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Abstract

The dynamics of systems can be analysed by combining the dynamics of its compo-
nents. This method is generally known as dynamic substructuring. It allows for efficient
computation of the dynamics of structures that would otherwise be to complex to de-
termine. Most dynamic substructuring approaches use the frequency domain for the
re-assembling of the subcomponents. Recently, a different implementation of the dy-
namic substructuring method has been introduced: impulse based substructuring (IBS).
It uses impulse response function in the time-domain for representing the dynamics of
the subcomponents, obtained by numerical models or experimental testing. Compared
to the frequency domain methods, the impulse based substructuring scheme proves to
be advantageous when analysing the high-frequency characteristics of a system. The
high-frequency dynamics are excited when the system is subjected to blasts, shocks or
impulsive loading. Due to the sensitivity of the impulse based substructure scheme,
experimentally obtained impulse response functions can not be used for describing the
dynamics of a subsystem.

The focus of this thesis is developing a direct time-domain technique for determining
the experimental impulse response. This is realised by introducing the inverse finite
impulse response force filter, which operates independent of the output system response.
This time-domain approach will avoid frequency domain induced errors, i.e. windowing,
anti-aliasing and Fourier transforms, in the effort of determining a highly accurate im-
pulse response functions. The quality of the time-domain acquired impulse response, as
well as the measurement induced errors are tested on the impulse based substructuring
scheme. The procedures are illustrated by application to an one-dimensional bar.

The inverse force filter is successful in finding the experimental (averaged) impulse
response. The accuracy of the filter depends on the length of the filter and the condition-
ing of the force auto correlation matrix. The eigenvalue decomposition of this matrix led
to the formulation of a selection criteria between replicate measurements and a filtering
operation. The inverse filter can also be defined by using a Fourier transform and its
inverse. If both methods are compared, it is shown that the time-domain approach is
less accurate and time efficient.

The direct time-domain approach did not change the impulse response in such an
extend that coupling by the impulse based substructuring scheme was possible. Since
coupling between numerically simulated data is possible, measurement errors are intro-
duced on the impulse response functions to test their sensitivity to the IBS scheme. It
is observed that a small error on the exponential decay, of the perfect impulse response,
directly resulted in uncoupled full system responses. This led to the identification of the
modal parameters of the measurement to get rid of these amplitude errors, by means of
the least squares complex exponential method. The perfect synthesised impulse response
are successful in finding a coupled full system response.

Experimental dynamic substructuring only finds the full coupled response if a clean
synthesised impulse response function of the subcomponents is used. It can also be
concluded that the inverse filter is not as accurate as its frequency domain counterpart.
However, the inverse force filter will make deconvolution of small parts of the output
response possible. This is desirable when testing lightly damped structures.
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Notation

Symbols
General meaning of often used symbols, unless otherwise noted in context:

B Signed Boolean assembly matrix L Length of subsystem
C Damping matrix M Sample length input
d Diameter M Mass matrix
E Young’s modulus N Sample length output
f Force filter array Q Sample length impulse response
f inv Inverse force filter r Auto-correlation
F Force filter Toeplitz matrix R Auto-correlation matrix
F inv Pseudo inverse Force Toeplitz matrix S Time stepping matrix
F Fourier transform t Time
g Connection force array u Output displacement field
G Spectral density matrix V Eigenvector matrix
h Impulse response array x Vibration mode
H Impulse response matrix ˙ Convolution
K Stiffness matrix ‹ Correlation

Greek symbols:

β,γ Newmark time integration parameters µ Modal mass
δ Unit Impulse ρ Density
∆ Step increment ω Circular frequency or eigenfrequency
ε Amplitude error ωd Damped eigenfrequency
λ Lagrange multipliers ζ Damping ratio
Λ Eigenvalue matrix

Subscripts and superscripts:

‚̂ Averaged matrix 9‚ First time derivative
‚ Complex conjugate ‚̃ Prediction array
‚psq Component of substructure s ‚: Pseudo inverse of matrix
‚x DoF at position x :‚ Second time derivative

Abbreviations
DFT Discrete Fourier transform FRF Frequency response function
DoF Degrees of freedom IDFT Inverse discrete Fourier transform
FIR Finite impulse response IRF Impulse response function

V





Chapter 1

Introduction

1.1 Research context
The modern engineer is faced with structures that are becoming lighter and increasingly more
complex. This calls for efficient solving of the structural dynamics of any product, which is essen-
tial for quantifying its performance. Dynamic fragmentation allows efficient analysis of complex
structures, as the dynamic behaviour of smaller and simpler structural fragments (substructures)
are generally easier to determine. The possibilities of sharing and combining substructures from
different design groups, combining experimentally and numerically obtained dynamics and the
optimisation of a single subcomponent without the need for a full analysis, adds to the effi-
ciency. Most methods which utilise this dynamic fragmentation, use the frequency domain for
the re-assembly of the substructures into the full system model [5].

