Thesis
Learning Depth from Single Monocular Images Using Stereo Supervisory Input
João Paquim
Thesis
Learning Depth from Single Monocular Images Using Stereo Supervisory Input
by
João Paquim
to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday August 22, 2016 at 14:00.

Student number: 4508440
Project duration: February 1, 2016 – August 22, 2016
Thesis committee: Prof. dr. ir. Max Mulder, TU Delft, chairman
Dr. Guido de Croon, TU Delft, supervisor
Dr. ir. Erwin. Mooij, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.
Contents

1 Scientific Paper \hfill 1

2 Extended Related Work \hfill 13
 2.1 Monocular depth estimation \hfill 13
 2.2 Monocular depth estimation for robot navigation \hfill 14
 2.3 Depth datasets \hfill 15
 2.4 Self-supervised learning \hfill 15

3 Additional results \hfill 17

Bibliography \hfill 19
Preface

This thesis marks the conclusion of my MSc in Aerospace Engineering. It has been a long journey, spanning two countries, filled with challenges and successes, all contributing to my personal development.

I’d like to thank my main supervisor, Guido, for all the guidance along the way, and the time spent reviewing my code and thesis drafts. I’d also like to thank the people at the MAVLab, especially Eric, for their help in hardware and software debugging.

I’d like to thank everyone back in Portugal, my friends, my parents and brothers, and the rest of my family, for their continued support and motivation. I’d like to thank the people at the ISR-DSOR lab, and in particular my remote supervisor, Bruno Guerreiro, for welcoming me into their lab, and providing me with valuable career advice, a work place, and work material, during my stay in Portugal.

A special thanks goes to all the Tugas em Delft, we developed a very strong Portuguese community, within the heart of the Netherlands, and in particular my roommates, who had to put up with me during the year that passed.

João Paquim
Delft, August 2016
Learning Depth from Single Monocular Images Using Stereo Supervisory Input
João Paquim
Guido de Croon

Abstract—Stereo vision systems are often employed in robotics as a means for obstacle avoidance and navigation. These systems have inherent depth-sensing limitations, with significant problems in occluded and untextured regions, leading to sparse depth maps. We propose using a monocular depth estimation algorithm to tackle these problems, in a Self-Supervised Learning (SSL) framework. The algorithm learns online from the sparse depth map generated by a stereo vision system, producing a dense depth map. The algorithm is designed to be computationally efficient, for implementation onboard resource-constrained mobile robots and unmanned aerial vehicles. Within that context, it can be used to provide both reliability against a stereo camera failure, as well as more accurate depth perception, by filling in missing depth information, in occluded and low texture regions. This in turn allows the use of more efficient sparse stereo vision algorithms. We test the algorithm offline on a new, high resolution, stereo dataset, of scenes shot in indoor environments, and processed using both sparse and dense stereo matching algorithms. It is shown that the algorithm’s performance doesn’t deteriorate, and in fact sometimes improves, when learning only from sparse, high confidence regions rather than from the computationally expensive, dense, occlusion-filled and highly post-processed dense depth maps. This makes the approach very promising for self-supervised learning on autonomous robots.

Index Terms—Monocular depth estimation, stereo vision, robotics, self-supervised learning.

I. INTRODUCTION

Depth sensors have become ubiquitous in the field of robotics, due to their multitude of applications, ranging from obstacle avoidance and navigation, to localization and environment mapping. For this purpose, active depth sensors, like the Microsoft Kinect [1] and the Intel RealSense [2] are often employed, however, they are very susceptible to sunlight, and thus impractical for outdoor use, and are also typically power hungry and heavy. This makes them particularly unsuitable for use in small robotics applications, such as micro aerial vehicles, which are power-constrained and have very limited weight-carrying capacities.

For these applications, passive stereo cameras are usually used [3], since they’re quite energy efficient, and can be made very small and light. The working principle of a stereo vision system is quite simple, and is based on finding corresponding points between the left and right camera images, and using the distance between them (binocular disparity) to infer the point’s depth. The stereo matching process itself is not trivial, and implies a trade-off between computational complexity and the density of the resulting depth map. Systems low on computational resources, or with a need for high frequency processing, usually have to settle with estimating only low-density, sparse depth maps. In any case, low texture regions are hard to match accurately, due to a lack of features to find correspondences with.

There are also physical limits to a stereo system’s accuracy. Matching algorithms fail in occluded regions, visible from one of the cameras, but not the other. There is no possibility of finding correspondences, given that the region is hidden in one of the frames. Additionally, the maximum range measurable by the camera is inversely related to the distance between the two lenses, called the baseline. Consequently, reasonably-sized cameras have limited maximum ranges, of around 15 – 20 m. On the other end of the spectrum, stereo matching becomes impossible at small distances, due to excessive occlusions, and the fact that objects start to look too different in the left and right lenses’ perspectives.

Fig. 1: Examples of dense and sparse depth maps.

Some of the important limitations of stereo vision could be overcome by complementing it with monocular depth estimation from appearance features. Monocular depth estimation is based on exploiting both local properties of texture, gradients, and color, as well as global geometric relations, like relative object placement, and perspective cues, having no a priori constraints on minimum and maximum ranges, nor any problems with stereo occlusions. We argue that monocular depth estimation can be used to enhance a stereo vision algorithm: by using complementary information, it should provide more accurate depth estimates in regions of occlusion and low confidence stereo matching.

We approach the problem of monocular depth estimation using a Self-Supervised Learning (SSL) framework. SSL is a learning methodology where the supervisory input is itself obtained in an automatic fashion [4], unlike traditional supervised learning, which typically starts with humans laboriously collecting, and making manual corrections to, training data. This allows for massive amounts of training data to be collected,
making it a very suitable methodology for the effective training of data-hungry algorithms, such as deep neural networks.

The main challenge with the SSL approach is making sure that the data used for training is correct. Whereas traditional methods make use of human intervention to manually tweak the data, the data collected in an online context is, in general, raw and imperfect. Consequently, training is performed on partially incorrect data, which can be compensated by the large amount of data collected, and the online learning process itself.

Online learning in SSL allows the learned model to evolve over time, and adapt to changes in the statistics of the underlying data. On the other hand, traditional methods learn only a fixed statistical model of the data, which is then used for offline testing on unseen data, or online use onboard some particular application. If the data used during training isn’t sampled from the same distribution as the test data, there can be a strong statistical misalignment between the two, leading to poor test performance [6]. In SSL, the robot learns in the environment in which it operates, which greatly reduces the difference in distribution between the training and test set.

