi-
tectures. To put this work into perspective, this chapter discusses the current state of the
Internet architecture. More specifically, we (1) explain the organizational hierarchy and
standardization procedure, (2) summarize the current state of the architecture according
to the OSI Model and TCP/IP Reference model and its protocol implementations, and (3)
the routing algorithms and protocols necessary to participate in the Internet. Additionally,
we explain the primary concepts of Software-Defined Networking, a reoccurring topic in
the rest of this dissertation. In chapter 8, we furthermore explain the Domain Name Sys-
tem, a system that, among others, resolves the domain name part of website URLs to their
respective web server’s IP addresses and is, hence, also a critical part of the Internet archi-
tecture.

7
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2.1. INTRODUCTION
Since its inception in 1969, the Internet has undergone numerous standardization it-
erations. Standardization of its protocols provides compatibility between participating
parties such as network operators and equipment manufacturers, while the process to-
wards achieving new standards streamlines the adoption of new protocols or extensions.
The history of protocols and candidates is large, especially dating to the ARPANET era,
and even the current set of standards is too large to fully discuss within one book at any
point of time. Nonetheless, excellent books have been written summarizing the history
of ARPANET and the design of the Internet [18][19], overall explanation of concepts and
protocols [20][21], as well as views on how it should have been designed [22]. Instead,
in this chapter we focus on conceptually explaining the architectural design and pro-
tocols of the current state of the Internet, providing the necessary basis supporting the
following chapters of this dissertation.

By definition, the Internet is a network of networks [23], in which independently ad-
ministered networks are connected to form a larger interconnected network. As such
there is little hierarchy, nor one specific ultimately responsible authority to rule this
Inter-network. The only two organizations of central authority are the Internet Engineer-
ing Task Force (IETF) and the Corporation for Assigned Names and Numbers (ICANN) in
conjunction with its department IANA (Interned Assigned Numbers Authority).

The IETF is a volunteer-run membership-based non-profit organization devoted to
creating standards and evolving the Internet from a technical perspective (see section
2.2). The task of IANA involves allocation of unique Internet identifiers, such as IP ad-
dresses (see section 2.5), domain names (see chapter 8) and protocol assignment (see
section 2.6), and is mainly an administrative task. ICANN, on the other hand, coordi-
nates the maintenance and procedures involving the logistical infrastructure executing
IANA’s tasks.

First, the standardization process operated by the IETF is discussed in section 2.2.
In section 2.3, we shortly explain the OSI model and its relation to the TCP/IP reference
model used in the Internet, followed by an explanation of 3 of its implementation layers
in sections 2.4, 2.5 and 2.6. Sections 2.7 and 2.8 respectively explain the algorithms and
protocols necessary to find shortest paths and how to participate in routing discovery
within a network. Finally, section 2.10 concludes this chapter.

2.2. STANDARDIZATION PROCEDURE
In essence, the development and promotion of Internet Standards is executed by the In-
ternet Engineering Task Force (IETF). Within Working Groups volunteers, often financed
through their employer, work on topics through open mailing lists and discussions at
periodically organized IETF meetings to achieve rough consensus on new standards.
Initially, a Working Group will work on an Internet Draft (I-D), a document presenting
the work-in-progress working towards a proposal published for review in iterations of at
most 6 months. As such, an I-D has no formal status yet. If and once mature enough, the
Internet Engineering Steering Group (IESG) may be requested to approve publication of
the I-D as a Request For Comments (RFC) document describing the proposed standard.

Although not all RFCs intend to describe standards, some are purely informational,
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experimental or describe best current practices, the ones that are of the type Standards
Track start as a Proposed Standard. Although errata occur occasionally, a Proposed Stan-
dard is considered sufficiently mature to allow global implementation on the Internet.

Finally, once implementation and widespread use evolve, the IESG promotes a Pro-
posed Standard into an Internet Standard. At this point, the document is given a num-
ber in the STD series, while maintaining its number in the RFC series. Where an RFC
document never changes, it may be both updated and obsoleted by follow-up RFC doc-
uments, which updates the referenced STD document once the updating or obsoleting
document becomes an Internet Standard.

Although the review process is considered to be fairly informal and standardization
generally occurs based on rough consensus, documentation of standards and processes
is considerably punctual. For example, there are RFCs documenting the exact use of key
words indicating requirement levels [24] and procedural processes regarding IETF itself
[25].

However, not all widely used Proposed Standards make it into an Internet Standard.
Besides the STD series, there is a Best Current Practice (BCP) series collecting documents
that may be considered as official rules or stringent recommendations but are not stan-
dardized as such. For example, the just explained process of standardization is docu-
mented in BCP 9, currently containing, among others, RFC2026 [26] and RFC6410 [27].
Altogether, the derived and reviewed documents describe how parties and devices on
the Internet must implement their protocols, hence maintaining interoperability. The
Internet Architecture Board oversees the activities of the IETF as a whole.

In parallel, the Internet Research Task Force (IRTF) focuses on promoting longer-
term Internet research and forms research groups to promote collaboration. The Soft-
ware-Defined Networking Research Group (SDNRG) and Information-Centric Network-
ing Research Group (ICNRG) in particular work on topics related to this dissertation and
vice versa.

2.3. OSI AND TCP/IP REFERENCE MODELS
Communication functions are often modeled and characterized by to the Open Systems
Interconnect (OSI) model [8], which divides the complexity of communication functions
into 7 respective layers, represented in table 2.1a. In short, the different layers define the
following functions:

1. Physical layer: Physical structure specification of transporting bits on a transmis-
sion medium, specifying among others the medium material, voltage, bitrate,
bandwidth, etc.

2. Data Link layer: Specification of host-to-host data transfer on a physical transmis-
sion medium or local network.

3. Network layer: Routing of data across local networks.

4. Transport layer: Realizing reliability of end-to-end data transport.

5. Session layer: Representation of logical connections or sessions to the end points.
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Table 2.1: The OSI Model and TCP/IP Reference Model.

(a) OSI Model.

Layer Description

7 Application Layer
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Data Link Layer
1 Physical Layer

(b) TCP/IP Reference Model.

Layer Description

7 Application Layer
6
5
4 Transport Layer
3 Internet Layer
2

Host-to-network
1

6. Presentation layer: Solves (mis)representation of data between the two connected
terminating operating systems, such as converting numbers stored as big-endian
to little-endian or datetime conversion when necessary.

7. Application layer: Protocol definition of interaction between applications, an In-
ternet browser and webserver, for example, communicate via the HTTP protocol,
more and more often encrypted using SSL.

Each layer is responsible for a specific sets of functions, easing the process of design-
ing the necessary protocols solving them. Furthermore, layering gives flexibility, in the
sense that for example a Network layer implementation may function on multiple Data
Link layer technologies without disturbing the implementation of the individual host-
to-host networks. The OSI Model, however, mainly presents a theoretic model from
which the more practical TCP/IP Reference model [28], shown in table 2.1b, and its im-
plemented protocols slightly deviate. In practice, the TCP/IP Reference model combines
the Physical and Data Link layers into one Host-to-network layer and does not describe
the Session and Presentation layers since those functions are either solved in the Trans-
port layer, the Application layer, or left out due to operating system compatibility.

The following sections explain how different protocols implement the particular lay-
ers of the TCP/IP Reference model. The Host-to-Network layer is implemented through
Ethernet, explained in section 2.4. The Internet layer is implemented through the Inter-
net Protocol, presented in section 2.5. The Transport Control Protocol and User Data-
gram Protocol are 2 common Transport layer protocols, summarized in section 2.6. The
Application layer defines protocol specifications between servers and clients and con-
tains a large range of application-specific protocols. The precise details of these specifi-
cations, however, are out of scope of this dissertation.

2.4. ETHERNET
The most often used technology to perform OSI layer 2, or host-to-host functionality
from the TCP/IP reference model, is a set of technologies known as Ethernet [29]. Ether-
net defines the protocol on a LAN that connecting computers must adhere to. Ethernet
mainly performs the functions of medium access control necessary in a shared broad-
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cast medium. It specifies the use of a 6-byte addressing scheme, where network inter-
faces are statically preconfigured with a universally unique identifier, so interfaces can
distinguish dataframes intended for their use or not. Furthermore, it specifies the use
of Carrier Sense Multiple Access with Collision Detection (CSMA/CD) to perform chan-
nel access control. CSMA/CD implies that hosts wait for the transmission channel to
be clear before they send to decrease the probability of collissions. However, collisions
still infrequently occur since propagation time prevents the detection of recently started
competing transmissions, Ethernet detects such collisions and reattempts transmission
after a short random waiting time to prevent the same collission from reoccurring. Each
Ethernet frame furthermore contains a short frame check sequence (FCS) containing a
short error-detecting code to determine the valid transmission of data frames.

Besides specifying Data link properties, Ethernet is subdivided in multiple subspec-
ifications denoting the physical specification of OSI layer 1. Initially, Ethernet 10BASE5
and 10BASE2 specified 10 Mb/s bitrates using coaxial cables on which all computers on
a LAN literally connect to the shared broadcast medium formed by the wire of at most
500 respectively 185 meters long. Later, 10BASE-T and its follow-ups 100BASE-TX (Fast
Ethernet) and 1000BASE-T (Gigabit Ethernet) specified 10, 100 and 1000 Mb/s bitrates
using twisted-pair cables, referred to as cat 5, cat 5e and cat 6 cables based on their spec-
ification. Besides the change in the carrying physical layer, the twisted-pair cables are
connected between exactly 2 interfaces, and the broadcast domain is extended using so-
called hubs and switches repeating incoming messages to the other connected comput-
ers. Where hubs broadcast incoming frames to all outgoing ports immediately, switches
implement transmission queues implementing CSMA/CD and often have learning capa-
bilities reducing the probability of collisions by only forwarding frames to the interface
where it learned that a certain destination host resides.

Equal specifications exist for optical fiber connections and, more recently, the use of
coaxial-like cables has been reintroduced in the form of shorter twinaxial cables used
for switch-to-server connections in datacenter environments, allowing speeds up to 40
and 100 Gb/s. Furthermore, Ethernet specifies many application-specific extensions, for
example for use in provider-to-provider networks and extensions to enable fast fault de-
tection [14]. Additionally, a technique known as Virtual LAN [30] uses additional (VLAN)
tags to isolate traffic from separated networks using a shared physical LAN.

2.5. THE INTERNET PROTOCOL
The Internet Protocol (IP) is, as suggested by its name, an unmissable protocol in the
functionality of the Internet. To interconnect networks, IP describes a packet header
and forwarding scheme to which all participating networking nodes adhere, and is there-
fore of utmost importance. Where Ethernet performed OSI layer 2 (host-to-host) func-
tionality of communication within a broadcast medium or Local Area Network (LAN),
IP offers OSI layer 3 or network-to-network functionality of forwarding packets across
these (sub)networks. In IPv4, to date the most used version of IP, a global address space
of 4 bytes decimally written in the form 0.0.0.0 to 255.255.255.255 is distributed in ad-
dress spaces among these subnetworks. An institute may for example reserve an address
space at its RIR and receive the address space 131.160.0.0 to 131.160.255.255, notated as
131.160.0.0/16 or 131.160.0.0 netmask 255.255.0.0. In the previous notations the bit-field
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The Internet

BA

131.160.2.252/30

.253 .254

Figure 2.1: Example network topology in which router A is designated to serve the whole subnet 131.160.0.0/16,
of which it has recursively designated the subnet 131.160.128/17 to router B. The link towards "the Internet"
serves as a final gateway via which packets to other destinations can be transmitted.

/16 or netmask 255.255.0.0 indicate which bits of the aforementioned address space (of-
ten called a subnet or subnet address) identifies the specific subnetwork, the remaining
bits identify elements such as clients or recursive subnets within that network. For ex-
ample, the reserved address space may be used to put client machines into it directly,
or may be divided into further subnets such as 131.160.0-255.0/24 when the network
design needs more fine-grained subnets of 256 addresses each instead of one subnet of
65.536 addresses.

Within a subnet, devices may send packets to one another using their local subnet
addresses, whose IP addresses are resolved to their respective MAC addresses using the
Address Resolution Protocol (ARP) [31]. Packets that are intended for other subnets are
sent to a local router called the gateway. Routers interconnect the different subnetworks,
forming a globally connected network of subnetworks. Figure 2.1 depicts a simple ex-
ample two-router network of such subnetworks. Each packet that is sent from one de-
vice to another contains an IP header denoting the source and destination IP address
of that packet. Routers inspect the destination address of the packet and based on the
match between the destination and its local forwarding table forward it to the appro-
priate next-hop router or send it to the device directly if connected to one of its local
subnetworks. Table 2.2 shows the forwarding table of router A, table 2.3 shows the for-
warding table of router B. The appropriate forwarding action for each packet is selected
based on the longest-prefix matching IP address, meaning that from the lines with a
matching network address, those with the longest number of bits is selected to execute
the most precise available action. To execute longest-prefix matching, the forwarding
table is sequentially ordered by netmask, metric and network address. The metric is an
additional property available to set a preference between lines that match with the same
netmask and network address. In practice this can be used to prefer wired networks over
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Table 2.2: Forwarding table of router A from figure 2.1.

Destination Netmask Action

131.160.2.252 255.255.255.252 Local
131.160.1.0 255.255.255.0 Local

131.160.128.0 255.255.128.0 Via 131.160.2.254
131.160.0.0 255.255.0.0 Drop

0.0.0.0 0.0.0.0 Via ¨Internet¨

Table 2.3: Forwarding table of router B from figure 2.1.

Destination Netmask Action

131.160.2.252 255.255.255.252 Local
131.160.128.0 255.255.255.0 Local
131.160.129.0 255.255.255.0 Local
131.160.128.0 255.255.128.0 Drop

0.0.0.0 0.0.0.0 Via 131.160.2.253

WiFi networks on laptops, WiFi networks over 3G or 4G networks on mobile devices, or
in general to switch from a primary forwarding rule to a secondary forwarding rule in
case the primary rule ceases to be correct (for example due to removal or failure of its
respective network interface). The contents of the forwarding table is sometimes man-
ually configured, but often filled by a routing protocol (see section 2.8) that performs
topology discovery and uses routing algorithms (see section 2.7) to compute a correct,
mostly cost-optimized, configuration.

In principal, all addresses are globally routable and unique, with the exception of re-
served address spaces solely intended for local or private use. For example, the range
169.254.0.0/16 is reserved for local subnet use (host-to-host) only and is not routable.
Furthermore, the ranges 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16 are reserved ranges
intended for private use, which are often distributed into multiple subnets to achieve
routing within a private network but are not globally routable in the sense that one can-
not directly send a packet to or from it from or to the publicly accessible network. In-
stead, a technique called Network Address Translation (NAT) [32] is often implemented
in routers connecting private subnets to the public Internet to give machines on these
networks outbound access.

NAT on-the-fly renames the respective outgoing packet’s source address and trans-
port protocol port number (see section 2.6) to a unique selected quadruple of one of
the router’s public IP addresses and transport protocol port numbers, maintains a list
of active translations, and also renames returning packets’ destination IP address and
transport protocol port number to its original value, and forwards the resulting packet
accordingly. Inbound access to a machine in a private subnet can be achieved by creat-
ing so called Port Forwarding entries where a public IP address and corresponding port
number is statically mapped to a private IP address and port number on which the same
renaming procedure is applied in reverse order.
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2.5.1. FROM IPV4 TO IPV6
After 3 versions of protocols on the ARPANET, there initially was only one version of IP
which is known as IPv4 [33]. However, due to the successful implementation of the Inter-
net its 4-byte address specification soon became too small, and in 1998 a second version
known as IPv6 containing 16-byte addresses was proposed [15]1. Undue to great effort
to migrate to IPv6, IPv4 currently remains the most used protocol of the two.

Besides the increase in address space, IPv4 and IPv6 are architecturally very similar.
Other architectural differences from IPv4 to IPv6 include:

• Instead of the variable size IPv4 header that grew with the attachment of optional
properties, IPv6 has a fixed-size header containing a minimal amount of proper-
ties, including source and destination addresses, to speed up header inspection
and packet forwarding.

• Optional parameters are attached to IPv6 using Extension Headers, for example
there exist specific extension headers to encode IPsec encrypted streams and to
encapsulate fragmented parts of packets.

• The IPv6 header contains a flow label to enable per-flow matching without the
need to perform Transport layer header decoding.

• Where IPv4 allowed per-hop fragmentation of packets that exceeded the Maxi-
mum Transmission Unit, resulting into a maximum packet size, IPv6 prohibits this
behavior and obliges to send a message to the transmitting source to adapt the the
packet size of this and future packets of the particular flow.

• IPv6 has better support for anycast routing.

A variety of transitioning protocols exist to exchange data between parties that indepen-
dently support IPv6, but are disconnected from an IPv6 perspective in the sense that
no IPv6-native path exists between the disconnected islands. Popular protocols include
6in4 [34], 6over4 [35], 6to4 [36] and TEREDO [37] that share the property that they en-
capsulate IPv6 data in IPv4 (or even UDP in IPv4) datagrams, creating IPv6 over IPv4
tunnels spanning IPv6 incapable parts of a path. To access IPv4-only destinations from
an IPv6-only source, other protocols such asNAT64 [38] and DS-Lite [39] exist. The use of
these protocols is known to introduce a higher delay and packet loss in long-term packet
traces [40].

2.6. TRANSMISSION CONTROL AND USER DATAGRAM PROTO-
COL

The Transmission Control Protocol (TCP) [41] implements the transport layer described
in OSI layer 4. In practice, it delivers a reliable transport channel over the IP network that
is prone to packet loss. To provide reliability, TCP divides a data stream into sequentially
numbered segments whose arrival is acknowledged by its destination. TCP implements

1IPv6 is numbered 6 due to the reservation of header version number 5 for the Internet Stream Protocol, an
experimental protocol that has not been introduced to public use.
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a variety of retransmission strategies to recover from packet loss during data transmis-
sion, as well as a congestion control mechanism that will try to maximize the through-
put of packets without inferring too much packet loss and unfairness towards competing
data streams.

Besides delivering a reliable transport channel, TCP is most well known for offer-
ing so-called port numbers to aid in multiplexing multiple transport channels between
nodes. Each data stream is set up towards a specific port number, the destination port,
identifying the service one tries to connect to. Just like IP addresses and ASNs, the reser-
vation of port numbers to applications is maintained by the IANA. Popular port numbers
include port 80 for unencrypted HTTP access, port 443 for SSL-encrypted HTTP access,
port 21 for FTP, port 22 for SSH, etc., etc. Each connection is set up from a source port,
which number is often chosen randomly. Together, the quadruple of source and destina-
tion IP addresses and port numbers make up a unique identifier of a transport channel.
Hence, by varying the source port a source can set up multiple data streams to the same
application or service on a server. Just as with IP addresses, the returned data segments
and acknowledgments exchange the source and destination port numbers to identify a
returning segment belonging to the original data stream.

Additionally, a protocol of flags is used to set up, maintain and terminate transport
channels. A transport channel is initiated by the source through sending a SYN flag, in-
dicating the set up of a new connection resetting the range of sequence number to start
with the attached random sequence number (logically 0). The destination replies with
both a SYN and ACK flag, mutually initiating the session indicating its starting sequence
number, as well as acknowledging the receipt of the previous segment. Finally, the ini-
tiator will send a segment with an ACK flag acknowledging receipt of the destination’s
previous segmenting, finishing the initialization phase.

Throughout the active phase of the transport channel the ACK flags together with
acknowledgment numbers are used to indicate which sequence numbers have been
received and are expected from the opposite party. Finally, after all data has been ex-
changed, the transport channel will be terminated through a sequence of FIN, FIN+ACK,
ACK messages.

Although the described procedure is quite useful when larger amounts of data need
to be exchanged or when transport channels need to exist over longer periods of time,
the sequence of setting up and tearing down the transport channel provides too much
overhead when small segments need to be transmitted incidentally. The User Datagram
Protocol (UDP) [42] offers an alternative that only provides multiplexing using port num-
bers. The transmitting application itself needs to monitor whether it gets a reply to its
sent frames and whether it needs to retransmit the whole query. UDP is often used
in streaming scenarios, such as video or phone conferencing, where retransmission of
packets is insufficient due to the retransmitted packet arriving too late to be usable. In-
stead, coding or prediction techniques (such as interpolation) are used to recreate fea-
sible value for the missing packet. Additionally, the Realtime Transport Protocol (RTP)
[43] is often used on top of UDP, defining a standardized format for streaming data and
detecting loss of frames. Finally, projects like MultiPath TCP (MPTCP) [44][45] combine
multiple subflows of TCP transport channels to achieve higher throughput in networks
where multiple paths are available.
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Algorithm 2.1 Shortest path relaxation

Relax(u, v , `, d , π)

1: if dv > du +`uv

2: set dv to du +`uv

3: set πv to u

2.7. ROUTING ALGORITHMS
Section 2.5 explained that he Internet Protocol (IP) forwards packets between networks
based on forwarding tables stored in routers. To compute the correct configuration of
these forwarding tables, routers implement routing protocols (see section 2.8) to per-
form topology discovery which execute routing algorithms, which depend on shortest-
path finding algorithms to compute the shortest, or other means of cost-optimized,
paths from and to each node in the network.

Where section 2.8 also discusses the implications of network size and routing inter-
nal and external to administrative boundaries, in this section we only use the represen-
tation of a network through a graph G(N ,L) of a set N of |N | nodes and a set L of |L| links
interconnecting nodes in the network. Each link luv ∈ L connects nodes u and v, and
is characterized by a link weight `uv . From a programming perspective, the values luv

and `uv can be stored in an adjacency lists or adjacency matrix to access their values.
A shortest path implies that no other path from any node u to v has a sum of per-link
weights lower than the already computed path2.

Throughout most algorithms, shortest paths within a graph are found through
searching for and executing the relaxation depicted in algorithm 2.1. The list d stores the
found distance from a starting point to all other nodes n ∈ N and is initialized to ∞ for all
nodes besides the starting point which is set to 0. The list π stores the last node through
which a node n can be reached and starts uninitialized, this value is used to retrieve the
shortest path once execution finishes. The procedure of scanning for pairs where the
relaxation requirement holds and then executes is first described by Ford in 1956 [46]
as a linear programming solution, however, no specific scanning order or proof of fin-
ish was specified besides that "Eventually no such pairs can be found". Later, in 1958,
Bellman showed that a solution for a network containing no negative cycles is guaran-
teed to be found after |N | + 1 iterations over all |L| links using a similar description of
the relaxation method [47]. In parallel, Moore published a similar technique specifically
searching through electrical switching hardware to set up telephone traffic circuits [48],
an approach close to the Routing Information Protocol presented in section 2.8. Both
Schrijver [49] and Bertsekas [50] give thorough overviews on the shortest-path problem
and its solutions, in the remainder of this section we discuss the most common solu-
tions.

2Note that multiple shortest paths from any node A to B may exist, and randomly choosing one fulfills this
criterion.
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Label-correcting algorithms The method of performing |N | +1 iterations over all |L|
links of a network is generally known as the Bellman-Ford algorithm and is the first of a
set of algorithms generally known as label-correcting algorithms. This set of algorithms
are called label-correcting algorithms because the cost towards nodes during computa-
tion is not guaranteed to be final and is prone to correction in successive iterations of
|N |+1. Often, this algorithm is implemented with heuristic approaches to decrease the
amount of necessary link evaluations, improvements include the use of a queue in which
nodes are placed when their distance to source may change [51], a similar technique us-
ing a two-queue algorithm [52], or reordering the scan sequence by topological sorting
[53]. Although the previous heuristics generally improve execution time, their theoret-
ical complexity remains O(|N |.|L|). Finally, the Floyd-Warshall algorithm provides an
all-to-all shortest-path finding solution [54][55].

Label-setting algorithms Opposed to the family of label-correcting algorithms, label-
setting algorithms have the property that definite labels are already set during execu-
tion of the algorithm. It is clear which values are definitive, even if the algorithm has
not finished completely. Shortly after the introduction of the label-correcting methods
propose by Bellman, Ford and Moore, in 1959, Dijkstra published a, by now renowned,
label-setting shortest-paths finding algorithm [56]. Instead of executing all possible re-
laxations iteratively, Dijkstra’s algorithm effectively builds a shortest-paths tree from the
source node whose distance d is set to 0, all other distances are set to ∞. At every iter-
ation, the algorithm takes an unvisited node with minimal temporary distance indicat-
ing the value of this node is minimal and thus definite. All the chosen node’s unvisited
neighbors are labeled or relabeled using the relaxation formulation from algorithm 2.1.
After this procedure, the node is considered visited and the procedure is repeated for the
next unvisited node of minimal temporary distance. The procedure finishes when the
destination node becomes a minimal-value node. A one-to-all shortest-paths tree can
be found by continuing the procedure until all nodes have been visited. After its initial
publication, a minimal priority queue [57] and later a Fibonacci heap [58] have been im-
plemented to reduce the running time and computational complexity of the algorithm.

2.8. ROUTING PROTOCOLS
Section 2.7 presented routing algorithms to find shortest paths in networks represented
by a graph stored as an adjacency list or matrix. This section discusses the concept of
routing protocols, which through practical implementations on routers and software
such as Zebra or Quagga [59] to perform topology discovery in networks, building afore-
mentioned adjacency lists and matrices, compute their network’s respective shortest
path and hence derive the necessary configuration of routing tables on routers.

To distribute the complexity of topology discovery and path computation, the Inter-
net is built up from multiple routing scopes. The most explicit differentiation between
routing scopes is interdomain and intradomain routing. As discussed in the introduc-
tion of this section, the Internet is a network of networks, built up from interconnected
networks. Each such interconnected network is called an Autonomous System (AS) and
is given a unique AS Number (ASN), which reservations are - just like IP addresses, ad-
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ministered by the IANA. An AS generally consists of one logical network, possibly subdi-
vided in multiple subnets and further internal routing scopes, under the administration
of one institute such as an Internet Service Provider (ISP), or any other type of company
administering its own network.

Within these domains, the AS is self-sufficient to apply routing protocols of its choice,
to the point that even static configuration is allowed. Historically, the Routing Informa-
tion Protocol [60], a protocol of the family of distance-vector routing protocols, was used
to perform intradomain routing, which type of routing protocols are discussed in sub-
section 2.8.1. Although still infrequently applied, most used intradomain routing proto-
cols are of the family of link-state routing protocols, discussed in subsection 2.8.2. Fi-
nally, for an AS to interconnect with other ASes, and hence access the Internet, it must
participate in interdomain routing. For this, the AS must propagate a summary of its
routing information to its directly-linked peer ASes using the Border Gateway Protocol
[61], a protocol of the family of path-vector routing protocols explained in subsection
2.8.3.

2.8.1. DISTANCE-VECTOR ROUTING PROTOCOLS

Distance-vector routing protocols, and the Routing Information Protocol (RIP) [60] in
particular, compute the shortest paths between nodes in a very distributed manner. Pe-
riodically, all hosts broadcast their presence to all adjacent nodes, including the subnets
they serve at a cost of 0. The adjacent nodes denote in their routing tables which subnets
can be reached through which neighbors at the received cost incremented with 1. In all
next cycles, all nodes include the "remote" entries in their routing table in their broad-
cast packet, extending the range through which nodes can be found with 1 step until
the diameter of the network has been reached. Since every node increases the cost of
incoming route advertisements, every routing entry contains the cost in the form of the
number of hops or links towards the destination subnet. Hence, nodes will choose the
shortest-path - in terms of hop count - when multiple paths towards a destination exist.
Although RIP does not implement this precise feature, each hop-count may be replaced
with routing metrics indicating the cost of a link, often representing the delay or inverse
of the available bandwidth.

The previous description shows the distance-vector routing protocol family is both
elegant and simple, though knows a number of drawbacks one should be aware of when
implementing it. Convergence of changes may take a long time, at most the diameter
multiplied with the duration of a period. Instead, one could implement the protocol in
such a way that changes are propagated immediately.

