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A MULTISCALE MICROMECHANICAL

APPROACH TO MODEL THE DETERIORATING

IMPACT OF ALKALI-SILICA REACTION ON

CONCRETE

Rita Espositoa,∗, Max A.N. Hendriksa,b

aDelft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
bNorwegian University of Sciences and Technology (NTNU), Richard Birkelands vei 1a,

7491, Trondheim, Norway.

Abstract

The alkali-silica reaction (ASR) in concrete is one of the most harmful deteri-

oration processes, which leads to expansion and cracking of the material. To

understand the evolution of ASR in concrete and its deteriorating impact on

the material, a multiscale material model, from aggregate to concrete level,

is proposed. The concrete, which at macro scale is considered a homogen-

eous material, is micromechanically modelled by a matrix-cracks system, in

which each phase is uniform and behaves elastically. The damage criterion,

associated to the cracks, is formulated on the basis of linear fracture mech-

anics theory. The model, which is analytically solved, is based on a limited

numbers of input parameters, to be determined via micro and macro experi-

mental investigations. The model is able to predict the non-linear behaviour

of concrete subject to uniaxial loading in good agreement with code formu-
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lations, which are usually input for numerical analyses of structures. For the

case of ASR-affected material, the model overestimates the degradation rate

of mechanical properties as a function of the expansion. On the contrary,

the relationship between stiffness and strength deterioration is correctly ap-

proximated. Various model modifications are explored suggesting that the

assumption of elastic behaviour of each phase should be reconsidered.

Keywords: Alkali-silica reaction (ASR), Concrete, Chemo-Mechanical

Processes, Mechanical Properties, Multiscale Material Modelling,

Microporomechanics, Two-Scale Double Porosity System

1. BACKGROUND AND SIGNIFICANCE

The alkali-silica reaction (ASR) in concrete evolves at different material

levels. The chemical process (Glasser, 1992) involves silica ions, available

in the aggregates, and alkali ions mainly present in pores solution (reac-

tion products level). The formed alkali-silica gel, when exposed to moisture,

tends to swell. Its expansion, while confined in the pore structure of con-

crete, builds up an internal pressure with the consequent formation of cracks

in the aggregates and in the cement paste (aggregate level). As a result,

the concrete is expanding and its mechanical properties are degrading (con-

crete level), (see Esposito et al. (2015) where the work of 12 researchers is

statistically evaluated). The reduction in material resistance compromises

the performance of the structure in terms of both capacity and durability

(structural level).

The interaction of the various phenomena at the different levels is a par-

ticular characteristic of ASR. The applied external load substantiated by an
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affected structures can be redistributed due to the differential resistance of

the material (structural-to-concrete level interaction). The stress state of the

material influences the redistribution of the gel (Multon and Toutlemonde,

2006; Saouma and Perotti, 2006), thus the expansion and the cracking forma-

tion (concrete-to-aggregate level interaction). Eventually, the redistribution

of cracks modifies the equilibrium of the system at the reaction products

level, thus the chemical process can be (re)activated or stopped (aggregate-

to-reaction products level interaction).

Due to the multiscale nature of the phenomenon, the problem has been

studied by different experts (e.g. geologists, material engineers, structural

engineers) in different fields (e.g. material sciences, structural mechanics)

resulting in several modelling approaches with different aims. Earlier ap-

proaches focussed on the description of the structural behaviour by imposing

an ASR expansion at concrete level (Charlwood, 1994; Léger et al., 1996).

Due to their easy application, they became popular in the engineering prac-

tice and were implemented in various finite element softwares. Their develop-

ment followed a phenomenological approach; thermodynamic concepts were

introduced to describe the thermo-chemo-mechanical coupling (Ulm et al.,

2000; Capra and Sellier, 2003; Bangert et al., 2004; Saouma and Perotti,

2006). Thanks to the technological advancement in microscopic investiga-

tion, the attention moved to the aggregate level. The effect of alkali-silica

gel swelling on concrete was considered as an internal pressure. The vari-

ous pressure-based models can be divided in two categories: analytical ap-

proaches following the fracture mechanics theory (Bažant et al., 2000; Re-

inhardt and Mielich, 2011; Dormieux et al., 2004) and computational ap-
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proaches adopting finite element analyses at aggregate level (Comby-Peyrot

et al., 2009; Schlangen and Copuroğlu, 2010; Anaç et al., 2012; Wu et al.,

2014). To couple the physical chemistry of ASR with the mechanical beha-

viour of concrete, various modelling approaches have studied the phenomenon

at reaction products level, by considering the mass production of the alkali-

silica gel as a driving parameter. These were mainly a refinement of the

previous developed pressure-based model. Again both analytical (Ulm et al.,

2002; Lemarchand et al., 2005; Charpin and Ehrlacher, 2012) and computa-

tional (Grimal et al., 2008; Dunant and Scrivener, 2010; Giorla et al., 2015;

Pignatelli et al., 2013) approaches were adopted. The study of the chemical

process which leads to the swelling of the gel and the expansion of con-

crete was the focus of the last two decades. Model based on the diffusion

and reaction of the ions were first developed in a mathematical framework

(Bažant and Steffens, 2000; Suwito et al., 2002; Liuaudat et al., 2014) and

subsequently implemented in finite element software to describe the mech-

anical impact (Poyet et al., 2007; Multon et al., 2009; Sanchez et al., 2014;

Alnaggar et al., 2013).

To understand the evolution of ASR in concrete and its degradation im-

pact on the material, in this paper a multiscale material model is proposed.

The model ranges from the aggregate level (also known as meso level) to the

concrete level. It is a pressure-based model, based on the microporomechanics

theory developed by Dormieux et al. (2006). A similar approach was previ-

ously adopted by Lemarchand et al. (2005) and by Charpin and Ehrlacher

(2014) to describe, respectively, the expansion behaviour of ASR-affected

concrete in free-expansion and under confined conditions, without concern-
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ing for the mechanical degradation of concrete. The model presented in

this paper aims to describe the deteriorating impact of ASR on concrete in

terms of the relation between the induced expansion and the degradation of

mechanical properties.

The proposed model is developed in an analytical framework and is based

on a limited number of input parameters, which can be determined via micro-

scopic and macroscopic laboratory investigation (e.g. porosity measurements

and mechanical tests). As a result of these characteristics, it is envisioned

that the proposed model can be extended to range from the reaction products

level to the structural levels. To extend it to the reaction product level, a

kinetic formulation should be introduced, which can be either expressed in

terms of gel mass production or on the basis of the ions diffusion-reaction

process. To extend it to structural level, the model can be implemented in a

finite element software at integration point level or it can be adopted as tool

for the definition of the constitutive laws for structural analyses.