In this work, we present a strategy for enhancing a stereo vision system through the use of a monocular depth estimation algorithm. The algorithm is itself trained using, possibly sparse, ground truth data from the stereo camera, and used to infer dense depth maps, filling in the occluded and low texture regions. It is shown that, even when trained on sparse depth maps, the algorithm exhibits performance similar to when trained on dense, occlusion-filled and highly post-processed dense depth maps.

The article is structured as follows: in section II, we examine the most relevant contributions in the literature to the areas of monocular depth estimation, self-supervised learning, and depth datasets. We then show the overall methodology of our experiments, including a detailed description of the learning setup, features used, and learning algorithm, in section III. In section IV, we zoom in on the offline experiments and their results, in terms of datasets, test cases, and the employed error metrics. Afterwards, we focus on the online learning experiments and their results are reported, in section V. Finally, in section VI, we analyse and discuss the obtained results, and give recommendations for future work on the subject.

II. RELATED WORK

In this section, the most significant contributions in the literature are reviewed, in the fields of monocular depth estimation in general, as well as applied to robot obstacle avoidance, and SSL.

A. Monocular depth estimation

Monocular depth estimation is a research topic in computer vision that has been tackled by multiple research groups over the past decades, with varying degrees of success. Saxena et al [6] engineered features to capture absolute depth, used by many works ever since, including ours, namely those of texture energy, texture gradients, and haze, calculated from square image patches and their neighbors at multiple size scales. They then model the depth estimation problem as a Markov Random Field (MRF), and use multi-conditional learning (MCL) for approximate learning and inference.

Karsch et al [7] presented a non-parametric framework for the extraction of depth maps from single images, and also temporally consistent depth from video sequences, robust to camera movement, changes in focal length, and dynamic scenery. Their approach is based on the transfer of depth from similar input images in an existing RGBD database, by matching and warping the most similar candidate’s depth map, and then interpolating and smoothing the depth map via an optimization procedure to guarantee spatial consistency.

Recent years have seen the proliferation of deep neural networks in computer vision research and literature, including several applications to monocular depth estimation. These models are attractive because they can be very effectively trained on GPUs, and don’t require the use of hand-engineered features. However, they typically require very large amounts of data to be effectively trained.

Eigen et al [8] employed an architecture of two deep networks, one of which makes a coarse global prediction, and the other one which locally refines it. They augment the training data, by applying scaling, rotation, translation, color variation, and horizontal flips to existing data. In further work [9], they develop a more powerful network, with three scales of refinement, which is then applied to the tasks of depth estimation, surface normal estimation, and semantic labeling.

Liu et al [10] train a deep neural network architecture, based on learning the unary and pairwise potentials of a Continuous Random Field (CRF) model. Their model is computationally very efficient, significantly outperforming Eigen’s networks in both inference and learning time, while also requiring less training data.

Chen et al [11] follow up on research by Zoran et al [12] on learning to estimate metric depth from relative, rather than metric, depth training data. Both works learn from simple ordinal depth relations between pairs of points in the image. By training a deep neural network on a large crowd-sourced dataset, they achieve metric depth prediction performance on par with algorithms trained on dense metric depth maps.

In general, the previously presented methods are computationally expensive, and/or require specialized hardware, and are thus unsuitable for real-time applications on constrained hardware platforms. More recently, monocular depth learning has been applied to micro aerial vehicles navigation and obstacle avoidance, replacing heavier stereo cameras and active depth sensors.

B. Monocular depth estimation for robot navigation

Bipin et al [5] approach the depth estimation part of their autonomous navigation pipeline as a multiclass classification problem, by quantizing the continuous depths into discrete labels, from “near” to “far”. They use a multiclass classifier based on the linear support vector machine (SVM) in a one-vs-the-rest configuration, using features very similar to [6], and trained offline on the Make3D dataset and additional training data collected using a Kinect sensor.
Dey et al. [13] use a calibrated least squares algorithm, first presented by Agarwal et al. [14], to achieve fast nonlinear prediction. The depth estimation is done over large patches, using features similar to [15], and additional features based on Histogram of Oriented Gradients (HOG), and tree detector features, at multiple size scales. The training data is collected by a rover using a stereo camera system, and the training done offline. An additional cost-sensitive greedy feature selection algorithm, by Hu et al. [16], is used to evaluate the most informative features for a given time-budget.

Although multiple studies have investigated the use of monocular depth estimation for robot navigation, none have focused on how it can be used to complement stereo vision, in the context of SSL.

C. Self-supervised learning

SSL has been the focus of some recent research in robotics, since in contrast to traditional offline learning methodologies, it requires less human intervention, and offers the possibility of adaptation to new circumstances.

Dahlkamp et al. [4] [17] used SSL to train a vision-based terrain analyser for Stanley’s DARPA Grand Challenge performance. The scanner was used for obstacle detection and terrain classification at close ranges, and as supervisory input to train the vision-based classifier. The vision-based classifier achieved a much greater obstacle detection range, which in turn made it possible to increase Stanley’s maximum speed, and eventually win the challenge.

Hadsell et al. [18] developed a SSL methodology with the similar purpose of enabling long-range obstacle detection in a vehicle equipped with a stereo camera. For this purpose, they train a real-time classifier using labels from the stereo camera system as supervisory input, and perform inference using the learned classifier. This process repeats every frame, but keeping a small buffer of previous training examples for successive time steps, allowing for short term memory of previous obstacles. The features to be extracted are themselves learned offline using both supervised and unsupervised methods, not hand engineered.

Ho et al. [19] applied SSL learning to the problem of detecting obstacles using a downward facing camera, in the context of micro aerial vehicle landing. In contrast to previous approaches, optical flow is used to estimate a measure of surface roughness, given by the fitting error between the observed optical flow, and that of a perfect planar surface. The surface roughness is then used as supervisory input to a linear regression algorithm, using texton distributions as features. Learning wasn’t performed for every frame, but rather when the uncertainty of the estimates increased due to previously unseen inputs. The resulting appearance-based obstacle detector demonstrated good performance, even in situations where the optical flow is negligible due to lack of lateral motion.