When a subnet stops to be reachable from one node, for example due to a link or
node failure, a bouncing effect may occur when propagating the change in available
routes. When a node A is notified that it cannot reach subnets at node B anymore, it
will propagate this to all its adjacent nodes among which node C. If C, however, in the
mean time propagates to node A that it may still reach node B, A will assume a new route
and shortest path to A via C. However, C still thinks it may access node B through A,
hence a loop between A and C has occurred. Since the cost of a route is incremented at
each node, the nodes will send each other increasingly expensive routing updates until
another path becomes cheaper and convergence occurs. However, the behavior is un-
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stable and it may take long before convergence occurs.

The problem of the bouncing effect becomes even larger when node A is not reach-
able at all anymore, for example due to a network split or a complete failure of node
B. The bouncing effect now only converges when the maximum countable hop count,
which is considered to be logically infinite, has been reached and is hence known as
the count-to-infinity problem. Both the bouncing-effect and count-to-infinity problem
can be solved in multiple fashions. A first solution is to implement a waiting time for
changed next hops in routing, meaning that removed routes or decreased or increased
routing costs via the same adjacent node are processed immediately, while changes to-
wards another node are stalled until they appear stable. Furthermore, one could imple-
ment a so-called split horizon, where nodes exclude the routes via an adjacent node in
the propagated information to that adjacent node. Both would have solved the posed ex-
ample where node A and C bidirectionally loop traffic towards B, though problems may
still rarely occur in more complex situations.

Finally, another problem of RIP, as a popular implementation of a distance-vector
routing protocol is that it has only 4 bits reserved in its header specification to denote
the hop count. Although this decreases the count-to-infinity problem to at most 16 iter-
ations, this also maximizes the diameter of a network to 15 hops. The maximal storable
value of 24−1 represents a logically infinite value and thus unreachable destination, lim-
iting the maximum size of the network. This problem was later solved in Cisco’s propri-
etary Interior Gateway Routing Protocol (IGRP) [62].

2.8.2. LINK-STATE ROUTING PROTOCOLS

Instead of implementing distance-vector protocols, most intradomain networks use
link-state routing protocols such as Open Shortest Path First (OSPF) [63] or Intermedi-
ate System to Intermediate System (IS-IS) [64]. Where nodes implementing a distance-
vector routing protocol share their local routing tables and compute shortest paths in a
distributed way, link-state routing protocols only propagate topological properties such
as the existence of a link between two nodes, which are forwarded to flood to the whole
scope of the network. Each node in the network scope collect and forward the prop-
agated properties and, using the collected information, assembles an overview of the
full network. The network state is stored in local adjacency matrices or lists, on which
the individual nodes will run a routing algorithm (see section 2.7) to determine its local
routing table configuration.

The big advantage of using link-state routing protocols is that those do not suffer
from the problems introduced by distance-vector routing protocols. The only require-
ment is that the routing table entries configured by the individual nodes are compliant
with those of the adjacent nodes to which packets will be forwarded. In shortest paths,
compliance is achieved by the fact that every node will always forward packets to a node
closer to their destination, hence loops nor paths that are not shortest will not occur in
a stable environment. In general, propagation of changes will occur much faster since
only the insertion, removal or update of a link is propagated without further computa-
tion while being flooded. Hence, after an update all nodes can locally compute their
local configuration immediately, satisfying the updated topology quickly.
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2.8.3. PATH-VECTOR ROUTING PROTOCOLS
Despite that link-state routing protocols solve most of the problems present in distance-
vector routing protocols, they pose one major flaw, scalability. When a network grows
extremely large, the memory required to store all topology information grows and com-
putation time increases. Distance-vector routing protocols, on the other hand gives little
to no information about the path taken when traffic is forwarded to an adjacent node.
This problem is solved by the family of path-vector routing protocols, of which BGP [61],
the routing protocol used in interdomain routing, is a member.

Path-vector routing protocols are an extension of distance-vector routing protocols,
in the sense that path computation is executed by the propagation of routing advertise-
ments. In addition to forwarding its routing table with increased cost, path-vector rout-
ing protocols add a list of nodes traversed to the destination, to which a node appends
itself when forwarding a routing entry to its adjacent nodes. Hence, every routing entry
contains a list of nodes to be traversed when a packet is forwarded to its next hop. In
BGP, this list exists of the ASNs traversed. The list of nodes on each shortest path solves
the looping problem introducing the bouncing effect and count-to-infinity in distance-
vector routing protocol, a loop is detected by a node when its own node identifier is
already in the node list, or another node identifier appears twice.

Furthermore, it gives a node the ability to choose between two next-hops not only
based on hop count or the sum of routing metrics, but also on the nodes to be visited.
As such, an ISP may decide to not use forwards traveling through ISPs that it deems
unreliable and instead rely on other (possibly non-shortest) paths. In the case of political
relations, one could avoid routes containing paths through politically sensitive areas.

2.9. SOFTWARE-DEFINED NETWORKING
Principally, routers and switches are devices configured to drop or forward packets from
and to specific interfaces based on a configuration, a functional layer called the data
plane. Traditionally, the decisional functions of a network determining whether and
where packets may be routed towards, also known as the control plane, have been dis-
tributed along many (often all) participating forwarding nodes. The routing protocols
described in subsection 2.8 require all participating routers to operate both the control
and data plane functions. Besides complicating the design of said forwarding devices,
it also complicates path computation. In order for a path computation scheme to work
properly, all nodes must agree on the path to be taken for a subflow of packets. Hence, a
change in computation policies or the introduction of more complicated path computa-
tion schemes is problematic. Furthermore, individual nodes do not have a fine-grained
overview of all link, node and flow metrics, nor the computation capability to perform
complex Quality of Service (QoS) computations on them if they would. Overall, it is very
difficult to "just reroute" a specific subflow of packets from one path to another due to
the fact that all nodes compute their forwarding rules individually based on a network-
covering adjacency matrix.

Software-Defined Networking (SDN) solves the presented network management is-
sue by decoupling the control plane from the forwarding plane and placing the control
plane functions on a logically centralized network controller. Switches and routers con-
centrate at data plane functionality, forwarding packets according to a configuration de-



2.10. CONCLUSION

2

21

termined by their master network controller. The network controller operating the con-
trol plane functions connects to the switches, runs topology discovery and computes
network-wide configuration parameters. The network controller instructs its connected
switches’ data plane to operate according to its derived configuration and monitors net-
work health and decides to recompute and reroute when necessary. Functionality that
would be complicated and suffering high delays in prior described distributed routing
protocols due to the flooding and exchange of routing information messages through-
out the network.

Although multiple (some even centralized) network monitoring and configuration
protocols such as SNMP [65], NetConf [66], ForCes [67] and numerous other vendor-
specific protocols exist, OpenFlow has become the unwritten de-facto interface protocol
for SDNs [68]. Initially introduced to enable researchers to reprogram switching logic in
production networks for experimental purposes, it evolved to an enterprise SDN solu-
tion with the wide availability of supported network controllers such as Floodlight [69],
POX [70], NOX [71], OpenDayLight [72], Ryu [73], ONOS [74] and the adoption of Open-
Flow by various switch manufacturers.

Besides a single-domain single-authority network, hypervisors such as FlowVisor
[75] support administering shared multi-tennant network environments, guaranteeing
isolation of flow data and competing configuration parameters. Multi-domain environ-
ments, however, are often stuck reproducing exterior routing protocols or negotiating
the use of another multi-domain path computation protocol such as as the Path Com-
putation Element Protocol [76]. Steadily, SDNs and OpenFlow are gaining ground in
production networks, virtualized OpenFlow-capable switches such as Open vSwitch [77]
are often found in datacenter networks. A practical large-scale implementation of an
OpenFlow-based SDN is found in B4, Google’s OpenFlow-based global SDN network
[78]. In chapters 3, 4, 5 and 7 we will apply the OpenFlow protocol in various ways to
contribute to the field of SDN.

2.10. CONCLUSION
In this chapter, we have summarized the most important aspects of the current Internet
architecture, providing the necessary basic insight into the current state of the Internet
to understand the following chapters. The most important messages from this chap-
ter are the facts that the Internet (1) is not controlled by a single ultimately responsible
authority, (2) derives new standards based on rough consensus, and (3) relies on cor-
rect understanding and implementation of written protocols to which all parties must
adhere.

In particular, correct participation in the Internet relies on switching hardware ex-
ecuting both data plane operations (forwarding packets) and control plane operations
(deciding where packets should be forwarded to) through routing protocols. A historical
fact that we often challenge in the subsequent chapters.
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OPENNETMON: NETWORK

MONITORING IN SDNS

The primary concepts of Software-Defined Networking (SDN) and OpenFlow were intro-
duced in section 2.9 of the previous chapter. In general, SDN and OpenFlow allow for
better network control and flexibility in the pursuit of operating networks as efficiently as
possible. Among others, OpenFlow provides interfaces to implement fine-grained Qual-
ity of Service (QoS) through the use of buffers and queues. However, it lacks the moni-
toring necessary to determine whether end-to-end QoS parameters are actually met and
derive the parameters necessary to perform QoS path computations. In this chapter, we
derive and evaluate monitoring techniques applicable to SDNs and present OpenNetMon,
an approach and open-source software implementation to monitor per-flow metrics - es-
pecially throughput, delay and packet loss - in OpenFlow networks. While classic mon-
itoring techniques often rely on packet sampling or only give interface statistics, Open-
NetMon polls edge switches to retrieve per-flow counters and derives per-flow throughput
and delay accordingly. OpenNetMon furthermore injects monitoring packets to derive ex-
perienced delay. Polling occurs at an adaptive rate that increases when flow rates differ
between samples and decreases when flows stabilize, hence minimizing the number of
queries. Finally, we verify throughput, delay and packet loss measurements for bursty sce-
narios by streaming variable bit-rate video streams in our experiment testbed.

This chapter is based on a published paper [79].
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3.1. INTRODUCTION

Recently, Software-Defined Networking (SDN) has attracted the interest of both research
and industry. As SDN offers interfaces to implement fine-grained network management,
monitoring and control, it is considered a key element to implement QoS and network
optimization algorithms. As such, SDN has received a lot of attention from an academic
perspective, enabling researchers to perform experiments which were previously dif-
ficult or too expensive to perform. Additionally, industry is already adopting vendor-
independent network management protocols such as OpenFlow to configure their net-
works.

A key requirement for network management in order to reach QoS agreements and
traffic engineering is accurate traffic monitoring. In the past decade, network monitor-
ing has been an active field of research, particularly because it is difficult to retrieve on-
line and accurate measurements in IP networks due to the large number and volume of
traffic flows and the complexity of deploying a measurement infrastructure [80]. Many
flow-based measurement techniques consume too much resources (bandwidth, CPU)
due to the fine-grained monitoring demands, while other monitoring solutions require
large investments in hardware deployment and configuration management. Instead, In-
ternet Service Providers (ISPs) over-provision their network capacity to meet QoS con-
straints [81][82]. Nonetheless, over-provisioning conflicts with operating a network as
efficient as possible and does not facilitate fine-grained Traffic Engineering (TE). TE in
turn, needs granular real-time monitoring information to compute the most efficient
routing decisions.

Where recent SDN proposals - specifically OpenFlow [68] - introduce programming
interfaces to enable controllers to execute fine-grained TE, no complete OpenFlow
-based monitoring proposal has yet been implemented. We claim that the absence of
an online and accurate monitoring system prevents the development of envisioned TE-
capable OpenFlow controllers. Given the fact that OpenFlow presents interfaces that
enable controllers to query for statistics and inject packets into the network, we have
designed and implemented such a granular monitoring system capable of providing TE
controllers with the online monitoring measurements they need. In this chapter, we
present OpenNetMon, a POX OpenFlow controller module enabling accurate monitor-
ing of per-flow throughput, packet loss and delay metrics. OpenNetMon is capable of
monitoring online per-flow throughput, delay and packet loss in order to aid TE. Open-
NetMon is published as open-source software at our GitHub repository [83].

The remainder of this chapter is structured as follows: In section 3.2, we first discuss
existing measuring methods and monitoring techniques used by ISPs. Section 3.3 sum-
marizes OpenFlow and its specific options that our implementation uses, as well as pre-
vious work in the field of measuring traffic in OpenFlow networks. Our proposal Open-
NetMon is presented in section 3.4 and experimentally evaluated in section 3.5. Section
3.6 discusses implementation specific details regarding the design of our network con-
troller components. Finally, section 3.7 concludes this chapter.
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3.2. MONITORING

Traditionally, many different monitoring techniques are used in computer networks.
The main type of measurement methods those techniques rely on and the trade-offs they
bring are discussed in the following two subsections. Traditionally, every measurement
technique requires a separate hardware installation or software configuration, making it
a tedious and expensive task to implement. However, OpenFlow provides the interfaces
necessary to implement most of the discussed methods without the need of customiza-
tion. Additionally, subsection 3.2.3 summarizes several techniques ISPs use to monitor
their networks.

3.2.1. ACTIVE VS. PASSIVE METHODS

Network measurement methods are roughly divided into two groups, passive and active
methods. Passive measurement methods measure network traffic by observation, with-
out injecting additional traffic in the form of probe packets. The advantage of passive
measurements is that they do not generate additional network overhead, and thus do
not influence network performance. Unfortunately, passive measurements rely on in-
stalling in-network traffic monitors, which is not feasible for all networks and requires
large investments.

Active measurements on the other hand inject additional packets into the network,
monitoring their behavior. For example, the popular application ping uses ICMP pack-
ets to reliably determine end-to-end connection status and compute a path’s round-trip
time.

Both active and passive measurement schemes are useful to monitor network traffic
and to collect statistics. However, one needs to carefully decide which type of measure-
ment to use. On the one hand, active measurements introduce additional network load
affecting the network and therefore influence the accuracy of the measurements them-
selves. On the other hand, passive measurements require synchronization between ob-
servation beacons placed within the network, complicating the monitoring process.

3.2.2. APPLICATION-LAYER AND NETWORK-LAYER MEASUREMENTS

Often network measurements are performed on different OSI layers. Where measure-
ments on the application layer are preferred to accurately measure application perfor-
mance, ISPs often do not have access to end-user devices and therefore use network
layer measurements. Network layer measurements use infrastructure components (such
as routers and switches) to obtain statistics. This approach is not considered adequate,
as the measurement granularity is often limited to port-based counters. It lacks the abil-
ity to differentiate between different applications and traffic flows. In our proposal in
section 3.4 we use the fact that OpenFlow-enabled switches and routers keep per-flow
statistics to determine edge-to-edge network performance, which is the closest a net-
work provider may get without having its users implement monitoring tools at the ap-
plication level.



3

26 3. OPENNETMON: NETWORK MONITORING IN SDNS

3.2.3. CURRENT MEASUREMENT DEPLOYMENTS

The Simple Network Management Protocol (SNMP) [65] is one of the most used protocols
to monitor network status. Among others, SNMP can be used to request per-interface
port-counters and overall node statistics from a switch. Being developed in 1988, it is
implemented in most network devices. Monitoring using SNMP is achieved by regularly
polling the switch, though switch efficiency may degrade with frequent polling due to
CPU overhead. Although vendors are free to implement their own SNMP counters, most
switches are limited to counters that aggregate traffic for the whole switch and each of
its interfaces, disabling insight into flow-level statistics necessary for fine-grained Traffic
Engineering. Therefore, we do not consider SNMP to be suitable for flow-based moni-
toring.

NetFlow [84] presents flow-based monitoring by collecting per-flow packet and byte
counters, where a flow is defined by a preconfigured set of fields. Each switch or router
independently captures and preprocesses these counters into flow exports which may
be monitored through CLI or periodical exports to a central flow collector server. The
main disadvantages of NetFlow are the fact that keeping statistics for a very fine-grained
flow definition can be very costly, and that flow exports only occur when flows end, are
idle for a considerate amount of time (in the order of seconds), or are very long-lived
(order of minutes to hours).

To solve aforementioned issues, "sampled" NetFlow [84] collects samples of traffic
and estimates overall flow statistics based on these samples, which is considered suf-
ficiently accurate for long-term statistics. Sampled NetFlow uses a 1-out-of-n random
sampling, meaning it stores every n-th packet, and assumes the collected packets to be
representative for all traffic passing through the collector. Every configurable time in-
terval, the router sends the collected flow statistics to a centralized unit for further ag-
gregation. One of the major problems of packet-sampling is the fact that small flows are
underrepresented, if noticed at all. Additionally, multiple monitoring nodes along a path
may sample exactly the same packet and therewith over-represent a certain traffic group,
decreasing accuracy. cSamp [85] solves these problems by using flow sampling instead
of packet sampling and deploys hash-based coordination to prevent duplicate sampling
of packets.

sFlow [86] provides an alternative protocol-agnostic packet sampling technique. In-
stead of sending preprocessed flow statistics implying switch CPU utilization impacting
its scalability, sFlow sends records of the sampled data to its collector for further pro-
cessing. The action of sampling and transmitting can be built into the switch’s ASIC and
is hence more scalable due to a lower load on the switch CPU.

Skitter [87], a CAIDA project that analyzed the Internet topology and performance
using active probing, used geo-graphically distributed beacons to perform traceroutes
at a large scale. Its probe packets contain timestamps to compute RTT and estimate
delays between measurement beacons. Where Skitter is suitable to generate a rough es-
timate of overall network delay, it does not calculate per-flow delays, as not all paths are
traversed unless a very high density of beacons is installed. Furthermore, this method
introduces additional inaccuracy due to the addition and subtraction of previously ex-
isting uncertainty margins.

Measuring packet delay using passive measurements is a little bit more complex. IP-
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Figure 3.1: The three-step installation procedure of a new flow.

MON [88] presents a solution that captures the header of each TCP/IP packet, times-
tamps it and sends it to a central server for further analysis. Multiple monitoring units
need to be installed to retrieve network-wide statistics. Where the technique is very ac-
curate (in the order of microseconds), additional network overhead is generated due to
the necessary communication with the central server. Furthermore, accuracy is depen-
dent on accurate synchronization of the clocks of the monitoring units.

3.3. BACKGROUND AND RELATED WORK
Although SDN is not restricted to OpenFlow, other control plane decoupling mecha-
nisms existed before OpenFlow, OpenFlow is often considered the standard communi-
cation protocol to configure and monitor switches in SDNs. OpenFlow-capable switches
connect to a central controller, such as POX [70] or Floodlight [69]. The controller can
both preconfigure the switch with forwarding rules, as well reactively respond to re-
quests from switches which are sent when a packet matching none of the existing rules
enters the network. Besides managing the forwarding plane, the OpenFlow protocol is
also capable of requesting per-flow counter statistics and injecting packets into the net-
work, a feature that we use in our proposal presented in section 3.4.

More specifically, OpenFlow-capable switches send a PacketIn message to the con-
troller when a new, currently unmatched connection or packet arrives. The controller
responds with installing a path using one or more Flow Table Modification messages
(FlowMod) and instructs the switch to resend the packet using a PacketOut message. The
FlowMod message indicates idle and hard timeout durations and whether the controller
should be notified of such a removal with a FlowRemoved message. Figure 3.1 gives a
schematic overview of the message exchange during flow setup. Using the PacketIn and
FlowRemoved messages a controller can determine which active flows exist. Further-
more, the FlowRemoved message contains the duration, packet and byte count of the
recently removed flow enabling the controller to keep statistics on past flows. Our pro-
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Figure 3.2: While a flow is active, the controller and switch can exchange messages concerning the flow’s state.

posal in section 3.4 uses this information in combination with periodically queried Flow
Statistics Request (StatsRequest) messages, as shown in figure 3.2, to obtain information
of running flows and regularly injects packets into the network to monitor end-to-end
path delay.

OpenFlow’s openness to switch and per-flow statistics has already been picked up by
recent research proposals. OpenTM [89], for example, estimates a Traffic Matrix (TM)
by keeping track of statistics for each flow. The application queries switches on regular
intervals and stores statistics in order to derive the TM. The paper presents experiments
on several polling algorithms and compares them for accuracy. Where polling solely all
paths’ last switches gives the most accurate results, other polling schemes, such as se-
lecting a switch round robin, by the least load, or (non-) uniform random selection give
only slightly less accurate results with at most 2.3 % deviation from the most accurate
last-switch selection scheme. From the alternative polling schemes, the non-uniform
random selection with a preference to switches in the end of the path behaves most ac-
curate compared to last-switch polling, followed by the uniform random selection and
round-robin selection of switches, while the least-loaded switch ends last still having an
accuracy of approximately +0.4 Mbps over 86 Mbps. However, since OpenTM is limited
to generating TMs for offline use and does not capture packet loss and delay, we consider
it incomplete for online monitoring of flows.

OpenSAFE [90] focuses on distributing traffic to monitoring applications. It uses
the fact that every new flow request passes through the network’s OpenFlow controller.
The controller forwards the creation of new flows to multiple traffic monitoring systems,
which record the traffic and analyze it with an Intrusion Detection System (IDS). Open-
SAFE, however, requires hardware investments to perform the actual monitoring, while
we introduce a mechanism that reuses existing OpenFlow commands to retrieve the
aforementioned metrics.
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Others suggest to design a new protocol, parallel to OpenFlow, in order to achieve
monitoring in SDNs. OpenSketch [91], for example, proposes such an SDN-based mon-
itoring architecture. A new SDN protocol, however, requires an upgrade or replacement
of all network nodes, a large investment ISPs will be reluctant to make. Furthermore,
standardization of a new protocol has shown to be a long and tedious task. Since Open-
Flow is already gaining popularity in datacenter environments and is increasingly being
implemented in commodity switches, a solution using OpenFlow requires less invest-
ment from ISPs to implement and does not require standardization by a larger commu-
nity. Therefore, we consider an OpenFlow-compatible monitoring solution, such as our
solution OpenNetMon, more likely to succeed.

3.4. OPENNETMON

In this section, we present our monitoring solution OpenNetMon, written as a module
for the OpenFlow controller POX [70]. OpenNetMon continuously monitors all flows be-
tween predefined link-destination pairs on throughput, packet loss and delay. We be-
lieve such a granular and real-time monitoring system to be essential for Traffic Engi-
neering (TE) purposes.

In the following subsections, we will first discuss how our implementation monitors
throughput and how we determine the right polling algorithm and frequency, followed
by our implementation to measure packet loss and delay. Where one might argue that
measuring throughput in OpenFlow SDNs is not new, albeit that we implement it specif-
ically for monitoring instead of Traffic Matrix generation, we are the first to combine it
with active per-flow measurements on packet loss and delay.

3.4.1. POLLING FOR THROUGHPUT

To determine throughput for each flow, OpenNetMon regularly queries switches to re-
trieve Flow Statistics using the messages described in section 3.3. With each query, our
module receives the number of bytes sent and the duration of each flow, enabling it to
calculate the effective throughput for each flow. Since each flow between any node pair
may get different paths assigned by the controller, OpenNetMon polls on regular inter-
vals for every distinct assigned path between every node pair that is designated to be
monitored.

Even though polling each path’s switch randomly or in round robin is considered
most efficient and still sufficiently accurate [89], we poll each path’s last switch. First, the
round-robin switch selection becomes more complex in larger networks with multiple
flows. When more flows exist, non-edge switches will be polled more frequently degrad-
ing efficiency. Furthermore, non-edge switches typically have a higher number of flows
to maintain, making the query for flow statistics more expensive. Second, to compute
the packet loss in subsection 3.4.2, we periodically query and compare the packet coun-
ters from the first and last switch of each path. As this query also returns the byte and
duration counters necessary for throughput computation, we decided to combine these
queries and solely sample each path’s last switch for means of throughput computation.
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3.4.2. PACKET LOSS AND DELAY

Per-flow packet loss can be estimated by polling each switch’s port statistics, assuming
a linear relation to link packet loss and the throughput rate of each flow. However, this
linear relation to flow throughput does not hold when traffic gets queued based on QoS
parameters or prioritization. Instead, we calculate per-flow packet loss by polling flow
statistics from the first and last switch of each path. By subtracting the increase of the
packet counter of the destination switch from the increase of the source switch packet
counter, we obtain an accurate measurement1 of the packet loss over the past sample.

Path delay, however, is more difficult to measure. Measuring delay in a non-evasive,
passive manner - meaning that no additional packets are sent through the network - is
infeasible in OpenFlow due to the fact that it is impossible to have switches tag sam-
ples of packets with timestamps, nor is it possible to let switches duplicate and send
predictable samples of packets to the controller to have their inter-arrival times com-
pared. Therefore, we use OpenFlow’s capabilities to inject packets into the network.
At every monitored path, we regularly inject packets at the first switch, such that that
probe packet travels exactly the same path, and have the last switch send it back to
the controller. The controller estimates the complete path delay by calculating the dif-
ference between the packet’s departure and arrival times, subtracting the estimated la-
tency from the switch-to-controller delays. The switch-to-controller delay is estimated
by determining its RTT by injecting packets that are immediately returned to the con-
troller, dividing the RTT by two to account for the bidirectionality of the answer giving
tdel ay =

(
tar r i val − tsent − 1

2 (RT Ts1 +RT Ts2)
)
.

The experiments on delay in section 3.5 show that using the control plane to inject
and retrieve probe packets, using OpenFlow PacketIn and PacketOut messages, yields
inaccurate results introduced by software scheduling in the switches’ control planes. To
ensure measurement accuracy, we additionally connect the controller to the switches’
data planes through a separate VLAN. This VLAN is exclusively used to transport probe
packets from the controller to all switch data planes directly. This method ensures that
we omit the switches their control plane software, resulting in a higher accuracy.

To have the measurement accuracy and the packet overhead match the size of each
flow, we inject packets for each path with a rate relative to the underlying sum of flow
throughput. Meaning, the higher the number of packets per second of all flows from
node A to B over a certain path C, the more packets we send to accurately determine
packet loss. On average, we send one monitoring packet every measuring round. Al-
though this gives overhead at first sight, the monitoring packet is an arbitrary small
Ethernet frame of 72 bytes (minimum frame size including preamble) that is forwarded
along the path based on a MAC address pair identifying its path and has a packet iden-
tifier as payload. Compared to a default MTU of 1500 (which is even larger in jumbo
frames), resulting in frames of 1526 bytes without 802.1Q VLAN tagging, we believe that
such a small overhead is a reasonable penalty for the gained knowledge.

1Given no fragmentation occurs within the scope of the OpenFlow network.
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Figure 3.3: Experiment testbed topology. The measured traffic flows from Server to Client.

3.5. EXPERIMENTAL EVALUATION
In this section we evaluate our implementation of OpenNetMon by experiments on a
physical testbed. Our testbed consists of two Intel Xeon Quad Core servers running
stock Ubuntu Server 12.04.2 LTS with 1 Gbps NICs connected to four Intel Xeon Quad
Core servers running stock Ubuntu Server 13.04 functioning as OpenFlow-compatible
switches using Open vSwitch. The network is controlled by an identical server running
the POX OpenFlow controller as shown in figure 3.3. All hosts are connected to their
switch using 1 Gbps Ethernet connections, thus we assume plenty of bandwidth locally.
Inter-switch connections, however, are limited to 100 Mbps. The delay between switches
1-2 and 3-4 equals 1 ms, while the delay between switches 2-3 equals 5 ms to emulate a
WAN connection. Furthermore, the packet loss between all switches equals 1 %, result-
ing in an average packet loss a little less than 3 %. Delay and packet loss is introduced
using NetEm [92]. Using this topology we intend to imitate a small private WAN, con-
trolled by a single OpenFlow controller.

Throughout, we use a video stream to model traffic. Due to its bursty nature of traffic,
we have chosen a H.264 encoded movie that is streamed from server to client. Figure 3.4
shows the throughput between our server and client measured by our implementation
of OpenNetMon compared to Tcpstat. Furthermore, figure 3.5 shows packet loss com-
pared to the configured packet loss. Finally, figure 3.6 presents the delay measured in
our network.