The model, which is first validated for the case of concrete subjected

to only external loading, is applied to describe the deteriorating impact of

ASR on concrete in unconstrained specimens. The attention is focussed on

the relation between concrete expansion and the degradation of engineer-

ing properties (e.g. elastic modulus, tensile strength, compressive strength).

Laboratory tests performed on a recovered concrete mix from the highly

affected Nautesund bridge (Norway) are adopted for comparison.
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2. MULTISCALE MATERIAL MODEL

The presented multiscale material model describes the macroscopic de-

gradation behaviour of concrete on the basis of micromechanical aspects. The

concrete is modelled as an heterogeneous material at microscopic level and its

macroscopic properties are evaluated considering a representative elementary

volume (REV).

2.1. Micromechanical Model

At aggregate level (commonly referred to as the meso level of cementitious

materials), the concrete is modelled as a matrix-inclusions system, in which

each phase is homogeneous and behaves elastically. The concrete is composed

by cracks embedded in a solid matrix, as shown in Figure 1a. The solid

matrix is constituted by aggregates embedded in the cement paste (Figure

1b). Consequently, no explicit distinction is made between cracks in the

aggregates or in the cement paste. The aggregates are modelled as spherical

inclusions having a volume fraction φagg.

Three orthogonal families of cracks are considered (m = 3). Within each

family the cracks are aligned in one plane with normal ni. Algorithmically,

there is no limit to the number of planes (e.g. Bažant and Oh (1983b) adopt

21 families of aligned cracks in their microplane models). The cracks of the

i -th family are represented by penny-shaped inclusions, with radius ai in the

inclusion’s plane and radius ci in thickness direction (or crack opening 2ci).

Their aspect ratio Xi and volume fraction φci are defined as:

Xi =
ci
ai

(1a)
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φci =
4

3
πcinia

2
i (1b)

where ni is the number of cracks per unit of volume. The aspect ratio Xi

and the volume fractions φci are the main parameters describing the micro-

structural evolution. As a result, the intrinsic values of the crack radius ai,

the crack opening 2ci and the number of cracks ni have a limited physical

meaning. All crack families contribute to the porosity of concrete, which has

a volume fraction Φ equal to:

Φ =
m∑
i=1

φci (2)

The volume fraction of the solid matrix φm results:

φm = 1− Φ (3)

Considering the crack propagation for the i -th family within the elastic

solid matrix, the damage state is identified adopting the crack density vari-

able εi (Budiansky and O’Connell, 1976):

εi = nia
3
i =

3φci

4πXi

(4)

The last expression in Eq. 4 shows that the damage evolution does not de-

pend on the specific value of the crack radius ai, but that it is influenced by

the aspect ratio Xi and the volume fraction φci of the cracks. This observa-

tion is only valid for the current proposed model. For approaches modelling

nucleation of cracks or opening/closing of cracks and for models accounting
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for transport phenomena specific value of crack radius ai, crack opening 2ci

and number of cracks n do matter.

2.2. State Equations and Damage Criterion

The concrete can be subjected both to an external load (e.g. a uniform

macroscopic strain E) and to the internal pressure P , which is developed

by the confined swelling of expansive alkali-silica gel in the cracks. In this

first approach the problem is solved within the framework of fully saturated

porous media, considering the long term nature of the process. The state

equations which characterize the linear poroelastic behaviour of the REV

are described in agreement with Dormieux et al. (2006):

Σ = C : E −BP (5a)

Φ− Φ∗ = B : E +
P

N
(5b)

where C is the effective drained stiffness tensor, B and 1/N are the Biot

tensor and moduli respectively, Σ is the macroscopic stress and Φ−Φ∗ is the

elastic deformation of the total porosity, which initial value is equal to Φ∗.

The effective drained stiffness tensor C is evaluated through the Mori-

Tanaka homogenization scheme (Benveniste, 1987), considering a two-phase

system composed by the solid matrix and the cracks (Figure 1a):

C = Cm +
m∑
i=1

φci (Cci − Cm) : Aci (6)
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where Cm and Cci are the stiffness tensors of the solid matrix and of the i -th

crack family, respectively. The strain concentration tensor for the i -th crack

family Aci is defined as:

Aci = Tci :

(
φm +

m∑
j=1

φcjTcj

)−1
(7)

with Tci equal to its dilute estimate:

Tci =
[
I + Sci : C−1m : (Cci − Cm)

]−1
(8)

being Sci the Eshelby tensor, which depends on the shape of the cracks Xi

and on the Poisson ratio of the solid matrix νm (Mura, 1987). The cracks

are considered as empty inclusions with no stiffness; thus Eqs. 6-8 can be

reduced by substituting Cci with the null tensor O.

The stiffness tensor of the solid matrix Cm is likewise evaluated with Eqs.

6-8, considering a two-phase system composed by the cement paste and the

aggregates (Figure 1b). Its value is kept constant during the crack propaga-

tion. As a consequence, no distinction is made between damage propagation

in the aggregate and in the cement paste and the micromechanical formula-

tion results in a one-scale single porosity model.

The Biot tensor B and modulus N for a porous medium read (Dormieux

et al., 2006):

B = I − C−1m : C : I = I − C : C−1m : I (9a)

1

N
= (B − Φ∗I) : C−1m : I (9b)
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The approach results in a three-dimensional smeared model where the

macroscopic stress and strain are obtained as an average of the microscopic

quantities. It is noted that the resulting stiffness tensor is a function of the

elastic properties of each phase and of the volume fraction, the shape, the

orientation and the alignment of the inclusions. It is not influenced from the

position and the size of the inclusions.

The damage criterion is formulated in the framework of linear fracture

mechanics theory, on the basis of thermodynamic concepts (Dormieux et al.,

2006). The damage process is simulated by means of cracking propagation.

Nucleation and opening/closing of the cracks are not accounted. As a con-

sequence, the crack density variable εi of the i -th crack family (Eq. 4) is

increasing by an increment of the crack radius ai, while the number of cracks

per unit of volume ni and the crack opening 2ci are constant.