The frequency domain based substructuring method is however badly suited for represent-
ing the response to impact like excitations, i.e. blast, shock and impulsive loading, and the
large frequency band makes this strategy also expensive. Obtaining usable measured frequency
response functions, associated with those excitations, is a delicate process. The response is only
obtained through several processing steps, i.e. windowing, anti-aliasing and Fourier transforms,
which will unavoidably alter the information contained in the measurement. Nevertheless, the
evaluation of the performance of a product subjected to this loading is essential, take for exam-
ple the landing gear of an aircraft, handheld electronic devices that are dropped or a gun when
firing. This led to the formulation of a transient dynamic substructuring counterpart [7, 11]. It
uses impulse response functions, which are better suited for simulating these broadband loads.

In the design stages of these products, its performance to impact is analysed by assembling
the impulse response functions of the substructures from an existing database or newly computed
or measured data. The impulse based substructuring scheme is advantages over its frequency
domain counterpart, in the ability to couple the dynamics of linear models and measurements
to non-linear models [13]. This design methodology will improve the quality and design cycle
time of every new product.

1.2 Research goal
The above presented design methodology, made possible by the impulse based substructuring
scheme, is very attractive. The quality of the full system response will depend on the quality of
the individual impulse response functions representing the true dynamics of the subcomponents.
An accurate way of determining the linear dynamics of a component is by means of experimental
testing.
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2 1.3. Thesis outline

To date, it is not possible to use measured impulse response functions in the impulse based
substructuring scheme for finding stable and coupled full system responses. This exploratory
research thesis pursues the objective of

Improvements on the impulse response computation and determining the sensitivity of
measurement induced errors on the impulse based substructuring scheme.

Impact testing is widely used, but the non perfect impulse demands a deconvolution op-
eration between the output response and the input force. Traditionally the impulse response
is obtained through the frequency domain and consequently suffers from frequency domain in-
duced errors as presented in section 1.1. The idea for a more natural time-domain deconvolved
impulse response was presented in [10], but the computational cost of inverting large matrices
inherent to impact testing leaves room for improvements. An inverse finite impulse response
(FIR) force filter is introduced, which operates independent of the output response. The quality
of the time-domain deconvolved impulse response functions, as well as the measurement induced
errors are tested on the impulse based substructuring scheme. The procedures are illustrated
by application to an one-dimensional bar.

1.2.1 System description

The dynamic substructuring analysis using time-domain deconvolved impulse response func-
tions is tested on the one-dimensional polyoxymethylene (POM) bar [10], which is assumed to
behave linearly. This one dimensional academical example was chosen for the easy of numerical
modelling, coupling and result interpretation. The full reference system is a bar with length 2L,
as sketched in figure 1.1. The bar with free floating boundary conditions is excited with force f
at its left end face. This bar is now divided into two subsystems of equal length. The impulse
response functions and the introduction of a force at the interface degrees of freedom makes it
possible to assemble the subsystems into the full model.

Id

2L

9up1q0 9up1qL 9up2q0 9up2qL
λ

g
p1q
L

L

f

9upfullq0 9upfullq2L

L g
p2q
0

f

(a) The bar and the division in subsystems

d [mm] L [mm] ρ [kg/m3] E [GPa]

40 475.75 1420 3.75

(b) Dimensions and material properties

Figure 1.1: Schematic view of the POM bar with all the necessary parameters for the dynamic
substructuring process. The black dots indicate the interface degrees of freedom.

1.3 Thesis outline
In this thesis, a time-domain deconvolution operation is presented for finding the impulse re-
sponse out of multiple measurements. A selection criteria between multiple measurements and a
filtering operation are also included in this time-domain approach. The quality of the measured
impulse response is defined by comparing it to numerical models. These differences are used in
a sensitivity analysis of the measurement induced errors on the dynamic substructuring scheme.

In figure 1.2, the workflow of the thesis is schematically shown and the chapters associated
with each topic are indicated. Chapter 2 introduces the reader to the impulse response. The im-
pulse response is obtained either by solving the equations of motions or by experimental testing
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Figure 1.2: Schematic representation of thesis content in a flowchart.

and performing the deconvolution operation. In chapter 3, a direct time-domain deconvolution
operation is presented by introduction of the inverse force filter. Operations that are convention-
ally associated with the frequency domain, i.e. signal filtering, the auto power spectral density
and averaging, are presented in their time-domain counterparts. This chapter concludes with the
method validation of the inverse force filter. Chapter 4 introduces the interface problem, which
makes the coupling between substructures possible. The impulse based substructuring scheme
is tested with Newmark time integrated, modal synthesised and experimental impulse response
functions. In chapter 5, multiple operations are explored in the effort of coupling measured
impulse response functions. Also, some of the experimental induced errors are represented by
altering perfect response functions, to see their influence on the dynamic substructuring scheme.





Chapter 2

Impulse response

2.1 Introduction

The transient dynamics of a linear system is described by a signal called the impulse response.
As the name implies, impulse response functions describe the response of a system to a unit
impulse force over time. This response relates the input to the output response of a system.
Convolution is a mathematical way of combining two signals to form a third signal. This chapter
will state the importance of convolution because it relates the three signals of interest: the input
signal, the output signal and the impulse response. If the input to a linear system isn’t equal to
the unit impulse, deconvolution is required for retrieving the impulse response. The transient
dynamics of a mechanical system can be obtained by solving the equations of motion or by
experimental testing.