The measurements shown in figure 3.4 represent the throughput measurements per-
formed by Tcpstat and OpenNetMon, on average they only differ with 16 KB/s (1.2 %),
which shows that most of the transmitted traffic is taken into account by the measure-
ments. The average absolute difference, however, showed to be 17.8 % which appears
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Figure 3.4: Bandwidth measurements of the flow between the client and server hosts, performed by both the
OpenNetMon monitoring module and Tcpstat on the receiving node.

to be quite a significant inaccuracy at first sight. This inaccuracy is mainly introduced
by a lack of synchronization between the two measurement setups. Due to the fact that
we were unable to synchronize the start of the minimal 1-second buckets, traffic that is
categorized in one bucket in one measurement is categorized in two adjacent buckets in
the other. In combination with the highly bursty nature of our traffic, this leads to the el-
evated deviation. However, the high accuracy of the average shows an appropriate level
of preciseness from OpenNetMon’s measurements. In fact, we selected highly deviating
traffic to prove our implementation in a worst-case measurement scenario, therefore, we
claim our results are more reliable for a scenario with traffic of less bursty nature.

The throughput measurements in figure 3.4 furthermore show incidental spikes, fol-
lowed or preceded by sudden drops. The spikes are introduced due to the fact that the
switches’ flow counter update frequency and OpenNetMon’s polling frequency match
too closely, due to which binning problems occur. In short, it occurs that our system re-
quests the counter statistics shortly before the counter has been updated in one round,
while it is already updated in the adjacent round. The difference is evened out in the
average on the long run, as the misread value is equally decreased or increased in the
adjacent bin. However, both bins have values that are equally but oppositely deviating
from the expected value, contributing to the high standard deviation.

The described binning problem cannot be solved by either decreasing or increasing
the polling frequency, in the best case the error margin is smaller but still existent. In-
stead, both ends need to implement update and polling frequencies based on the system
clock, opposed to using the popular sleep function which introduces a slight drift due to
delay introduced by the operating system scheduler and the polling and updating pro-
cess consuming time to execute. Using the system clock to time update and polling en-
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Figure 3.5: Packet loss measurements of the flow between the client and server hosts performed by the Open-
NetMon monitoring module, compared to the configured values using NetEm.

sures synchronization between the two systems’ sampling bins. Furthermore, the switch
needs to implement a system to mutually exclude2 access to the counter, guaranteeing a
flow counter cannot be read until all its properties are updated and vice versa. Another,
ideal, solution is to extend OpenFlow to allow flow counter updates to be sent to the
controller at a configurable interval by subscription. However, since this requires updat-
ing both the OpenFlow specification and switch firmware, we do not consider it feasible
within a short time frame.

As packet loss within one time sample may not represent overall packet loss behav-
ior, figure 3.5 shows the running average of packet loss as calculated by computing the
difference between the packet counters of the first and last switch on a path. Although
the running packet loss is not very accurate, the measurements give a good enough es-
timation to detect service degration. For more accurate flow packet loss estimates one
can reside to interpolation from port counter statistics.

Figure 3.6 shows delay measurements (1) as experienced by the end-user application
to verify measurement results, computed by a stream’s RTT, (2) measured by OpenNet-
Mon using a separate VLAN connection to the data plane to send and retrieve probe
packets and (3) measured by OpenNetMon using the control plane to send and retrieve
probe packets. The figure shows that using the OpenFlow control plane to send and
retrieve timing related probe packets introduces a large deviation in measurements, fur-
thermore, the measured average is far below the expected value of 7 ms introduced by
the addition of link delays as presented in figure 3.3. The measurements using exclu-
sively data plane operations, however, resemble the delay experienced by the end-user

2Generally known as “mutex locks”.
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Figure 3.6: Delay measurements on the path from server to client, as measured by (a) the user application, (b)
OpenNetMon connected to the data plane using a separate VLAN and (c) OpenNetMon using the OpenFlow
control plane.

application so closely that a difference between the two is hardly identifiable.

These experiences are confirmed by the category plot in figure 3.7, showing an av-
erage of 4.91 ms with a 95 % confidence interval of 11.0 ms for the control plane based
measurements. Where the average value already differs more than 30 % with the ex-
pected value, a confidence interval 1.5 times larger than the expected value is infeasible
for practical use. The data-plane based measurements, however, do show an accurate
estimation of 7.16±0.104, which matches closely to the slightly larger end-user applica-
tion experience of 7.31±0.059 ms. The application delay is slightly larger due to the link
delays from switch to end-hosts that cannot be monitored by OpenNetMon.

These results show that the control plane is unsuitable to use as a medium for time-
accurate delay measurements, as response times introduced by the software fluctuate
too much. However, we were able to obtain accurate results by connecting the controller
to the data plane using a VLAN configured exclusively to forward probe packets from
controller to the network. To prevent short-lived changes in delay from affecting network
configuration, a low-pass filter can be implemented to smooth the results. An example
of smoothing round-trip time measurements is implemented by TCP to compute the
retransmission timer [93].

3.6. MORE LESSONS LEARNED

The implementation of OpenNetMon is published open source and can be found at our
GitHub web page [83]. Our main intention to share it as open source is to enable other
researchers and industry to perform experiments with it, use it as an approach to gain
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Figure 3.7: Category plot showing the averages and 95 % confidence intervals of the measurements from figure
3.6.

input parameters for fine-grained Traffic Engineering, and - when applicable - extend it
to their use. While considered as a single module, technically OpenNetMon consists of
two module components implemented in the POX OpenFlow controller. The forwarding
component is responsible for the reservation and installation of paths, while the mon-
itoring component is responsible for the actual monitoring. Both components rely on
the POX Discovery module to learn network topology and updates.

Like some of the components shipped with POX, the forwarding component learns
the location of nodes within the network and configures paths between those nodes by
installing per-flow forwarding rules on the switches. However, we have implemented
some of the specific details different from the other POX forwarding modules on which
we will elaborate further. One could refer to this as a small guide to building one’s own
forwarding module.

1. OpenNetMon does not precalculate paths, it computes them online when they are
needed. In a multipath environment (e.g. see [94]) not all flows from node A to B
necessarily follow the same path, by means of load-balancing or Traffic Engineer-
ing it might be preferred to use multiple distinct paths between any two nodes. In
order to support monitoring multipath networks, we decided to implement a for-
warding module which may compute and choose from multiple paths from any
node A to B. Especially to support online fine-grained Traffic Engineering, which
may compute paths based on multiple metrics using the SAMCRA [95] routing al-
gorithm, we decided to implement this using online path calculations.

2. We install per-flow forwarding rules on all necessary switches immediately. We
found that the modules shipped with many controllers configured paths switch-
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by-switch. Meaning that once an unmatched packet is received, the controller
configures specific forwarding rules on that switch, resends that packet, and then
receives an identical packet from the next switch on the path. This process iter-
ates until all switches are configured. Our forwarding module, however, installs
the appropriate forwarding rules on all switches along the path from node A to B,
then resends the original packet from the last switch on the path to the destination
instead.

3. We flood broadcast messages and unicast messages with an unknown destina-
tion on all edge ports of all switches immediately. We found that in the default
modules shipped with POX, packets which were classified to be flooded, either
due to their broadcast or multicast nature or due to the fact that their destination
MAC address location was still unknown, were flooded switch-by-switch equally
to the approach mentioned in the previous item. In the end, each switch in the
spanning-tree contacts the controller with an identical packet while the action of
that packet remains the same. Furthermore, if in the meantime the destination of
a previously unknown unicast message was learned, this resulted in the forward-
ing module installing an invalid path from that specific switch to the destination
switch. To reduce communication overhead when a packet arrives that needs to
be flooded, our implementation contacts all switches and floods on all edge ports.

4. We only “learn” MAC addresses on edge ports to prevent learning invalid switch-
port locations for hosts.

The forwarding component sends an event to the monitoring component when a new
flow, with possibly a new distinct path, has been installed. Upon this action, the moni-
toring component will add the edge switches to the list that is periodically iterated by the
adaptive timer. At each timer interval the monitoring component requests flow-counters
from all flow destination and source switches. The flow-counters contain the packet
counter, byte counter and duration of each flow. By storing statistics from the previous
round, the delta of those counters is determined to calculate per-flow throughput and
packet loss.
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3.7. CONCLUSION
In this chapter, we have presented OpenNetMon, a POX OpenFlow controller module
monitoring per-flow QoS metrics to enable fine-grained Traffic Engineering. By polling
flow source and destination switches at an adaptive rate, we obtain accurate results while
minimizing the network and switch CPU overhead. The per-flow throughput and packet
loss is derived from the queried flow counters. Delay, on the contrary, is measured by in-
jecting probe packets directly into switch data planes, traveling the same paths, meaning
nodes, links and buffers, and thus determining a realistic end-to-end delay for each flow.
We have published the implemented Python-code of our proposal as open source to en-
able further research and collaboration in the area of QoS in Software-Defined Networks.

We have performed experiments on a hardware testbed simulating a small inter-
office network, while loading it with traffic of highly bursty nature. The experimental
measurements verify the accuracy of the measured throughput and delay for monitor-
ing, while the packet loss gives a good estimate of possible service degration.

Based on the work in [96], we further suggest to remove the overhead introduced by
microflows, by categorizing them into one greater stream until recognized as an elephant
flow. This prevents potential overloading of the controller by insignificant but possibly
numerous flows. In future work, we intend to use OpenNetMon as an input genera-
tor for a responsive real-time QoS controller that recomputes and redistributes paths.
OpenNetMon’s measurements may further be used to perform multiple constraint rout-
ing, compute link-independent multiple paths based on actual usage allowing further
exploitation of available bandwidth, or as a network health monitoring tool in general.
Thanks to the open source publication of its implementation, OpenNetMon has already
been used and extended by others to detect network failure and support recovery [97].





4
FAST NETWORK TOPOLOGY

FAILURE RECOVERY IN SDNS

Software-Defined Networking and its implementation OpenFlow facilitate managing net-
works and enable dynamic network configuration. Recovering from network failures in a
timely manner, however, remains nontrivial. The process of (a) detecting a failure, (b)
communicating it to the controller and (c) recomputing the new shortest paths results in
an unacceptably long recovery time. In chapter 5 we derive methods to find and config-
ure failure-disjoint paths prior to a failure, hence omitting path computation delay; in
the present chapter we demonstrate that current solutions, employing reactive restoration
or proactive protection, indeed suffer long delays. We introduce a failover scheme with
per-link Bidirectional Forwarding Detection sessions and preconfigured primary and sec-
ondary paths computed by an OpenFlow controller. Our implementation reduces the re-
covery time by an order of magnitude compared to related work, which is confirmed by ex-
perimental evaluation in a variety of topologies. Furthermore, the recovery time is shown
to be constant irrespective of path length and network size.

This chapter is based on a published paper [98].
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4.1. INTRODUCTION
Recently, Software-Defined Networking (SDN) has received much attention, because it
allows networking devices to exclusively focus on data plane functions and not control
plane functionality. Instead, a central entity, often referred to as the controller, performs
the control plane functionality, i.e. it monitors the network, computes forwarding rules
and configures the networking nodes’ data planes.

One of the benefits of the central controller introduced in SDN is its possibility to
monitor the network for performance and functionality and reprogram when necessary.
Where the controller can monitor overall network health as granular as observing per-
flow characteristics, such as throughput, delay and packet loss [79], the most basic task
is to maintain end-to-end connectivity between nodes. Hence, when a link breaks, the
controller needs to reconfigure the network to restore or maintain end-to-end connec-
tivity for all paths. However, the time-to-restoration of a broken path, besides the detec-
tion time, includes delay introduced by the propagation time of notifying the event to the
controller, path re-computation, and reconfiguration of the network by the controller. As
a result, controller-initiated path restoration may take over 100 ms to complete, which is
considered too long for provider networks where at most 50 ms is tolerable [99].

In this chapter, we introduce a fast (sub 50 ms) failover scheme relying on link-failure
detection and combining primary and backup paths, configured by a central OpenFlow
[68] controller. We implement per-link failure detection in SDNs using Bidirectional For-
warding Detection (BFD) [13], a protocol that detects failures by detecting packet loss in
frequent streams of control messages.

In section 4.2, we discuss several failure detection mechanisms and analyze how net-
work properties and BFD session configuration influence restoration time. In section
4.3, we introduce and discuss the details of our proposed failover mechanism. Section
4.4 presents our experiments, after which the results are discussed and analyzed to ver-
ify our failover mechanism. Related work is discussed in section 4.5. Finally, section 4.6
concludes this chapter.

4.2. FAILURE DETECTION MECHANISMS
In this section, we introduce different failure detection mechanisms and discuss their
suitability for fast recovery. In subsection 4.2.1 we analyze and minimize the elements
that contribute to failure detection, while subsection 4.2.2 introduces OpenFlow’s Fast
Failover functionality.

Before a switch can initiate path recovery, a failure must be detected. Depending on
the network interface, requirements for link failure detection are defined for each net-
work layer. Current OpenFlow implementations are mostly based on Ethernet networks.
However, Ethernet was not designed with high requirements on availability and failure
detection. In Ethernet, the physical layer sends heartbeats with a period of 16± 8 ms
over the link when no session is active. If the interface does not receive a response on
the heartbeats within a set interval of 50− 150 ms, the link is presumed disconnected
[100]. Therefore, Ethernet cannot meet the sub 50 ms requirement, which is confirmed
by our experiments in section 4.4, hence failure detection must be performed by higher
network protocols.
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On the data-link layer multiple failure detection protocols exist, such as the Spanning
Tree Protocol (STP) and Rapid STP [101], which are designed to maintain the distribution
tree in the network by updating port status information. These protocols, however, can
be classified as slow, as detection windows are in the order of seconds. Instead, in our
proposal and implementation we will use BFD [13], which has proven to be capable of
detecting failures within the required sub 50 ms detection window.

4.2.1. BIDIRECTIONAL FORWARDING DETECTION
The Bidirectional Forwarding Detection (BFD) protocol implements a control and echo
message mechanism to monitor liveliness of links or paths between preconfigured end-
points. Each node transmits control messages with the current state of the monitored
link or path. A node receiving a control message, replies with an echo message contain-
ing its respective session status. A session is built up with a three-way handshake, after
which frequent control messages confirm absence of a failure between the session end-
points. The protocol is designed to be protocol agnostic, meaning that it can be used
over any transport protocol to deliver or improve failure detection on that path. While it
is technically possible to deploy BFD directly on Ethernet, MPLS or IP, Open vSwitch [77],
a popular OpenFlow switch implementation also used in our experiments, implements
BFD using a UDP/IP stream.

The failure detection time Tdet of BFD depends on the transmit interval Ti and the
detection time multiplier M , Ti defines the frequency of the control messages, while
M defines the number of lost control packets before a session end-point is considered
unreachable. Hence, the worst-case failure detection time equals Tdet = (M + 1) · Ti .
Typically, a multiplier of M = 3 is considered appropriate to prevent small packet loss
from triggering false positives. The transmit interval Ti is lower-bounded by the round-
trip-time (RTT) of the link or path. Furthermore, BFD intentionally introduces a 0 to 25%
time jitter to prevent packet synchronization with other systems on the network.

The minimal BFD transmit interval is given in equations (4.1) and (4.2), where Ti ,mi n

is the minimal required BFD transmit interval, TRT T is the round-trip time, TTr ans is the
transmission delay, TPr op is the time required to travel a link in which we include delay
introduced by routing table look-up, L is the number of links in the path and TPr oc is the
processing time consumed by the BFD end-points.

Ti ,mi n = 1.25 ·TRT T (4.1)

Ti ,mi n = 1.25 ·2 · (TTr ans +L ·TPr op +TPr oc ) (4.2)

It is difficult to optimize for session RTT by improving TTr ans and TPr oc as those val-
ues are configuration independent. However, by using link monitoring (L = 1), the inter-
val time is minimized and smaller failure detection times are possible. A great improve-
ment compared to per-path monitoring, where the number of links L is upper-bound by
the diameter of the network.

An upper-bound for TRT T can easily be determined with packet analysis, where we
assume that the process of processing and forwarding is equal for each hop. On high link
loads, the round-trip-time (RTT) can vary much and might cause BFD to produce false
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Figure 4.1: OpenFlow Fast Failover Group Table.

positives. During the development of TCP [41], a similar problem was identified in [102],
where the re-transmission interval of lost packets is computed by β ·TRT T . The constant
β accounts for the variation of inter-arrival times, which we implement in equation (4.3).

Ti ,mi n = 1.25 ·β ·TRT T (4.3)

A fixed and conservative value β= 2 is recommended [103].

4.2.2. LIVELINESS MONITORING WITH OPENFLOW
From OpenFlow protocol version 1.1 [104] onwards Group Table functionality is sup-
ported. Group Tables extend OpenFlow configuration rules allowing advanced forward-
ing and monitoring at switch level. In particular, the Fast Failover Group Table can be
configured to monitor the status of ports and interfaces and to switch forwarding actions
accordingly, independent of the controller. Open vSwitch implements the Fast Failover
Group Table where the status of the ports is determined by the link status of the corre-
sponding interfaces. Ideally, the status of BFD should be interpreted by the Group Table
as suggested in figure 4.1 and implemented in section 4.4.

4.3. PROPOSAL
We propose to divide the recovery process into two steps. The first step consists of a fast
switch-initiated recovery based on preconfigured forwarding rules guaranteeing end-
to-end connectivity. The second step involves the controller calculating and configur-
ing new optimal paths. Switches initiate their backup path after detecting a link failure,
meaning that each switch receives a preconfigured backup path in terms of Fast Failover
rules. Link loss is detected by configuring per-link - instead of per-path - BFD sessions.
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H1
H2

A

B C

D

E F G

Primary Path

Secondary Path

(b) Topology with broken link resulting in usage of a backup path by crankback.

Figure 4.2: A topology showing its primary and secondary paths including two backup scenarios in case of
specific link-failures. Where the first scenario (a) uses a disjoint backup path, the second scenario (b) relies on
crankback routing.
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Using per-link BFD sessions introduces several advantages:

1. A lower detection time due to a decreased session round-trip-time (RTT) and thus
lower transmit interval.

2. Decreased message complexity and thus network overhead as the number of run-
ning BFD sessions is limited to 1 per link, instead of the multiplication of all end-
to-end sessions and their intermediate links.

3. Removal of false positives. As each session spans a single link, false positives due
to network congestion can be easily removed by prioritizing the small stream of
control packets.

In situations where a switch has no feasible backup path, it will return packets to the pre-
vious switch by crankback routing. As the incoming-port is part of the packet-matching
filter of OpenFlow, preceding switches have separate rules to process returned packets
and forward them across their backup path. This implies a recursive returning of packets
to preceding switches until they can be forwarded over a feasible link- or node-disjoint
path. Figure 4.2 shows an example network with primary and backup paths, as well as
two failover situations.

By instructing all switches up front with a failover scenario, switches can initiate a
failover scenario independent of the SDN controller or connectivity polling techniques.
The OpenFlow controller computes primary and secondary paths from every interme-
diate switch on the path to the destination to supply the necessary redundancy and pre-
configures switches accordingly. Although the preconfigured backup-path may not be
optimal at the time of activation, as in subfigure 4.2b, it is a functional path that is ap-
plied with low delay. Additionally, once the controller is informed of the malfunction, it
can reconfigure the network to replace the current backup path by a more suitable path
without traffic interruption as performed in [105].

The transmit interval of BFD is upper-bounded by the RTT between the session end-
points. As we are configuring per-link sessions, the transmit interval decreases greatly.
For example, in our experimental testbeds we have a RTT below 0.5 ms, thus allowing a
BFD transmit interval of 1 ms. Although this might appear as a large overhead, per-link
sessions limit the number of traversing BFD sessions to 1 per link. In comparison, per-
path sessions imply O (|N |× |N |) shortest paths to travel each link. Even though most of
them may be forwarded to their endpoint without inspection, each node has to maintain
O (|N |) active sessions.

A BFD control packet consists of at most 24 bytes with authentication, encapsulation
in a UDP, IPv4 and Ethernet datagram results in 24+8+20+38 = 90 bytes = 720 bits. Sent
once every 1 ms, this results in an overhead of 0.067 % and 0.0067 % in, respectively, 1
and 10 Gbps connections.

4.4. EXPERIMENTAL EVALUATION
In this section, we will first discuss our experimental setup followed by the used mea-
surement techniques, the different experiments and finally the results.
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4.4.1. TESTBED ENVIRONMENTS

We have performed our experiments on two types of physical testbeds, being a testbed
of software switches and a testbed of hardware switches.

Our software switch based testbed consists of 24 physical, general-purpose, servers
enhanced with multiple network interfaces and software to run as networking nodes.
Each server contains a 64 bit Quad-Core Intel Xeon CPU running at 3.00GHz with 4.00 GB
of main memory and has 6 independent 1 Gbps networking interfaces installed and can
hence perform the role of a 6-degree networking node. Links between nodes are realized
using physical Ethernet connections, hence deleting any measurement inaccuracies in-
troduced by possible intermediate switches or virtual overlays. OpenFlow switch capa-
bility is realized using the Open vSwitch [77] software implementation, installed on the
Ubuntu 13.10 operating system running GNU/Linux kernel version 3.11.0-12-generic.

The hardware switch based testbed we used was graciously made available to us by
SURFnet, the National Research and Education Network of the Netherlands. The testbed
consists of 5 Pica8 P3920 switches, running firmware release 2.0.4. The switches run in
Open vSwitch mode to deliver OpenFlow functionality, meaning that they implement
the same interfaces as defined by Open vSwitch.

4.4.2. RECOVERY AND MEASUREMENT TECHNIQUES

We use two complementary techniques to implement our proposal: (1) We use Open-
Flow’s Fast Failover Group Tables to quickly select a preconfigured backup path in case
of link failure. The Fast Failover Group Tables continuously monitor a set of ports, while
incoming packets destined for a specific Group Table are forwarded to the first active
and alive port from its set of monitored ports. Therefore, when link functionality of the
primary output port fails, the Group Table will automatically turn to the secondary set of
output actions. After restoring link functionality, the Group Tables revert to the primary
path. (2) Link-failure itself is detected using the BFD protocol. We chose a BFD transmit
interval conform equation (4.3), with β = 2 to account for irregularities by queuing. Al-
though the RTT allowed smaller transmit intervals, the implementation of BFD forced a
minimum window of 1 ms. We use a detection multiplier of M = 3 lost control messages
to prevent false positives.

At the time of writing, both BFD and Group Table functionality are implemented in
the most recent snapshots from Open vSwitch’ development repository [106]. Although
both BFD status reports and Fast Failover functionality operate correctly, we found the
Fast Failover functionality did not include the reported BFD status to initiate the backup
sequence and only acts on (administrative) link down events. To resolve the former prob-
lem, we wrote a small patch for Open vSwitch to include the reported interface BFD
status [107]. Furthermore, the patch includes minor changes to allow BFD transmit in-
tervals smaller than 100 ms.

In order to simulate traffic on the network we use the pktgen [108] packet genera-
tor, which can generate packets with a fixed delay and sequence numbers. We use the
missing sequence numbers of captured packets to determine the start and recovery time
of the failure. Pktgen operates from kernel space, therefore high timing accuracy is ex-
pected and was confirmed at an interval accuracy of 0.005 ms. In order to get 0.1 ms
timing accuracy, pktgen is configured to transmit packets at a 0.05 ms interval.
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4.4.3. EXPERIMENTS
This subsection describes the performed experiments. We run baseline experiments us-
ing link-failure detection by regular Loss-of-Signal on both testbeds. Additionally, we run
experiments using link-failure detection by per-link BFD sessions on the software switch
testbed to show improvement. In general, links are disconnected using the Linux ifdown
command. To prevent the administrative interface change to influence the experiment,
the ifdown command is issued from the switch opposite to the switch performing recov-
ery.

The experiments are executed as follows. We start our packet generator and capturer
at t = 0. At t f ai lur e , a failure is introduced in the primary path. The packet capture pro-
gram records missing sequence numbers, while the failover mechanism autonomously
detects the failure and converts to the backup path. At tr ecover y , connectivity is restored,
which is detected by a continuation of arriving packets, the recording of missing packets
is stopped and the recovery time is computed.

BASIC FUNCTIONALITY

In our first experiment we measure and compare the time needed to regain connectiv-
ity in a simple network to prove basic functionality. The network is depicted in figure
4.3a and consists of two hosts named H1 and H2, which connect via paths A → B → C
(primary) and A → C (backup). In this experiment, we stream data from H1 to H2 and
deliberately break the primary path by disconnecting link A ↔ B and measure the time
needed to regain connectivity.

CRANKBACK

After confirming restoration functionality we need to confirm crankback functionality.
To introduce crankback routing, we use a slightly more complicated ring topology in
figure 4.3b, in which the primary path is set as A → B → C → D → E . We break link
C ↔ D enforcing the largest crankback path to activate, resulting in the path A → B →
C → B → A → E .

EXTENDED EXPERIMENTS

To test scalability, we perform additional experiments in which we simulate a real-world
network scenario by configuring our software-switch testbed in the USNET topology
shown in figure 4.3c. We set up connections from all East-coast routers to all West-coast
routers, thereby exploiting 20 shortest paths. We configure each switch to initially for-
ward packets along the shortest path to destination, as well as a backup path from each
intermediate switch to destination omitting the protected link. At each iteration we uni-
formly select a link from the set of links participating in one or more shortest paths and
break it.

4.4.4. RESULTS AND ANALYSIS
Our first set of results, displayed in figure 4.4, shows baseline measurements without
BFD performed for the simple topology on both testbeds. This experiment shows link-
failure detection based on Loss-of-Signal implies an infeasibly long recovery time in both
our software and hardware switch testbeds. The Open vSwitch testbed shows an aver-
age recovery time of 4759 ms. Although the hardware switch testbed performs better
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Figure 4.3: Topologies used in our experiments, including functional and failover scenarios in case of specific
link-failure.
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Figure 4.4: Baseline measurements using Loss-of-Signal failure detection.

with an average recovery time of 1697 ms, the duration of both recoveries are unaccept-
able in carrier-grade networks. The samples of both the software and hardware switches
show periodic increases followed by a larger decrease in recovery time, we conjecture
that these are system anomalies introduced by status timers internal to the switches run-
ning at a different interval than our sample repetition. Ultimately, all samples including
both the low and high deviations introduced by this system behavior support our finding
of unacceptably long recovery times.

In order to determine the time consumed by administrative processing additional
to actual failure detection, we repeated previous experiments with the exception that
we administratively brought down the interface at the switch performing the recovery.
By doing this, we only trigger and measure the time consumed by the administrative
processes managing link status. We found that Open vSwitch on average needs 50.9 ms
to restore connectivity after detection occurs. Due to this high value, our patch omits the
administrative link status update and directly checks BFD status instead.

Currently, the firmware of the hardware switches does not support BFD, therefore we
only verified recovery using link-failure detection by BFD on the software switch testbed.
Figure 4.5 shows 100 samples of measured recovery delay for the simple and ring topolo-
gies using three different BFD transmit intervals, namely 15 ms, 5 ms and 1 ms. For the
simple topology, we measure a recovery time that was a factor between 2.5 and 4.1 ms
larger than the configured BFD transmit interval due to the detection multiplier of M = 3.
As shown in figure 4.7, for each BFD transmit interval we measure average and 95% con-
fidence interval recovery times of 3.4±0.7 ms, 15.0±2.2 ms and 42.1±5.0 ms. The results
show that, especially with links having low RTTs, a great decrease in recovery time can
be reached. At a BFD transmit interval of 1 ms, we reach a maximal recovery time of 6.7
ms.
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Figure 4.5: Recovery times for selected BFD transmit intervals and topologies.