Recently, van Hecke et al. [20] successfully applied SSL to the similar problem of estimating a single average depth from a monocular image, for obstacle avoidance purposes, using supervisory input from a stereo camera system. They focused on the behavioral aspects of SSL, and its relation with learning from demonstration, by looking at how the learning process should be organized in order to maximize performance when the supervisory input becomes unavailable. The best strategy is determined to be, after an initial period of learning, to use the supervisory input only as “training wheels”, that is, using stereo vision only when the vehicle gets too close to an obstacle. The depth estimation algorithm uses texton distributions as features, and kNN as the learning algorithm.

III. METHODOLOGY OVERVIEW

In this section, we describe the learning methodology we used, namely the SSL setup, the features, the learning algorithm, and its hyperparameters.

A. Learning setup

The setup is similar to previous stereo-based SSL approaches, such as Hadsell’s [18] and van Hecke’s [20]. The basic principle is to use the output from a stereo vision system as the supervisory input to an appearance-based depth estimation learning algorithm. Unlike their work, however, our main goal is to obtain an accurate depth map over the whole image, rather than performing terrain classification, or estimating a single average depth value. The camera’s output is processed using both sparse and dense stereo matching algorithms, and we study the consequences of learning only on sparse depth maps, by observing and evaluating the algorithm’s behavior on the dense depth data. A schematic diagram of the setup is presented in Fig. 2.

For our experiments, we used a Stereolabs ZED stereo camera. It features wide-angle lenses, with a 110° field of view, spaced at a baseline of 120 mm, allowing for accurate depth estimation in the range of 0.7 to 20 m. The camera’s f/2.0 aperture and relatively large 1/3″ sensor enables good exposure performance, even under low light conditions. Its output is highly configurable in terms of both resolution and frame.
rate, with 15 frames per second possible at 2.2K resolution, in terms of both photographic and depth data. One problem with the hardware, however, is its use of a rolling shutter, causing undesired effects such as stretch, shear, and wobble, in the presence of either camera motion or very dynamic environments. We experienced some of these problems while shooting scenes with lateral camera movement, so for actual robotics applications, we would instead use a camera system with a global shutter, where these effects would be absent.

The ZED SDK is designed around the OpenCV and CUDA libraries, with its calibration, distortion correction, and depth estimation routines taking advantage of the CUDA platform’s massively parallel GPU computing capabilities. The SDK additionally provides optional post processing of the depth maps, including occlusion filling, edge sharpening, and advanced post-filtering, and a map of stereo matching confidence is also available. Additional capabilities of positional tracking and real-time 3D reconstruction are also offered, although not used in this work.

We performed both offline and online experiments, using the ZED SDK to provide dense depth maps, by employing the full post-processing and occlusion filling, as well as sparse depth maps, by using only the basic stereo matching algorithm, and filtering out low confidence regions. The latter method gives depth maps similar to what would be obtained using a simple block-based stereo matching algorithm, commonly used in resource-constrained or high-frequency applications [3].

In our offline experiments, data from the stereo vision system is recorded, and a posteriori used to train and test the learning algorithm, under varying conditions, in batch mode. We used a modular MATLAB program for rapid prototyping of different feature combinations and learning algorithms, as well as to determine good values for their hyperparameters.

When operating online, depth and image data is streamed directly from the stereo camera into an online learning algorithm, and afterwards monocular depth inference is performed. The resulting depth maps are recorded for posterior evaluation. We used an architecture based on C++ and OpenCV for faster performance, and easy interaction with C-based embedded robotics platforms.

In both situations, the images and ground truth depth maps are resized to standard sizes before learning takes place. This is done for performance reasons, due to the very high resolution of the input data, and the short time available for feature computation and learning.

B. Features

The features used for learning are, in general, similar to those recently used in the literature [15] [13]. However, we exclude optical flow features, and add features based on a texton similarity measure, to be discussed below. Features are calculated over square patches, directly corresponding to pixels in the matching depth maps.

1) Filter-based features: These features are implementations of the texture energy, texture gradients, and haze features engineered and popularized by Saxena’s research group [6] [21], and used in multiple robotics applications ever since [22] [15] [5] [13]. The features are constructed by first converting the image patch into YCbCr color space, applying various filters to the specified channel, and then taking the sum of absolute and squared values over the patch. This procedure is repeated at three increasing size scales, to capture both local and global information. The filters used are:

- Laws’ masks, as per Davies [23], constructed by convolving the L3, E3, and S3 basic 1 × 3 masks together:

 \[
 L_3 = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \\
 E_3 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \\
 S_3 = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}
 \]

 In total, 9 Laws’ masks are obtained from the pairwise convolutions of the basic masks, namely L3×L3, L3×E3, …, S3×E3, and S3×S3. These are applied to the Y channel, to capture texture energy.
- A local averaging filter, applied to the Cb and Cr channels, to capture haze in the low frequency color information. The first Laws’ mask (L3×L3) was used.
- Nevatia-Babu [24] oriented edge filters, applied to the Y channel, to capture texture gradients. The 6 filters are spaced at 30° intervals.

2) Texton-based features: Textons are small image patches, representative of particular texture classes, learned by clustering patch samples from training images. They were first recognized as a valuable tool for computer vision in the work of Varma et al [25], which showed their performance in the task of texture classification, when compared to traditional filter bank methods. The distribution of textons over the image has since been used to generate computationally efficient features for various works in robotics [26] [19] [20], for obstacle detection.

Previous visual bag of words approaches represented an image using a histogram, constructed by sampling image patches, and determining, for each patch, its closest texton, in terms of Euclidean distance. Then, the corresponding histogram bin is incremented. Since we desire to capture local information, for a given patch, we use its square Euclidean distance to each texton as features. The texton dictionary is learned from the training dataset, using Kohonen clustering [27], similarly to previous works.

3) Histogram of Oriented Gradients: Histogram of Oriented Gradients (HOG) features have been successfully used for object and human detection [28], as well by Dey et al for depth estimation [13]. The image is divided into cells, over which the pixel-wise gradients are determined, and their directions binned into a histogram. Adjacent cells are grouped into 2 × 2 blocks, and the histograms are normalized with respect to all the cells in the block, to correct for contrast differences and improve accuracy.

4) Radon transform: Michels et al [22] introduced a feature to capture texture gradient, and the direction of strong edges, based on the Radon transform [29], also subsequently used by other works [15] [13]. The Radon transform is an integral, continuous version of the Hough transform, commonly used in computer vision for edge detection, and maps an image
from \((x, y)\) into \((\theta, \rho)\) coordinates. For each value of \(\theta\), the two highest values of the transform are recorded, and used as features.