2.2 Linear time-invariant systems

Any M sample signal can be decomposed into a group of M simpler impulses. Each of the
group component signals contains one point of the original system while the remainder of the
values being zero. Every single impulse is passed through a linear time-invariant system and
the resulting output components are superimposed. This procedure can be described by a
mathematical operation called convolution. Figure 2.1 shows that when the input signal f rns is
applied to a linear system with corresponding impulse response hrns, the output results in signal
urns. This is equivalent to f rns˙ hrns “ urns, where the symbol ˙ denotes the convolution.

The intermediate steps in the convolution operation are better shown in figure 2.2. The
input force is decomposed into scaled and shifted unit impulses. Each of these single pulses will

0 1 2 3 4
0

0.5

1

samples [n]

f
[n

]

(a) Input

Linear
system
hrns

f rns urns
f rns˙ hrns “ urns

(b) Linear system

0 5 10
0

0.5
1

1.5

samples [n]

u
[n

]

(c) Output

Figure 2.1: Convolving the input with the impulse response is equal to the output.
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6 2.2. Linear time-invariant systems

generate shifted and scaled impulse responses and if all these responses are superimposed, the
output response is found. If the impulse response of the system is known, the output can be
calculated for any input signal.

0
1

2
3

t0

0

1

O
therLabel

delay rτ s
ÐÝtime rss

f
[N

] impulse response h

input force f

output response u

ou
tp

ut
re

sp
.

[m
/s

2 ]

Figure 2.2: Example of the convolution operation. The force signal f is decomposed into a set
of scaled and shifted unit impulses: fpτqδpt´ τq. The first decomposed impulse is
indeed the unit impulse δ, which makes the output equal to the impulse response h.
The other three impulses also result in shifted and scaled functions of the impulse
response. If the four shifted and scaled impulse responses are superimposed, the
output response u is obtained.

2.2.1 Convolution properties

Some of the useful properties of convolution, which will be used later in this thesis, are listed
below.

• The most simple input is the unit impulse and is symbolized by δrns. The unit impulse
function shown in figure 2.3a is a Dirac delta impulse with the following properties:

δrns
#

1 if n “ 0
0 otherwise

(2.1)

and will give direct access to the impulse response if it is the input to the system, according
to figure 2.3. This property makes the unit delta function the identity for convolution.

• The commutative property for convolution states that the input and impulse response can
be changed, without changing the output.

f rns˙ hrns “ hrns˙ f rns “ urns (2.2)

This will turn out to be a useful mathematical property but does not have any physical
meaning.

• As shown in figure 2.1, an input signal f rns enters a linear system with an impulse response
hrns, resulting in an output signal urns. If M and Q are respectively the sample lengths
of f rns and hrns, than the output signal urns, resulting from this convolution operation,
consists of N “M `Q´ 1 samples.
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0 2 4 6
0

0.5

1

samples [n]

δ[
n]

(a) Unit impulse

Linear
system

δrns hrns
δrns˙ hrns “ hrns

(b) Linear system

0 2 4 6´1
0
1
2

samples [n]

h
[n

]

(c) Impulse response

Figure 2.3: Unit delta function as the input for a linear system and the output is the impulse
response.

2.3 Time response of dynamical systems
All the dynamics of a mechanical system are stored in the impulse response. If the point of
observation is changed to the frequency domain, the same dynamics are stored in the frequency
response. Lets start with the equations of motion and derive the frequency and impulse response
from here.

M :uptq `C 9uptq `Kuptq “ fptq (2.3)

where the M , C, and K are respectively the mass, damping and stiffness matrices, uptq the
set of degrees of freedom and fptq the external applied forces. Equation (2.3) can be converted
to the frequency domain by using a Fourier transform, where :upωq “ jω 9upωq “ ´ω2upωq. The
equations of motion now write:

p´ω2M ` jωC `Kqupωq “ Zpωqupωq “ fpωq (2.4)

The dynamic stiffness is replaced by the matrix Zpωq. The response of the degrees of freedom
to an external applied force can be found by rearranging equation (2.4).

upωq “ Z´1pωqfpωq “ Y pωqfpωq (2.5)

The flexibility matrix Y pωq is the inverse of the dynamic stiffness and contains the frequency
response functions of all discretised degrees of freedom. The transient response of a system,
excited by an external force, is obtained by the inverse Fourier transform:

uptq “Hptq˙ fptq “
ż 8

τ“´8
Hpt´ τqfpτqdτ (2.6)

where H(t) is the impulse response, describing the dynamics of the system. So the impulse
response Hptq is equal to the frequency response Y pωq when the domain of observation is
shifted from time to frequency. It can also be seen that convolution in the time domain is equal
to multiplication in the frequency domain.

The integral of equation (2.6) is known as the Duhamel integral. If the system is assumed
to be at rest before t “ 0, the interval of the definite integral runs from τ “ 0 to τ “ t. The
transient response can similarly be defined for the velocities and accelerations. By substituting
the mobility 9H and the accelerance :H in equation (2.6), the following expressions are found:

9uptq “
ż t

τ“0
9Hpt´ τqfpτqdτ (2.7)

:uptq “
ż t

τ“0
:Hpt´ τqfpτqdτ (2.8)
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The output response at time t can be interpret as an infinite sum of the impulse responses to
the infinitesimal impulses fpτqdτ before time t. In this notation, each impulse at time τ gives
a contribution through the flipped impulse response, so from t to τ .