For the ring topology, after 100 samples of measuring the recovery time for three dif-
ferent BFD transmit intervals, figure 4.7 shows averages and 95% confidence intervals of
respectively 3.3±0.8 ms, 15.4±2.7 ms and 46.2±5.1 ms for the different selected trans-
mit intervals. At a BFD transmit interval of 1 ms, we reach a maximal recovery time of
4.8 ms. Even though the ring topology is almost twice as large as the simple topology,
recovery times remain constant due to the per-link discovery of failures and the failover
crankback route.

In order to verify the scalability of our implementation, we repeated the experiments
by configuring our software-switch testbed with the USNET topology, hence simulating
a real-world network. For each iteration, we average the recovery times experienced by
the affected destinations. Figure 4.6 shows over 3400 samples taken at a BFD transmit
interval of 5 ms, resulting in an average and 95% confidence interval of 13.6± 2.6 also
shown in figure 4.7. The high frequency of arriving BFD and probe packets congested
the software implementation of Open vSwitch, showing the necessity for hardware line
card support of BFD sessions. As a consequence, we were unable to further decrease
the polling frequency and had to decrease the frequency of probe packets to 1 per ms,
slightly reducing the accuracy of this set of measurements. Although we experience soft-
ware system integration issues showing the need to optimize switches for degree and
traffic throughput, recovery times remain constant independent of path length and net-
work size, showing our implementation also scales to larger real-world networks.

Prior to implementing BFD in the Group Tables, the Fast Failover Group Tables
showed a 2 second packet loss when reverting to the primary path after repair of a fail-
ure. With BFD, switch-over is delayed until link status is confirmed to be restored and no
packet loss occurs, resulting in a higher stability of the network.
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Figure 4.6: Recovery times for 5 ms transmit interval in the extended topology.

4.5. RELATED WORK

Sharma et al. [109] show that a controller-initiated recovery needs approximately 100
ms to regain network connectivity. They propose to replace controller-initiated recovery
with a path-failure detection using BFD and preconfigured backup paths. The switches
executing BFD detect path failure and revert to previously programmed backup paths
without controller intervention resulting in a reaction time between 42 and 48 ms. How-
ever, the correctness and speed of detecting path failure depends highly on the configu-
ration and switch implementation of BFD. According to [13], a detection time of 50 ms
can be achieved by using an “aggressive session”, using a transmit interval of 16.7 ms
and window multiplier of 3. However, the authors of [109] do not provide details on their
configuration of BFD. The BFD transmit interval is lower-bounded by the propagation
delay between the end-points of the BFD sessions, therefore we claim a path-failure de-
tection under-performs compared to a per-link failure detection and protection scheme
as presented in this chapter.

Kempf et al. [110][111] propose an alternative OpenFlow switch design that allows in-
tegrated operations, administration and management (OAM) execution, foremost con-
nectivity monitoring, in MPLS networks by introducing logical group ports. Introducing
ring topologies in Ethernet-enabled networks and applying link-failure detection results
to trigger failover forwarding rules, results in an average failover time of 101.5 ms [112]
with few peaks between 140 ms and 200 ms. However, the introduced logical group ports
remain unstandardized and are hence not part of shipped OpenFlow switches. Finally,
Sgambelluri et al. [113] perform segment protection in Ethernet networks depending on
OpenFlow’s auto-reject function to remove flows of failed interfaces. The largest part of
their experimental work involves Mininet emulations, which is considered inaccurate in
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Figure 4.7: Bar diagram summarizing average recovery times and 95% confidence interval deviation on our
Open vSwitch testbed using BFD at selected transmit intervals.

terms of timing due to its high level of virtualization [114]. The experiment performed
on a physical testbed shows a switch-over time of at most 64 ms, however, the authors
do not describe the method of link-failure detection, which make the results difficult to
reproduce.

Table 4.1 shows the main differences between the aforementioned proposals and our
work. Where the previous best recovery time was close to 30 ms, section 4.4 showed that
our configuration regains connectivity within a mere 3.3 ms.

4.6. CONCLUSION
Key to supporting high availability services in a network is the network’s ability to quickly
recover from failures. In this chapter we have proposed a combination of protection
in OpenFlow Software-Defined Networks through preconfigured backup paths and fast
link failure detection. Primary and secondary path pairs are configured via OpenFlow’s
Fast Failover Group Tables enabling path protection in case of link failure, deploying
crankback routing when necessary. We configure per-link, in contrast to the regular per-
path, Bidirectional Forwarding Detection (BFD) sessions to quickly detect link failures.
This limits the number of traversing BFD sessions to be linear to the network size and
minimizes session RTT, enabling us to further decrease the BFD sessions’ window in-
tervals to detect link failures faster. By integrating each interface’s link status into Open
vSwitch’ Fast Failover Group Table implementation, we further optimize the recovery
time.

After performing baseline measurements of link failure detection by Loss-of-Signal
on both a software and hardware switch testbed, we have performed experiments using
BFD on our adapted software switch testbed. In our experiments we have evaluated
recovery times by counting lost segments in a data stream. Our measurements show we
already reach a recovery time considered necessary for carrier-grade performance at a
15 ms BFD transmit interval, being sub 50 ms. By further decreasing the BFD interval
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Table 4.1: Summary of results and most important differences compared to related work.

Reference
Avg recovery
time
±95% CI

Network
size
(|N |, |L|)

Detection
Mechanism

Recovery Mechanism

[109] 42−48ms (28,40)
Per-path
BFD

OpenFlow Fast Failover Group
Tables using virtual ports

[110][111] 28.2±0.5 ms N.A.
Per LSP
OAM + BFD

Custom extension of OpenFlow

[112][113]
32.74±4.17
ms

(7,7) UndocumentedCustom auto-reject mechanism

This
work

3.3±0.8 ms (24,43) Per-link BFD Commodity OpenFlow Fast
Failover Group Tables

to 1 ms we reach an even faster recovery time of 3.3 ms, which we consider essential
as network demands proceed to increase. Compared to average recovery times varying
from 28.2 to 48 ms in previous work, we show an enormous improvement.

Since we perform per-link failure detection and preconfigure each node on a path
with a backup path, the achieved recovery time is independent of path length and net-
work size, which is confirmed by experimental evaluation.



5
ALL-TO-ALL NETWORK TOPOLOGY

FAILURE PROTECTION IN SDNS

In the previous chapter, we designed a system that provides fast detection of link failures
and reverts to backup paths to circumvent those failures. Although we proved through
experiments that such a system is feasible for production networks, the system assumed
that backup paths were already previously computed and configured. However, compu-
tation of these paths prior to the actual link or node failure is far from trivial, especially
when those types of paths need to be precomputed from and to each and every node in the
network. In this chapter, we propose algorithms for computing an all-to-all primary and
backup network forwarding configuration that is capable of circumventing link and node
failures. After initial recovery, we recompute the network configuration to guarantee pro-
tection from future failures. Our algorithms use packet-labelling to guarantee correct and
shortest detour forwarding and are able to discriminate between link and node failures.
The computational complexity of our solution is comparable to that of all-to-all shortest
paths computations. Our experimental evaluation on both real and generated networks
shows that network configuration complexity decreases significantly compared to classic
disjoint paths computations. Finally, we proved a proof-of-concept OpenFlow controller
in which our proposed configuration is implemented, demonstrating that it readily can be
applied in production networks.

This chapter is based on a published paper [115] and report [116].

53
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5.1. INTRODUCTION
Modern telecommunication networks deliver a multitude of high-speed communica-
tion services through large-scale connection-oriented and packet-switched networks
running on top of optical networks, Digital Subscriber Lines (DSLs), cable connections
or even wireless terrestrial and satellite links. As society heavily depends on modern
telecommunication networks, much has been done to prevent network failure, e.g., by
improving the equipment environment and physical aspects of the material. However,
the past century of telecommunications shows that network components still fail regu-
larly [82]. Regardless of the preventive protection measures taken, network nodes and
links will eventually malfunction and cease to function.

In connection-oriented networks, e.g. wavelength-routed networks, network service
interruptions due to the failure of network nodes or links can often be prevented by as-
signing at least two disjoint paths from the source node to the destination node of each
network connection [117]. Connection status is then monitored from the source node to
the destination node. When the primary path of a network connection fails, the connec-
tion can be reconfigured to use its backup path instead. Traffic can also be sent on the
primary and backup paths of a connection concurrently, such that reconfiguration upon
the failure of the primary path is not needed. Although finding a pair of (min-sum) dis-
joint paths from a source node to a destination node is polynomially solvable [118, 119],
the returned paths may each be substantially longer than the shortest possible path be-
tween the nodes due to the existence of trap topologies [120]. An alternative would be
to find a pair of min-min disjoint paths, where the weight of the primary path is to be
minimized, instead of the sum of the weights of both paths (min-sum). However, the
problem will then be NP-hard [121].

Packet-switched networks, e.g., Ethernet or IP networks, have no connection sta-
tus since packets are forwarded in a hop-by-hop manner through local inspection of
headers at each router it traverses. Though using disjoint paths is possible in packet-
switched networks through end-to-end liveliness detection monitoring schemes (such
as Bidirectional Forwarding Detection (BFD) [13], Ethernet OAM/CFM [14] or IP Fast
Reroute [122]), the approach is more complex than in connection-oriented networks.
Any network node may send messages to any other network node without prior reserva-
tion, leading to O(|N |2) (where |N | is the number of network nodes) possible monitoring
sessions for each source-destination pair: a great increase compared to the connection-
oriented network, where the number of monitoring sessions are bounded by O(|C |)
(where |C | is the number of factual connections). Hence, computing and maintaining
disjoint paths for all possible node pairs may be suboptimal in packet-switched net-
works.

However, in packet-switched networks, traffic can be rerouted along a part of the pri-
mary path, which is not possible in connection-oriented networks. Each intermediate
node along the primary path has the capability of forwarding packets through another
link interface when necessary. Furthermore, after packets have been rerouted past the
failure, packets are directed to the shortest remaining path towards the destination, pos-
sibly by following the remainder of the (initial) primary path that is unaffected by the
failure. However, configuring an all-to-all configuration requires complex forwarding
rule constructions, which is difficult to realize with traditional distributed routing proto-
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cols that operate on embedded systems with lower computational and memory capaci-
ties. A Software-Defined Networking (SDN) approach may facilitate implementing such
network functionality.

SDN enables the use of a controller for recomputing the network state reactively
upon a failure, but incurs high processing delays [109]. In chapter 4, we provided an
overview of SDN-specific related work on topology recovery mechanisms and have
shown that failure recovery in OpenFlow-based SDN networks is best handled in three
steps, being 1) fast failure detection through liveliness monitoring protocols, 2) fail-
ure protection through computation and configuration of backup rules prior to failure,
which is the fastest recovery approach possible but may not deliver optimal network
configuration, and 3) recomputation of optimal network state and new backup paths as
soon as the failure detection has propagated to the network controller.

In chapter 4, we showed very fast results providing fast failure detection and reovery,
but assumed the configuration of backup rules to be present. In this chapter, we explore
existing algorithmic solutions and propose new ones to compute a network configura-
tion that guarantees all-to-all network connectivity against any single node or link fail-
ure. Our aim is to be able to automatically configure and reconfigure any SDN networks
with failure protection schemes without human intervention.

Our contributions in this chapter are three-fold:

1. We derive the hard and soft constraints that should be incorporated by a resilient
routing configuration.

2. We present and evaluate algorithms for computing paths that meet those con-
straints in circumventing failures.

3. We implement and experiment with the presented algorithms in an SDN con-
troller.

The remainder of the chapter is organized as follows. In section 5.2, we define the prob-
lem and give examples of what we need to compute and how traditional disjoint paths
algorithms fail in doing so. Section 5.3 presents our algorithms finding failure-disjoint
paths, which we evaluate and analyze in section 5.4. Our prototype SDN controller im-
plementation is presented in section 5.5. Section 5.6 presents related work on finding
disjoint paths and computes their overall complexity when applied to our problem. Fi-
nally, section 5.7 concludes this chapter.

5.2. PROBLEM STATEMENT
Figure 5.1a shows an example of a shortest path through a sample network, and a link
failure between nodes C and D. Although we are looking for an all-to-all solution, for
illustration purposes we will use the example of traffic flowing from node H1 to node
H2 in the network. The primary path of the traffic, which is the shortest path, breaks
by the failure of link lC D , an event only noticeable by node C , which is an intermediate
node along the primary path. In order for the traffic to arrive at node H2, there must
be an alternative rule to revert to at node C that will ultimately route the traffic to node
H2. In essence, we are looking for an all-to-all solution in which all nodes are precon-
figured with backup forwarding rules to overcome any such single link or node failure



5

56 5. ALL-TO-ALL NETWORK TOPOLOGY FAILURE PROTECTION IN SDNS

H1
H2

A

B C

D

E F G

Primary Path

Secondary Path

(a) Failure-disjoint path.

Figure 5.1: Failure-disjoint paths and labels used in forwarding from H1 to H2.

in the network. Moreover, since those rules will be computed for each possible specific
single link/node failure, both the primary and backup paths will be as short as possi-
ble in length, which is a big gain over traditional path-disjoint protection schemes. The
problem can be formally defined as follows.

Single Failure Avoidance Rule Assignment (SFARA) problem: Given a directed network
G of a set N of |N | nodes and a set L of |L| directed links. Each link luv ∈ L connects nodes
u and v, and is characterized by a link weight `uv and a boolean link status suv indicating
link functionality. suv = up implies that link luv is functioning normally, while suv 6= up
implies that link luv is not functioning. Find an overall set of primary and backup for-
warding rules such that any possible source node x ∈ N can send packets to any possible
destination node y ∈ N when all links are operational (∀luv ∈ L : suv = up ), or under a
single link (or node) failure (∃!luv ∈ L : suv 6= up).

The following constraints exist for the SFARA problem:

1. The status suv of each link luv ∈ L is only available from its adjacent nodes u
and v , and may be used in the forwarding logic of nodes u and v . For example,
(suv = up)?(output(luv )) : (output(luw )) describes the forwarding logic where node
u forwards packets to node v when link luv is operational, or to node w over link
luw otherwise. Node u thereby relies on node w to have a suitable backup path
towards the destination.

2. A set of forwarding actions can be performed on a packet at each node, including
(a) dropping it, (b) rewriting, adding or removing any of its labels - such as source
and destination addresses, VLAN tags and MPLS labels, and (c) forwarding it to the
next node by outputting it to a specific output port or link.

3. The appropriate forwarding actions for each packet are selected from a forwarding
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Figure 5.1: Failure disjoint paths and labels used in forwarding from H1 to H2.

table based on properties such as: (a) the packet’s incoming port, (b) (wildcard)
matching on packet labels, such as its Ethernet addresses, IP addresses, TCP or
UDP source and destination address, VLAN tags, MPLS labels, etc., and (c) status
of the outgoing links of the router or switch.

5.3. PER-FAILURE PRECOMPUTATION

As shown earlier in figure 5.1a, disjoint-path based forwarding rules cannot instruct
node C on how to circumvent the failed link. Node C can only send the packet back to
the source node through crankback routing, which is an expensive process since it uses
twice the network resources from the source node to the failed link plus the network re-
sources on the disjoint-path. Instead, we propose to use a detour around the failure as
shown in figure 5.1b, optimizing the primary path to the shortest path when possible.

We explain our algorithm for finding and configuring link-failure disjoint paths using
labeling techniques in subsection 5.3.1, and later modify it to node-failure disjoint paths
in subsection 5.3.2. Knowing whether a link or node failure has manifested can be diffi-
cult since each node can only determine that an adjacent link is broken, while the failure
may only be limited to the reported link or may include the adjacent node. A conserva-
tive approach is to assume that all detections of link-failures imply node failures, but this
leads to higher detours and possible false-negatives in determining whether a detour
path to the destination node exists. Subsection 5.3.3 thus presents our hybrid adapta-
tion from the link- and node-failure disjoint paths where we use a labelling technique to
“upgrade” a link-failure to a node-failure only when necessary, and adapt the forwarding
strategy accordingly. Finally, subsection 5.3.4 discusses how we optimize routing table
complexity by removing redundant rules.
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Algorithm 5.1 Per-link approach

Input: Adjacency matrix adj =G(N ,L)
Output: Forwarding matrix fw containing primary and backup rules

1: set fw to all-to-all shortest paths matrix
2: for each node n ∈ N
3: for each outgoing link l of n
4: set tAdj to shadow copy of adj
5: remove link l from tAdj
6: set {n′} from N where nextLink = l
7: compute 1-to-{n′} shortest paths from tAdj:
8: store all nextLink as fw[(curNode, l )][n′]
9: return fw

5.3.1. LINK-FAILURE DISJOINT PATHS
Algorithm 5.1 presents our algorithm for computing primary and backup forwarding
rules for all possible source-destination pairs given that at most one link is broken at
any time. The algorithm computes primary and backup forwarding rules for the whole
network, such that it is resilient to any single link failure. The algorithm first optimizes
the length of the primary path, and then optimizes the length of the detour towards the
destination node for all possible link failures.

Line 1 computes a regular all-to-all shortest paths matrix, using algorithms such as
|N | iterations of Dijkstra’s algorithm [56] or the Bellman-Ford algorithm [47][123], as long
as it supports the link weights in consideration1. Lines 2 and 3 iterate through all nodes’
outgoing links. Since any link connects exactly two nodes this results in a combined
complexity of 2|L|, leading to an intermediate complexity determined by |N | times the
one-to-all shortest paths computations and O(|L|) for the following procedure. Line 4
creates a shadow copy of the adjacency matrix, which stores only the changes from the
original. Calls to the shadow copy check for changes first and if absent return the original
result from the original table. Since we remove at most one link, our shadow copy suf-
fices to be a function call to the original table that filters out the one link before looking
up the value in the matrix. Hence, creation and lookup both have a constant complexity.
Line 5 removes the link under evaluation from the shadow copy, which has a complexity
of O(1). Line 6 selects all destinations whose shortest paths go through the removed link.
Sets containing the shortest path destinations denoted per link can be created within a
time complexity contained by any of the suggested shortest path algorithms and hence
does not add to the overall complexity of the algorithm. Selection of the sets is done in
constant time. Finally, lines 7 and 8 compute and store the backup paths using a reg-
ular one-to-all shortest paths computation (such as the Dijkstra’s or the Bellman-Ford
algorithms) with a slight change to the stop-criterion. First, line 7 indicates that the al-
gorithms may stop when all currently unreachable nodes {n′} have been found again,
there is no need to find the shortest paths to all nodes. Line 8 adds the found forwarding

1In dense graphs one may consider to use Floyd-Warshall’s algorithm [54, 55]. Although it is computation-
ally more complex, O(|N |3), its memory complexity during computation is limited to the size of the input
adjacency matrix and output forwarding matrix (O(|N |2)).
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Algorithm 5.2 Per-node approach, changes compared to algorithm 5.1 are underlined

Input: Adjacency matrix adj =G(N ,L)
Output: Forwarding matrix fw containing primary and backup rules

1: set fw to all-to-all shortest paths matrix
2: for each node n ∈ N
3: for each outgoing link l of n
4: set tAdj to shadow copy of adj
5: set nR to node opposite of link l

6: remove node nR and adjacent links from tAdj

7: set {n′} from N where nextLink = l
8: compute 1-to-{n′} shortest paths from tAdj:
9: store all nextLink as fw[(curNode,nR )][n′]

10: return fw

rules to the original forwarding matrix. A distinction between the original and backup
shortest path forwarding rules from a node n to its destination forwarding rules is made
by saving it under a label identifying the specific failure, in this case link l . As presented
in figure 5.1b, the node that initiates sending packets through backup paths should add a
label identifying the failure it is detouring from. From this label nodes along the backup
path derive that these packets need special treatment until they reach their destination
or a shortest path that is not affected by the failure anymore. In the latter case, the label
may be removed.

The overall complexity of the algorithm is mostly defined by the chosen shortest path
algorithm. In general, our algorithm has a worst-case complexity of O(|N |+|L|) times the
complexity of the implemented shortest path algorithm, since we need |N | iterations to
derive the all-to-all forwarding table and need to recompute broken shortest paths twice
for all |L| links. Our solution optimizes shortest and backup path length in sequential
order. Hence, it does not include Quality-of-Service constraints. Such functionality can
be implemented by computing primary paths using a multi-constrained path algorithm
(e.g. [95]), and subsequently computing the backup paths compared based on the re-
maining set of resources. The implementation and evaluation of this solution, however,
is beyond the scope of this dissertation.

5.3.2. NODE-FAILURE DISJOINT PATHS

In the case of a node failure, algorithm 5.1 may not work as the node opposite to the
detected broken link is not excluded from the backup path. Figure 5.2a shows how the
selection of a link-disjoint path may send packets right back towards the broken node.
Even if node F would select its link-disjoint backup path towards node H2, this path is
not guaranteed to be loop-free from a previous backup path. As suggested in figure 5.2b,
in the case of a node failure we need a node-disjoint backup path that eliminates the
failed node instead of individual links from the backup paths. Algorithm 5.2 presents
our solution that computes primary and backup forwarding rules for all-to-all paths
given that at most one node is broken. The algorithm computes primary and backup
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(a) Node failure at node C incorrectly handled by link-disjoint backup path.
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(b) Proper detour around failure of node C

Figure 5.2: Node failure disjointness and labels used in forwarding.
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Figure 5.3: Link-, then node-failure disjoint approach and forwarding labels.

forwarding rules resilient to any single node failure. The algorithm is almost equal to
algorithm 5.1, except for minor changes. The biggest change is found in lines 5 and 6,
where instead of the removal of link l , its opposite node nR is removed from the shadow
copy. The stored label nR is used in forwarding. The computational complexity remains
unchanged.

5.3.3. HYBRID APPROACH

The biggest problem with link-failure disjoint paths is that they may show problems
when the node opposite of the detected failed link is broken. The node that detects link
failure cannot determine whether the link failure is a result of a single link failure or node
failure that affects all the failed node’s links. The trivial solution to use node-failure dis-
joint paths whenever possible may work, but implies longer backup paths as one cannot
return to the opposite node when it is still functional and may break connectivity when
there is no node-disjoint path available. In practice, link failures occur more than node-
failures. Although the node asserting the backup path cannot know whether a link or
node failure is present, we prefer a link-failure disjoint path whenever possible, and a
node-disjoint path otherwise.

In order to accomplish such routing, as depicted in figure 5.3, we let the asserting
node assume a link-failure and act accordingly to it by adding a label denoting link-
failure and forwarding through the link-failure disjoint path. If any node along this
backup path has a primary forwarding rule to the failed node through another of its
links, it assumes node failure based on the local link-failure detection combined with
the label on the incoming packets indicating it is not the first broken link of that node.
Furthermore, this knowledge is added to the attached label. When every attached label
of a failed link is a concatenation of its interconnecting nodes ({u, v}), a forwarding rule
wildcard match such as {∗, v} can detect previous link failures to node v .



5

62 5. ALL-TO-ALL NETWORK TOPOLOGY FAILURE PROTECTION IN SDNS

Figure 5.4: USnet topology with 24 nodes and 43 links.

To compute these rules, we compute both node- and link-failure disjoint paths and
place these using their unique labels in the shared forwarding matrix. Note that the ini-
tial forwarding matrix only needs to be computed once, and removal of links and nodes
and their respective recomputations may occur sequentially. This procedure runs in the
same worst-case time complexity as the previous two algorithms.

5.3.4. ROUTING TABLE OPTIMIZATION
The procedures described in the previous subsections looks for min-min link-, node-
and hybrid-failure disjoint paths. However, without optimizing forwarding rule com-
plexity, this results in a state explosion of forwarding rules. While the realistic USnet
topology (shown in figure 5.4) initially has a total of 552 forwarding rules (23 per switch,
one for each destination), our link-, node- and hybrid-failure disjoint approaches
change most of these from regular output actions to group tables and respectively leads
to 1606, 2078 and 3684 (sum of previous two) additional entries in the forwarding ma-
trix fw. Switches and routers employ Ternary Content-Addressable Memory (TCAM) to
store and quickly lookup forwarding configuration. Although switches often have very
large forwarding tables for Layer 2 matching, the number of TCAM entries in a switch
for multiple field matches as performed in OpenFlow lies in the order of 1000 to 10000
rules [124]. Hence, it is necessary to minimize the number of forwarding rules to allow
applicability in larger networks.

Considering that detoured packets at a certain point follow the default shortest paths
from intermediate nodes on the backup path to destination, unaffected by the found
failure, a first optimization is found by removing the failure-identifying label once a suit-
able default shortest path is found, leading to an addition of only 487 and 576 node- or
link-failure disjoint entries, which is a big improvement. Since the hybrid-failure disjoint
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path may not revert to a shortest path before a potential node-failure is omitted, we find
an additional 1293 hybrid-failure disjoint entries, which, although larger than the sum
of the previous two, is still a factor three lower than before.

Moreover, if we consider the USnet topology to be unweighted, hence introducing
multiple shortest paths, we find an additional 621 and 741 node- and link-failure disjoint
entries, which is larger than its weighted counter result, indicating that it is important for
resilience in a network to have unique shortest paths.

We further optimize rulespace utilization by removing link-failure disjoint forward-
ing rules in the hybrid computation when they are equal to their respective node-failure
disjoint rule, leading to a decreased number of 847 additional entries. A more extensive
evaluation of our proposal compared to fully disjoint paths is presented in section 5.4.

Although counting entries in the forwarding matrix is still rather loose, no distinction
between regular forwarding actions and group table entries are made although often two
entries merge into one group table entry, it gives a good insight in the taken optimization
steps.

5.4. EVALUATION
In this section, we study the performance of our algorithms through simulation in three
network topologies, Erdös-Rényi random networks [125], lattice networks, and Waxman

networks [126]. For our generated Erdös-Rényi random networks, we choose 2l og |N |
|N |

as the probability for link existence, since the network will almost surely be connected

when the probability for link existence exceeds (1+E)l og |N |
|N | , where E>0. In the lattice net-

work, all interior nodes have a degree of four and the exterior nodes are connected to
their closest exterior neighboring nodes. The lattice network is useful in representing
grid-based networks, which may resemble the inner core of an ultra-long-reach optical
data plane system [127]. We choose a square lattice network of i × i dimension, where
i = p|N |, for our generated lattice networks. The Waxman network is frequently used
to model communication networks and the Internet topology [128], due to its unique
property of decaying link existence over distance. In the Waxman network, nodes are

uniformly positioned in the plane, and link existence is reflected by i e
`uv

j a , where `uv

is the Euclidean distance between nodes u and v , a is the maximum distance between
any two nodes in the plane, and i and j can vary between 0 to 1. We set i = 0.5 and
j = 0.5 since higher i leads to higher link densities, and lower j leads to shorter links.
We consider only two-connected generated graphs, such that the network can never be
disconnected by a single node or link failure. In the Erdös-Rényi and lattice networks,
each link has a random link weight between 0 and 1. No self-loops or parallel links are
allowed. Simulations were conducted on an Intel(R) Core i7-3770K 3.50 GHz machine
with 16GB RAM memory, and all results are averaged over a 1000 runs and grouped by
the network sizes 9, 16, 25, 36, 49, 64, 81 and 100 due to the dimension of the lattice
network.
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We compute and compare the results of different disjoint algorithms, being our link-,
node- and hybrid-failure disjoint approaches and min-sum pairs of fully link- and node-
disjoint paths. More specifically, we measure:

1. the total number of flow entries

2. the number of flow entries that forward to a Group table entry

3. the number of distinct Group table entries

4. the average primary path length

5. the averages of

(a) the average, minimal and maximal backup path length for each node pair
and

(b) the average and maximal crankback length for experienced backup paths.

We compute link-, node- and hybrid-failure disjoint paths according to our approach
and link- and node-disjoint paths according to Bhandari’s algorithm2 for the generated
networks, and calculate the enumerated values for these paths.