C. Learning algorithm

To choose a learning algorithm, we looked at previous approaches in the literature. Bipin et al [5] had success with approaching the problem as a multiclass classification problem, and using a linear SVM for learning. Dey et al [13] used a nonlinear regression algorithm based on the Calibrated Least Squares (CLS) algorithm by Agarwal et al [14]. In most of the literature, the algorithms are used to estimate the logarithms of depths rather than the depths themselves, and after testing both approaches, we also found better performance when estimating log depths.

We have approached the depth estimation problem both as a classification problem and as a regression problem. For classification, we have tried out methods such as a SVM using both linear [30], and radial basis function kernels [31], in both cases using one-vs-the-rest for multiclass. We experimented with using a decision tree, the generalized least squares algorithm [14] with a multinomial regression link function, and the classification version of the CLS algorithm [14]. For regression, we have employed linear least squares, a regression tree, and a modified version of the CLS algorithm.

Our evaluation ultimately lead us to the conclusion that regression consistently outperforms classification in this task, because multiclass classification loss functions penalize every misclassification in the same way, while regression attributes larger penalties to larger deviations. Additionally, we observed that the modified CLS regression algorithm exhibits better performance than linear least squares or regression trees, while still being computationally very efficient. For this reason, we decided to use it for the rest of our testing.

The CLS algorithm is based on the minimization of a calibrated loss function, in the context of a generalized linear model with an unknown link function. The link function is itself approximated as a linear combination of basis functions of the target variable, typically low degree polynomials. The CLS algorithm consists of simultaneously solving the problems of link function approximation, and loss function minimization, by iteratively solving two least squares problems.

We make slight modifications to the algorithm shown by Agarwal et al [14], namely removing the simplex clipping step, since we’re performing regression rather than multiclass classification, and using Tikhonov regularization in the least squares problems. From a computational point of view, we use Cholesky decompositions to efficiently solve the inner least squares problems, and define the convergence criterion using the norm of the difference in \(\hat{y}\) in successive iterations. The straightforward algorithm is described in Fig. 3.

The algorithm is iterative by design, but it can be adapted for online inference by storing the weight matrices, and using them \(a \text{ priori}\) on new test data, repeating steps 3 and 5 of the algorithm with the stored weight matrices. Additionally, it can be adapted to online training by using batch-wise stochastic gradient descent to update the weights, as new data samples come in.

```
input : feature vectors \(x_i\), vector of target values \(y\)
output: predicted target values \(\hat{y}\), sequence of weight matrices \(W\) and \(\tilde{W}\)

1 while \(t < t_{\text{max}}\) and \(\|\hat{y}^{(t)} - \hat{y}^{(t-1)}\| > \text{threshold}\) do
   // Iteratively minimize the calibrated loss function:
   2 \(W_t = \arg\min_{W} \sum_{i=1}^{n} \|y_i - \hat{y}_i^{(t-1)} - Wx_i\|^2_2 + \lambda_1\|W\|^2_2\)
   3 \(\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + W_t x_i\)
   // Find the optimal linear combination of basis functions:
   4 \(\tilde{W}_t = \arg\min_{\tilde{W}} \sum_{i=1}^{n} \|y_i - \tilde{W}G(\tilde{y}_i^{(t)})\|^2_2 + \lambda_2\|\tilde{W}\|^2_2\)
   5 \(\hat{y}_i^{(t)} = \tilde{W}_t G(\tilde{y}_i^{(t)})\)
end
```

D. Hyperparameters

The algorithm has numerous hyperparameters, including the regularization constants, the base size and number of size scales of the image patches over which the features are computed, the size and number of textons, the cell size and number of bins for HOG feature calculation, etc.. One could try to determine their optimal values using a genetic algorithm, but due to the size of the parameter space, and the time required for end-to-end simulations, we instead opted to choose some of the parameters based on their typical values in the literature.

We used a base patch size of \(11 \times 11\), and 2 additional size scales, \(33 \times 33\), and \(99 \times 99\). We learned a dictionary of 30 black and white textons, \(5 \times 5\) in size, shown in Fig. 4. We used 9 bins for the HOG features, and discretized the angles for the Radon transform into 15 values.

![Fig. 3: Description of the modified CLS regression algorithm](image)

![Fig. 4: Texton dictionary learned from training data.](image)
IV. OFFLINE EXPERIMENTS

In this section, the offline experiments are described in detail. These were performed in order to evaluate the performance of the proposed learning algorithm, on existing datasets, and determining optimal values for its hyperparameters. We also tested our hypothesis that it should be possible to estimate dense depth maps, despite learning only on sparse training data, by testing on a new indoors stereo dataset, with both sparse and dense depth maps.

A. Error metrics

To measure the algorithm’s accuracy, error metrics commonly found in the literature [8] were employed, namely:

- The mean logarithmic error: $\frac{1}{N} \sum \log |d_{est} - d_{gt}|$
- The mean relative error: $\frac{1}{N} \sum \left|\frac{d_{est} - d_{gt}}{d_{gt}}\right|$
- The mean relative squared error: $\frac{1}{N} \sum \left(\frac{d_{est} - d_{gt}}{d_{gt}}\right)^2$
- The root mean squared (RMS) error: $\sqrt{\frac{1}{N} \sum (d_{est} - d_{gt})^2}$
- The root mean squared (RMS) logarithmic error: $\sqrt{\frac{1}{N} \sum \left(\log d_{est} - \log d_{gt}\right)^2}$
- The scale invariant error: $\frac{1}{N} \sum \left(\log d_{est} - \log d_{gt}\right)^2 - \frac{1}{N} \sum \left(\log d_{est} - \log d_{gt}\right)$

B. Standard datasets

As a first step, the algorithm was tested on existing depth datasets, collected using active laser scanners, namely Make3D, KITTI 2012, and KITTI 2015. For Make3D, we used the standard division of 400 training and 134 test samples. Since the KITTI datasets’ standard test data consists solely of camera images, lacking ground truth depth maps, we instead randomly distributed the standard training data among two sets, with 70% of the data being allocated for training, and 30% for testing.

The results we obtained for Make3D are shown qualitatively in Fig. 5, and quantitatively in table I, along with results found in the literature [21] [7] [10]. It can be seen that we obtain slightly worse performance than current state of the art approaches. However, we do surpass Bipin et al’s [5] results using a linear SVM, while using a much more efficient learning algorithm (in our tests, training a linear SVM with 10 depth classes took around 10 times longer than the CLS approach).