Considering the energy release Gi as the driving force of the damage

process, the damage criterion reads:

Gi −Gci ≤ 0; ε̇i ≥ 0; (Gi −Gci) ε̇i = 0 (10)

where Gci is its critical value. The energy release rate Gi represents the

macroscopic dissipation, which is a function of the potential energy of the

system Ψpot:

Gi (E, P, εi) =
∂Ψpot

∂εi
= −1

2

〈
E + PC−10 : I

〉
:
∂C (εi)

∂εi
:
〈
E + PC−10 : I

〉
(11)

where E + PC−10 : I = E′ is the effective strain controlling the damage. In
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order to capture the different damage mechanisms developed under tension

and compression loading (Esposito, 2015), the positive part of the effective

strain 〈E〉 has be considered following Mazars (1986).

The critical energy release rate Gci can be expressed as function of the

current damage parameter εi:

Gci =
2π

3
gf

(
ni
εi

)1/3

=
2π

3

gf
ai

(12)

with gf the microscopic fracture energy, which is a constant material para-

meter.

3. THE CASE STUDY

In order to validate the model, a selected case study, which represents

the concrete mix used in the severely affected Nautesund bridge (Norway), is

presented. Through a collaboration between the Delft University of Techno-

logy (TU Delft) and the Norwegian Roads Public Administration (NPRA),

microscopic and macroscopic investigation were performed both on extrac-

ted pieces of the bridge and on recovered laboratory samples. The Norwe-

gian aggregates were mainly composed of coarse grained quartz, quartzite,

gneiss, metarhyolite and other minor rock types. The maximum diameter

was 22 mm. It was estimated that 33% of aggregates with size 0-8 mm

and 36% of coarse gravel were potentially alkali reactive. The adopted mix

proportion cement/fine aggregates/coarse aggregates/water, by weight, were

1:3.03:1.74:0.45. NORCEM Industri cement CEM I 42.5R with a dosage

of 380 kg/m3 and an equivalent Na2Oeq content of 1.17% was used. Dry

aggregates were used in the concrete mix.
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The expansion was determined on three prisms of size 75x75x280 mm by

following the measurement procedure proposed by RILEM recommendation

AAR-3 (RILEM TC 219-ACS, 2011). Destructive tests were performed at

predefined time intervals on companion specimens stored in similar conditions

(T = 38 oC and RH = 96%). The static elastic modulus Y and the pris-

matic compressive strength fc were determined on prisms 100x100x400 mm

in agreement with ISO 1920-10:2010(E) (ISO, 2010). The splitting tensile

strength ft,sp was measured on cubes with side of 150 mm in agreement with

EN 13290-6:2009 (NEN, 2009). The 28-day cubic compressive strength fcc

was measured on 150 mm cube specimens stored at 20 oC in a foggy room

(NEN, 2002) and it was equal to 64.11 MPa.

Figure 2 reports the degradation of mechanical properties in terms of

normalised values versus expansion. Each normalised value is obtained as

the ratio between the current value and its reference one (Esposito et al.,

2015). The reference value is defined as the interpolated value corresponding

to an expansion equal to 0.05% (Y ref = 26130 MPa, f ref
c = 61.23 MPa, and

f ref
t,sp = 3.85 MPa).

The elastic modulus shows the highest degradation reaching a minimum

value of 67%. The splitting tensile strength degrades to a minimum value

of 84%. On the contrary, the compressive strength does not show any de-

gradation. The results are in line with findings from other experimental data

available in literature and normalised with the same procedure (Esposito

et al., 2015; Esposito, 2015).
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4. DEGRADATION DUE TO EXTERNAL LOAD

The model is validated first for the case of concrete subjected to external

mechanical loading, simulating uniaxial tensile and compressive tests. The

results are compared with analytical formulations proposed by the Model

Codes (fib, 2011; CEB-FIP, 1993). The analyses simulate the concrete of the

case study presented in Section 3. The identification of the model parameters

is presented first, followed by the simulation of the uniaxial tests and a concise

sensitive study.

4.1. Input and Calibrated Parameters

Table 1 lists the input and calibrated parameters of the model. They

define the initial microstructure of the concrete, the elastic constants of each

phase and the microscopic fracture energy gf .

In general the input parameters of the model can be determined by macro-

scopic and microscopic investigation, considering well-known properties cor-

relation (e.g. Power’s law for the determination of the capillary porosity

from w/c ratio and hydration degree or Eurocode 2 formulas for correlation

between 28-day mechanical properties). In the present case the elastic mod-

ulus Yin and tensile strength ft,in of the undamaged concrete are calculated

from 28-day cubic compressive strength (Eurocode 2, 2005), as reported in

Section 3. The aggregate elastic modulus Yagg has been determined by nano-

indentation test. The elastic modulus of the cement paste Ycem has been

arbitrary chosen twice smaller than the one of the aggregates; this value ac-

counts also for the intrinsic porosity of concrete that does not contribute to

the cracking. For both phases, the Poisson ratio νcem = νagg is equal to 0.20.
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The volume fraction of the aggregates φagg is determined by mixture propor-

tion. For undamaged concrete, it is assumed that the three cracks families

are identical in aspect ratio Xin = X1,in = X2,in = X3,in and volume fraction

φc,in = φc1,in = φc2,in = φc3,in. Consequently, the undamaged concrete res-

ults as a nearly isotropic material (Esposito, 2015). The crack opening 2c

is assumed constant and equal to 0.10 mm. The total initial volume frac-

tion of the cracks is arbitrary set to 70% of the capillary porosity calculated

with Power’s law (Φin = 0.70ΦPower
in ), because not all the capillary pores will

become cracks and contribute to the damage. The influence of the input

parameters is shown in the parametric study presented in Section 4.3.

The calibration process is subdivided in two parts: first the calculation

of the initial aspect ratio of the cracks Xin second the determination of the

microscopic fracture energy gf . The stiffness tensor of the solid matrix Cm is

calculated with equations similar to Eqs. 6-8. By imposing that the elastic

modulus of the concrete is equal to the one of the undamaged concrete Yin,

the initial aspect ratio Xin is calibrated. Consequently, the crack radius ain =

a1,in = a2,in = a3,in and number of cracks per unit of volume n = n1 = n2 = n3

can be calculated by Eq. 1. The initial damage state ε = ε1 = ε2 = ε3 can

be calculated by Eq. 4. The microscopic fracture energy gf is derived by

imposing that the cracks of the i -th family, with initial radius ai,in will start

to propagate in a uniaxial tensile test, for a uniaxial macroscopic stress equal

to the tensile strength of undamaged concrete:

Gi

(
E = C−1 : Σcr, P = 0, εi = εi,in

)
:= Gci (εi = εi,in, gf) (13)

where the only no zero component of the stress tensor Σcr is Σcr
ii = ft,in.
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4.2. Uniaxial Loading Tests

The multiscale material model is applied to simulate the degradation of

concrete under uniaxial load. The macroscopic stress Σ is determined by

Eq. 5 with P = 0 and E = Eapplied.