Figure 5.5 presents the average number of Flow table entries for each generated net-
work. A regular shortest paths computation always generates exactly |N |(|N | −1) Flow
table entries (from each node to each other node). This number increases when more
complex path computations are used. Specifically, we see a strikingly high increase in
Flow table entries when fully-disjoint paths are used, which is caused by the fact that
each forwarding rule has to take both source and destination into account for primary
path forwarding, as well as the incoming port for crankback routing. As also shown in
table 5.1, our failure-disjoint proposal shows an increase in Flow table entries varying
from 15.7% to 38% for a network size of |N | = 100 nodes, whereas for the fully-disjoint
computations this is limited from no increase to 7.7%. Given that fully-disjoint paths
lead to an increased table usage by a factor of 21, our method appears to be much more
conservative in Flow table usage. Whereas we found that our proposal uses significantly
fewer flow table entries, figure 5.6 shows up to 94% of these are forwarded to Group ta-
ble entries compared to a worst case of 44% for a fully disjoint path. Although this looks
like a significant increase, the absolute number of Flow entries forwarding to Group ta-
ble entries remains much lower in all cases. Moreover, table 5.1 and figure 5.7 show that
our proposal contains a significantly lower usage of distinct Group table entries in each
network, which are considered scarce resources.

Besides a smaller configuration complexity, also the primary paths taken are better.
While the primary path in our proposal always defaults to the shortest path, figure 5.8
shows that using fully-disjoint paths leads to an increase of primary path lengths of up to
5.0%, and thus incurs higher network operation costs. Although the increase of primary
path length of disjoint paths in most cases grows and at a certain point stabilizes, with

2Note that any other min-sum disjoint paths algorithm renders the same results, given that solutions are
unique or an equal tossing method is used.
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Figure 5.5: Average number of Flow entries in each network, categorized per network type and disjoint com-
putation and incrementally stacked per network size.
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Figure 5.7: Average number of distinct Group Entries in each network, categorized per network type and of
disjoint computation and incrementally stacked per network size.
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Waxman-generated networks the path increase decreases over time implying that the
design of the network has implications for the relative cost of robustness.

Figure 5.9 shows that besides a shorter primary path, our proposal on average also
has significantly shorter average backup paths. In order to determine the average backup
path for a node pair, we took its primary path and for each link or node on the path com-
puted the length of the path if that specific link or node would fail and averaged accord-
ingly. Hence, as figure 5.10 shows, the average backup path deviates significantly based
on the link that fails. Especially the fully-disjoint paths suffer from a high deviation due
to the high order of crankback routing that is involved when a link further down the pri-
mary path breaks. Figures 5.11 and 5.12 additionally show that the ratio and deviation of
crankback paths is much larger for fully-disjoint paths than for our approach. Further-
more, crankback paths only exist temporarily in our proposal, since the controller recon-
figures the network by applying the protection scheme to its newly established topology
once it is notified of the failure, thereby removing existing crankback subpaths from the
shortest paths.

The hybrid-failure disjoint path lengths are only shown for a node failure, since the
path lengths for a respective link failure are equal to the results in the link-disjoint ap-
proach by design. Although the number of Flow and Group table entries, as well as the
secondary path and crankback length for node failures slightly increases in the hybrid-
failure approach, we claim this number is justified by the merits of shorter paths for the
more often occurring link failures.

Although no exact measurements were made, we found that our proposal had a
much faster computation time than its fully-disjoint counterpart. Our hybrid approach
in general took 4 seconds to finish, compared to 20 seconds in Lattice networks and even
up to a minute in Erdös-Rényi- and Waxman-generated networks for the fully-disjoint
approach. Hence, our implementation is much faster in computing a new network con-
figuration that offers protection from a possible next failure.

5.5. SOFTWARE IMPLEMENTATION
In order to evaluate failure circumventing methods as described in the previous two
sections, we have implemented an open-source prototype OpenFlow controller module
that configures Software-Defined Networks with such backup rules.

We have used the Ryu controller framework [73] as basis for our implementation,
which loads and executes our network application. The network topology is discov-
ered by Ryu’s built-in switches component, while host detection occurs by a simple MAC
learning procedure in our application.

Our application is OpenFlow 1.1+ [104] compatible, since it depends on the Fast-
Failover Group Tables to perform the switchover to backup paths. Tests have been per-
formed using OpenFlow 1.3 [129] which is considered the current stable version of Open-
Flow.
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(a) The disjoint paths from H1 to H2 do not instruct node C how to handle the link failure.

Figure 5.13: Disjoint paths and labels used in forwarding.

We have used the NetworkX package [130] to perform graph creation from the
learned network topology and also used it to perform further graph manipulations and
computations. We have extended the NetworkX package in the following ways:

• Cleaned up the shortest path algorithms

• Extended and standardized the (Queued) implementation of the Bellman-Ford
shortest-paths algorithm

• Implemented Bhandari’s disjoint-paths algorithm

• Implemented our failure-disjoint approach

The application configures the network according to our protection scheme, enabling
it to circumvent link or node failures independent of (slow) controller intervention. Af-
ter the controller is notified of an occurred failure, it reapplies the protection scheme to
the new network topology, reestablishing protection from future topology failure where
possible. Reconfiguration occurs without traffic interruption using a Flow entry update
strategy as explained in [105]. Our additions to NetworkX are contributed to its source
code repository. Our open-source OpenFlow controller is published on our GitHub web-
page [131].

5.6. RELATED WORK
Disjoint paths, as depicted in figure 5.13a, are often used to preprogram alternative paths
for when the primary path of a network connections breaks. A simple and intuitive ap-
proach for finding such disjoint paths is by using Dijkstra’s algorithm [56] iteratively
[120]. At each iteration, all of the links constituting the earlier {x}1≤x<k disjoint paths
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(b) Using disjoint paths, the link failure of lcd can only be omitted through crank back routing.

Figure 5.13: Disjoint paths and labels used in forwarding.

are removed from the network (temporarily) before Dijkstra’s algorithm [56] is used for
finding the k-th disjoint path. However, this iterative approach is but a heuristic and
thus cannot always return the optimal solution even when it exists (e.g., in the presence
of trap topologies [120]).

Suurballe [118] proposes an iterative scheme for finding k one-to-one disjoint paths.
At each iteration, the network is (temporarily) transformed into an equivalent network
such that the network has non-negative link weights and zero-weight links on the links
of the shortest paths tree rooted at the source node. Dijkstra’s algorithm can then be
applied for finding the k-th disjoint path from the knowledge of the earlier {x}1≤x<k dis-
joint paths. Bhandari [132] later proposed a simplification of Suurballe’s algorithm by
an iterative scheme for finding the k-th one-to-one disjoint path from the optimal solu-
tion of the {x}1≤x<k disjoint paths. At each iteration, the direction and algebraic sign of
the link weight is reversed for each link of the {x}1≤x<k disjoint paths. The network can
thus contain negative link weights. A modified Dijkstra’s algorithm [132] or the Bellman-
Ford algorithm [47][123], both usable in networks with negative link weights, can then
be applied for finding the k-th disjoint path.

Both Suurballe’s algorithm and Bhandari’s algorithm need to be repeated |N |(|N |−1)
times for finding k disjoint paths between each possible node pair, since both algorithms
return only the one-to-one directed min-sum disjoint paths between two given nodes.
The Suurballe-Tarjan algorithm [119] has reduced worst-case time complexity for find-
ing k = 2 disjoint paths from one source to all possible node pairs. The Suurballe-Tarjan
algorithm also uses the equivalent network transformation of the Suurballe algorithm to
ensure that the network contains no negative link weights in each run of the Dijkstra’s
algorithm.
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One of the disadvantages of using disjoint-paths based protection is that the traffic
needs to be transmitted again from the source node using the backup path whenever the
primary path fails. For example, figure 5.13a shows that even when node C detects the
failure of link (C ,D), node C has no means of rerouting the packets intended for node
H2 as it is not aware of the backup path. The only way to resolve this matter is to rely
on crankback routing as depicted in figure 5.13b. Crankback routing, as may be evident
from the picture, implies a high network overhead. On the other hand, our proposed al-
gorithms enable traffic to be rerouted directly at the current node whenever its adjacent
link or node fails, thus saving time and network resources.

There are also algorithms that propose protection schemes based on (un)directed
disjoint trees, e.g., the Roskind-Tarjan algorithm [133] or the Medard-Finn-BarryGallager
algorithm [134]. The Roskind-Tarjan algorithm finds k all-to-all undirected min-sum
disjoint trees, while the Medard-Finn-Barry-Gallager algorithm finds a pair of one-to-all
directed min-sum disjoint trees that can share links in the reverse direction. Contrary to
our work, their resulting end-to-end paths can often be unnecessarily long, which may
lead to higher failure probabilities and higher network operation costs.

A more extensive overview of disjoint paths algorithms is presented in [117], an
overview of SDN-specific related work in topology recovery mechanisms is presented
in chapter 4, a survey on disaster-resiliency in SDNs is given in[135].

In terms of work related to configuration computation Software-Defined Networks,
Capone et al. [136] derive and compute an MILP formulation for preplanning recov-
ery paths including QoS metrics. Their approach relies heavily on crankback routing,
which results in long backup paths and redundant usage of links compared to our ap-
proach. Their follow-up work SPIDER [137] implements the respective failure rerouting
mechanism using MPLS tags. The system relies heavily on OpenState [138] to perform
customized failure detection and data plane switching, making it incompatible with ex-
isting networks and available hardware switches. Furthermore, the system does not dis-
tinguish between link and node failures as our approach does.

IBSDN [139] achieves robustness through running a centralized controller in parallel
with a distributed routing protocol. Initially, all traffic is forwarded according to the con-
troller’s configuration. Switches revert to the path determined by the traditional routing
protocol once a link is detected to be down. The authors omit crankback paths through
crankback detection using a custom local monitoring agent. The proposed system is
both elegant and simple, though does require customized hardware, since switches need
to connect to a central controller, run a routing protocol, and implement a local agent
to perform crankback detection. Moreover, the time it takes the routing protocol to
converge to the post-failure situation may be long and cannot outpace a preconfigured
backup plan.

Braun et al. [140] apply the concept of Loop-Free Alternates (LFA) from IP networks
to SDNs, where nodes are preprogrammed with single-link backup rules when not cre-
ating loops. Through applying an alternative loop-detection method more backup paths
are found than using traditional LFA, although full protection requires topological adap-
tations.
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5.7. CONCLUSION
In this chapter we have derived, implemented and evaluated algorithms for computing
an all-to-all network forwarding configuration capable of circumventing link and node
failures. Our algorithms compute forwarding rules that include failure-disjoint backup
paths offering preprogrammed protection from future topology failures. Through packet
labelling we guarantee correct and loop-free detour forwarding. The labeling technique
allows packets to return on primary paths unaffected by the failure and carries informa-
tion used to upgrade link-failures to node-failures when applicable. Furthermore, we
have implemented a proof-of-concept network controller that configures OpenFlow-
based SDN switches according to this approach, showing that these types of failover
techniques can be applied to production networks. Although implemented in Open-
Flow, our method is applicable to all networks in which central controllers have an
equally granular topology overview and the ability to match and add or rewrite proto-
col labels.

Compared to traditional link- or node-disjoint paths, our method shows to have sig-
nificantly shorter primary and backup paths. Furthermore, we observe significantly less
crankback routing when backup paths are activated in our approach. Besides shorter
paths, our approach outperforms traditional disjoint path computations in terms of re-
spectively the needed Flow and Group table configuration entries by factors up to 20 and
1.9. Our approach allows packets that encounter a broken link or node along their path,
to travel the second-to-shortest path to their destination taken from the node where the
link or node failure is detected. We apply Software-Defined Networking, specifically the
OpenFlow protocol, to configure computer networks according to the derived protec-
tion scheme, allowing them to continue functioning without (slow) controller interven-
tion. After the network controller is notified of the link or node failure it reconfigures the
network by applying the protection scheme to its newly established topology, therewith
reassuring protection from future topology failure within reasonable time. For future
work, we suggest researching the protection of multi-link and -node failures as well as
strictly guaranteeing QoS constraints under failure.
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6
GLOBALLY-ACCESIBLE NAMES IN

NAMED DATA NETWORKING

The previous three chapters presented improvements to the field of Software-Defined Net-
working (SDN); in this chapter we take a step aside from SDN and propose improvements
to the field of Information-Centric Networking (ICN). In chapter 7, we will couple the
two fields of ICN and SDN by showing one can implement the first through the latter.
Information-Centric Networking (ICN) paradigms aim at optimizing computer networks
for information distribution. Named Data Networking (NDN) and its implementation
CCNx propose a promising globally implementable ICN. Routing on names, however, may
result in extremely large global routing tables. In this chapter, we propose to confine the
global routing table size by decoupling context-related names, such as domain names,
from names routable within the network. By aggregating routable names to their topolog-
ical location, the size of global routing tables decreases to the number of Autonomous Sys-
tems. Furthermore, mapping context-related names back to location-aggregated names
using a directory service eases the process of sharing information on the ICN. The ro-
bustness of the network is further increased by employing dynamic multihoming without
changing application names. Additionally, we include a prefix-delegation method that
allows Local Area Networks to be automatically configured with such location-aggregated
globally routable names.

This chapter is based on a published paper [141].
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6.1. INTRODUCTION
Host-to-host networks – such as IP networks – are designed to efficiently forward pack-
ets from one host to another over large networks, such as the Internet. However, practice
shows that host-to-host networks are inefficient at distributing content on a large scale,
since data will often duplicately travel along the same links and nodes. Optimizing for in-
formation distribution in IP is difficult due to applications explicitly requesting the net-
work to deliver packets, therefore only enabling optimizations for host-to-host packet
delivery. Lately, much work [142][143][12][11] has been done in creating Information-
Centric Networks (ICNs) that optimize for information distribution instead, by making
the networks more aware of their function as information distributor.

Named Data Networking (NDN) [9] implements an Information-Centric Network by
forwarding packets based on the names of the content they request or carry, instead of
the addresses of their requester and generator. By basing the packet forwarding across
the network on the content name or description, we allow the network to be optimized
for distribution of content. The most straightforward optimization is obtained by de-
livering duplicate requests from caches placed within the shortest paths from client to
server. Duplicate requests can be detected by comparing the names of requested con-
tent to earlier delivered data and providing the results from memory accordingly.

NDN proposes a promising globally implementable Information-Centric Network-
ing technique:

• It is independent of underlying – if any – transport protocols.

• It deploys a clear three-table prefix match and forwarding mechanism, as dis-
cussed in section 6.2.

• It offers new opportunities to Quality of Service and exploitation of multipath
routes.

Unfortunately, NDN also knows problems that need to be solved before a global imple-
mentation becomes feasible:

(1) As described in [143], we need to contain the global routing table size resulting
from name-based forwarding. Currently, over 240 million domain names1 [144], versus
more than 42.000 ASes and 438.000 IP subnets propagated across BGP [145], exist. Given
that the size of the BGP routing tables is already problematic [146], an increase of a factor
550 or more introduced by name-based routing cannot be solved without further aggre-
gation of names.

(2) Another problem is the difficulty for end-users to share information on the net-
work. Currently, sharing information requires configuring the NDN-enabled topology-
discovery mechanism OSPFN [147]. We need a mechanism enabling end-users to dy-
namically access and share information on the ICN without the need to configure
topology-discovery mechanisms.

Where previous research mainly focused on speeding up lookups from the routing
tables using hash tables [148][149], we aim to reduce the size of the problem. We will first

1Excluding the existence of NDN-routable subdomains and subnames.



6.2. NAMED DATA NETWORKING

6

77

describe the basic techniques of NDN in section 6.2, followed by our proposal of decou-
pling context-related names from globally routable names in section 6.3. In section 6.4,
we discuss the implications on naming and topology discovery in the different routing
domains2. Section 6.5 describes our proposed mapping technique and shows that our
implementation realizes such a mapping mechanism for NDN, while maintaining the
NDN features. In section 6.6 we present our implementation, which dynamically gener-
ates aggregated names within LANs. Finally, section 6.7 discusses previous research in
this area.

6.2. NAMED DATA NETWORKING
In this section, we will briefly discuss how Named Data Networking (NDN) [9] and its
implementation CCNx form an Information-Centric Network (ICN) by using a route-by-
name principle. Opposed to source and destination addresses in IP packets, NDN knows
Interest and ContentObject packets identified by names composed of one or more name
components (e.g., Alice could share her photos using the name /alice.eu/photo).
Whenever a client requests information, it sends out an Interest containing a name de-
scribing the desired information. Subsequent nodes forward that Interest hop-by-hop
along the shortest path to the generator responsible for that name until it either reaches
a node that has a cached copy satisfying the description of the Interest, or it reaches
the content generator. The resulting data is encapsulated in a ContentObject and is for-
warded along the exact reverse path back to the requester.

Functionally, each subsequent node maintains three tables:

1. The ContentStore (CS), containing cached copies of previously delivered data.

2. The Pending Interest Table (PIT), in which forwarded Interests and their originat-
ing faces3 are stored.

3. The Forwarding Information Base (FIB), containing forwarding rules based on
names instead of addresses.

Each incoming Interest is first compared to the content of the CS to determine if it can
be fulfilled from cache. If not, the packet is compared to the PIT to prevent duplicate
requests traveling down the network. Finally, the FIB is consulted to determine to which
faces the Interest needs to be forwarded. The Interest and its originating face will be
added to the PIT accordingly. Once an Interest hits a valid copy or a new ContentObject
is generated, the PIT entries are used to forward the resulting ContentObject back to its
original requester.

While IP prefix matches on subsequent bits, NDN prefix matches on subsequent
name components. Each subsequent component adds a more restrictive requirement
to the content (e.g., the name /alice.eu/photo/holidayPhoto prefix matches an In-
terest for /alice.eu/photo, as the requester did not specify the exact photo). Addi-
tional filters regarding the queried content can be added through so-called selectors, in-
cluding minimal and maximal number of name components, exclude filters, publisher

2Inter-domain, intra-domain and local area networks.
3The NDN equivalent of an interface. Besides Ethernet links a face can also include connections with applica-

tions and several other types of connections.

/alice.eu/photo
/alice.eu/photo/holidayPhoto
/alice.eu/photo
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public keys and child selectors (which are especially useful to select for example the first
sequence of frames of a movie or the newest or oldest element from the tree of content).

Ultimately, the queried content is not produced and sent by the publisher at each
and every Interest packet, but delivered from caches and peers scattered through the
network. To verify authenticity of the received information, each ContentObject is cryp-
tographically signed by its publisher who can be identified through a DNS-like first name
component.

6.3. RECURSIVE NAME AGGREGATION
In order to keep the complexity of global routing tables within limits, we will decou-
ple routable names from user-registered context-related names as suggested in [143].
Context-related names are mapped to one or more routable names describing the loca-
tions of the hosts responsible for generating the corresponding content. In this section,
we will propose a structure for the routable names in different routing domains.

(1) Inter-domain routing should be based on single NameComponents describing
the AS to which the generating host belongs. This bounds the size of global routing ta-
bles to the number of ASes in the network4. For example, global routing may occur using
names such as /isp-name.net for providers and /company-name for enterprise com-
panies maintaining their own AS.

(2) By using subnames of the AS-specific name for nodes within an AS network, the
AS only needs to set up node-specific routes internally without affecting global routing
tables. For example, a server within an AS network may be named /isp.net/server1,
which becomes globally accessible since the prefix /isp.net points towards the AS and
the AS will route incoming Interests to the specific node internally. In-network routing
tables will be as complex as they would be in IP networks, as the process of subnaming
conforms to the process of IP subnetting.

(3) Local network nodes may use names aggregating to the name of their modem or
access router as provided by their ISP, which in turn can be used for further subnaming
without affecting the AS its routing tables.

The advantage of a topologically layered naming scheme is the fact that subnets can
be dynamically generated and globally used without affecting the routing tables of the
higher-level networks. NDN advantages – such as caching, multipath routing and the
Strategy layer – are preserved since forwarding is still done based on globally unique
hierarchical names. In section 6.4, we will discuss the implications in terms of naming
and routing discovery for the identified routing domains.

Although the global name complexity can be contained, users prefer to work with
context-related names. In IP, applications use the Domain Name System (DNS) [150] to
translate the authoritative part of a (generally context-related) URL to a location in the
form of an IP address. We, however, propose to use a mapping system similar to the
Location Identifier Separation Protocol (LISP) [151] to have the network map context-
related names to location-based names. Applications base communication and content
retrieval on the context-related names, while networking nodes (such as the host CCNx
daemon or the default gateway) rename Interests and ContentObjects from the context-

4Which, according to [145], is a magnitude of 10 smaller than the current number of propagated IP prefixes.

/isp-name.net
/company-name
/isp.net/server1
/isp.net
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related names to the location-based names and vice versa.

By mapping context-related names to routable names in the network, application
communication takes place independent of the location, the number and the availability
of end-points; in NDN one does not care who delivers the information nor the path it has
taken as long as the delivered information is guaranteed to be authentic.

6.4. NAMING AND DISCOVERY
In this section, we will discuss the naming of entities and how to find them by means of
topology discovery.

6.4.1. INTER-DOMAIN ROUTING

We propose to use AS-bound context-unrelated first name components for inter-domain
routing. The first NameComponent can be either descriptive for the AS (e.g., /isp.
as), contain the Autonomous System Number (e.g., /AS1103) or a variable-length byte-
encoded integer containing the AS Number (as prefix-matching on integers is a less ex-
pensive operation than on strings). If all inter-domain routing is based on these first
name components, the size of global routing tables is upper bounded by the number of
ASes present on the Internet.

In order for ASes to forward and serve NDN traffic, we need to adapt the inter-domain
topology-discovery mechanism BGP [152] to propagate NDN compatibility and name
information. Since the standardization of Multiprotocol Extensions for BGP-4 [153][154],
it is possible to propagate the availability of address families other than IPv4 and IPv6 in
BGP. Narayanan et al. [155] are working on realizing such an implementation by intro-
ducing a new address family supporting NDN names, although they presently do not
consider crossing NDN-incompatible ASes.

De Clercq et al., in RfC 4798 [156], discuss a standard in which IPv6 is tunneled dy-
namically across (IPv6 incapable) IPv4/MPLS networks. NDN needs a mechanism with
properties from both Narayanan et al. and RfC 4798 to realize connectivity across NDN-
incompatible ASes by using dynamically set-up tunnels. Where NDN however does not
know IP-mapped names, we need to find other ways to insert tunnel end-points into the
propagated names5.

6.4.2. INTRA-DOMAIN ROUTING

Nodes within an Autonomous System can, in the location-aggregated naming scheme,
be named at will as long as their name prefix matches the previously discussed AS-bound
name that is globally propagated. Names consisting of concatenating the AS-bound
name and an internally unique router identification, such as /isp.net/routerX, qual-
ify. If an AS knows different layers in which subnetworks are connected it may represent
those in the names of the nodes.

Internal routing discovery needs to occur in order to propagate the availability of
names internally. Popular intra-domain routing discovery mechanisms, such as OSPF

5For example by using a directory service or by assigning AS-specific IP addresses that each AS should run
tunnel end-points on.

/isp.as
/isp.as
/AS1103
/isp.net/routerX
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and IS-IS, need to be adapted to support the new address family introduced by the hier-
archical naming structure of NDN.

OSPFN [147] is an implementation of such an adaptation using OSPF to propagate
available NDN names in a network. By using OSPF’s Opaque LSA options, the developers
of OSPFN have designed a conveniently accessible mechanism taking advantage of an
already existing infrastructure. However, the OSPFN daemon reuses the shortest paths
computed by OSPF on the local Routing Information Base without considering whether
each node within the network is NDN compatible.

We propose a mechanism similar to OSPFN that uses Opaque LSAs to spread NDN
compatibility and names. When considering shortest paths between NDN-compatible
nodes, parts of the path that are NDN-incompatible should either be omitted or crossed
using IP-encapsulated tunnels.

6.4.3. LOCAL AREA NETWORK
We propose to base naming and routing of Local Area Networks (LANs) on the subnames
of the access router (generally a cable- or DSL-modem) by which they are connected to
their ISP. The ISP generates the name of the entrypoint and solves routing in its net-
work, while users can use subnames aggregating to that name to share information from
within the LAN.

Similar to IP’s Dynamic Host Configuration Protocol, we need mechanisms to dy-
namically configure end-user devices and enable them to dynamically retrieve and share
information on the NDN. CCNx-DHCP [157] already fulfils part of that duty by introduc-
ing a server-client model that preconfigures many clients on a network. Unfortunately,
CCNx-DHCP does not enable end-users to also share information on the network. Cur-
rently, a user must propagate his name using OSPFN [147] into the network before it
properly forwards Interests meant for him, which is undesirable. Furthermore, the lo-
cal area network topology discovery usually lies out of the propagation scope of the AS,
which prevents global propagation of the name.

In order to have users fully participate in the NDN6, we propose to deploy a
configuration-free routing discovery mechanism to find the border routers within the
LAN connecting it to the ISP network. The shortest paths to those entrypoints are used
as gateway forwarding rules, while the reverse path is used to form names aggregating
back to the names of the entrypoints. This enables (both consumer and enterprise) Lo-
cal Area Networks to form dynamically without the effort to administrate address ranges
and routing tables. Section 6.6 discusses our proposal and its implementation for recur-
sive name aggregation in LANs.

6.5. MAPPING
An important aspect of our proposal is how mappings between context-related and
location-aggregated names are stored and retrieved. Given the fact that the mapping
or translation of the names needs to occur on-the-fly, a very low time complexity is nec-
essary for a successful implementation.

We propose to use the Domain Name System (DNS) to store mappings between

6Meaning that they can both access and share content dynamically.
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Internet

Client

/Alice.eu

AS1

AS2

AS3

/Alice.eu

/AS3/routerB/Alice.eu

/Alice.eu

/Alice.eu

/AS2/routerA/Alice.eu

AS4

/Alice.eu

/Alice.eu

/AS4/.../Alice.eu

Figure 6.1: Topology containing context-related routable networks connected over a globally routable network
using mapping. Inter-domain forwarding occurs based on the first NameComponent, intra-domain on the
second, while the LAN networks forward based on the context-related names.

context-related and location-aggregated names. Although DNS’s worst-case time com-
plexity is not guaranteed, [158] shows an average response time of 43 ms for conven-
tional DNS compared to 350 ms response time for a peer-to-peer distributed DNS.
Throughout the years, DNS has been used to map domain names to – among others
– IP addresses. Its low response time is supported by the design that each queried DNS
server is authoritative for at least one extra level of the requested name. In general, 3
recursive requests are sufficient to obtain an authoritative answer. We propose to either
extend DNS by adding a new type of record to store NDN mappings, or reuse one of the
generalized service (SRV) or text (TXT) descriptions.

Where IP clients use the address retrieved by DNS to base their networking con-
nections on, we propose a slightly different solution based on LISP-TREE [159] and its
equivalent LISP-DDT [160], both implementations of the Locator/ID Separation Proto-
col (LISP) [161]. In LISP, a subset of the IP address space is used to identify hosts disre-
garding their physical location or local network. Subsequently, Ingress Tunnel Routers
(ITRs) are placed within the physical local networks and receive, encapsulate and for-
ward packets intended for hosts outside of the immediate broadcast range, looking up
their physical location in a (distributed) mapping database. Egress Tunnel Routers
(ETRs) receive those packets, decapsulate them and forward them to the local destina-
tion. Effectively, LISP offers a system where host-related address are decoupled from the
traditional location-based addresses.

Similarly, in our proposal applications base their communication on the context-
related names, while networking instances on either the hosts or gateways near them
translate the Interests to their location-aggregated names7. The renamed Interests are
forwarded accordingly to a host in the network of the content generator who can trans-
late the name back to its original value. Figure 6.1 shows a topology in which a local
network maps the desired context-related name to three globally reachable end-points
that forward the Interests to the responsible nodes.

7Whose values are fetched using DNS.