Upon visual inspection of the image samples, we observe that our algorithm is not particularly

<p>| TABLE I: Comparison of results on the Make3D dataset. |</p>
<table>
<thead>
<tr>
<th>Make3D</th>
<th>Saxena</th>
<th>Karsch</th>
<th>Liu</th>
<th>Bipin</th>
<th>Our method</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean log</td>
<td>0.430</td>
<td>0.292</td>
<td>0.251</td>
<td>0.985</td>
<td>0.493</td>
</tr>
<tr>
<td>relative abs</td>
<td>0.370</td>
<td>0.355</td>
<td>0.287</td>
<td>0.815</td>
<td>0.543</td>
</tr>
<tr>
<td>relative square</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.717</td>
</tr>
<tr>
<td>linear RMS</td>
<td>-</td>
<td>9.20</td>
<td>7.36</td>
<td>-</td>
<td>20.116</td>
</tr>
<tr>
<td>log RMS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.683</td>
</tr>
<tr>
<td>scale-invariant</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.462</td>
</tr>
</tbody>
</table>

For the KITTI datasets, we show the results in Fig. 6, and compare them quantitatively in tables II and III to results found in the literature [8] [10] [32], although we note that, to our knowledge, no previous work on monocular depth estimation has yet shown results on the more recent KITTI 2015 dataset.

<p>| TABLE II: Comparison of results on the KITTI 2012 dataset. |</p>
<table>
<thead>
<tr>
<th>KITTI 2012</th>
<th>Saxena</th>
<th>Eigen</th>
<th>Liu</th>
<th>Mancini</th>
<th>Our method</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean log</td>
<td>0.211</td>
<td>-</td>
<td>0.372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relative abs</td>
<td>0.280</td>
<td>0.190</td>
<td>0.217</td>
<td>-</td>
<td>0.525</td>
</tr>
<tr>
<td>relative square</td>
<td>3.012</td>
<td>1.515</td>
<td>-</td>
<td>-</td>
<td>2.311</td>
</tr>
<tr>
<td>linear RMS</td>
<td>8.734</td>
<td>7.156</td>
<td>-</td>
<td>-</td>
<td>13.093</td>
</tr>
<tr>
<td>log RMS</td>
<td>0.361</td>
<td>0.270</td>
<td>-</td>
<td>0.524</td>
<td>0.590</td>
</tr>
<tr>
<td>scale-invariant</td>
<td>0.327</td>
<td>0.246</td>
<td>-</td>
<td>0.196</td>
<td>0.347</td>
</tr>
</tbody>
</table>

<p>| TABLE III: Results on the KITTI 2015 dataset. |</p>
<table>
<thead>
<tr>
<th>KITTI 2015</th>
<th>Our method</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean log</td>
<td>0.291</td>
</tr>
<tr>
<td>relative abs</td>
<td>0.322</td>
</tr>
<tr>
<td>relative square</td>
<td>1.921</td>
</tr>
<tr>
<td>linear RMS</td>
<td>12.498</td>
</tr>
<tr>
<td>log RMS</td>
<td>0.452</td>
</tr>
<tr>
<td>scale-invariant</td>
<td>0.204</td>
</tr>
</tbody>
</table>

We observe that our algorithm performs comparatively better on these datasets, due to the smaller variations in the depicted environments, when compared to Make3D, which is inherently more diverse. This once again leads us to conclude that, in order to achieve the optimal performance, the training and test data should be made as similar as possible, and in the context of robotics, this is enabled through the use of SSL.

C. Stereo dataset

In order to further test our hypotheses, we developed a new dataset of images shot in the same environment, to simulate the SSL approach, and with both dense and sparse depth maps, to see how the algorithm performed on the dense data, while being trained only on the sparse maps.

We shot several videos with the ZED around the TU Delft Aerospace faculty. The camera was shot handheld, with some fast rotations, and no particular care for stabilization, similar to footage that would be captured by an UAV. The resulting images naturally have imperfections, namely defocus, motion blur, and stretch and shear artifacts from the rolling shutter, which are not reflected in the standard RGBD datasets, but nevertheless encountered in real life situations.

The stereo videos were then processed offline with the ZED SDK, using both the STANDARD (structure conservative, no occlusion filling), and FILL (occlusion filling, edge sharpening, and advanced post-filtering) settings. The provided confidence map was then used on the STANDARD data, to filter out low confidence regions, leading to very sparse depth maps, as shown in Fig. 1, similar to depth maps obtained using traditional block-based stereo matching algorithms.

The full dataset consists of 12 video sequences, and will be made available for public use in the near future.

For our tests, we split the video sequences into two parts, learning on the first 70%, and testing on the final 30%, in
Fig. 5: Qualitative results on the Make3D dataset. From left to right, the monocular image, the ground truth depth map, and the depth estimated by our algorithm. The depth scales are the same for every image.

Fig. 6: Qualitative results on the KITTI 2012 and 2015 datasets. From left to right, the monocular image, the ground truth depth map, and the depth estimated by our algorithm. The depth scales are the same for every image.
Fig. 7: Qualitative results on the stereo ZED dataset. From left to right, the monocular image, the ground truth depth map, the algorithm trained on the dense depth, and the algorithm trained on the sparse depth. The depth scales are the same for every image.
TABLE IV: Comparison of results on the new stereo dataset collected with the ZED, part 1.

<table>
<thead>
<tr>
<th>Video sequence</th>
<th>1 dense</th>
<th>1 sparse</th>
<th>2 dense</th>
<th>2 sparse</th>
<th>3 dense</th>
<th>3 sparse</th>
<th>4 dense</th>
<th>4 sparse</th>
<th>5 dense</th>
<th>5 sparse</th>
<th>6 dense</th>
<th>6 sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean log</td>
<td>0.615</td>
<td>0.746</td>
<td>0.5812</td>
<td>0.609</td>
<td>0.169</td>
<td>0.594</td>
<td>0.572</td>
<td>0.547</td>
<td>0.425</td>
<td>0.533</td>
<td>0.525</td>
<td>0.479</td>
</tr>
<tr>
<td>relative abs</td>
<td>1.608</td>
<td>1.064</td>
<td>1.391</td>
<td>0.823</td>
<td>0.288</td>
<td>0.420</td>
<td>0.576</td>
<td>0.557</td>
<td>0.446</td>
<td>0.456</td>
<td>0.956</td>
<td>0.526</td>
</tr>
<tr>
<td>log RMS</td>
<td>0.967</td>
<td>0.923</td>
<td>0.913</td>
<td>0.770</td>
<td>0.359</td>
<td>0.770</td>
<td>0.748</td>
<td>0.716</td>
<td>0.546</td>
<td>0.662</td>
<td>0.822</td>
<td>0.613</td>
</tr>
<tr>
<td>scale-invariant</td>
<td>0.931</td>
<td>0.778</td>
<td>0.826</td>
<td>0.524</td>
<td>0.127</td>
<td>0.277</td>
<td>0.440</td>
<td>0.412</td>
<td>0.275</td>
<td>0.247</td>
<td>0.669</td>
<td>0.314</td>
</tr>
</tbody>
</table>

TABLE V: Comparison of results on the new stereo dataset collected with the ZED, part 2.