2.4 Experimental dynamics and deconvolution

The goal of experimental dynamics is to determine the dynamics of a physical system by mea-
suring discrete input and output signals on discretised points on the structure. Sensors are
used to determine the amplitude of the input force and output motion as a function of time.
The excitation force to the system can either be applied using a shaker or impact hammer. An
example of the force fptq exerted by an impact hammer is shown in figure 3.8a. The impact is
assumed to only take place between the left and right bound of the rectangle window. Although
this impact has only a duration of 0.9ms, it is nowhere near equal to the perfect unit impulse,
as introduced in section 2.2. Due to this non perfect impulse the output of the linear system
will not give access to the impulse response hptq, but the output response uptq. The output
acceleration due the impact as a function of time is measured with an accelerometer and shown
in figure 3.8c. An output window is used to ensure that the boundaries of the signal are equal
to zero, this is done to reduce the (frequency domain) effect of leakage.

A deconvolution operation is necessary to compensate for the non perfect impact. Tradi-
tionally, this deconvolution operation is performed in the frequency domain. This means that
the input and output signals needs to be converted to the frequency domain, by means of the
discrete Fourier transform.

The discrete Fourier transform is used to decompose the original time-domain signal as a
sum of waves, mathematically represented by sine and cosine functions to describe the
frequency spectrum. For the derivation of the discrete Fourier transform, lets start with
the continuous Fourier transform

ypfq “ Fryptqspfq (2.9)

“
ż 8

t“´8
yptqe´2iπft dt (2.10)

If the switch is now made to discrete signals, yptq Ñ yrtks, where tk “ k∆ with k “
0, . . . , N ´ 1, the discrete Fourier transform writes

yrf s “
N´1
ÿ

k“0
yrtkse´2πifk{N (2.11)

Note that due to aliasing, the frequency domain data is limited to the Nyquist frequency:
k “ N{2. This happens because the periods of the input data become split into positive
and negative frequency complex components of the single sine wave.

The time-domain force and acceleration signals are transformed to the frequency domain and
respectively shown in figures 3.8b and 3.8d. A simple division of Upωq{F pωq results in the
frequency response function Hpωq, as shown in figure 3.8f. Note that this is only true for a
single measurement. For multiple measurements, the frequency response is estimated according
to equation (3.28). Finally, the inverse discrete Fourier transform computes the desired impulse
response function, which is shown in figure 3.8e.
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Figure 2.4: Flowchart showing two paths (red and green) from the input and output response
to the impulse response. Left the time and right the frequency domain.

2.4.1 Measurement of POM bar

The force input and the velocity output are measured on the locations given in figure 1.1a.
First, the homogeneous full bar was measured before the subsystems were cut to length, such
that the reference configuration had no additional joint stiffness and damping. The gathered
experimental data will be used in chapter 3 to test the proposed deconvolution operation and
in chapter 4 to couple the substructures into the full system.

The bar is supported by a lightly inflated bike inner tube to represent the free floating
boundary conditions, as shown in figure 2.5a. The suspension of the bar is not ideal since it
introduces some systematic error into the measurement, i.g. the system is more damped, the
rigid body mode is no longer at zero hertz and the induced moment around the inner tube
introduces bending modes.
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An impact hammer1 was used to excite the system in the longitudinal (axial) direction. The
impact hammer with aluminium tip hit the bar on an aluminium nut, which was glued to the
structure, see figure 2.5b. The combination of the two materials with high stiffness ensured a
very short impact time, i.e. distribution of the energy at a large bandwidth. During the dynamic
identification of the system, a roving hammer approach was used. This means that the output
is fixed and the impulse response functions are measured for multiple inputs, this corresponds
to measuring elements from a single row of the impulse response matrix. Recommended would
however be to use a single input multiple output system. This will reduce the deconvolution
cost, it will get rid of the linearisation error made by the amplitude of the replicate excitation
forces and it will reduce the error of not exciting the system at the same place and in the correct
direction.

A laser vibrometer2 as well as an acceleration sensor3 were used to measure the output
responses at the end faces. The displacement response was of very low quality and the accel-
eration response was abandoned due to reasons given in chapter 4. Recommended for future
measurements would be to only use the laser vibrometer for the velocity response. This would
also minimise the added sensor mass.

(a) Suspension of the bar (b) End face at length 0L (c) End face at length L and 2L

Figure 2.5: Measurement setup.

Dynamics of the subsystem

The spectral dynamics of the two boundary degrees of freedom of the subsystem are shown in
figure 2.6, for the average of five replicate measurements. The signals have a sampling rate
of 32.8 kHz and a blocksize of 16384 samples. The frequency response functions shows the
fundamental frequency at 1.6 kHz. This frequency can be determined by the speed of the wave
through the material and the wave length (for the subsystem equal to two times length L).
The additional peaks in the frequency response should theoretically be the integer multiple of
the fundamental frequency. A simple doubly clamped beam, such as a guitar snare, will show a
similar response [14]. The additional smaller peaks in the signal can be bending modes due to the
suspension and direction of impact, or the additional sensor mass and stiffness. The coherence
function is used as a data quality assessment tool which identifies how much of the output signal
is related to the measured input signal. It shows that this signal starts to deteriorate as well
as the frequency response function above 6.5 kHz. The impulse response functions are shown in
figures 2.7 and 2.9. The response shows a travelling wave, which is a superposition of multiple
standing waves. Again, the wave speed and the length of the bar determine the period time.