Figure 3 shows the resulting non-linear behaviour of concrete subjected

to external uniaxial tensile and compressive load. The model results are

compared with the analytical formulations proposed by the Model Codes

(fib, 2011; CEB-FIP, 1993), which are based on a statistically large number

of experimental tests.

In the case of tension loading along the 3-axis (Figure 3a), a softening

curve is obtained which resembles the so-called exponential softening curve,

frequentlly used in numerical models of concrete at structural level. The

damage propagation starts after the maximum load is achieved (Figure 3c);

only the cracks perpendicular to the load direction are propagating (a3 > ain,

a1 = a2 = ain). The peak stress is retrieved equal to the tensile strength of

undamaged concrete ft,in, as imposed by the calibration of the microscopic

fracture energy gf (Section 4.1). The macroscopic fracture energy Gf can be

estimated, from the simulation, calculating the area underneath the stress-

strain curve At. Considering that the model represents the behaviour of

concrete in the fracture zone, the area At is multiplied by three times the

maximum aggregate size dmax (Bažant and Oh, 1983a), as reported in Table 2.

The resulting macroscopic fracture energy is close to the estimation provided

by the Model Codes (fib, 2011; CEB-FIP, 1993).

In the case of compressive loading along the 3-axis (Figure 3b), a stiffening-

softening relation is obtained which resembles well-known parabolic softening
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curves, prescribed by codes and frequently used in numerical models of con-

crete at structural level. The cracks are now developing in the two planes

aligned with the load direction (a3 = ain, a1 = a2 > ain); due to the identical

initial shape of the cracks, the propagation is similar for the two families

(Figures 3d). This crack pattern resembles the splitting cracks usually ob-

served in concrete specimens tested under uniaxial compression. The damage

propagation starts at a stress Σprop
33 = −19.66 MPa (Table 2). The obtained

peak stress Σpeak
33 = −53.29 MPa is close to the compressive strength of con-

crete. The ratio Σprop
33 /Σpeak

33 = 0.36 is close to the ratio 1/3 proposed by

the Model Codes (fib, 2011; CEB-FIP, 1993). The obtained results in terms

of stress-strain curve, are in good agreement with the relationships proposed

by the Model Codes (fib, 2011; CEB-FIP, 1993).

In conclusion, the model is able to approximate the known stress-strain

relationship of concrete under tensile and compressive loading, with a lim-

ited number of input parameters. It is noted that only the elastic branch

in tension is a direct result of calibration. The non-linear softening curve in

tension and the entire curve in compression are a direct result of the model.

The analytical relations have been derived from a large number of exper-

imental campaigns and worldwide recognized by the scientific community.

This proves the validity of the model’s hypotheses as well as the calibration

procedure.

4.3. Parametric Study

The model input parameters, Table 1, can be divided in three categories:

one for the macroscopic properties of undamaged concrete (Yin, ft,in), one

related to the solid matrix (Ycem, Yagg, νcem = νagg, φagg) and one to define
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the initial status of cracks (Φin, c). They can be determined via macro to

microscopic investigation, such as mechanical tests, nano-indentation tests

and porosity measurements.

The macroscopic properties of undamaged concrete (Yin, ft,in) and the

volume fraction of aggregates (φagg) are considered as known and fixed for the

analysed case. A parametric study is performed on the remaining variables

varying them one by one (Figure 4). Each time the calibration procedure is

repeated.

The solid matrix is defined by the aggregates embedded in the cement

paste. Its properties remain constant during the damage evolution. Thus,

rather than the properties of aggregate and cement paste, the elastic con-

stants of the solid matrix are relevant. Its mechanical properties are related

to: the volume fraction of the aggregates φagg, the elastic modulus of the

cement paste Ycem, the elastic modulus of the aggregates Yagg and the Pois-

son ratio of both phases νcem = νagg. Knowing the amount of aggregates by

mix design, the ratio between the elastic moduli of each phase Ycem/Yagg and

their Poisson ratio νcem = νagg define the stiffness tensor of the solid matrix

Cm.

Figures 4a and 4b present the sensitivity of the model with respect to the

ratio between the elastic moduli of cement paste and aggregates Ycem/Yagg, by

varying Ycem. The higher is this ratio, the stiffer is the solid matrix. As a con-

sequence, the calibration against the macroscopic stiffness Yin leads to more

elongated penny-shaped initial cracks (ain � c). The calibration against the

macroscopic strength ft,in subsequently leads to a higher microscopic frac-

ture energy gf (Figure 4a). The resulting non-linear behaviour of concrete
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is strongly affected by the elastic modulus of the solid matrix (Figure 4b).

In the case of tension loading, the ultimate strain, and consequentially the

macroscopic fracture energy Gf results higher for a stiffer solid matrix. In

the case of compression loading, a substantial variation is observed. For a

stiffer solid matrix, the cracks propagate later and the peak stress Σpeak
33 is

higher; furthermore the ratio Σprop
33 /Σpeak

33 decreases.

Figures 4c and 4d present the influence of Poisson ratios of aggregate

and cement paste. Their values are assumed equal. As a consequence of the

adopted homogenization method (Eqs. 6-8) and of the modelling choices (the

aggregates are considered as spherical inclusions), the solid matrix has the

same Poisson ratio as its phases (νm = νcem = νagg). This elastic constant

has a limited influence on both the calibrated parameters and the behaviour

of the overall material under uniaxial loading. Its influence can be mainly

appreciated for the behaviour of concrete under compressive load, because

the Poisson ratio correlates the lateral and applied normal strains.

In Figures 4e and 4f the influence of the last category of input para-

meters is presented, focusing the attention on the initial volume fraction of

cracks Φin. Considering the model assumptions, the following correlation

holds between the initial aspect ratio Xin and the initial volume fraction Φin

for the same overall stiffness tensor Cin: the higher is the initial volume frac-

tion (Φin ↑), the higher is the initial aspect ratio (Xin ↑); thus, the inclusions

tend to have a more spheroidal shape (ain → cin). If the crack opening 2c

is assumed constant (c = cin), the relationship can be expressed in terms

of the initial crack radius ain in the major directions, as shown in Figure

4e. A similar trend is observed for the microscopic fracture energy gf . The
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initial volume fraction of the cracks Φin influences the non-linear behaviour

of concrete similarly to the ratio between the elastic moduli of cement paste

and aggregate Ycem/Yagg (compare Figures 4b and 4f). In fact, an initial

lower amount of cracks, which tend to be elongated penny-shaped inclusions

(ain � c), leads to an overestimation of the compressive strength and of the

macroscopic fracture energy.