<table>
<thead>
<tr>
<th>Video sequence</th>
<th>7 dense</th>
<th>7 sparse</th>
<th>8 dense</th>
<th>8 sparse</th>
<th>9 dense</th>
<th>9 sparse</th>
<th>10 dense</th>
<th>10 sparse</th>
<th>11 dense</th>
<th>11 sparse</th>
<th>12 dense</th>
<th>12 sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean log</td>
<td>0.532</td>
<td>0.514</td>
<td>0.654</td>
<td>0.539</td>
<td>0.579</td>
<td>0.470</td>
<td>0.411</td>
<td>0.460</td>
<td>0.640</td>
<td>0.704</td>
<td>0.362</td>
<td>0.494</td>
</tr>
<tr>
<td>relative abs</td>
<td>0.732</td>
<td>0.484</td>
<td>0.583</td>
<td>0.770</td>
<td>0.773</td>
<td>0.534</td>
<td>0.576</td>
<td>0.472</td>
<td>0.838</td>
<td>0.609</td>
<td>0.517</td>
<td>0.572</td>
</tr>
<tr>
<td>log RMS</td>
<td>0.789</td>
<td>0.669</td>
<td>1.006</td>
<td>0.770</td>
<td>0.823</td>
<td>0.610</td>
<td>0.681</td>
<td>0.633</td>
<td>0.898</td>
<td>0.835</td>
<td>0.580</td>
<td>0.642</td>
</tr>
<tr>
<td>scale-invariant</td>
<td>0.601</td>
<td>0.332</td>
<td>0.825</td>
<td>0.493</td>
<td>0.648</td>
<td>0.338</td>
<td>0.442</td>
<td>0.287</td>
<td>0.729</td>
<td>0.378</td>
<td>0.323</td>
<td>0.347</td>
</tr>
</tbody>
</table>

order to simulate the conditions of a robot undergoing SSL. We tested our depth estimation algorithm under two different conditions, training on the fully processed and occlusion corrected dense maps, and training directly on the raw, sparse outputs from the stereo matching algorithm. The dense depth maps were used as ground truths during testing, in both cases. The results obtained are shown in Fig. 7, and in tables IV and V.

Observing the results, we see that the performance is, in general, better than on the existing laser datasets, especially from a qualitative point of view. The algorithm is capable of leveraging the fact that the data used for training is not particularly diverse, and additionally very similar to the test data, going around the generalization problems shown by traditional supervised learning methodologies.

It can also be observed that, contrary to our expectations, the algorithm trained on the sparse data doesn’t fall short, and actually surpasses the algorithm trained on the dense data in many of the video sequences and error metrics. Looking at the estimated depth maps, this is mostly a consequence of the algorithm’s failure to correctly extrapolate. The largest contributions to the error metrics come from the depth extrapolations that fall significantly outside the maximum range of the camera, and are qualitatively completely incorrect. When the algorithm is trained only to the sparse data, it’s also exposed to a smaller range of target values, and is consequently much more conservative in its estimates, leading to lower error figures.

From a qualitative point of view, however, both behave similarly. Looking at the sample images, we can see examples where both correctly estimate the relative depths between objects in a scene (rows 1 and 2), examples where sparse is better than dense (rows 3 and 4), and where dense is better than sparse (row 5). Naturally, there are also many cases where the estimated depth maps are mostly incorrect (row 6).

In particular, we see that the algorithm trained only on sparse data also behaves well at estimating the depth in occluded and untextured areas, for instance, the white wall in row 3. This leads us to the conclusion that the algorithm’s performance is perfectly adequate to serve as complementary to a sparse stereo matching algorithm, correctly filling in the missing depth information.

V. ONLINE EXPERIMENTS

We’ve started preliminary work on a framework for onboard SSL applied to monocular depth estimation, using a stereo camera. We’ve rewritten some of our feature extraction functions in C++, and have tested the setup using a linear least squares regression algorithm, achieving promising results. We intend to further develop the framework in order to fully support an online version of our learning pipeline, and integrate it with existing autopilot platforms, such as Paparazzi [33].

VI. CONCLUSION

This work focused on the application of SSL to the problem of estimating depth from single monocular images, with the intent of complementing sparse stereo vision algorithms. We have shown that our algorithm exhibits competitive performance on existing RGBD datasets, while being computationally more efficient to train than previous approaches [5]. We also train the algorithm on a new stereo dataset, and show that it remains accurate even when trained only on sparse, rather than dense, stereo maps. It can consequently be used to efficiently produce dense depth maps from sparse input. Our preliminary work on its online implementation have revealed promising, obtaining good results with a very simple linear least squares algorithm.

In future work, we plan to extend our methodology, and further explore the complementarity of the information present in monocular and stereo cues. The use of a learning algorithm such as a Mondrian forest [34], or other ensemble-based methods, would enable the estimation of the uncertainty in its own predictions. A sensor fusion algorithm can then be used to merge information from both the stereo vision system and the monocular depth estimation algorithm, based on their
local confidence in the estimated depth. This would lead to an overall more accurate depth map.

We have avoided the use of optical flow features, since they’re expensive to compute, and are not usable when estimating depths from isolated images, rather than video data. However, future work could explore computationally efficient ways of using optical flow to guarantee the temporal consistency, and consequently increase the accuracy, of the sequence of estimated depth maps.

Current state of the art depth estimation methods [9] [10] [32] [11] are all based on deep convolutional neural networks, of varying complexities. The advent of massively parallel, GPU-based embedded hardware, such as the Jetson TX1, and its eventual successors, means that online training of deep neural networks is close to becoming reality. These models would greatly benefit from the large amounts of training data made possible by the SSL framework, and lead to state of the art depth estimation results onboard micro aerial vehicles.