6

82 6. GLOBALLY-ACCESIBLE NAMES IN NAMED DATA NETWORKING

6.5.1. LOCATION INDEPENDENCE AND DETECTING BROKEN PATHS

By basing the communication protocol between applications on context-related names,
one allows the network to find another path to the content serving the application8 in-
dependent of its location and without interrupting the application data flow.

While IP routing discovery selects the best of all paths to each destination and IP
kernels merely forward packets along these paths, NDN multipath routes may coexist
and Interests can be duplicated and sent along multiple paths. NDN introduces a strat-
egy layer in which the performance of these different routes are evaluated. Based on
this evaluation the forwarding engine can decide to send a larger portion of the Interests
necessary to retrieve the complete file to the route behaving best (in terms of latency,
throughput and packet loss), while maintaining the occasional Interest to monitor the
state of the other routes.

Using our renaming mechanism implementation discussed in subsection 6.5.2, we
enable the strategy layer to balance between the available location-aggregated names –
and thus paths – for any context-related name. Using the strategy layer, broken paths
are detected and omitted without changing the mapping9 or recalculating the network
topology.

6.5.2. CCNX RENAMING IMPLEMENTATION

In this section, we will discuss the details of implementing the described renaming from
context-related names to location-aggregated names in CCNx. As shown in figure 6.2a,
we add a new type of face – the named face – which renames Interests containing
context-related names by appending the location-aggregated name of one of the receiv-
ing end-points to the front of the requested Name. At the receiving node depicted in
figure 6.2b, a similar face removes the location-specific part of the name and forwards
the Interest to the appropriate application or next-hop. As all intermediate names are
stored in the Pending Interest Table with their respective sources, we assure that the re-
turned ContentObject travels the renaming steps in reverse order.

Since each mapping from a context-related name to a location-aggregated name is
expressed in the form of a distinct unique face and a route, multiple faces exist when
multiple mappings are available resulting in a forwarding rule for each mapping. The
CCNx strategy layer chooses the best of these routes – and thus mappings – over time
and reverts to the other route when the path of the primary route breaks. This failover
procedure is shown by experiment in [9]. Our freely available implementation [162] of-
fers a clean and simple mechanism to insert mappings from context-free to location-
aggregated names and back into an NDN. Once an Interest arrives for an unknown
context-related name, the implementation queries the DNS system, which stores the
mappings using TXT-records and creates the renaming faces accordingly. The newly
created named faces are used to rename Interests until they time out due to inactivity
or outlive the TTL stated in DNS.

8By selecting another location-aggregated name by which the serving host can be connected.
9If one or more location-aggregated names for a context-related name do not respond, the strategy layer will

simply disregard those.
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CCNx Daemon: Interest Renaming Process Initiator

Face 0

App

Face 1

Face 2
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Pre�x Face list

/Alice.eu 1

/tudelft.nl 2

Pre�x Req. Faces
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     Alice.eu/Photos 1

(a) Interest Renaming Initiator.

CCNx Daemon: Interest Renaming Process Receiver

Face 0

App

Face 1

Face 2
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Web

Pending Interest Table
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Rename

Original Interest
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Pre�x Face list

/Alice.eu 0
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/Alice.eu/Photos 1

/tudelft.nl/nas/pcAlice/

     Alice.eu/Photos 2

(b) Interest Renaming Receiver.

Figure 6.2: The Interest renaming mechanism. After a ContentStore mismatch, context-related Interests are
forwarded to the appropriate Named Face which re-expresses the Interests with the corresponding location-
aggregated names.
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6.5.3. CONTENTOBJECT SIGNATURE VALIDATION
By renaming the ContentObject (CO) resulting from a successfully delivered Interest, one
invalidates its signature as the signature is partially based on the name. Although the CO
regains its validity when it is renamed to the original name at the initiating node, any
node along the path may check its validity and drop a CO if it is invalid [163].

In order to prevent unjustified dropped COs two possible solutions exist. Currently,
we encapsulate the original (signed) CO in a new CO with the renamed name and sign
accordingly. Using this method the traveling ContentObject lives through signature
checks at any point. The encapsulation of a CO in another CO however renders over-
head. A solution containing less data overhead is to remove signature validation across
the path and make the named faces and connected applications responsible for valida-
tion of the received ContentObjects. To support this feature, we propose to add a new
type of flag to the Interest messages indicating whether the resulting ContentObject’s
signature may or may not be validated during transport.

6.5.4. CCNX DNS IMPLEMENTATION
Since a mapping stored in DNS is a form of content itself, we can use the NDN to effi-
ciently distribute the mappings among interested parties. In order to make DNS suitable
for NDN, we have defined an application specific naming-scheme which describes the
DNS request. The name contains

1. the authority hosting the DNS server: in order to forward the packets to the right
party,

2. the name one wishes to query: the first NameComponent of the context-related
name (e.g. Alice.eu), and

3. (optionally) the type of record one needs (e.g. A-, AAAA-, MX- or NS-records).

The NDN-record for the domain Alice.eu can be obtained by querying a local (recursive)
DNS-server using the name /server.local/dns/Alice.eu/NDN and receiving a result
from that server over the NDN. Using our CCNx DNS client and server extensions [164]
one can extend existing DNS servers and clients with NDN capabilities. Once DNS root
and Top Level Domain servers are also configured to support NDN, the NDN can be used
to query all recursion steps.

6.5.5. EXPERIMENTAL MEASUREMENTS
In order to verify the functionality of our renaming scheme, we have set up a small net-
work containing 4 nodes connected in a straight line giving a diameter of 3 edges. In this
network, we have set up experiments measuring the round-trip-time (RTT) between the
end-hosts using 3600 consequent echo requests, submitting 1 echo request each sec-
ond, and their subsequent replies. We have used ccnping [165] to confirm RTTs over the
plainly routable and renaming NDN network. Although the network is rather small, the
largest additional delay is generated by the two renaming nodes independent of the size
of the network.

Figure 6.3 shows the RTTs for forwarding the packets using (1) a plain CCNx net-
work, (2) a renaming CCNx network not considering signature validity and (3) a renam-

/server.local/dns/Alice.eu/NDN
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Figure 6.3: Measured round-trip-times using Ping echo requests and replies over CCNx and renaming CCNx
networks.

ing CCNx network that guarantees valid signatures by encapsulating signed ContentOb-
jects into new. The RTT averages of respectively 2.338, 5.327 and 9.031 ms show that the
delay overhead by applying renaming in a network equals 2.989 ms while encapsulating
and signing packets adds another 3.704 ms.

We consider the average delay of 2.989 ms to be a feasible penalty compared to the
recurring profits of the decreased routing table sizes. Furthermore, we expect future
optimizations [148][149] on comparing content names and FIB lookups to further de-
crease this delay. Finally, the additional transmission delay introduced by encapsulating
packets supports our proposal from subsection 6.5.3 to disable intermediate signature
validation for renamed packets.

6.6. LOCAL AREA NETWORK IMPLEMENTATION

In this section, we will discuss the details of our LAN prototype implementation [166]
using recursive name aggregation. As discussed in section 6.4, we propose to use the
names of the nodes connecting a LAN to its ISP and use subnames of these names to base
naming on within the network. This enables LANs and their names to form dynamically
without the administration of reserving ranges and setting up forwarding manually. The
shortest paths to all edge routers can be used as default forwarding rules between which
the NDN strategy layer employs heuristics to benefit from the multipath routing rules.
The reverse path vector of hostnames, added to the entrypoint’s base name, dynami-
cally generates a globally unique routable name for each node in the LAN as shown in
figure 6.4. Where intra- and inter-AS routing delivers Interests meant for the LAN to the
LAN edge routers, the routers within the LAN set up correct rules to forward Interests
internally.
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/ISP-A.net/routerBob
/ISP-B.net/routerBob2

XBOX TV

WirelessHotspot

PC

Camera

ISP-A.net ISP-B.net

Figure 6.4: An example LAN, in which the photos on the camera can be shared by both the names /ISP-A.
net/routerBob/PC/Camera and /ISP-B.net/routerBob2/TV/Camera. By following the shortest paths
from the camera to the entrypoints /ISP-A.net/routerBob and /ISP-B.net/routerBob2 and appending
the reverse path vector of hostnames to the entrypoint names, the globally unique location-aggregated names
are generated.

6.6.1. PROPAGATION
In order to fulfill the propagation of available routes and names, our prototype routing
discovery application [166] employs a path vector routing mechanism exchanging mes-
sages containing the following properties for each possible route:

• The originating LAN edge router, called entrypoint, to identify multiple
entrypoints and multipath routes.

• The route one can offer: either a gateway route, a specific route or the aggregation
base name (to ensure one can reach all nodes within its own LAN).

• The cumulative cost of the offered route.

• The path vector to the entrypoint, which can be used for both naming and loop
detection.

• A Boolean indicating whether aggregation upon the offered route is permitted.

When a node enters the network, it broadcasts a discovery message on all its interfaces
indicating that it is new and needs to receive all possible routes neighboring nodes are
willing to forward. It receives a set of routes containing the previously discussed prop-
erties from each neighboring node. From the received sets, the new node selects the
optimal subset of routes it will use based on cost and path vector, including multipath
routes that are identified based on the originating entrypoint. The node requests the us-
age of the selected routes from the neighbors in question, which will set up the necessary
forwarding and acknowledge thereafter.

/ISP-A.net/routerBob/PC/Camera
/ISP-A.net/routerBob/PC/Camera
/ISP-B.net/routerBob2/TV/Camera
/ISP-A.net/routerBob
/ISP-B.net/routerBob2
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At this point the new peer has established its state within the network and may of-
fer forwarding and aggregated names to even newer peers recursively. The end-user can
start sharing content globally using the received location-aggregated names and may
register the names at a mapping service as discussed in section 6.5 to publish informa-
tion using context-related names.

6.7. RELATED WORK
The idea of name aggregation was first proposed in a technical report [143], where it
is referred to as ISP-based aggregation. In this chapter we have further enhanced this
aggregation by applying a recursive extension of names when one descends into the
network, as well as proposing dynamic generation of those names in Local Area Net-
works. Where the report proposes to have the PC’s themselves map “pretty” names into
ISP-based names in an early phase, we propose to use a late binding of identifiers as
implemented in the Locator/Identifier Separation Protocol [151].

The NDN name conventions [167] only state that names have to be hierarchical in
nature. Stricter conventions are solely enforced by the applications or institutions using
NDN. Only in the case of globally reachable names, a name should be globally unique
and its first name component should be a “DNS name”. Further name conventions re-
gard markers such as version timestamps and segment numbers which do not influence
routing as they are appended to the end of a name.

Since our proposal contains first name components that can be registered for both
context-related as location-aggregated names10, both can be inserted into the DNS sys-
tem and used accordingly. Furthermore, [9] and [167] state that the DNS may be used for
looking up IP tunnel endpoints, which can be used to bridge NDN-incompatible nodes
and ASes.

Finally, recent research has been done in the area of speeding up NDN table lookups
[148][149].

6.8. CONCLUSION
In this chapter, we have proposed to decouple context-related NDN names from
routable names. By using routable names aggregating to Autonomous Systems and their
internal structure, the size of global routing tables becomes upper bounded by the num-
ber of ASes in a system. By using a LISP-style late binding of context-related names to
location-aggregated names using the DNS directory service, we enable applications to
communicate based on context-related names. Our implementation of mapping and
renaming context describing names to routable names, enables the NDN strategy layer
to facilitate multipath routes and multihomed applications.

10Both domain names and ASNs already need to be registered at the appropriate administration organizations.
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INFORMATION-CENTRIC

NETWORKING

The previous chapter presented the field of Information-Centric Networking (ICN) and fo-
cused on the Named Data Networking (NDN) paradigm. In this chapter, we couple ICN to
the field of Software-Defined Networking (SDN). The biggest problem with new network-
layer forwarding schemes, such as CCNx, is that the use of IP is so prevalent that it is dif-
ficult to actually implement new technologies in existing networks. The biggest problem
in upgrading a network to support new forwarding mechanisms is that all networking
devices must be upgraded or replaced before full connectivity can take place. However,
upgrading all network devices at once is expensive and unlikely to occur at any ISP. Evi-
dence of this can be found in the long transition period from IPv4 to IPv6 and its many,
many transition mechanisms delivering intermediate connectivity in not-fully upgraded
networks, but also adding even more configuration complexity.

In this chapter we show that ICNs, and other non-IP forwarding schemes for that matter,
can be deployed using SDN as a lever to ease the installation, configuration and transition
process in a fundamentally sound way. As a proof of concept, we introduce NDNFlow,
an open-source software implementation of a Named Data Networking based forwarding
scheme in OpenFlow-controlled SDNs. By setting up an application-specific communica-
tion channel and controller layer parallel to the application-agnostic OpenFlow protocol,
we obtain a mechanism to deploy specific optimizations into a network without requiring
a full network upgrade or OpenFlow protocol change. Our open-source software imple-
mentation consists of both an NDN-specific controller module and an NDN client plug-
in. NDNFlow allows OpenFlow networks with NDN capabilities to exploit the benefits of
NDN, enabling the use of intermediate caches, identifying flows of content and eventually
performing traffic engineering based on these principles.

This chapter is based on a published paper [168].
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7.1. INTRODUCTION
Recently, Software-Defined Networking (SDN) has gained the interest of both research
and industry. For research, SDN opens up the possibility to implement optimizations
that previously were theoretical in nature due to implementation complexity. For in-
dustry, SDN delivers a way to dynamically monitor and control the network beyond the
capabilities of self-organized distributed traffic engineering and failover mechanisms.

OpenFlow [68] is often considered to be the de facto standard to implement SDN.
Other emerging future internet architectures, such as Information-Centric Networking
(ICN), introduce application-specific forwarding schemes. In particular, we believe that
SDN and ICN can benefit from each other. SDNs can benefit from the power of caching
from ICNs and in general need to be able to quickly adapt to new application-specific
forwarding schemes, such as ICNs. ICNs, on the other hand, greatly benefit if they can
be adopted with little effort by already existing SDNs. Furthermore, the benefits of SDN
to IP, being greater management control and monitoring over the network, also apply
to ICNs. Finally, ICNs benefit from SDNs as they can efficiently distribute content in
partially upgraded networks, removing the necessity to upgrade the full network and
thus easing the deployment and transition phase.

In this chapter, we discuss our experiences in setting up an SDN for the application-
specific forwarding mechanism of Named Data Networking (NDN) [9], a popular ICN
implementation. Although this chapter is dedicated to setting up an SDN-supported
ICN, our experiences and decisions also apply to other forwarding mechanisms that may
emerge.

In section 6.2 of the previous chapter, we have already explained the functionality
of the ICN implementation NDN. In section 7.2, we present related work and our two
initial proposals towards application-specific SDNs and reasons why we think these ap-
proaches are infeasible for standardization. Section 7.3 proposes our mechanism in
which we have divided the SDN in two layers: the regular OpenFlow layer based on
traditional forwarding mechanisms, supplemented with an application-specific layer.
Section 7.4 presents the exact details of our implementation. Section 7.5 presents ex-
perimental measurements performed on NDNFlow. Finally, section 7.6 concludes this
chapter.

7.2. RELATED WORK
In order to use SDN and OpenFlow to set up ICN networks, we have evaluated multiple
techniques before coming to our final proposal in section 7.3. In this section, we discuss
previous initiatives and parts of our early work and argue why we think these are not
feasible for standardization.

A straightforward way to implement ICN using SDNs is to implement ICN function-
ality into the Open vSwitch specification and enhance the OpenFlow protocol to support
ICN names, as suggested in [169]. We, however, think the joint maturing of both ICN pro-
tocols and the OpenFlow protocol will increase the complexity of realizing a stable stan-
dardization of OpenFlow that supports both regular IP/Ethernet forwarding and ICN. As
[141] shows, the concept of naming in NDN is, among others, still subject to further op-
timization to decrease routing table size and thereby increase the forwarding efficiency.
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Given that the standardization of OpenFlow for regular packet forwarding is already a
complex task, chances that standardization will include application-specific forwarding
schemes are small.

Even if standardization would include an ICN protocol, we foresee a rise in
application-specific forwarding schemes in general to optimize the Internet for the most
frequently used applications. One application-specific adaptation of OpenFlow, or any
SDN paradigm for that matter, would exclude other application-specific
forwarding schemes facing identical problems. Therefore, we propose to use a more
generic approach of implementing application-specific forwarding schemes that can be
used by several application forwarding schemes.

Both [170] and [171] propose to reuse IP’s address and port fields to contain hashes
of content names in order to allow OpenFlow switches to forward Interests to an Open-
Flow controller that performs path calculation. Where [170] uses additional IP-options
to indicate ICN packets, [171] remains agnostic to how ICN packets are distinguished
from regular IP packets. We argue that this approach leads to an excessive increase in IP
routing table complexity.

Similarly, we at first intended to wrap or encapsulate ICN streams in IP packets con-
taining a reserved IP anycast address to allow fine-grained control beyond the scope of
ICN-capable switches. We found this method to be less trivial than it appears. Where
CCNx is already capable of performing UDP over IP encapsulation, it uses static ports
for each connection, disabling a switch to differentiate between different flows. As the
CCNx application is OpenFlow unaware by nature, changing it by generating different
tuples of source IP address and the 4 bytes of the UDP source and destination ports im-
plied a drastic change to the internal functions of the CCNx daemon. More generically,
forcing developers to create port tuples in such a specific way in order to benefit from
SDN functionality is in contrast with the open philosophy of SDN. Furthermore, Open-
Flow switches may not send the complete incoming CCNx packet to the controller, they
may apply buffering to recreate the original message when necessary, but instead might
only forward the first part of the message. This implies possibly losing parts of the ICN
name, information necessary for the ICN controller to perform path computation.

Finally, P4 [172] and POF [173] respectively implement a packet processor descrip-
tion language and forwarding architecture design to allow protocol-oblivious forward-
ing, work resulting in the ONF OF-PI proposal [174]. However, P4 implements static
field sizes, rendering it unsuitable for use with the CCNx implementation, which car-
ries a variable number of variable-sized name components. Furthermore, while using{
offset, length

}
search keys as proposed in POF may work, we consider the complexity of

rewriting all abstract comparisons and functions to bit-wise operators too tedious.

7.3. NDNFLOW
Given that neither extending the OpenFlow protocol for application-specific forwarding
schemes nor using application-specific IP broadcast addresses to distinguish ICN traf-
fic from regular IP traffic is feasible, NDNFlow introduces a second application-specific
layer to OpenFlow. NDNFlow implements a separate communication channel and con-
troller module parallel to the already existing OpenFlow communication channel and
process.
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OF Controller

Interest

ICN Module

(a) Step 1, local NDN daemon receives an unassociated Interest and forwards this Interest to the ICN module
of the OpenFlow Controller.

OF Controller

Interest

ICN Module

Content

(b) Step 2, with the knowledge on topology and ICN capabilities, the ICN module computes a feasible path and
configures the appropriate ICN-enabled switches accordingly.

OF Controller

Interest

ICN Module

Content

(c) Step 3, the ICN module instructs the legacy OpenFlow controller to configure the necessary IP/Ethernet
rules on all intermediate OpenFlow enabled switches.

Figure 7.1: An overview of the steps necessary to configure an ICN flow over an OpenFlow-enabled network.
All switches are OpenFlow capable, doubly-circled nodes additionally have ICN capabilities.
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In this application-specific layer, all communication and path computation regard-
ing the ICN are handled separately from the regular IP and Ethernet plane. By separating
the ICN layer from the regular OpenFlow layer, we introduce SDN functionality indepen-
dent of changes and restrictions in the standardization of the OpenFlow protocol. This
prevents inter-dependencies on versions of protocols, easing the deployment and future
maintenance. As shown in figure 7.1, switches that are ICN enabled set up a communi-
cation channel, parallel to their regular OpenFlow communication channel, to the ICN
module of the OpenFlow controller. This ICN channel is then used to announce ICN
capabilities, information availability and requests for unreserved flows. The controller’s
ICN module computes paths for ICN flows, and configures both the ICN capable and
legacy IP and Ethernet switching fabric to allow ICN flows to pass through the network.
Hence, we introduce a separate SDN control mechanism for the application-specific OSI
Layers 5 to 7 (ICN), independent from OSI Layers 2 to 4, reusing the separation of layer
responsibilities to maintain overall network manageability.

Where ICN-enabled switches receive ICN-specific flows directly, flows between ICN-
enabled switches that are initially unreachable due to intermediate legacy IP and Eth-
ernet switches are realized by setting up IP-encapsulated tunnels. The legacy switches
are configured by the legacy OpenFlow controller to forward those tunnels accordingly.
Hence, the configuration procedure consists of 3 steps shown in figure 7.1, where a
doubly-circled node represents a switch capable of both ICN and OpenFlow.

Due to the fact that both the ICN-enabled switches and the ICN controller module
are aware of the specifics of the ICN forwarding mechanism, they have equal under-
standing of an ICN flow and its details. Furthermore, their communication protocol can
be extended to contain flow-specific parameters, such as the needed bandwidth and the
expected duration of a flow, without changing the OpenFlow protocol.

7.4. IMPLEMENTATION

Our software currently runs on general-purpose x64-architecture servers running
Ubuntu Server. On these servers, we have installed stock Open vSwitch 2.0.2 [77] to
enable configuration of operation by the OpenFlow protocol. In addition, we enable
switches with ICN capabilities by installing the CCNx daemon [175], the open-source
implementation of NDN.

7.4.1. OPENFLOW CONTROLLER IMPLEMENTATION

In order to implement our proposal, we have extended the POX (branch betta) controller
[70] by designing an additional custom ICN module. We use the native POX Discovery
module to perform topology discovery and learn a switch adjacency matrix. We reuse the
OpenNetMon forwarding module designed in chapter 3 to perform legacy path compu-
tation and enable end-to-end IP forwarding. Additionally OpenNetMon may be used to
perform fine-grained monitoring of flows. Finally, we implement a CCNx-specific plug-
in that is added to communicate with ICN-enabled switches and perform ICN-specific
path computations. The implementation of NDNFlow is published open source and can
be found at our GitHub web page [176].
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7.4.2. CCNX DAEMON IMPLEMENTATION
The CCNx daemon is extended by implementing an additional SDN plug-in, which sets
up a connection to the POX ICN module, parallel to Open vSwitch’s regular OpenFlow
connection, and announces its ICN capabilities, capacity and information availability.
The extension is realized similarly to our plug-in solving global NDN routing table com-
plexity [141]. Whenever a CCNx daemon receives an Interest for which no flow or pre-
viously defined forwarding rule exists, it forwards this Interest to the POX ICN module.
In turn, the POX ICN module looks up the appropriate location or exit-point of that In-
terest, calculates the appropriate path based on the topology information learned from
the discovery module and announcements from CCNx-enabled switches and configures
the intermediate NDN nodes accordingly. Finally, the Open vSwitch is configured by the
controller as shown in figure 7.1.

7.4.3. PROTOCOL IMPLEMENTATION
We chose to use the JavaScript Object Notation (JSON) to facilitate communication be-
tween the CCNx and SDN module due to its generic implementation and high support
in different programming languages. Currently, we implement the following abstract
messages to support our actions.

Announce{
DPID : <DataPathID > ,
IP : <InetAddress >

}

The Announce message is used by nodes to propagate their ICN abilities. More precisely
they state where they are connected in the OpenFlow network using the unique Data-
path ID (DPID) of the switch, and how the ICN functions can be accessed by IP.

AvailableContent {
Content : [

<(ContentName) Name> : {
Cost : <Integer > ,
P r i o r i t y : < Integer >

}
]

}

After authentication, the ICN-enabled switch propagates the information it has access
to using the AvailableContent message. Each item can be stored locally or accessed else-
where, for example via a network outside of the scope of the SDN, and additional costs
can be added which are taken into account by routing discovery. Absolute backup repli-
cas, which are only to be accessed when the primary replicas are unavailable, can be
announced by increasing the value of the Priority field. Hence, robustness can easily be
implemented by placing redundant copies of information across the network.

IncomingInterest {
Name : <ContentName>

}
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Figure 7.2: Baseline measurements using CCNx over regular IP and OVS.

The IncomingInterest message is used by the CCNx module to request the controller
what action to perform with unmatched incoming and following Interests.

Instal lFlow {
name : <ContentName> ,
action : <FaceType > ,
actionParams : [ <params>]

}

After computing the appropriate actions, the controller issues an InstallFlow message
to all the switches along the path to install the correct forwarding rules, reducing the
original interest name to match the name prefix of a complete flow or segmented piece
of information. The FaceType and action parameters can be used to configure flow-
specific parameters. Among others, we use them to set up IP-encapsulated tunnels be-
tween ICN nodes that are separated by one or more ICN-incapable switches to enable
flow exchange between them.

7.5. EXPERIMENTAL EVALUATION
In this section, we will first discuss our experimental setup and the used measurement
techniques, followed by the conducted experiments and results.

7.5.1. TESTBED ENVIRONMENT
We have conducted our experiments on a testbed of physical, general-purpose, servers
all having a 64-bit Quad-Core Intel Xeon CPU running at 3.00 GHz with 4.00 GB of main
memory and 1 Gbps networking interfaces. OpenFlow switch functionality is realized
using the Open vSwitch 2.0.2 software switch implementation, Named Data Networking
functionality by installing CCNx 0.8.2, both running in parallel on Ubuntu Server 14.04.1
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Figure 7.3: Measured delay of CCNx path setup in pro- and reactive configuration.

LTS with GNU/Linux kernel version 3.13.0-29-generic. The CCNx is connected to Open
vSwitch via a socket to the internal bridge interface to realize connectivity, hence data is
forwarded to and from CCNx through the OpenFlow LOCAL port.

Throughout, we use a 2-switch topology on which the discussed switching fabric and
additional plug-ins from section 7.4 are configured. A third server is configured as con-
troller using the POX controller and modules discussed in section 7.4.

In order to measure the delay time between requesting and receiving content we use
ccnping [165], an NDN alternative to the popular application ping that can be used to
confirm connectivity and measure round-trip times in classical IP networks. Similar to
ping, ccnping sends an Interest per interval to a given destination prefix concatenated
with a random value. When sending, ccnping stores the timestamp of creation and com-
putes the round-trip time (RTT) upon arrival of the appropriate ContentObject. The
ccnping server and client are installed on the 2 switches and connect to the CCNx switch
fabric using the application interface.

7.5.2. EXPERIMENTS AND RESULTS
Using the described testbed and tools, we have performed 4 types of experiments to
evaluate the suitability and stability of NDNFlow. In our experiments, we differentiate
between the proactive and reactive SDN approaches in which flows are respectively con-
figured in advance, or on-the-fly. As the decision between proactive and reactive config-
uration can be made independent for both the CCNx and OVS-specific forwarding fabric,
we perform the following 4 experiments: (1) We determine a baseline by measuring RTTs
using a statically configured CCNx over classic IP. (2) We determine the overhead of Open
vSwitch and the NDNFlow CCNx-plug-in by measuring RTTs in a proactively configured
CCNx and Open vSwitch network. Since the biggest difference between proactive and re-
active configuration lies within the delay of setting up the flow (measurable by the delay
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Figure 7.4: Delay averages and 95% confidence interval.

of the first packet), we continue measuring the delay of the first packet of every new flow
with a reactive configuration of CCNx in both a (3) proactive and (4) reactive configured
OVS network.

While experiment (3) measures the delay incurred by computing and configuring the
path of the content flow, (4) measures the delay incurred by additionally configuring the
legacy IP part of the OpenFlow network. We measured 10,000 samples for each configu-
ration.

Figure 7.2 shows the results for (1) and (2), while figure 7.3 shows the results for (3)
and (4). Figure 7.4 shows the relative averages and 95% confidence interval, giving: (1)
a baseline of 1.534±0.101 ms for CCNx over IP networks, (2) 1.834±0.115 ms for a fully
proactive configuration of CCNx and OVS, and (3, 4) 64.006±5.028 and 304.630±34.191
ms for a reactive NDNFlow configuration in a proactive and reactive OVS configuration,
respectively, to determine the additional costs of configuring the content flows in CCNx
and OVS.