Note that crack opening 2c affects the initial crack density variable (Eqs.

1 and 4), but it is not relevant in the damage evolution. In fact, being

constant the number of crack per unit of volume n, the ratio between the

crack density variable ε and its initial value εin results only a function of the

crack radius a (Esposito, 2015). It is noted that fluid and alkali transport in

concrete are outside the scope of this paper. For these phenomena the value

of the crack opening 2c is important.

Concluding, the elastic modulus of the solid matrix, Ym, expressed as a

function of the ratio Ycem/Yagg and the initial porosity Φin, can influence the

non-linear model behaviour of concrete under uniaxial external loading. The

Poisson ratio of the solid matrix νm has a limited influence, which can be

noticed only for the behaviour under compressive loading. On the contrary,

the damage process does not depend on the crack opening 2c.

5. DEGRADATION DUE TO INTERNAL PRESSURE

The ASR process is simulated considering that the expansive alkali-silica

gel saturates the concrete porosity and induces a pressure P . In the case

of free-expansion of concrete, this phenomenon is macroscopically stress-free

(Σ) and the macroscopic strain E = Ep is derived from Eq. 5:
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Σ = 0 ⇒ E = Ep = C−1 : BP (14)

The model is applied to simulate the degradation behaviour observed for the

case study presented in Section 3. The input and calibrated parameters were

listed in Table 1.

Figure 5 shows the relationship between the crack radius a, the macro-

scopic strain E = Ep and the pressure P . The radii ai develop equally, due

to the equal initial values and symmetry of the loading conditions. For the

same reasons, the strains E11, E22 and E33 develop equally. In the initial state

the cracks are empty and the alkali-silica gel does not pressurize the concrete

porosity (P = 0), resulting in zero macroscopic deformation (E = 0). The

saturation of the porous medium is assumed instantaneous, resulting in an

increase of pressure P and macroscopic strain E for the initial crack radius.

While the damage process evolves, thus for increasing values of crack radius

a, the stiffness C decreases (Eq. 6) and the Biot tensor B increases (Eq. 9).

As a consequence the pressure P , needed for further damaging the system,

decreases and the macroscopic expansion strain Ep increases.

To study the effect of ASR on the material deterioration, subsequent

uniaxial tests have been simulated at eight levels of expansion Ep (Figure

6). In this case, the macroscopic strain E is the sum of the expansion strain

Ep and of the applied oneEapplied. The case of unaffected concrete (Ep
33 = 0),

is the same as presented in Figure 3.

For affected concrete, the expansion strain Ep
33 causes that the stress-

strain curves appears as shifted on the horizontal axis. The curves present a

similar shape, composed by linear and softening/hardening branches. Ana-
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lysing Eq. 10 together with Eq. 11, it is concluded that the linear stage

represents a transition phase, characterized by no further crack propagation,

in which the applied load reduces the internal pressure down to zero.

Due to the damage induced by the pressure P the stiffness in the linear

stage is lower with respect to the one of unaffected concrete. Consequently,

the peak stress is reduced both in tension and compression.

Figure 7 shows that the crack opening 2c slightly varies as a function of

the macroscopic strain E during the uniaxial compressive tests. Its value

has been post-processed as a function of the local strain in the inclusions as

proposed by Deude et al. (2001):

ci = ci,in (1 + ni · εi · ni) = ci,in (1 + ni · Ai : E · ni) ≤ ci,in (15)

where ci,in is the initial value of 0.1 mm. The results indicate that the cracks

are far from a complete closure, thus including the opening/closing phe-

nomenon of the cracks in the model will not show any appreciable difference.

Figure 8 compares the model and experimental results in terms of mech-

anical properties degradation. The property values are normalised with re-

spect to their initial value for the model results; the normalisation procedure

for the experimental results has been presented in Section 3. The model

overestimates the degradation of all the properties, in correlation with the

expansion (Figure 8a). The model is able to simulate the degradation rate

between stiffness and strengths, as shown in Figure 8b.

The multiscale material model, which appears successfully in the eval-

uation of concrete behaviour under uniaxial external loading and correctly

approximates the relationship between stiffness and strength degradation in
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ASR affected concrete, requires improvement to correctly estimate the rela-

tionship between expansion and stiffness degradation. In the next section,

possible modifications of the proposed model are explored.

6. MODEL MODIFICATIONS

In Section 2 a multiscale material model based on a single porosity system

has been presented. It assumes a porosity system composed by three penny-

shaped crack families embedded into a solid matrix, which constituents are

aggregates and cement paste.

The model is able to predict the behaviour of concrete under uniaxial

tensile and compressive loads, capturing not only the peaks stress, but also

its main non-linear characteristics such as the softening/hardening shape,

ultimate strain and macroscopic fracture energy Gf .

When applied to the case of ASR-affected concrete, the model is able

to determine the correlation between pressure P and expansion strains Ep.

The degradation of mechanical properties in ASR-affected concrete under

free-expansion conditions, are determined by simulating subsequent uniaxial

tests. The relation between stiffness and strengths is predicted reasonable

well. However, the model overestimates the degradation in stiffness as a func-

tion of expansion. In this section, three model modifications are explored.

6.1. Microscopic Fracture Energy as Input Parameter

The microscopic fracture energy gf together with the crack density vari-

able ε governs the fracture process. The latter is a state variable, while the

former is a constant. In Sections 4 and 5, the microscopic fracture energy gf
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was calibrated imposing that at onset of cracking the macroscopic stress is

the same as observed experimentally in a uniaxial tensile test (Eq. 13).

Charpin and Ehrlacher (2014) propose to consider the microscopic frac-

ture energy as an input parameter not linked to the tensile properties of the

undamaged concrete. Their scope is to model the behaviour of ASR-affected

concrete in confined conditions. Their model explains the coupling between

external loading and swelling of the gel in terms of concrete expansion. A

high degradation of concrete stiffness for limited expansion values is reported,

but a comparison with experimental findings is not made.

In this section, the proposed model is modified by adopting a similar

approach. The results are obtained by calibrating only the initial aspect

ratio Xin and considering multiples of the calibrated microscopic fracture

energy gf .

This approach shows an improvement in terms of expansion versus stiff-

ness degradation, but it presents an undesired drawback in the estimation of

the strengths. Figure 9a shows that the higher is the inputted microscopic

fracture energy, the lower is the stiffness degradation for the same expansion

level. However, a sensible difference with experimental results is still notice-

able. Figure 9b reveals the major disadvantage of the method. It compares

simulations of uniaxial tests performed for unaffected concrete. For high

values of the inputted microscopic fracture energy, the peak stress and the

ultimate strain reach unrealistic values, both in tension and compression.