REFERENCES

Extended Related Work

In this section, we give an extended overview of the most significant contributions in the literature, in the fields of monocular depth estimation in general, as well as applied to robot obstacle avoidance. Additional literature on SSL and RGBD datasets is also presented.

2.1. Monocular depth estimation

Monocular depth estimation is a research topic in computer vision that has been tackled by multiple research groups over the past decades, with varying degrees of success. Hoiem et al’s [12] Automatic Photo Pop-Up program does not predict depth explicitly, but rather constructs simple 3D models from outdoor images, by first labelling regions of the input image into either "ground", "sky", or "vertical", and then cutting and folding the image into a simple 3D pop-up model, onto which the original image is then texture mapped. From a relatively small training dataset of 82 outdoor images, the learned model generate visually pleasing 3D models, that inevitably suffer from the very strong imposed geometric constraints.

Saxena et al [24] engineered features to capture absolute depth, used by many works ever since, including ours, namely those of texture energy, texture gradients, and haze, calculated from square image patches and their neighbors at multiple size scales. Additionally, features for relative depth are also computed, based on the difference between neighboring patches' histograms of the absolute depth features. They then model the depth estimation problem as a Markov Random Field (MRF), using both Gaussian and Laplacian distributions for the posterior distributions of the depths. In further work [25], a more sophisticated MRF model is employed, estimating both the 3D location and orientation of superpixel patches. However, essentially the same features are used, computed over superpixels rather than square patches. Since exact MRF learning and inference is intractable, multi-conditional learning (MCL) is used for approximation. The model is then extended to incorporate information from multiple images, relative object placement, and texture mapping, generating qualitatively correct, besides visually appealing, 3D models.

Levin et al [16] developed a hardware-based solution, by inserting a deliberately designed, patterned occluder within the traditional monocular camera’s aperture, obtaining a coded aperture. The characteristic frequency distribution of image frequencies due to the patterned aperture then enables the simultaneous capture of an all-focus image, and recovery of its depth information.

Karsch et al [14] presented a framework for the extraction of depth maps from single images, and also temporally consistent depth from video sequences, robust to camera movement, changes in focal length, and dynamic scenery. Their approach is non-parametric, based on the transfer of depth from similar input images in an existing RGBD database, by matching and warping the most similar candidate’s depth map, and then interpolating and smoothing the depth map via an optimization procedure to guarantee spacial consistency. For video sequences, additional terms are added to the cost function that penalize temporal inconsistencies. The algorithm depends on the RGBD database being available at run time, and so requires large amounts of memory.

Ladicky et al [15] proposed that the problems of depth estimation and semantic segmentation should be jointly solved, by exploiting the geometrical properties of perspective, that an object’s perceived size
is inversely proportional to its depth from the center of projection. This approach successfully targets the main weakness of traditional data-driven methods, namely the fact that it is impossible to correctly estimate an object’s depth if it hasn’t been seen at the same depth during training. It overcomes this issue by conditioning an object’s depth on its inferred semantic class, since semantic classifiers are trained to be robust to changes of scale.

Eigen et al [7] employed an architecture of two deep neural networks to the depth estimation problem, one of which makes a coarse global prediction, and the other one which locally refines it. They introduce a scale-invariant error metric, to measure the relationships between points in the scene, insensitive to the actual absolute global depth scale, and train the networks using this as the loss function. The deep network requires massive amounts of training data, so it is further augmented by applying scaling, rotation, translation, color variation, and horizontal flips to existing data. In further work [6], they develop a more general network, with three scales of refinement, which is then applied to the tasks of depth estimation, surface normal estimation, and semantic labeling.

Liu et al [17] train a deep neural network architecture that they call a deep convolutional neural field (DCNF), based on learning the unary and pairwise potentials of a Continuous Random Field (CRF) model, using a deep Convolutional Neural Network (CNN) framework. Their model, like Eigen’s, is free from geometric priors and hand-engineered features, with everything being learned from the training data itself. The second model they propose, based on Fully Convolutional networks and Superpixel Pooling (DCNF-FCSP) is highly efficient in both inference and learning, allowing for deeper networks. In addition, the use of fully convolutional networks better leverages the use of a GPU for massive parallelization.

Chen et al [3] follow up on research by Zoran et al [29] on learning to estimate metric depth from relative, rather than metric, depth training data. Both works learn from simple ordinal depth relations between pairs of points in the image. Zoran’s work uses an intermediate classifier of the depth ordinal relations between pairs of superpixels’ centers, which are then reconciled to produce an estimated depth map, using an optimization procedure. Chen instead used a deep network trained end to end with relative depth annotations only, by using a specially designed loss function, similar to a ranking loss. By training the network on a large crowd-sourced dataset, they achieve metric depth prediction performance on par with algorithms trained on dense metric depth maps.

In general, the previously presented methods are computationally expensive, and/or require specialized hardware, and are thus unsuitable for real-time applications on constrained hardware platforms. More recently, monocular depth learning has been applied to micro aerial vehicles navigation and obstacle avoidance, replacing heavier stereo cameras and active depth sensors.

2.2. Monocular depth estimation for robot navigation

Michels et al [22] use features similar to [24], and additionally features based on the Radon transform, and structure tensor statistics, computed at a single size scale, over vertical stripes. The features and distances to the nearest obstacle in the stripes are then used to train a linear regression algorithm over the log distances, using training data from both real world laser range scans, as well as from a synthetic graphics system. Reinforcement learning is then used to learn an optimal steering control policy, from the vision system’s output.

Ross et al [23] uses demonstration learning features similar to [22], and additional features based on optical flow statistics. The depth maps are not explicitly computed, as the features are then used directly as inputs to a control policy, learned from imitation learning using the DAgger algorithm.

Bipin et al [2] approach the depth estimation part of their autonomous navigation pipeline as a multiclass classification problem, by quantizing the continuous depths into discrete labels, from "near" to "far". They use a multiclass classifier based on the linear support vector machine (SVM) in a one-vs-the-rest configuration, using features very similar to [24], and trained offline on the Make3D dataset and additional training data collected using a Kinect sensor.