1PCB Piezotronics: 086C03, serial number 24524.
2Polytec Scanning Vibrometer OFV-505, displacement and velocity sensitivity of respectively 5.12 µm/V and

125mm/(sV).
3PCB Piezoelectronics: Y356A32, serial number 32652
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Figure 2.6: Frequency response function and corresponding coherence of the subsystems.

2.5 Impulse response simulation

To solve the structural dynamic equations of motion under arbitrary excitation, two approaches
can be considered, namely modal superposition techniques and direct time- integration methods.
Both methods will be presented in this section and used to find the impulse response functions
of the bar test case. The equations of motion are defined using eleven bar elements per unit of
length L with Reyleigh damping and material properties as shown in figure 1.1. The simulated
response is compared to the measured response and used throughout this thesis.

2.5.1 Newmark time integration

The direct time integration scheme computes the conditions at the proceeding time step from the
equations of motion, given in equation (2.3). Necessary are the initial conditions, i.e. velocity
and displacement ( 9u0,u0) and the finite difference equations:

:un “ lim
∆tÑ0

9u´ 9uptn ¯∆tq
˘∆t 9un “ lim

∆tÑ0

u´ uptn ¯∆tq
˘∆t (2.12)

An efficient single-step integration method was introduced by Newmark [9], which is commonly
used in the field of structural dynamics for large degrees of freedom systems. The state vector
at the next time step tn`1 is deduced from information at the current time step using a Taylor
series expansion

fptn `∆tq “ fptnq `∆t 9fptnq ` ∆t2
2!

:fptnq ` ∆t3
3!

;fptnq `Rs (2.13)

where Rs are the higher order terms. If the higher order terms are neglected, the displacement
and velocity at the next time step can be approximated as follows:

9un`1 “ 9un `∆t:un ` γ∆t2;un (2.14)

un`1 “ un `∆t 9un ` ∆t2
2 :un ` β∆t3;un (2.15)

The integration constants β and γ are introduced. The finite difference principles also allows
for the calculation of the jerk, by assuming constant acceleration between the time steps. If this
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is applied to equations (2.14) and (2.15), the approximations formulas for the Newmark scheme
become:

9un`1 “ 9un ` p1´ γq∆t:un ` γ∆t:un`1 (2.16)
un`1 “ un `∆t 9un ` p1

2 ´ βq∆t2:un ` β∆t2:un`1 (2.17)

The proceeding acceleration step :un`1 can be solved if equations (2.16) and (2.17) are substi-
tuted in the linear set of equations of motion, equation (2.3):

S:un`1 “ fn`1 ´C p 9un ` p1´ γq∆t:unq ´K
`

un `∆t 9un ` p1
2 ´ βq∆t2:un

˘

(2.18)

where the constant effective stiffness matrix S is defined as:

S “M ` γ∆tC ` β∆t2K (2.19)

The inverse of the effective stiffness matrix thus only needs to be calculated one. The impulse
response function of a system can be found if stimulated with an unit impulse. The initial
velocity step is found by solving the momentum equation

Mp 9u0` ´ 9u0´q “
ż 0`

t“0´
fptqdt (2.20)

The system is at rest before the unit impulse at degree of freedom j is applied, so the initial
velocity writes 9u0 “M´11j and the initial displacement u0 “ 0. As always, the initial velocity
is solved through the equations of motion. Note that the initial applied force can also be used
in formulating the initial conditions for the velocity and displacements [12]. If compared to
the impulse response found by modal superposition, in section 2.5.2, the initial applied force
introduces a delay of ∆t and lacks information about the initial velocity. In order to keep the
models consistent, the initial applied force is not used.

Numerical solutions of POM bar

The Newmark time integration algorithm is used to compute the transient response of the
system. The implicit average constant acceleration scheme γ “ 1

2 and β “ 1
4 is unconditionally

stable, but the high frequency impact response nevertheless requires a very small time step. The
step is chosen equal to the Courant’s condition, which states that the time step must be smaller
than the time for an elastic wave to transverse an element. The model of the bar consists of
eleven elements with Reyleigh damping, this corresponds to a time step of 1{65.5 kHz, twice the
sampling rate of the measurement. The result is shown in figure 2.7, where the Newmark time
intergated response if plotted next to that of the measurement.