In conclusion, this approach does not show any improvement and high-

lights once more the link between microscopic damage processes and macro-

scopic material deterioration.
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6.2. Two-Scale Double Porosity Model

The concrete at microscopic level is known as a complex heterogeneous

medium. At different observation scales, different homogeneous phases can

be identified. At millimeter scale, cement paste and aggregates appear as

uniform materials. On the contrary, at higher magnification, they occur as

porous media. The aggregate and cement paste contains pores, which can

influence the overall behaviour of the material. Their size is usually one order

of magnitude smaller than the one of capillary pores, thus of microcracks

(Neville et al., 1963).

The influence on the concrete behaviour of a second porosity system, at

lower scale than the cracks, is investigated in this section. This approach is

adopted in refined literature models, such as Ulm et al. (2014) and Pichler

and Hellmich (2011), to estimate the evolution of stiffness properties during

the hydration process of concrete. Here the two-scale double porosity model

proposed by Dormieux et al. (2006) is adopted (Figure 10). As for the single

porosity model presented in Section 2, it is assumed that the microstructure is

fully saturated. As a consequence, diffusion mechanisms and gradual filling of

pores are not addressed. At lower scale (level I) spherical pores are embedded

in the solid matrix, which is composed by aggregates and cement paste. The

resulting porous matrix is the medium in which the cracks are embedded

and propagating (level II). The state equations of the system at level II read

(Dormieux et al., 2006; Ulm, 2014):

Σ = C : E −BpPp −BcPc (16a)
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φp − φ∗p = Bp : E +
Pp

Npp

+
Pc

Npc

(16b)

Φ− Φ∗ = Bc : E +
Pp

Ncp

+
Pc

Ncc

(16c)

The indexes p and c denote pores and cracks, respectively. The Biot tensors

and moduli are defined as:

Bp = Bpm
p : C−1m : Cpm (17a)

Bc = I − C−1pm : C : I (17b)

1

Npp

= Bpm
p : C−1pm :

[
(1− Φ)Bpm

p −Bp

]
+

1− Φ∗

Npm
pp

(17c)

1

Npc

= −Bpm
p : C−1pm : (Bc − Φ∗I) (17d)

1

Ncp

= I : C−1pm :
[
Bp − (1− Φ∗)Bpm

p

]
(17e)

1

Ncc

= (Bc − Φ∗I) : C−1pm : I (17f)

with Cm and Cpm the stiffness tensors of the solid and porous matrix, re-

spectively, Bpm
p and Npm

pp the Biot tensor and modulus at level I, which can

be calculated with Eq. 9.

The damage criterion is evaluated at the crack scale (level II) , accounting

for the interaction between the pressure in the pores Pp and in the cracks Pc.

The energy release rate of the i -th crack family is evaluated as:
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Gi = −1

2
〈E〉 :

∂C
∂εi

: 〈E〉+

(
Bpm

p : C−1pm :
∂C
∂εi

Pp − I : C−1pm :
∂C
∂εi

Pc

)
: 〈E〉+

−Bpm
p : C−1pm :

∂C
∂εi

: C−1pm : Bpm
p

P 2
p

2
− I : C−1pm :

∂C
∂εi

: C−1pm : I
P 2
c

2
+

+

(
Bpm

p : C−1pm :
∂C
∂εi

: C−1pm : I + I : C−1pm :
∂C
∂εi

: C−1pm : Bpm
p

)
PpPc

(18)

The critical energy release rate Gci is determined with Eq. 12.

To compare the results obtained with the single porosity model (Sections

2 and 5) and the two-scale double porosity model, the calibration procedure

has been slightly modified by imposing that the initial aspect ratio of the

cracks is the same adopted in the former model (Xi,in = 0.057, see Table

1). Consequently the initial volume fraction, φc,in = φc1,in = φc2,in = φc3,in,

of the cracks has been calibrated to match the initial elastic modulus of the

overall material (Table 3). The microscopic fracture energy gf is determined

with Eq. 13, as described in Section 4.1. The volume fraction of spherical

pores φp is an input parameter, but its value is limited by the initial volume

fraction of cracks Φin and by the overall initial stiffness Yin.

Figure 11a compares the results obtained for different value of the volume

fraction of spherical pores φp, while Figure 11b considers different ratios

between the pressures Pp/Pc in the two porosities. The two-scale double

porosity model does not show appreciable difference with respect to the single

porosity model. This can be explained by the evolution of Biot tensor Bp

(Figure 12), which can be directly related to the evolution of the volume

fractions. In fact, the volume fraction of spherical pores fp at level I is linked

to the one of the cracks Φ (for more details see Chapter 5 in Dormieux et al.
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(2006)):

fp = φp (1− Φ) (19)

As a consequence, both the stiffness Cpm and the Biot tensor Bpm
p of the

porous matrix decrease leading to a substantial reduction of Bp.

6.3. Solidification Model

The swelling of concrete is the major effect induced by the ASR process.

It is a direct consequence of the gel’s expansion in a confined environment.

However, the deterioration of concrete appears to be a more complex phe-

nomenon. Previous sections showed that considering only the effect of an

internal pressure P is not sufficient to correctly link the macroscopic expan-

sion and degradation of concrete.

Experimental investigations revealed that the viscoelastic properties of

the gel play an important role in the phenomena (Hagelia, 2010; Kawamura

and Iwahori, 2004). It can be hypothesized that during the process the

gel is changing in phase and increasing its mechanical contribution to the

overall concrete material. Furthermore, in structures with major signs of

deterioration, expulsion of a dense material was found on their surfaces.

Inspired by the work of Coussy (2005) for freezing materials, a model

modification is presented in this section to describe the possible contribution

of coexisting fluid and solid gel phases to the overall stiffness of the material.

This approach should not be confused with the solidification model proposed

by Bazant to describe the creep phenomenon in concrete. The ASR damage

process is simulated by means of two subsequent phenomena: swelling and
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solidification of the gel. The first process defines the macroscopic expansion

of concrete, while the second delays the deterioration. At the beginning, the

cracks are saturated by a fluid exerting an internal pressure P on the material.