The measured values show that, on average, OVS adds an additional delay of 0.300
ms, while configuring a new content flow using NDNFlow costs an additional 62.172 ms
at the CCNx daemon and another 240.624 ms at the OVS daemon. Although setting up
new flows can be considered costly, the additional delay only applies to the first packet
of a new flow. Once a flow has been installed, the delays of experiment (2) apply. Using
a completely proactive configuration would remove the additional delay of methods (3)
and (4) altogether, though at the cost of losing the flexibility of computing flow-specific
paths.
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7.6. CONCLUSION
In this chapter, we have presented and designed a mechanism and implemented a proto-
type to realize application-specific forwarding schemes in OpenFlow-controlled
Software-Defined Networks (SDNs). Specifically, we have implemented a popular
Information-Centric Networking proposal, Named Data Networking and its implemen-
tation CCNx. Compared to other application-specific SDN implementations, we argue
that our implementation is architecturally less complex to implement, easier to extend
and furthermore applicable to multiple application-specific forwarding schemes due to
the stricter separation of functionalities. With this implementation, we provide the tools
to control and manage application-specific flows in SDNs.



8
DNSSEC MISCONFIGURATIONS

The former chapters mainly focused on improving on-going work. In this chapter, we eval-
uate an Internet Architecture improvement that has already been implemented, the Do-
main Name System Security Extensions (DNSSEC). The Domain Name System (DNS) is a
crucial technology for the functioning of the Internet as it enables communication using
domain names that are easier to remember than numerical IP addresses. The popularity of
this mapping system is explained by the use of Fully Qualified Domain Names (FQDNs) as
the primary component of URLs with which all Internet users identify websites. DNSSEC
offers protection against spoofing of DNS data by providing origin authentication, ensur-
ing data integrity and authentication of non-existence by using public-key cryptography.
Although the relevance of securing a technology as crucial to the Internet as DNS is ob-
vious, the DNSSEC implementation increases the complexity of the deployed DNS infras-
tructure, which frequently results in misconfiguration. Furthermore, similar transition
problems apply to DNSSEC as to the network layer discussed in previous chapter, where
one party relies on other parties to also configure DNSSEC correctly for correct functioning
of the system.

In this chapter, we provide insight into the level of implementation and correctness of
DNSSEC implementation. To do this, we measure and analyze the misconfigurations for
domains in six zones (.bg, .br, .co, .com, .nl and .se). Furthermore, we categorize these
misconfigurations and provide an explanation for their possible causes. We evaluate the
effects of misconfigurations on the reachability of a zone’s network. Finally, we research
common denominators responsible for misconfiguration.

This chapter is based on a published conference paper [177] and extended journal article [178].
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8.1. INTRODUCTION
The Domain Name System (DNS) [179] is a crucial technology for the functioning of the
Internet as it enables communication using domain names that are easier to remember
than numerical IP addresses. Among others, DNS maps human-readable hostnames to
IP addresses and provides a distributed database from which users can request these
mappings. The popularity of this mapping system is explained by the use of Fully Quali-
fied Domain Names (FQDNs) as the primary component of URLs with which all Internet
users identify websites.

The importance of DNS lies in the fact that it is not only useful to end users, but that
it is also essential to several other core network technologies [180], such as telephone
number mapping (ENUM), SIP, email, spam filtering and Microsoft’s Active Directory for
Windows. However, even though DNS is one of the fundamental building blocks of the
Internet, its original design from 1983 focused on scalability and did not include security
considerations. Even as early as 1990, the first flaws in the DNS were detected and the
need for protection was discussed [181]. The Domain Name System Security Extensions
(DNSSEC) were published in 1997 and their refinement in 2005 [182].

DNSSEC, in a broad sense, offers protection against illegitimately falsifying data
stored in the DNS by providing origin authentication, ensuring integrity and authenti-
cation of non-existence. To make sure that the user receives authentic replies, DNSSEC
deploys cryptographic keys. With private keys, digital signatures are generated for re-
sources which can be verified by their public counterparts.

8.1.1. MOTIVATION AND PROBLEM DEFINITION
At the time of writing, there are 115,807,705 .com domains that are configured within
name servers, of which 422,037 are signed [183]. For DNSSEC to work as intended, de-
ployment has to span all levels of the DNS architecture. Adoption by all involved actors
in the DNS resolution process is therefore essential for success. One big step was taken
in July 2010 when the DNS root zone was signed [184]. Since then, resolvers are enabled
to configure the root zone as a trusted anchor which allows the validation of the com-
plete chain of trust for the first time. Nevertheless, even though 84% of existing domains
could already be using DNSSEC, as more and more Top Level Domains (TLD) are being
signed, less than 1% of authoritative domain name servers have implemented it [185].
Most commonly mentioned causes for this small percentage are:

• the implementation of DNSSEC increases the complexity for the management of
the deployed DNS infrastructure,

• a misconfiguration might result in Internet users being unable to reach the pro-
tected network [186].

The effects of misconfiguration were very recently made apparent, when a new service
from a major television network was unreachable by a significant number of end users
due to DNSSEC misconfiguration. Furthermore, the television network resolved the
problem by completely disabling DNSSEC authentication for their zone [187]. These
types of failures and resulting unreachability of services are not rare incidents, but ap-
pear quite often [188]. In fact, there is an IETF Internet-Draft working on clarifying the
authoritative domain’s responsibility towards a correct DNSSEC configuration [189].
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Besides authoritative domains, DNSSEC validation failures have also been reported
for complete TLDs [190]. Such problems may occur more frequently when a new group
of TLDs (up to 1400) [191] start rolling out within the next few years, since all of them
must implement DNSSEC and misconfigurations of the zone files of domains could po-
tentially hide them from the Internet.

Despite the importance of the stated problem, there does not exist sufficient infor-
mation on the current status of DNSSEC deployed zones. Therefore, in this chapter, we
measure the status of several DNSSEC-enabled production zones measuring both the
level of DNSSEC implementation and the correctness of DNSSEC configuration. We be-
lieve that conducting experimental research on DNSSEC is of great value but, in order to
get deeper insights, it should also be complemented with an analysis of the most com-
mon problems DNSSEC is experiencing in day-to-day production environments. Per-
forming an analysis on real production data from operational zones brings a better un-
derstanding on the current status of DNSSEC deployment. Moreover, it also helps to
define the biggest challenges that need to be overcome for this technology to succeed.

8.1.2. OUTLINE

The chapter is organized as follows. Section 8.2 summarizes the internal workings of
DNS. Section 8.3 presents related work to misconfigurations, measurements and high-
lights proposed methods and shortcomings in DNSSEC. In section 8.4 the used mea-
surement tools are presented, while section 8.5 discusses the performed “top-down” and
“bottom-up” measurement scenarios.

First, section 8.7 presents and analyzes the results of the top-down measurement sce-
nario containing .bg, .br, .co and .se domains. The domains are, among others, chosen
as they are browsable through zone walking1. Furthermore, the .se zone draws impor-
tance for analysis as it was the first DNSSEC signed zone [192] in 2005, 5 years prior to
the root domain, hence a high implementation is expected. Similarly, .co is also popular
for commercial host names, the zone .br has one of the largest DNS registries in South
America, while the .bg domain has signed its zone more recently.

Afterwards, section 8.6 presents and analyzes the results from the bottom-up verifi-
cation approach on a larger dataset containing .bg, .br, .co, .com, .nl and .se domains.
Where the former 4 domains are included for means of comparison, .nl and .com are
added for respectively having the highest implementation of DNSSEC-enabled domains
[193] and being the largest TLD available. A conclusion is drawn in section 8.8.

8.2. DNS AND DNSSEC

In this section, we summarize the functions and internal organization of the Domain
Name System (DNS) and its Security Extensions (DNSSEC). In subsection 8.2.1 we dis-
cuss how DNS implements a distributed lookup directory. Subsection 8.2.2 discusses the
most relevant extensions and possible errors in configuring DNSSEC.
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Figure 8.1: A tree depicting the hierarchical distributed nature of DNS names and their location in the dis-
tributed database.

8.2.1. DNS
The Domain Name System (DNS), first standardized in 1983 [179], primarily offers a dis-
tributed database storing typed values by name. Each record is called a resource record
(RR), often shortly referred to as “record”, containing the following ordered properties:

• The name of the record.

• The type of the record. Popular records include, the A-, AAAA-, MX-, CNAME- and
SPF-records, respectively storing an IPv4 address, IPv6 address, the responsible
mail exchange hostname for that domain, an alias referring to another hostname
and domain-specific rules regarding spam policies according to the Sender Policy
Framework protocol.

• The class code, specifying a name-space scope. Although multiple codes exist,
usage of values different from IN for Internet are uncommon.

• The time-to-live, specifying in seconds how long intermediate or recursive DNS
servers may cache that specific record, often defaulting to a zone’s TTL.

• The length of the RDATA field, used for communication protocol implementation.

• The RDATA field, containing the record’s actual stored data.

Most often, DNS is used to request mappings from computer hostnames to IP addresses.
In order to support such a high frequency of requests, DNS employs a tree-wise hierar-
chy in both names and database structure. A so-called Fully Qualified Domain Name

1The process of zone walking is explained in subsection 8.2.3.
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(FQDN) consists of multiple name components specifying the location of its records in
a tree of databases. Clients, such as home and business PCs, connect to a local recursive
(often caching) DNS server that traverses the tree to receive the requested information.
In general, the traversed tree-wise structure of DNS consists of 3 layers: (1) The root-
layer, a set of name servers named [a-m].root-servers.net. (2) The Top-Level-Domain
(TLD) layer. (3) The authoritative layer.

Every recursive DNS server has a “root hints file”, containing a list of all root-server
hostnames and IP addresses. For means of load balancing and geographic distribution
of requests, anycast addresses are used to deploy multiple servers per hostname. The
root-servers themselves do not contain any mappings for FQDNs, but instead refer to
Top-Level-Domain (TLD) servers responsible for the requested TLD by replying with an
NS-record containing the name server of the next layer and its IP-address in an A-record.
The top-most used types of TLDs are generic TLDs such as the domains .com, .net, .edu
and .org, as well as country-code TLDs whose last name suffix refers to country-specific
sites such as .nl for the Netherlands, .uk for Great-Britain, etc. These TLD-servers once
again refer to the next layer, which is generally authoritative for that domain name and
returns the requested mapping. Where further recursion is possible, commonly 3 steps
are sufficient. The relation between the name and the place of its records in the dis-
tributed tree is summarized in figure 8.1.

8.2.2. DNSSEC
Although DNS has proven to be very scalable, the architecture shows many possibilities
for both un- and intended malicious behavior and attacks. It is fairly easy to tune-in
and mangle with DNS requests and replies by executing a so-called man-in-the-middle
attack, hence secretly redirecting the client to obscure locations, for means of hijacking
personal authentication details, or falsely denying existence of resources. This, for ex-
ample, could occur at open WiFi hotspots, where providers often offer their own, poten-
tially malicious, DNS service. Hence, DNSSEC has been introduced to authenticate the
validity of both returned RRs and non-existent records through cryptographic signing of
resources.

In order to support the cryptographic signing process, each domain has multiple as-
sociated keys containing at least 1 public-private key pair. For each record set (RRset) of
distinct name and type, a signature is generated using the private key and stored in an
RRSIG-record, which can be verified using the domain’s public key stored in a DNSKEY-
record, both placed in the zone of the domain.

To confirm the authenticity of the DNSKEY, which is essential to check the authen-
ticity of any record in a zone, its digest, called the Delegation Signer, is stored in a DS-
record in its parent zone. Recursively, the DS-record is signed in its local zone, and the
process repeats until the root-zone is consulted. Since the root-zone has no ancestors,
its DNSKEY-record is confirmed by globally publishing its digest, which is referred to as
the Trust Anchor [194]. As summarized in figure 8.2, a DNS client or resolver recursively
requests these records to determine authenticity of a record.

The recursive chain from Trust Anchor, to intermediate DNSKEY-, DS- and RRSIG-
records authenticates each RRset of a properly configured DNSSEC domain. Part of
managing public-private key pairs is refreshing them regularly to prevent malicious par-
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RRset (Distinct Name-Type)

RR

{ Name : www.tudelft.nl,
Type : A,

Value : <IP-address> }

RR

{ Name : www.tudelft.nl,
Type : RRSIG,

Value : <Signature> }

<Priv. Key>

RR

{ Name : .tudelft.nl,
Type : DNSKEY,

Value : <Pub. Key> }

RRset (Distinct Name-Type)

RR

{ Name : .tudelft.nl,
Type : DS,

Value : <Hash(DNSKEY)> }

RR

{ Name : .tudelft.nl,
Type : RRSIG,

Value : <Signature> }

<Priv. Key>

RR

{ Name : .nl,
Type : DNSKEY,

Value : <Pub. Key> }

RRset (Distinct Name-Type)

RR

{ Name : .nl,
Type : DS,

Value : <Hash(DNSKEY)> }

RR

{ Name : .nl,
Type : RRSIG,

Value : <Signature> }

<Priv. Key>

RR

{ Name : .,
Type : DNSKEY,

Value : <Pub. Key> }

Root Trust Anchor

<Hash(DNSKEY)>

Authoritative 
Zone

TLD
Zone

Root
Zone

Figure 8.2: Relationship between resource record sets, keys and signatures for the chain of trust of the domain
name www.tudelft.nl.

RRset

RR

{ Name : .tudelft.nl,
Type : DNSKEY,

Value : <Pub. Key> }

RR (Key Signing Key)

{ Name : .tudelft.nl,
Type : DNSKEY,

Value : <Pub. Key> }

<Priv. Key>

RR (Zone Signing Key)

{ Name : .tudelft.nl,
Type : DNSKEY,

Value : <Pub. Key> }

RR

{ Name : www.tudelft.nl,
Type : RRSIG,

Value : <Signature> }

Figure 8.3: Relationship between Zone Signing Keys and Key Signing Keys.
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ties from deriving the private key. Hence public-private key pairs are equipped with an
expiration date and therefore need to be renewed at regular intervals. Replacing a DNS
record, however, is non-trivial due to possibly long periods of caching in clients and
intermediate resolvers. Furthermore, changing one’s public-key does not only involve
updating one’s DNSKEY-record, but also implies updating the parent DS-record whose
replacement needs to be performed by the TLD, a third party, again keeping cache syn-
chronization in mind. Therefore, key rollover can be a tedious process [195].

In order to ease the process, a zone is equipped with 2 types of public-private key
pairs, Key Signing Keys (KSKs) and Zone Signing Keys (ZSKs), both stored in DNSKEY-
records and distinguished by a flag. KSKs concern the keys whose DNSKEY-record is
confirmed by the parent’s DS-record and are exclusively used to sign other DNSKEY-
records in the zone, the ZSKs. ZSKs are hence used to sign all other types of resources in
the zone. As ZSKs are signed by a local KSK, those public-private key pairs can rollover
independent of the parent-zone. The KSK often is a longer, cryptographically more com-
plex, key pair that changes less often. Besides a decreased need of replacing the key due
to its greater complexity, KSKs only sign a limited number of resources (ZSKs) making
them less prone to attacks as less in- and output of the key pair is available. The ZSK
changes more often and may be cryptographically less complex if sufficiently often re-
placed with new keys. The relationship between KSK and ZSK is summarized in figure
8.3.

8.2.3. AUTHENTICATION OF NON-EXISTING RESOURCES
When a DNS server is queried for a non-existent record, i.e. there is no record for that re-
quested name, it will respond with a NXDOMAIN message indicating its absence. Where
DNSSEC so far authenticates existing resources, it is difficult to authenticate non-
existing resources as non-existent records (1) have no corresponding signature, and (2) if
for every NXDOMAIN response a signature would be computed online, key pairs would
be more vulnerable to attacks. Since an NXDOMAIN message may be hijacked and re-
placed with a false response to silently mislead a user, it is important to authenticate
non-existing resources.

In order to authenticate non-existent resources, DNSSEC introduces NSEC-records
[196] containing a linked-list of existing records ordered by name, hence actively denot-
ing non-existing namespaces. For an example domain named example.com with just 2
subnames mail. and www., the NSEC-records would look as follows:

• The first NSEC-record named example.com refers to mail.example.com indicating
that mail.example.com is alphabetically the first subname of example.com, hence
actively denying the existence of any subnames that would be ordered prior to it,
such as ftp.example.com.

• The second NSEC-record named mail.example.com refers to www.example.com
indicating there are alphabetically no subdomain names between them, hence
denying the existence of intermediate subnames, such as news.example.com.

• The final NSEC-record named www.example.com refers back to the zone name
example.com, indicating it is alphabetically the last record.
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RRset (Distinct Name-Type)

RR

{ Name : .tudelft.nl,
Type : NSEC,

Value : mail. }

RR

{ Name : .tudelft.nl,
Type : RRSIG,

Value : <Signature> }

<Priv. Key>

RRset (Distinct Name-Type)

RR

{ Name : mail.tudelft.nl,
Type : NSEC,

Value : www. }

RR

{ Name : mail.tudelft.nl,
Type : RRSIG,

Value : <Signature> }

<Priv. Key>

RRset (Distinct Name-Type)

RR

{ Name : www.tudelft.nl,
Type : NSEC,

Value : . }

RR

{ Name : www.tudelft.nl,
Type : RRSIG,

Value : <Signature> }

<Priv. Key>

Figure 8.4: Relationship between resource records and respective NSEC-records.

The relationship between resource records and NSEC-records is summarized in figure
8.4. An NSEC-enabled server will reply with the appropriate NSEC-record to requests
for non-existing resources. Each existing NSEC-record, of whom as many exist as names
exist for a domain, is ultimately signed by an RRSIG-record to confirm authenticity of
the claimed non-existence. A property of the NSEC-records is that they can be iterated
to gather a complete list of valid subnames for a domain or TLD, a process called zone-
walking. We have extensively used this method to extract the lists of domain names from
our selected TLDs.

However useful to our research, publishing the complete list of available resources
does not relate to the occasional request of non-existent resources and may even raise
concerns on privacy. Therefore, the NSEC3 additions hash the zone-specific name-
component (i.e., mail. and www.) prior to ordering, and generate a recursive linked-
list of NSEC3-records containing hashed values [197]. In order to authenticate non-
existence of a resource, the DNS-server will hash the requested zone-specific name com-
ponent and return the NSEC3-record indicating the non-existent range to which it be-
longs. Hence, proving non-existence without giving away existing names.
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8.3. RELATED WORK
In this section, we discuss previous work on DNSSEC. We found that most studies focus
on the performance of DNSSEC, such as latency, delay, or resource load on the server,
rather than on misconfigurations [198]. In [180], the authors analyze the availability of
DNSSEC resolution and service, but omit configuration correctness. Lian et al. [199]
present a quantitative measurment study towards the capability of resolvers and end-
users to perform DNSSEC authentication, which represent the client side of DNSSEC.
The authors of [200] present additional security vulnerabilities to DNSSEC itself, while
in [201] the security benefits of the NSEC3 hashed authenticated denial of existence2 are
evaluated.

One related study focuses on quantifying and improving DNSSEC availability [186].
The authors first identify what kind of misconfigurations in DNSSEC can affect a DNS
query request. They list the potential failures due to DNSSEC misconfiguration, and
then they create a metric to quantify those DNSSEC misconfigurations. They classify
DNSSEC misconfigurations into three categories:

1. Zone (missing/expired/invalid RRSIGs covering zone data, or missing DNSKEY
RRs required to verify RRSIGs).

2. Delegation (bogus delegations because of lack of appropriate DNSKEYs in the
child zone corresponding to DS RRs in the parent zone, or insufficient NSEC RRs
to prove an insecure delegation to a resolver).

3. Anchor (stale trust anchors in a resolver, which no longer match appropriate
DNSKEYs in the corresponding zone).

They analyze 1,456 signed zones out of which 194 show to be misconfigured [202]. Out of
these, most of the misconfigurations are related to zone data that correspond to the first
class of misconfigurations. However, the authors do not explain why this was the case
and what were the main technical causes for such misconfigurations. The class 1 mis-
configurations arise due to missing or outdated RRSIGs or DNSKEYs and, as explained
in section 8.1, the deployment of those records in the zone file is the responsibility of the
zone administrator. Technically, the administrator should always ensure the correctness
and validity of RRSIGs and DNSKEY deployment. Hence, the previous work does not give
insight in the causes of misconfiguration, nor its effects in authenticity confirmation and
reachability by a DNSSEC-aware resolver. Furthermore, the analysis was done in 2010, 5
years ago when DNSSEC was in an earlier stage of deployment compared to now in 2015
when DNSSEC is more widely implemented. In this chapter, we analyze over 122,779
signed domains from .bg, .br, .co, .com, .nl and .se domains.

8.4. MEASUREMENT TOOLS
There exist several different tools to work with DNSSEC. However, most of them are in-
tended to be used by zone administrators in order to verify their own zone file before
publishing it and require the user to have the complete zone file in order to perform

2Summarised in subsection 8.2.3.
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their tests. Examples of such tools include Verisign’s jDNSSEC [203] or NLnetLabs’ LDNS
[204]. We selected a set of tools that are able to perform tests over a list of several do-
mains without possession of their zone files, that is to say, from the point of view of an
external user. Furthermore, we selected these tools based on execution time and ease of
automation to ease the process of checking a large number of domains. We have used
the following measurement tools to perform our measurements:

1) Dnsrecon [205]
A DNS enumeration program, written in Python, that allows to discover relevant in-

formation from the content of a zone. It performs several types of enumerations includ-
ing zone transfer, reverse lookup, a Google lookup and, most importantly, zone walking
using NSEC-records as discussed in section 8.2.3. After testing the tool, we found its us-
age straightforward and effective since it provided us with the necessary means to easily
and effectively retrieve all the authoritative name servers from a zone.

In the process of retrieving the domain lists for the TLDs, we enhanced the program
with the following 3 functions: (1) To decrease the chance and impact of getting blocked
by a DNS server due to excessive usage, we added support for multiple DNS servers.
(2) We added the possibility to save the current state of iteration, so we could continue
iteration from a different source IP-address when blocked. (3) Initially, Dnsrecon verified
a domain’s intent to deploy DNSSEC capability by checking whether the authoritative
name server returned a DNSKEY-record for its hostname. Instead, we verified the intent
through the DS-record at its parent.

2) DNSSEC-Debugger [206]
A web-based tool developed by Verisign Labs that inspects the chain of trust for a

particular DNSSEC-enabled domain. It shows the step-by-step validation of a given do-
main and indicates any error or warning found in its DNSSEC configuration. We found
DNSSEC-Debugger to be fast (analysis consumes approximately 3 seconds per domain)
and ideal for automation as any domain can be inspected by executing a HTTP-request
to http://dnssec-debugger.verisignlabs.com/<DOMAIN>. We use DNSSEC-
Debugger to perform the top-down validation approach used in our first measurement
scenario in subsection 8.5.1 and section 8.6.

3) Google’s Public DNS Service [207]
Found at IP-addresses 8.8.8.8 and 8.8.4.4, Google offers a free and globally accessible

DNSSEC-enabled DNS resolution service, which can be used as an alternative to one’s in-
house or ISP-provided DNS resolution server. In order to evaluate the effects of DNSSEC
misconfiguration on the reachability of a domain, we assume a misconfigured DNSSEC
domain to be unavailable when it does not pass Google’s Public DNS Service.

4) Dig [208]
Dig (domain information groper), part of the popular DNS server BIND, is a

command-line tool that can be used to query DNS servers. It is DNSSEC capable and can
be used to verify the DNSSEC chain of trust from a top-down and a bottom-up perspec-
tive. However, we found that the current version queries all possible name servers for a
TLD or authoritative zone for their A-record, even when glue records are known, when
using the top-down approach, resulting in an infeasible number of lookups. Hence, we
only used Dig in a bottom-up approach using a DNSSEC-capable resolver as performed
in our second measurement scenario in subsection 8.5.2.

http://dnssec-debugger.verisignlabs.com/<DOMAIN>
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8.5. MEASUREMENT SCENARIOS
The DNSSEC chain of trust, consisting of a per-domain zone overlapping chain of
public-private key-pairs and signatures as explained in section 8.2, can be verified in
two distinct approaches, being:

1. A top-down approach, where first the root zone is verified against the previously
known root trust anchor, followed by the TLD zone against its corresponding DS
in the root zone, finished by the authoritative zone against its corresponding DS in
the TLD zone.

2. A bottom-up approach, where - in reverse other - first the authoritative zone is
verified against the TLD zone, which is verified against the root zone, which in
turn is verified against the root trust anchor.

In terms of authenticity verification denoting either authentic or not, both methods are
correct. However, in terms of finding the exact misconfiguration both are incomplete.
For example, a top-down approach will assume an authoritative zone to be DNSSEC in-
capable when it finds no corresponding DS in the TLD zone, while the authoritative zone
may serve private-public key pairs and signatures. In such a case, one could argue the
domain intends to employ DNSSEC but fails to do so as it did not properly communi-
cate the DS record to be published by the TLD. This specific misconfiguration cannot
be found by a top-down approach. The bottom-up approach will find the previously
described misconfiguration.

The bottom-up approach, however, assumes an authoritative zone to be DNSSEC
incapable when it finds no RRSIG for the record it tries to authenticate. This implies
that misconfigurations where the intention to apply DNSSEC by the existence of possible
authoritative DNSKEYs or corresponding DSes in the TLD are omitted. To partially solve
this problem and get insight in both misconfiguration errors, we have performed two
different measurement scenarios on distinct datasets described in subsections 8.5.1 and
8.5.2.

8.5.1. TOP-DOWN MEASUREMENT SCENARIO

The measurement of the different domains in our first measurement scenario consists of
4 different phases, followed by an additional 5th phase in which we evaluate the effects
of misconfiguration in everyday use. The first phase consists of gathering a compre-
hensive list of domain names. To do this, we use Dnsrecon to perform zone-walking of
the 4 NSEC-enabled TLDs .bg, .br, .co and .se, hence retrieving extensive lists of domain
names from these domains.

The second phase consists of filtering the list of domain names by the intent of them
being DNSSEC enabled. We assume a domain name to intend to be DNSSEC enabled
when a DS-record for that domain is registered at its TLD-zone. Filtering is performed by
iterating the list of domain names and performing DS-record lookups using the internal
functions of Dnsrecon.

Having retrieved a list with a sufficient number of DNSSEC-enabled domains, we
verify their configuration using the DNSSEC-Debugger online tool from Verisign Labs.
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Figure 8.5: Relative implementation of DNSSEC per country-code TLD.

We programmatically iterate through the list, performing a HTTP-request to the appro-
priate URL and parse the response for further analysis. To verify the correctness of the
DNSSEC-Debugger, we took a sample from the results and compared them with results
from Dig. Normally, it takes approximately 3 seconds to receive the verification result
for one domain name. In order to overcome this time limitation and to speed up the
process, we perform up to 10 lookups in parallel by employing multithreading.

In the 4th phase we categorize the misconfiguration in the categories and subcate-
gories denoted in table 8.3 enabling analysis by the type of misconfiguration. Besides
the expected DNS and DNSSEC related misconfigurations, we found 2 additional er-
rors. We found that a zone’s DS could be retracted in the time between retrieving the list
of DNSSEC-enabled domains and performing the measurements, meaning the domain
has withdrawn from implementing DNSSEC. Furthermore, we found an additional error
where the server does not implement the resource record type DNSKEY and, therefore,
is DNSSEC incapable.

After performing the initial measurements, we verified the effects of misconfigura-
tion by requesting the A-records associated with misconfigured domains from Google’s
Public DNS Service which performs DNSSEC authentication verification.