2.5.2 Modal synthesis

Impulse response functions can also be obtained from modal synthesis. It uses modal parameters
to build up the response [4]. Numerical and empirical data can both give access to these modal
parameters. An inverse Fourier transform of the frequency response function gives the following
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Figure 2.7: Transient comparison of the measurement and the Newmark time integration.
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Figure 2.8: Spectral comparison of measurement and numerical models.

expression:

hptq “ IFFT pHpωqq (2.21)

“ IFFT
˜

n
ÿ

j“1

˜

Rpjq
iω ´ λpjq `

Rpjq
iω ´ λpjq

¸¸

(2.22)

“
n
ÿ

j“1

´

Rpjqeλpjqt `Rpjqeλpjqt
¯

(2.23)

“ 2Re
˜

n
ÿ

j“1
Rpjqeλpjqt

¸

(2.24)
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A bar denotes the complex conjugate. The system pole λpjq contains the frequency and damping

components for mode pjq and the residual is defined as Rpjq “
xpjqxT

pjq
µpjq . If a system has a large

number of degrees of freedom, the sum may be truncated to a subset of k ď n modes to find
the approximate solution. Equation (2.24) can be written in an alternative form to better show
the superposition of sinusoidal functions:

hptq “
n
ÿ

j“1

xpjqxTpjq
µpjq

1
ωdpjq

ż t

0
e´ζωpjqpt´τq sinpωdpjqpt´ τqqδpτq dτ (2.25)

This equation will give access to the transmissibility since the external load is a delta impulse.
The damping is the cause for the exponential decaying function and the delay in the sine function.
The derivative of the temporal term of equation (2.25) will give the mobility function and the
impulse response will be a superposition of delayed cosine functions. In the same manner,
the double derivative will give the acceleration and is a superposition of delayed negative sine
functions.

Analytical solutions of POM bar

The system response is expressed as a superposition of its eigenmodes. The impulse response
of the modal synthesis can be seen as a discretised signal of the underlying continuum model,
similar to that of the experimentally obtained response. The solution, in contrast to the time
integration, is therefore independent of the sampling frequency and is set equal to the experi-
mental time step for the ease of comparison, see figure 2.9.
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Chapter 3

Time-domain deconvolution

3.1 Introduction
In this chapter, the idea of a more natural time-domain method for finding the impulse response
is explored. Traditionally the dynamics of the system is found in the frequency domain by a
simple division. The time-domain equivalent is the deconvolution operation between the output
uptq and the input force fptq. There is no need for Fourier transforms and windowing functions,
which could make the time-domain approach more accurate and or more efficient. The common
theme is the following general method: the Cauchy product is written in tensor form and the
impulse response is found by solving a least-squares linear system.

Experiment
Chapter 1

Subsystem Inverse
FIR filter

Fourier
transforms

Impulse
respons
function
Chapter 3

Impulse
based sub-
structuring
Chapter 4

Figure 3.1: Current chapter in relation to other chapters in this thesis.

3.2 Linear least-square system
Finite impulse response functions can be obtained from simulations and experiments. In the
field of experimental dynamics, discrete signals originating from input and output sensors are
gathered. According to equation (2.6), the deconvolution of the measured input force filter and
the output displacement produces the desired impulse response. This continuous convolution
integral needs the be discretised in order to deal with the finite number of samples. This operator
is

un “
n´1
ÿ

i“1
hn´i`1fi ∆t (3.1)

also known as the one dimensional Cauchy product. The force function can be decomposed into a
set of impulses, as shown in figure 3.2. The forward difference approximation will underestimate
the elementary impulses in the first half of the force signal and will overestimate in the second
half of the force signal. Due the nearly symmetric non perfect impacts, the total sum of the
impulses will be correctly estimated. The trapezoidal approximation was not used since it would

15
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introduce a delay in the response. The total response u at time t can be found by summing all
the responses due to the elementary impulses acting at all times τ .

0 τ t

fpτq

∆τ

time [s]
fo

rc
e

[N
]

Figure 3.2: An arbitrary forcing function as a set of elementary impulses.

The commutative property of convolution, equation (2.2), makes it possible to flip either the
impulse response or the force function:

un “
n´1
ÿ

i“1
fn´i`1hi ∆t (3.2)

This notation is beneficial over equation (3.1), assuming that the length of the input force f is
shorter than the output response u, when writing the summation into a tensor multiplication.
For this one dimensional convolution, the windowed excitation force f consists of M samples.
The dynamics of the system is stored in array h, which has a size of Q “ N `M ´ 1 samples
and lastly, the measured output u has N samples. Since the duration of the excitation force
used for impact analysis is around 0.9ms and the output response in the order of one thousand
milliseconds, the following expressions will assume that N ěM .

The discrete convolution operation of equation (3.2) can be constructed as a tensor multi-
plication, where one of the inputs is converted into a Toeplitz matrix [2]. Each column of the
matrix stores the values of f as they slide along the tapped delay line1. The number of elements
in the tapped delay line is equal to the number of elements in h.

»

—

—

—

–

u1
u2
...
uN

fi

ffi

ffi

ffi

fl

looomooon

N by 1

“

»

—

—

—

—

—

—

—

—

—

–

f1 0 ¨ ¨ ¨ 0
... f1

...
fM

... . . . 0
0 fM f1
... . . . ...
0 ¨ ¨ ¨ 0 fM

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooomoooooooooooooon

N by Q“N´M`1

»

—

—

—

–

h1
h2
...
hQ

fi

ffi

ffi

ffi

fl

looomooon

Q“N´M`1 by 1

∆t (3.3)

u “ Fh∆t (3.4)

It can be seen that F is by construction a rank-deficient matrix. One useful solutions to
equation (3.4) is given by the least squares minimum norm:

hls “ pF TF q´1F Tu 1
∆t “ F invu 1

∆t (3.5)

The accuracy of this operation depends on the number of columns in F and will be examined
in section 3.6. Notice that when both sides of equation (3.5) are multiplied by F , the original

1A more elegant way of defining the Toeplitz matrix is by using index notations: Fij “ fi´j .
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equation (3.4) is obtained, since:

pF TF q´1F TF “ I (3.6)

The inverse filter matrix equivalent must thus be the pseudo inverse of the Toeplitz matrix

F inv “ pF TF q´1F T “ R´1F T (3.7)

The inverse FIR filter matrix of equation (3.7) is sufficient in solving the deconvolution operation,
however the drawback is that the dimensions are prescribed by the output response length
N . Take for example the measurement conducted in this thesis: N “ 32 768 and M “ 63.
Finding the inverse of a very large matrix is costly and therefore this tensor multiplication is
not applicable for the field of experimental dynamics.