The concrete is modelled as a porous medium and its state equations are

described by Eq. 5. Afterwards, the cracks become partially filled by a solid

gel phase, characterized by an elastic modulus Ygel. The i -th crack family is

composed by nf pressurized cracks, with volume fraction φfi and ns solidified

cracks, with volume fraction φsi, where n = nf +ns and φci = φfi+φsi. During

both processes each family has the same crack radii a, volume fraction φc

and solidification ratio ρs = φs/φc.

For a certain value of damage a and of solidification ρs the state equations

of the system are:

Σ = C : E −BfP (20a)

Φf − Φ∗f = Bf : E +
P

Nf

(20b)

Φs − Φ∗s = Bs : E (20c)

where Φf−Φ∗f and Φs−Φ∗s are the elastic deformations of the total pressurized

(Φf =
m∑
i=1

φfi) and solidified (Φs =
m∑
i=1

φsi) porosities, respectively. The overall

stiffness tensor C is evaluated with Eq. 6 accounting for the stiffness of the

solid gel phase (Cfi = O and Csi = Cgel). The Biot tensors are evaluated as

a function of the strain concentration tensor:
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Bj =
m∑
i=1

φjiAji with j = cp, cs (21)

The Biot modulus of pressurized cracks Nf is calculated with Eqs. 21 and

9(b). The damage evolution of the i -th family is governed by the energy

release rate Gi and its critical value Gci, which are evaluated by Eq. 11 and

12, respectively.

Considering a porous medium, subject to an internal pressure P , in which

the empty cracks are transformed in solid inclusions, an incremental formula-

tion is needed to evaluate the state equations. The total macroscopic strain

in absence of external loading E = Ep, corresponding to a crack radius a+δa

and volume fraction of solidified cracks Φs + δΦs, can be defined as:

EΦs+δΦs
a+δa =

(
DΦs
a + δD

)
:
(
BΦs
a + δB

)
(Pa + δP ) +

−
[
δDδΦs

a : BΦs
a + δBδΦs

a :
(
DΦs
a + δDδΦs

a

)]
Pa︸ ︷︷ ︸

δE∗

=

= DΦs
a : BΦs

a Pa + δÊ − δE∗ = EΦs
a + δÊ − δE∗ (22)

where DΦs
a andBΦs

a are the compliance and Biot tensors of the overall material

in the previous stage (a and Φs), while δD and δB are their increments due

to solidification and cracking processes, which are defined as:
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δD =
(
DΦs+δΦs
a − DΦs

a

)
+
(
DΦs+δΦs
a+δa − DΦs+δΦs

a

)
=

= δDδΦs
a + δDΦs+δΦs

δa (23a)

δB =
(
BΦs+δΦs
a −BΦs

a

)
+
(
BΦs+δΦs
a+δa −BΦs+δΦs

a

)
=

= δBδΦs
a + δBΦs+δΦs

δa (23b)

The strain increment is denoted by δÊ − δE∗, where the strain δE∗ refers

only to the stiffening effect due to the solid inclusions. The strain δE∗ is

introduced because the solidification is assumed as a strain-free process:

EΦs+δΦs
a := EΦs

a := EΦs=0
a (24)

Figures 13 and 14 show the comparison between the pressure-based model,

presented in Sections 2 and 5, and the solidification model. For both analysis,

the initial and calibrated parameters are reported in Table 1. The additional

parameters needed for the solidification model, hereafter explained, are listed

in Table 3. The solidification is assumed to start at crack radius a = 2.08 mm

and evolves with a constant ratio ρs = φs/φc = 0.50. The elastic modulus of

the solid gel phase is assumed equal to Ygel = 45.0 GPa (Leemann and Lura,

2013).

Figure 13 shows the evolution of pressurized cracks space, φf , as a function

of the crack radius a. If the solidification starts, this space is suddenly

reduced in agreement with the ratio ρs.
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At onset of solidification, the overall material results stiffer due to the

presence of solid gel phase, as shown in Figure 14a. As a consequence, the

pressure P increases due to the confinement effect exerting by the solid gel

on the fluid (Figure 14b). No increment of strain (δE = 0) occurs due to

assumption in Eq. 24.

However, as the damaging proceeds, the stiffness drastically decreases

because the pressurizing effect becomes more important then the solidifica-

tion one. In comparison with the pressure-based approach, the solidification

model provides lower strain increments for the same crack radius a (Figure

14b). In fact, if the cracks are saturated by a fluid and subjected to an

increase of internal pressure P the increment in strain is δE = δÊ. At the

contrary, in presence of solidification, the incremental strain is reduced by the

quantity δE∗ (δE = δÊ − δE∗). Consequently, the two approaches provide

similar results in terms of degradation versus expansion and no improvement

is observed in comparison with experimental results.

7. CONCLUDING REMARKS

The alkali-silica reaction in concrete can be defined as a long-term multiscale

damage mechanism, which induces swelling and degradation of the material.

The reaction is triggered with the formation of an expansive alkali-silica gel.

The gel flows into the pores and builds up an internal pressure, while confined

by the concrete skeleton. When the microstructure strength is reached, the

cracking process starts and affects the macroscopic level. The performances

of the overall material are thus compromised, leading to a loss in capacity of

the structure and promoting other deterioration mechanisms (e.g. corrosion
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of reinforcements).

To understand the deteriorating impact induced by ASR in concrete,

a multiscale material model has been adopted. The approach follows the

microporomechanics theory developed by Dormieux et al. (2006) and has

been inspired by the work of Lemarchand et al. (2005) and of Charpin and

Ehrlacher (2012). The concrete is modelled as a heterogeneous material. Its

microstructure is composed by cracks embedded in a solid matrix, formed

by aggregates and cement paste. The macroscopic quantities of the overall

material are analytically determined adopting the concept of a representative

elementary volume. The approach results in a three-dimensional smeared

model, which aims to characterize the macroscopic deterioration of concrete

subjected to any combination of external and internal loads.

The model is based on a limited number of input and calibrated para-

meters, which can be determined via micro and macroscopic laboratory in-

vestigations. The input variables can be classified in three categories, which

are related to: the mechanical properties of undamaged concrete (Yin, ft,in),

the elastic constants of the solid matrix (Ycem, Yagg, νcem = νagg, φagg) and

the initial status of the cracks (Φin, c). A calibration procedure is adopted

to determine the initial aspect ratio of the cracks Xin and the microscopic

fracture energy gf , on the basis of the macroscopic stiffness Yin and tensile

strength ft,in of undamaged concrete, respectively.