Dey et al [5] use a calibrated least squares algorithm, first presented by Agarwal et al [1], to achieve fast nonlinear prediction. The depth estimation is done over large patches, using features similar to [23], and additional features based on Histogram of Oriented Gradients (HOG), and tree detector features, at multiple size scales. The training data is collected by a rover using a stereo camera system, and the training done offline. An additional cost-sensitive greedy feature selection algorithm, by Hu et al [13], is used to evaluate the most informative features for a given time-budget.
Very recently, Mancini et al [18] published a novel application of a deep learning network to fast monocular depth estimation. The network consists of cascaded encoder convolutional layers, followed by decoder deconvolutional layers, and is given as input both the RGB image, and the optical flow. To overcome the problem of needing large amounts of training data, they use a virtual dataset consisting of high quality synthetic imagery from 3D graphics engines used in the gaming industry. This additionally allows them to overcome the typical problems of low quality/range depth data collected using hardware sensors.

Although multiple studies have investigated the use of monocular depth estimation for robotic navigation, none have focused on how it can be used to complement stereo vision, in the context of SSL.

2.3. Depth datasets
An essential part of machine learning is the data used for training and testing. Various RGBD datasets have become standard in the literature, being used for measuring algorithms’ performance. We point to Firman et al’s recent work [8], for a comprehensive survey of existing datasets, and predictions for the future.

Saxena et al [24] [25] published the dataset they used to train their Make3D algorithm on, consisting of pairs of outdoor images and depth data, collected using a custom-built 3D laser scanner. The images are $2,272 \times 1,704$ in resolution, while the depth maps are 55×305. It is canonically divided into 400 training, and 134 test samples.

Silberman et al [26] introduced the NYU Depth Dataset V2, consisting of 1449 RGBD images collected using a Kinect sensor in a wide range of indoor scenes. In addition to depth maps, the dataset is heavily annotated with per-pixel object labels, as well as their type of support. Both the images and depth maps are 640×480 in resolution.

In 2012, Geiger et al [9] developed the KITTI vision benchmark suite, intended for evaluation of multiple computer vision tasks, namely stereo matching and optical flow algorithms, and high level tasks such as visual odometry, SLAM, and object detection and tracking. The dataset consists of outdoor stereo image pairs, and accompanying depth maps, obtained using a laser scanner on top of a moving car. In 2015, Menze et al [20] [21] improved upon KITTI with an additional stereo, optical flow, and scene flow dataset, collected using similar means, but featuring dynamic, rather than static, scenes. The dataset is split into 200 training and 200 test samples, for which no ground truth depth maps are made publicly available, and both the images and depth maps are around 1242×375 in resolution, with small variations between frames due to different crop factors during calibration and distortion correction.

More recently, Mayer et al [19] worked on three massive synthetic stereo datasets, totalling over 35,000 image pairs, which, like KITTI, aim to provide ground truth disparity, optical flow, and scene flow maps, making them suitable for a large range of computer vision applications. The three datasets consist of animated scenes of flying random objects, an animated short film, and KITTI-like car driving. The huge number and variability of samples in the dataset makes it suitable for training deep neural network architectures, which the authors demonstrate by achieving state of the art results in stereo disparity estimation, and promising results in scene flow estimation.

Chen et al [3] crowd-sourced a huge dataset of relative depth annotations, using images from Flickr with no particular structure, “in the wild”. Crowd workers were presented with an image and two highlighted points and asked which of the two points was closer. The points were either randomly sampled from the whole image, or along the same horizontal line and symmetrical with respect to the center, and a total of more than 500,000 pairs were obtained. This dataset is useful for methods such as Zoran’s [29] and Chen’s, which are based on relative, rather than absolute, depth measurements.

These datasets may be suitable for training generic visual cues such as disparity or flow estimation. However, distance estimation from appearance, for a large part, depends on the specific operating environment. Hence, although pre-training on these sets can be used for initialization, it remains necessary to also train in the robot’s specific environment, which can be most effectively exploited using the SSL framework.

2.4. Self-supervised learning
SSL has been the focus of some recent research in robotics, since in contrast to traditional offline learning methodologies, it requires less human intervention, and offers the possibility of adaptation to
new circumstances.

Dahlkamp et al [4] [27] used SSL to train a vision-based terrain analyser for Stanley’s DARPA Grand Challenge performance. The scanner was used for obstacle detection and terrain classification at close ranges, and as supervisory input to train the vision-based classifier. The vision-based classifier achieved a much greater obstacle detection range, which in turn made it possible to increase Stanley’s maximum speed, and eventually win the challenge.

Hadsell et al [10] developed a SSL methodology with the similar purpose of enabling long-range obstacle detection in a vehicle equipped with a stereo camera. For this purpose, they train a real-time classifier using labels from the stereo camera system as supervisory input, and perform inference using the learned classifier. This process repeats every frame, but keeping a small buffer of previous training examples for successive time steps, allowing for short term memory of previous obstacles. The features to be extracted are themselves learned offline using both supervised and unsupervised methods, not hand engineered.

Ho et al [11] applied SSL learning to the problem of detecting obstacles using a downward facing camera, in the context of micro aerial vehicle landing. In contrast to previous approaches, optical flow is used to estimate a measure of surface roughness, given by the fitting error between the observed optical flow, and that of a perfect planar surface. The surface roughness is then used as supervisory input to a linear regression algorithm, using texton distributions as features. Learning wasn’t performed for every frame, but rather when the uncertainty of the estimates increased due to previously unseen inputs. The resulting appearance-based obstacle detector demonstrated good performance, even in situations where the optical flow is negligible due to lack of lateral motion.

Recently, van Hecke et al [28] successfully applied SSL to the similar problem of estimating a single average depth from a monocular image, for obstacle avoidance purposes, using supervisory input from a stereo camera system. They focused on the behavioral aspects of SSL, and its relation with learning from demonstration, by looking at how the learning process should be organized in order to maximize performance when the supervisory input becomes unavailable. The best strategy is determined to be, after an initial period of learning, to use the supervisory input only as “training wheels”, that is, using stereo vision only when the vehicle gets too close to an obstacle. The depth estimation algorithm uses texton distributions as features, and kNN as the learning algorithm.
In this section, we present additional qualitative results of the algorithm’s performance in our stereo dataset.

Figure 3.1: Additional qualitative results on the stereo ZED dataset, part 1. From left to right, the monocular image, the ground truth depth map, the algorithm trained on the dense depth, and the algorithm trained on the sparse depth.
Figure 3.2: Additional qualitative results on the stereo ZED dataset, part 2. From left to right, the monocular image, the ground truth depth map, the algorithm trained on the dense depth, and the algorithm trained on the sparse depth.