3.3 Inverse force filter
Instead of a tensor multiplication, as presented in the previous section, a first order tensor is
explored that if convolved with the force filter, results in the unit impulse. This first order
tensor is the inverse of the force filter and will be called the inverse force filter f inv. It has to
satisfy the equation that holds for all inverses:

f ˙ f inv “ δ (3.8)

Because of the similarity with equation (3.6), the inverse filter F inv is the matrix counterpart of
the inverse force filter vector f inv. The deconvolution operation can be performed by convolving
the output u with the inverse filter f inv

ĥ “ δ ˙ h “ f ˙ f inv ˙ h “ f inv ˙ u 1
∆t (3.9)

The approximated impulse response ĥ is the true impulse response if f inv is indeed the inverse
filter to f , i.e. if equation (3.8) is satisfied. Formally, the inverse filter of a finite impulse
response must be an infinite impulse response. Still it is possible to approximate a finite inverse
force filter that is shorter than N , resulting in a efficient impulse response estimation. Since the
deconvolution is performed using a convolution operation, the inverse filter length is no longer
dependent on the length of the output response.

Now let us define the properties of the encountered matrices. If F is multiplied with any
array, valid convolution is obtained. If F T is multiplied with any array, the linear correlation is
found. This is due to the fact that the transpose of the matrix eliminates the flip of the filter,
which distinguishes the convolution from the correlation operation. So F TF “ R is equivalent
to the linear auto-correlation of r “ f ‹ f . The correlation matrix R is examined for a filter fn
with n “ 1, 2, 3 and Q equal to five.

R “ F TF (3.10)

“

»

—

—

—

—

–

f1 f2 f3 0 0 0 0
0 f1 f2 f3 0 0 0
0 0 f1 f2 f3 0 0
0 0 0 f1 f2 f3 0
0 0 0 0 f1 f2 f3

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

–

f1 0 0 0 0
f2 f1 0 0 0
f3 f2 f1 0 0
0 f3 f2 f1 0
0 0 f3 f2 f1
0 0 0 f3 f2
0 0 0 0 f3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.11)
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“

»

—

—

—

—

–

f2
1 ` f2

2 ` f2
3 f1f2 ` f2f3 f1f3 0 0

f1f2 ` f2f3 f2
1 ` f2

2 ` f2
3 f1f2 ` f2f3 f1f3 0

f1f3 f1f2 ` f2f3 f2
1 ` f2

2 ` f2
3 f1f2 ` f2f3 f1f3

0 f1f3 f1f2 ` f2f3 f2
1 ` f2

2 ` f2
3 f1f2 ` f2f3

0 0 f1f3 f1f2 ` f2f3 f2
1 ` f2

2 ` f2
3

fi

ffi

ffi

ffi

ffi

fl

(3.12)

“

»

—

—

—

—

–

r0 r´1 r´2 0 0
r1 r0 r´1 r´2 0
r2 r1 r0 r´1 r´2
0 r2 r1 r0 r´1
0 0 r2 r1 r0

fi

ffi

ffi

ffi

ffi

fl

(3.13)

It is observed that the full auto-correlation vector r is positioned in both the middle row and
column, see equation (3.13). This auto-correlation vector of an arbitrary filter will result in a
symmetric signal. It is also seen that the correlation matrix R is symmetric and full rank and
it’s inverse R´1 will therefore also be symmetric and full rank. Given the 35 components of
F , it is easy to compute the 15 components of R, but given R it is impossible to compute the
components of F .

Equation (3.8) will be essential in finding the inverse FIR filter. If the force in this con-
volution operation is tranformed into a Toeplitz matrix, similar to that of equation (3.3), the
following form is found:

Ff inv “ δ (3.14)
F TFf inv “ F Tδ (3.15)
Rf inv “ F Tδ (3.16)
f inv “ R´1F Tδ (3.17)

(3.18)

The expression F Tδ is equal to the reversed force vector, padded with Q´M zeros. The inverse
FIR filter f inv is used in equation (3.9) to solve for the impulse response of a linear system.

3.3.1 Inverse FIR filter of non-perfect impact

A non-perfect impulse response created with an impact hammer is show in figure 3.3a. This
bell shaped function clearly does not represents a unit impulse. The output response needs
to be convolved with the inverse force filter to find the impulse response, as equation (3.9)
prescribes. The inverse force filter to the non-perfect impact is shown in figure 3.3b and consist
of Q samples.