The model’s assumptions have been validated by simulating the behaviour

of unaffected concrete under uniaxial external loading. The model results

are in good agreement with empirical formulations proposed by the Model

Codes (CEB-FIP, 1993; fib, 2011), which are based on a statistically large
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number of experimental results. The well-known stress-strain relationships

are approximated in terms of peak stresses, softening/hardening shape and

ultimate strains for both tension and compression. Considering that the

representative elementary volume is the fracture zone, which size can be

estimated as three times the maximum aggregate’s diameter (Bažant and Oh,

1983a), the model is able to determine the macroscopic fracture energy in

tension Gf . Furthermore, in the case of compressive loading, the peak stress

Σpeak and relation between cracking and peak stress Σprop/Σpeak ∼= 1/3 are

estimated well.

The ASR process is modelled assuming that the porosity is saturated

by an expansive alkali-silica gel, which exerts an internal pressure. The

evolution of mechanical properties of ASR-affected concrete is evaluated by

simulating first a free-expansion test and subsequently uniaxial loading tests.

A comparison with experimental findings shows that the model overestimates

the degradation of mechanical properties as a function of the expansion. On

the contrary, the relationship between stiffness and strength deterioration is

correctly approximated.

Eventually, to improve the model performances regarding the relation

between swelling and stiffness reduction of affected concrete, three model

modifications have been explored. None of them lead to promising improve-

ments. This suggests that the assumption of elastic behaviour of each phase,

thus excluding permanent deformation upon removal of internal and external

loads, should be reconsidered.

In conclusion, the paper shows that the proposed model is a potentially

valid tool to describe the deteriorating impact of ASR on concrete. Exten-
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sions of the present model to both the reaction product and the structural

level are foreseen. However, first further refinements of the present model

at aggregate-to-concrete level should be considered. In particular, the coup-

ling between the ASR and long term processes, such as creep, which can

induce permanent deformation in the microstructure, should be addressed.

The damage evolution in presence of permanent deformation will result in a

less severe mechanical degradation, thus improving the model performances.

Once this point is addressed, the micromechanical model can be refined by

considering the interaction between the cracks and the aggregates, thus de-

scribing the aggregate size effect on the concrete expansion. In order to

describe a more realistic phenomenon at reaction product level, the model

can be improved within the framework of partially saturated medium theory.

Eventually, with respect to the analytical approach, the influence of different

homogenization schemes should be studied.
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Figure 1: Micromechanical model: (a) Concrete; (b) Solid matrix.
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splitting tensile strength ft,sp for ASR-affected concrete in free-expansion conditions.
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Figure 3: Degradation of concrete subjected to external mechanical loading: (a) and (c)
Uniaxial tensile test; (b) and (d) Uniaxial compressive test.
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Figure 4: Parametric study: (a)-(b) Ratio between the elastic moduli of aggregates and
cement paste Ycem/Yagg; (c)-(d) Poisson ratio νcem = νagg; (e)-(f) Initial volume fraction
of the cracks Φin. Not scaled Y-axis in Figures (b), (d) and (f).
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Figure 6: Degradation of concrete subjected to internal pressure and subsequent mechan-
ical loading: (a) Uniaxial tensile test; (b) Uniaxial compressive test.
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Figure 7: Degradation of concrete subjected to internal pressure and subsequent mechan-
ical loading: Post-processing of crack closure (legend in Figure 6).
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Figure 8: Degradation of concrete subjected to internal pressure: (a) Degradation of
Young’s modulus, tensile strength and compressive strength as a function of expansion;
(b) Ratio between stiffness and strengths degradation.
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Uniaxial test of unaffected concrete. Not scaled Y-axis in Figures (b).
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Figure 14: Comparison between pressure-based and solidification model: (a) Relation
between expansion and stiffness degradation; (b) Evolution of strain increment δE =

δÊ − δE∗ and pressure P (The legend is complementary to figure (a)).
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Table 1: Input and initial parameters of the model.

Property Unit Value
Input parameters

Concrete Young’s modulus Yin MPa 36326∗

Concrete tensile strength ft,in MPa 2.970∗

Young’s modulus of cement paste Ycem MPa 43250
Young’s modulus of aggregates Yagg MPa 86500
Poisson ratio νcem = νagg 0.200
Volume fraction of aggregate φagg 0.680
Initial volume fraction of cracks Φin = 3φci,in 0.098
Crack thickness ci (i = 1, 2, 3) mm 0.100

Calibrated parameters
Initial aspect ratio Xi,in (i = 1, 2, 3) 0.057
Microscopic fracture energy gf N/mm 3.48 10−4

Dependent parameters
Young’s modulus of solid matrix Ym MPa 68603
Poisson ratio of solid matrix νm 0.200
No. of cracks ni (i = 1, 2, 3) mm−3 0.025
Initial crack radius ai,in (i = 1, 2, 3) mm 1.762
Initial crack density εi,in (i = 1, 2, 3) 0.138
∗ calculated from 28-day cubic compressive strength (Eurocode 2, 2005).
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Table 2: Non-linear behaviour of concrete under mechanical loading.

Property Unit Value
Concrete properties

Concrete compressive strength fc,in MPa 53.21∗

Concrete Young’s modulus Yin MPa 36326∗

Concrete tensile strength ft,in MPa 2.97∗

Maximum aggregate diameter dmax mm 22.00
Calculated values using code standards

Macroscopic fracture energy

Gf = 0.041(fc,in/10)0.7 N/mm 0.131
Gf = 0.073f 0.18

c,in N/mm 0.149

Obtained values from the simulation
Tensile behaviour

At =
∞∫
0

Σ33dE33 MPa 2.33 10−3

Gf = 3dmaxAt N/mm 0.154
Compressive behaviour

Σpeak
33 MPa 53.29

Σprop
33 MPa 19.66

Σprop
33 /Σpeak

33 0.36

Ac =
∞∫
0

Σ33dE33 MPa 1.96 10−1

Ac/At 84.36
∗ calculated from 28-day cubic compressive strength (Eurocode 2, 2005).
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Table 3: Complementary initial parameters for the two-scale double porosity model and
the solidification model (see also Table 1).

Property Unit Value
Two-scale double porosity model

Volume fraction of pores φp 0 0.10 0.20
Initial aspect ratio Xi,in (i = 1, 2, 3) 0.057 0.057 0.057
Microscopic fracture energy gf N/mm 3.48 10−4 4.23 10−4 5.20 10−4

No. of cracks ni (i = 1, 2, 3) mm−3 0.025 0.016 0.007
Initial crack density εi,in (i = 1, 2, 3) 0.138 0.085 0.041

Solidification model
Solidification ratio ρs 0.50
Young’s modulus solid gel Ygel MPa 45000
Start solidification ai (i = 1, 2, 3) mm 2.08
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