8.5.2. BOTTOM-UP MEASUREMENT SCENARIO
In our second measurement scenario, we use a publicly available dataset of domain
names known as the DNS Census 2013 [209]. The census is published anonymously
and contains over 2.6 billion DNS records gathered from over 106 million domain names
in 2013. Although the dataset is incomplete and it does not contain official sources, the
census can be considered significantly large to be representative. From the list of all
available domain names we have selected the .bg, .br, .co., .com, .nl and .se TLDs to per-
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Table 8.1: Historical statistics on DNSSEC implementation per ccTLD.

ccTLD Statistics from: Total DNSSEC %
.bg 08/2008 [210] N/A 80 N/A
.br 01/2014 [211] 3310972 487471 14.72%
.co 10/2013 [212] 1560000 196 0.01%

.com 2015 [183] 116259506 429047 0.37%
.nl 2013 [193] 5388364 1700000 31.55%
.se 09/2013 [213] 1292596 327684 25.35%

Total

form our measurements on. We have chosen the .bg, .br, .co and .se TLDs as those have
also been used in our initial measurement scenario, .nl since it has the highest number
of DNSSEC implemented domains and .com since it has the largest number of domains
in general. The high number of domains in the .com TLD, over 64 million, implies it
is difficult to verify all chains of trust within a feasible timespan. To guarantee that the
verified subset will be representable, we have randomized the order of the list up front.

Alike to the latter 4 steps of the previous scenario, we iterate the list of domains
and perform DNSSEC validation using Dig and a DNSSEC-capable resolver. Due to the
bottom-up approach, authoritative zones are considered DNSSEC capable if they pub-
lish RRSIGs for the A-records of their domain name. From the DNSSEC-capable do-
mains, the chain of trust is analyzed and categorized. Finally, the reachability of miscon-
figured domains is also verified using Google’s Public DNS Service.

8.6. RESULTS AND EVALUATION: TOP-DOWN APPROACH
In this section, we discuss and evaluate the results from the experimental measurements
described in subsection 8.5.1. Subsection 8.6.1 shows the results from the first and sec-
ond measurement phase, gathering domain names and measuring the integration of
DNSSEC in the different zones. Subsection 8.6.2 categorizes the misconfigurations of
the zone .se into the type of misconfiguration. Finally, subsection 8.6.3 analyzes the re-
sult of the misconfigurations on the availability of the domain.

8.6.1. DNSSEC IMPLEMENTATION

In this subsection, we present the results of the first two phases of our measurements, (1)
gathering domain names and (2) measuring the integration of DNSSEC within the list of
zones. While gathering the lists of domain names by walking the NSEC-records, we were
often blacklisted by the TLD name servers as the excessive amount of performed DNS
requests are classified as possible attacks on the service. As shown in table 8.2, for most
zones we were able to gather and analyze a considerable number of domain names. The
.br zone, however, appeared to have additional counter-measures against zonewalking.
Regularly, the .br TLD name servers would reply with an NSEC-record indicating the
requested domain was the last domain name of the zone, hence terminating the zone
walking process as it appeared to be finished.

Table 8.1 shows historical statistics found on per-zone DNSSEC implementation,
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Figure 8.6: Relative misconfigurations found through top-down verification of DNSSEC domains.

Table 8.2: Top-down measurement on DNSSEC implementation per ccTLD.

ccTLD Retrieved DNSSEC % Misconfigurations %
.bg 38806 162 0.42% 26 16.04%
.br 2481 504 20.31% 2 0.00%
.co 151707 23 0.02% 6 26.09%
.se 89772 21748 24.23% 876 4.03%

Total 282766 22437 7.93% 910 4.06%

while table 8.2 shows the number of domain names we were able to gather and check
for DNSSEC implementation. Although our lists are incomplete, we were able to con-
firm the relative implementation of DNSSEC for the selected zones. We found that the
zones .bg and .co both have a very low implementation of DNSSEC, resulting in a very
small set of DNSSEC-enabled domains. For the zone .br, we found a significant num-
ber of DNSSEC-enabled domains. Due to the aforementioned zone-walking counter-
measures, however, we were unable to gather a large set of DNSSEC-enabled domains
for the .br domain. For the zone .se, we were able to gather an extensive number of do-
mains and DNSSEC-enabled domains. Hence, we continue to further analyze the con-
figuration mistakes found in the zone .se. Figure 8.5 shows the relative percentage of
DNSSEC implementation per zone.

8.6.2. DNSSEC MISCONFIGURATIONS
As seen in table 8.2 and figure 8.6, the ccTLD .se has a significant number of miscon-
figurations. Table 8.3 shows the misconfigurations related to the categories and subcat-
egories listed in section 8.5. As also prospected in figure 8.7, approximately two-thirds
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Figure 8.7: Distribution of most significant DNSSEC misconfigurations.

of the misconfigurations are related to configuration of the DNSKEY records. Slightly
less than one-third of the misconfigurations are caused by missing DNSKEY records, in-
dicating there once was an intention or maybe even a running configuration to deploy
DNSSEC. However, the DNSSEC configuration has never been properly configured or
was removed from the authoritative name server. Slightly less than a third of the mis-
configurations indicate a Key Signing Key that is not properly signed by its Zone Signing
Key as described in subsection 8.2.2, hence breaking the chain of trust. The situation
where a ZSK invalidates the zone’s KSK indicates a problem with the key-rollover of the
KSK, most probably it has not been resigned after it was renewed. Once DNSKEY con-
figuration is properly done, we find little evidence in the internal configuration of the
authoritative name server, from the category of possible RRSIG misconfigurations we
only found 1 occurrence of an expired signature.

Stunningly, a third of the misconfigurations seem to revolve around general DNS
misconfigurations or errors that could also occur in non-DNSSEC environments. Es-
pecially the number of reported server failures and time-outs are surprisingly high. We
were unable to confirm whether these errors are strictly related to non-DNSSEC con-
figuration, and thus unrelated to DNSSEC, or are caused by a server malfunction due to
incompatibility with the DNSSEC-extended query. We did however find two occurrences
with a more specific error, where the server indicated incompatibility with the DNSKEY
resource record type, showing that DNSSEC-incompatibility with DNS servers once in-
tended to perform DNSSEC is a problem. Finally, we found 14 occurrences in which
the authoritative administration retracted its intention to implement DNSSEC before we
were able to scan its zone for misconfiguration. In figure 8.7, we show the distribution
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Figure 8.8: Relative misconfigurations per category in the ccTLD .se found through top-down evaluation.

among the most significant configuration errors.

8.6.3. EFFECTS ON AVAILABILITY

After performing the measurements, we proceeded to verify the reachability of the mis-
configured domains using a DNSSEC validating resolver. For that purpose, we used
Google’s Public DNS Service, which has implemented DNSSEC validation by default
since May 2013 [207].

The result of this experiment shows that 73.86% of the misconfigured domains in the
ccTLD .se were completely unreachable from a DNSSEC-aware resolver. The remaining
26.14% of domains still had some misconfiguration, though not as severe to provoke the
domain to become unavailable. To learn the impact of a misconfiguration, we correlated
the (un-)reachability of each domain to its misconfiguration category in table 8.3.

Summarized in figure 8.8, after combining the categories with less than 50 miscon-
figurations, the impact on reachability of the most common misconfiguration types be-
comes clear. Concerning the DNSSEC-specific misconfigurations, the impact of a miss-
ing DNSKEY record or a ZSK being invalidated by its KSK is large, nearing a 100% of
unreachability. A DNSKEY invalidated by the parent DS-record indicating a potential se-
curity breach of the complete domain, however, only fails integrity checks at 3.41% of
the sampled domains, even though this error may be considered as serious as the previ-
ous DNSKEY-related errors. A general DNS server failure when the DNSKEY is requested
leads to an unreachability level of 74.35%, similar to the overall average. Finally, we no-
tice server timeouts are handled correctly in most cases by the caching functionality of
the resolver.
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Table 8.4: Bottom-up measurement on DNSSEC implementation per ccTLD.

ccTLD In dataset Retrieved DNSSEC % Misconfigurations %
.bg 13288 13288 549 4.13% 41 7.47%
.br 572506 572506 25037 4.37% 649 2.59%
.co 72305 72305 6871 9.50% 260 3.78%

.com 64337635 42239548 122779 0.29% 55297 45.04%
.nl 1062209 1062140 260752 24.55% 26278 10.08%
.se 352235 352235 128008 36.34% 53321 41.65%

Total 66410178 44312022 543996 1.23% 135846 24.97%
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Figure 8.9: Relative implementation of DNSSEC found through bottom-up evaluation per country-code TLD.

8.7. RESULTS AND EVALUATION: BOTTOM-UP APPROACH
In this section, we discuss and evaluate the results from the experimental measurements
described in subsection 8.5.2. Subsection 8.7.1 shows the results from the first measure-
ment phase, measuring the integration and initial validation of DNSSEC in the different
domains. Subsection 8.7.1 further discusses the different categories of found misconfig-
urations and their implications. In subsection 8.7.3, we perform further experiments on
the root cause of the most common misconfiguration mistake. Finally, subsection 8.7.4
discusses additional results we collected on the validity of signatures.

8.7.1. DNSSEC IMPLEMENTATION

We were able to traverse all available domains from the .bg, .br, .co, .nl and .se TLDs. Due
its large size, we were only able to retrieve 65.74% of available .com domains, resulting
in over 42 million retrieved domains. Due to upfront randomization of the traversed list,
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Table 8.5: Bottom-up measured misconfiguration statistics for per ccTLDs.

TLD Validation
successful

No DS Found RRSIG Expired Timeout Measurement
Error

.bg 481 28 1 12 27

.br 23385 403 61 185 1003

.co 6507 89 5 166 104
.com 66580 38213 560 16524 902

.nl 232334 4789 4124 17365 2140

.se 63987 49094 10 4217 10700
Total: 393274 92616 4761 38469 14876
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Figure 8.10: Distribution of most significant DNSSEC misconfigurations through bottom-up evaluation.

we claim to have retrieved a representable dataset. Table 8.4 and figure 8.9 show the level
of DNSSEC implementation and ratio of found misconfigurations.

Due to the difference in measuring the intent to employ DNSSEC compared to the
previous measurement strategy, we find different numbers for the implementation of
DNSSEC. Particularly, .bg, .co and .se show much higher numbers of domains imple-
menting DNSSEC, due to the inverse direction of detection. Where previously a DS
record in the TLD denoted a zone DNSSEC capable, now an existing RRSIG for the do-
main does. The TLD .br, on the other hand, shows a lower number of implemented
number of DNSSEC-capable domains, which may be explained by the small dataset of
verified domains in the previous measurement scenario.

Finally, .nl and .com are added to the list of traversed domains. Where .nl shows a
high implementation of DNSSEC, the implementation of DNSSEC in .com, the largest
TLD, remains excruciatingly low. However, .com’s level of misconfiguration is very high,
due to a specific misconfiguration explained in the following two subsections.
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8.7.2. DNSSEC MISCONFIGURATIONS

Where the bottom-up approach not only results in more domains to be considered
DNSSEC capable, it may also change the detected misconfiguration as a domain can be
misconfigured at multiple locations in the chain. From the domains that were verified
to implement DNSSEC, table 8.5 shows the per-TLD validation results and the relative
configuration distribution is shown in figure 8.10. Apart from the previously witnessed
relative increase in DNSSEC implementations, we also witness an increase in misconfig-
urations within found DNSSEC domains.

The increase in misconfiguration is explained by the fact that where a DNSSEC-
capable domain without a DS record would be considered DNSSEC incapable in the top-
down scenario, in the bottom-up scenario it is considered a distinct misconfiguration
categorized as “No DS Found”. In fact, the results show that the main misconfiguration
error concerns domains that have no valid DS published in their respective TLD. Since
the bottom-up approach first verifies local RRSIG and DNSKEYs before requesting a DS,
it implies that further configuration of the zone is correct and the chain of trust is merely
broken by this one absent record. Hence, in total over 68% of the misconfigurations is
due to this relatively small error of not communicating one’s DS to the TLD.

Furthermore, we find that where the top-down approach showed many different cat-
egories of misconfigurations, in the bottom-up approach further errors are reduced to
an expired RRSIG or time-out. The high occurrence of expired RRSIGs and absence of
errors in DNSKEY validation (and exactly vice versa in the top-down approach) implies
that domains that have DNSKEY validation problems (either due to DS- or KSK/ZSK- in-
validation) also let their signatures expire. Hence, there was once a valid chain of trust
which became outdated and invalid due to administrative neglection.

Finally, we had few occurrences in which Dig would crash with unclear errors. For
means of completeness, we have added these occurrences as measurement error to our
dataset.

8.7.3. ANALYSIS OF DOMAINS WITHOUT A DS
As explained in the previous two subsections, many more misconfigurations have been
found due to the detection of DNSSEC-capable domains implementing signatures and
private-public key pairs that omit communicating their delegate signer to their TLD.
Whereas implementing DNSSEC locally may be a matter of configuration and key com-
putation, uploading the DS is a process that is TLD specific and may require periodic
renewal. Hence, we find many domains that show this specific error.

Most owners of a domain do not run their own DNS- and webservers, but instead use
a webhoster to arrange those technicalities for them. Therefore, it is interesting to find
whether the source of these many misconfigurations share a common cause. Hence, for
each domain we have performed a whois lookup for the IP address stored in its A-record.
A whois lookup is an information request about the owner of an IP address or domain
name. For this, we have used the whois host server of Team Cymru [214], which contains
mappings from IP address to Autonomous System (AS). We use the AS to identify the
webhosting party that serves that particular domain.

Given that we know the technically responsible party for each domain, we have
counted the number of DNSSEC-capable domains without DS in its TLD per party. Fig-
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Figure 8.11: Ordered distribution of ASes overrepresented in the misconfiguration category of missing DSes.

ure 8.11 shows the over-representation in percent points from the average, ordered by
the level of over-representation. From this figure we derive that the top 5 ASes account
for 60.6% of all domains not having a DS in its TLD to verify it, hence breaking the chain
of trust. Hence, most misconfigurations are caused by a very limited set of webhosting par-
ties. This conclusion is further backed up by the fact that the 35,153,800 domains con-
taining A-records refer to only 3,370,503 unique IP addresses, indicating many providers
deploy virtual hosting by having a single webserver host many websites. Once such a
service is affected by a configuration error, all of its domains are.

8.7.4. SIGNATURE VALIDITY

Additionally, we were able to measure the validity duration of the RRSIGs of the found
traversed names by subtracting the expiration field by its inception field. Figure 8.12
shows the probability distribution function of the measured validity periods. A 3-week
validity period is most common, followed by a (short) 2 week period. Although a few
shorter intervals occur, round numbers such as half a year (183 days), 1 month (30 days)
and 40 days are most popular. Interestingly, we found 1 signature that wouldn’t expire
until 69 years after its inception. This value conforms to the maximum duration implied
by the compulsory use of serial number arithmetic [215], which is necessary to wrap-
around the maximal available date and time of 232 seconds (around 136 years) after 1
January 1970 00:00:00 UTC.
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Figure 8.12: The probability distribution function of signature validity.

8.8. CONCLUSION
Having analyzed the DNSSEC misconfigurations of four zones (.bg, .br., co. and .se), our
measurements show that implementing DNSSEC is not trivial and that misconfigura-
tions exist in large numbers. From the 282,766 gathered domain names, only 7.93% show
the intent to implement DNSSEC. Furthermore, over 4% of DNSSEC-enabled domains
show a form of misconfiguration, emphasizing the configuration complexity. Where
one might expect expiration of keys to be a significant means of misconfiguration, cat-
egorization of the errors found in the .se domains shows its impact to be neglectable.
Instead, most DNSSEC-related misconfigurations are caused by an inconsistency con-
cerning the DNSKEY, the main public key of a domain. In more than 99% of the cases
of a missing DNSKEY or an error in the two-stage ZSK and KSK DNSKEY signing pro-
cess, the error led to an unreachable domain and thus unreachable website or other net-
work service. User availability shows to vary per type of misconfiguration. On average,
73.86% of the misconfigured domains appeared unreachable from a DNSSEC-aware re-
solver. Hence, organizations implementing DNSSEC need to frequently verify the correct
configuration of DNSSEC parameters and perhaps implement mechanisms to guarantee
continuous correctness of configuration and authentic availability of their resources.

Measurements on a second dataset, including domains from .bg, .br, .co, .com, .nl
and .se, show that many more domains have the intent of implementing DNSSEC (over
20% excluding .com) but fail to communicate an essential part to their respective TLD.
We show that a limited number of faulty configured webhosting parties cause most of
the misconfigurations. Furthermore, we observe that where signature expirations were
initially practically absent, now we exclusively find expired signatures. This implies that
key invalidation almost always coincides with signature expiration, both results of a ne-
glected zone. Finally, we show that a 3 and 2 week validity period between inception and
expiration are most popular, followed by half-year and 1 month renewal periods.
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CONCLUSION

In this dissertation, we have successfully proposed, implemented and evaluated improve-
ments to the Internet architecture. Built upon the general consensus that we need im-
provements to the Internet architecture to contain its current and future functional com-
plexity, we have made numerous improvements to the Future Internet Architecture areas
of Software-Defined Networking and Information-Centric Networking and performed ex-
tensive measurements on the, more recent but related, Domain Name System’s Security
Extensions. In this final chapter, we present the main findings, recommendations and
future work.
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In chapter 3, we have presented OpenNetMon, a POX OpenFlow controller module
monitoring per-flow QoS metrics to enable fine-grained Traffic Engineering. By polling
flow source and destination switches at an adaptive rate, we obtain accurate results while
minimizing the network and switch CPU overhead. The per-flow throughput and packet
loss is derived from the queried flow counters. Delay, on the contrary, is measured by in-
jecting probe packets directly into switch data planes, traveling the same paths, meaning
nodes, links and buffers, and thus determining a realistic end-to-end delay for each flow.
We have performed experiments on a hardware testbed simulating a small inter-office
network, while loading it with traffic of highly bursty nature. The experimental measure-
ments verify the accuracy of the measured throughput and delay for monitoring, while
the packet loss gives a good estimate of possible service degradation. Thanks to the open
source publication of its implementation, OpenNetMon has already been used and ex-
tended by others to support network failure support [97]. Where Software-Defined Net-
working (SDN), and in particular its popular implementation OpenFlow, are often pre-
sented as the holy grail in computer networking promising many improvements in the
area of network management, OpenNetMon is the first study showing the feasibility and
accuracy of network monitoring in SDNs.

Key to supporting high availability services in a network is the network’s ability to
quickly recover from failures. In chapter 4 we have proposed a combination of protec-
tion in OpenFlow Software-Defined Networks through preconfigured backup paths and
fast link failure detection. Primary and secondary path pairs are configured via Open-
Flow’s Fast Failover Group Tables enabling path protection in case of link failure, deploy-
ing crankback routing when necessary. We configure per-link, in contrast to the regu-
lar per-path, Bidirectional Forwarding Detection (BFD) sessions to quickly detect link
failures. This limits the number of traversing BFD sessions to be linear to the network
size and minimizes session RTT, enabling us to further decrease the BFD sessions’ win-
dow intervals to detect link failures faster. By integrating each interface’s link status into
Open vSwitch’ Fast Failover Group Table implementation, we further optimize the re-
covery time. Where we reach recovery times as low as 3.3 ms, we show that sub 50 ms
recovery times, an industrial rule of thumb, are feasible in SDNs without the necessity of
implementing non-standardized components. The achieved recovery time is shown to
be independent of path length and network size.

Complementary to the techniques implemented in chapter 4, in chapter 5 we have
derived, implemented and evaluated techniques and algorithms computing an all-to-all
network forwarding configuration capable of circumventing link and node failures. Our
algorithms compute forwarding rules that include failure-disjoint backup paths offering
preprogrammed protection from future topology failures. Through packet labelling we
guarantee correct and loop-free detour forwarding. The labeling technique allows pack-
ets to return on primary paths unaffected by the failure and carries information used
to upgrade link-failures to node-failures when applicable. Furthermore, we have im-
plemented a proof-of-concept network controller that configures OpenFlow-based SDN
switches according to this approach, showing that these types of failover techniques can
be applied to production networks.

Compared to traditional link- or node-disjoint paths, our method shows to have sig-
nificantly shorter primary and backup paths. Furthermore, we observe significantly less
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crankback routing when backup paths are activated in our approach. Besides shorter
paths, our approach outperforms traditional disjoint path computations in terms of re-
spectively the needed Flow and Group table configuration entries by factors up to 20 and
1.9. Our approach allows packets that encounter a broken link or node along their path,
to travel the second-to-shortest path to their destination taken from the node where the
link or node failure is detected. We apply Software-Defined Networking, specifically the
OpenFlow protocol, to configure computer networks according to the derived protec-
tion scheme, allowing them to continue functioning in case of a failure without (slow)
controller intervention. Combined, the techniques presented in chapters 4 and 5 give a
fast and correct failure protection scheme.

In chapter 6, we focus on Information-Centric Networking (ICN), a future Internet
architecture paradigm focusing on OSI Layer 3 standardization of content distribution.
In particular, we have investigated a prototype implementation of Named Data Network
(NDN), implementing routing of content by hierarchical human-readable names de-
scribing the content. To contain the complexity of global NDN routing tables, we have
proposed to decouple context-related NDN names from routable names. By using routable
names aggregating to Autonomous Systems and their internal structure, the size of
global routing tables becomes upper bounded by the number of ASes in a system. By us-
ing a LISP-style late binding of context-related names to location-aggregated names us-
ing the DNS directory service, we enable applications to communicate based on context-
related names and maintain the benefits of location-agnostic routing. Our implementa-
tion of mapping and renaming context describing names to routable names, enables the
NDN strategy layer to facilitate multipath routes and multihomed applications.

Realizing the need for centralized network control is not limited to the current Inter-
net architecture, in chapter 7 we proposed and designed a mechanism realizing
application-specific forwarding schemes in OpenFlow-controlled Software-Defined Net-
works (SDNs). Specifically, we have implemented a prototype for Named Data Network-
ing and its implementation CCNx, an architecture which we also worked on in chapter
6. Compared to other application-specific SDN implementations, we argue that our im-
plementation is architecturally less complex to implement, easier to extend and further-
more applicable to multiple application-specific forwarding schemes due to the stricter
separation of functionalities. Furthermore, we have shown through experiments that
this technique can be used to deploy application-specific forwarding in partially up-
graded networks through tunneling. Since at introduction of an application-specific for-
warding scheme not all forwarding devices need to be replaced or upgraded, it lowers
the cost of introducing new forwarding schemes within one’s network. With this im-
plementation, we provide the tools to control and manage application-specific flows in
SDNs.

Finally, in chapter 8 we analyzed the Domain Name System’s Security Extensions (DNS
and DNSSEC) implementation. DNS is a critical infrastructure to the Internet, a property
that does not change using future Internet architectures such as SDN and ICN. In fact,
the proposal of chapter 6 relies heavily on DNS. Intially analyzing the DNSSEC miscon-
figurations of four zones (.bg, .br., co. and .se), our measurements show that implement-
ing DNSSEC is not trivial and that misconfigurations exist in large numbers. From the
282,766 gathered domain names, only 7.93% show the intent to implement DNSSEC.
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Furthermore, over 4% of DNSSEC-enabled domains show a form of misconfiguration,
emphasizing the configuration complexity. Where one might expect expiration of keys to
be a significant means of misconfiguration, categorization of the errors found in the .se
domains shows its impact to be neglectable. Instead, most DNSSEC-related misconfigu-
rations are caused by an inconsistency concerning the DNSKEY, the main public key of a
domain. In more than 99% of the cases of a missing DNSKEY or an error in the two-stage
ZSK and KSK DNSKEY signing process, the error led to an unreachable domain and thus
unreachable website or other network service. User availability shows to vary per type of
misconfiguration. On average, 73.86% of the misconfigured domains appeared unreach-
able from a DNSSEC-aware resolver. Hence, organizations implementing DNSSEC need
to frequently verify the correct configuration of DNSSEC parameters and perhaps imple-
ment mechanisms to guarantee continuous correctness of configuration and authentic
availability of their resources.

Measurements on a second dataset, including domains from .bg, .br, .co, .com, .nl
and .se, show that many more domains have the intent of implementing DNSSEC (over
20% excluding .com) but fail to communicate an essential part to their respective TLD.
We show that a limited number of faulty configured webhosting parties cause most of
these misconfigurations. Furthermore, we observe that where signature expirations
were initially practically absent, now we exclusively find expired signatures. This implies
that key invalidation almost always coincides with signature expiration, both results of a
neglected zone. Finally, we show that a 3 and 2 week validity period between inception
and expiration are most popular, followed by half-year and 1 month renewal periods.

Overall, we found that the researched computer network architectures provide great
benefits to the Internet. Through our work, we have significantly contributed to enable
actual implementation of network architecture improvements. Through abstract and the-
oretical analysis and practical improvement of these systems, we have solved compli-
cated problems that previously prevented functional deployment. Although more work
needs to be performed to achieve overall applicability, we have shown that these archi-
tectures can indeed provide a practical solution for the future Internet architecture.

9.1. FUTURE WORK
Based on the work in [96], we further suggest to remove the overhead introduced by mi-
croflows in OpenNetMon (see chapter 3), by categorizing microflows into one greater
stream until recognized as an elephant flow. This prevents potential overloading of the
controller by insignificant but possibly numerous flows. In future work, OpenNetMon
can be used as an input generator for a responsive real-time QoS controller that recom-
putes and redistributes paths when necessary. OpenNetMon’s measurements may fur-
ther be used to perform multiple constraints routing, compute link-independent multi-
ple paths based on actual usage allowing further exploitation of available bandwidth, or
as a network health monitoring tool in general.

Our work on failure detection, recovery and protection of topology failures in SDNs,
discussed in chapters 4 and 5, considers single link or node failures in unicast shortest-
path routed networks. We suggest researching the protection of multi-link and -node
failures as well as strictly guaranteeing QoS constraints under failure. Furthermore, one
could extend the work to cover protection of multicast routed networks.
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Overall, much of our work improves the robustness of computer networks, or consid-
ers the robustness of its proposed systems in general. Where chapters 4 and 5 focus on
protection and recovery from topology failures, robustness of controller failure remains
unnoticed. Although distributed network controller configurations are common, where
2 or more controllers cooperate to provide a control layer, their behavior in the event
of failures is not well researched. Protocols exist to provide network state database syn-
chronization, but little work is found on the detection and recovery times when failures
occur. We think additional protection from controller failures as well as an optimiza-
tion of detection and recovery times can be achieved by implementing a proxy-like layer
between switches and controllers. Agnostic to the intent of the message, the proxy-like
layer can first of all load-balance between distributed controllers and monitor the re-
sponsiveness of communication channels. Given that OpenFlow requests and replies
share a unique identifier, the proxying layer may furthermore administer missing replies
to requests and repeat lost requests to other available controllers authoritative for the
specific network area.

9.2. RECOMMENDATIONS
Throughout our work on Software-Defined Networking (besides our work in chapters
3, 4, 5 and 7 also including our work in [216] and [217]) we found that the optional na-
ture of OpenFlow’s Apply-Action to apply packet-rewriting immediately instead of writ-
ing it to a list to be applied at output of a packet (the default Write-Action) often leads
to implementational problems. In particular, absence of the Apply-Action on a switch
complicates working with multiple VLAN tags and disables the use of between-table
packet rewriting and matching functionality on the new values, both actions that are
useful when trying to implement complex routing schemes. Hence, implementing the
Apply-Action should become compulsory in the OpenFlow specification.

In chapter 8 we found that a limited number of webhosting parties cause most
DNSSEC misconfigurations, possibly through subtennants deploying their own DNS
servers. Besides registry operators sanctioning individual authoritative name servers
misconfiguring DNSSEC, for example by declining zone recursion, the serving webhost-
ing parties need to be addressed to solve the high overrepresentation found in their au-
tonomous systems. Through public ranking and potential additional sanctions by their
respective RIRs, webhosting parties should be forced to properly implement their own
DNS servers and educate their respective customers.
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