In order to check the accuracy of the inverse force filter, the force function is convolved with
the inverse force filter. The output should result in the unit impulse, as shown in figure 3.3c.
The theoretical value of the sum of all the values is one and will be used as the benchmark for
the accuracy of the inverse filter. The accuracy of the inverse force filter is determined by the
number of columns Q in the Toeplitz matrix F and the conditioning of the correlation matrix
R, which will be studied in section 3.6.

3.3.2 Impulse response reconstruction

The impulse response function is found by convolution of the output u with the inverse FIR
filter f inv, as shown in equation (3.9). The resulting sample length of ĥ is due to the convolution
equal to N ` Q ´ 1. This is longer than the properties of convolution in section 2.2.1 define
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Figure 3.3: The inverse FIR filter originated from a non-perfect impulse and the accuracy
check.

for the length of the impulse response. The sample length of the impulse response h should be
equal to Q “ N ´M ` 1.

The impulse response is indeed present in the signal and only needs to be filtered out. The
reconstruction of the unit impulse f inv ˙ f “ δ is used in this process. The delay i at which
the unit impulse is equal to one, as shown on the x-axis in figure 3.3c, is used to define the start
point of the impulse response in ĥ:

f inv ˙ f « δpn´ iq
#

« 1 if i “ N`1
2

« 0 otherwise
(3.19)

Now the impulse response can be reconstructed using the start point i and the theoretical sample
length of the impulse response Q. It is also found that the position d of the of the actual pulse in
the force window (figure 3.3a) is independent of the position of i. This is due to the symmetric
auto correlation matrix.

3.4 Auto-correlation matrix
The auto-correlation of a noisy experimental imperfect impulse provides a better signal to noise
ratio for detecting dominant frequency components compared to the original force function [6].
In order to find the dominant frequencies in the auto-correlation vector, a Fourier transform is
required:

rptq “
ż 8

τ“´8
fpτqfpt` τq dτ (3.20)

Frrptqs “
ż 8

t“´8
e´jωt

ˆ
ż 8

τ“´8
fpτqfpt` τq dτ

˙

dt (3.21)

“
ż 8

τ“´8
fpτq

ˆ
ż 8

t“´8
fpt` τqe´jωt dt

˙

dτ (3.22)

The Fourier transform of fpt` τq is F pωqejωτ . Therefore,

Frrptqs “ F pωq
ż 8

τ“´8
fpτqejωτ dτ “ F pωqF p´ωq “ |F pωq|2 (3.23)

Equation (3.23) shows that the Fourier transform of the auto-correlation function is equal to the
auto power spectral density. The auto-correlation matrix R is decomposed into it’s eigenvalues
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and eigenvectors to display the same information as the power spectral density in the time
domain. The eigenvalues represent the amount of energy and the corresponding eigenvectors
the spectral distribution of this energy.

A perfect unit impulse will result in a dense set of frequencies. In order to accurately describe
the impact response of a component, the selection criteria of the excitation signal is the power
density across the entire bandwidth. The energy density is found if matrix R is diagonalised
using a sequence

λ1pRq ě ¨ ¨ ¨ ě λQpRq (3.24)

of Q real eigenvalues, together with an orthonormal basis of eigenvectors v1pRq, . . . ,vQpRq. The
spectral distribution of each eigenvalue is shown in figure 3.4. It is seen that the smallest energy
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Figure 3.4: The eigenvalues as a function of the eigenvectors spectral distribution.

eigenvalue corresponds to the eigenvector with the highest fundamental frequency, which is in
good agreement with the power spectral density of an imperfect impulse (see figure 3.5b). The
diagonal line from λ1 at 0Hz to λQ at 1.6ˆ 104 Hz is interrupted by multiple ’z’ shape patterns.
In these regions, the eigenvectors contain multiple fundamental frequencies and therefore the
eigenvalue will also see this distribution.

The energy density of the eigenvalues are shown in figure 3.5a, by plotting the magnitude
of each eigenvalue. The eigenvalue time domain data shows a non-linear behaviour with some
similar behaviour to the auto power spectral density in the frequency domain. The two signals
are superimposed in figure 3.5c. This similar behaviour can be converted to exact behaviour in
the linear regions of the eigenvectors spectral distribution of figure 3.4. The eigenvalues of a non-
perfect impact can therefore be used as a selection criteria between the replicate measurements.

The power spectral density can again be constructed using the eigenvalues and eigenvectors

Frrptqs “ |F pωq|2 “ FrV ΛV Tδs (3.25)

where the symmetric unit impulse δ of equation (3.8) was used. This means that the transpose
eigenvector matrix is reduced to only the middle column, in order to reconstruct the auto-
correlation vector.

3.4.1 Signal separation

The interesting relation between the eigenvalues of the auto correlation matrix and the frequency
bandwidth, found in section 3.4, allows for the design of a filter right into the deconvolution
operation. The end result: a filtered impulse response, which contains the desired frequency
components and the attenuated unwanted frequency components.
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Figure 3.5: The magnitude of the eigenvalues and the power spectral density of a non-perfect
impact.

The shape of the auto power spectral density of the impact force shows that not all frequen-
cies are excited with the same amount of energy. Consequently, there is a region of frequencies
that receives a small amount of energy. In these regions, the output signal shows a increased
signal to noise ratio. The deconvolution operation will strongly amplify the magnitude of the
higher frequencies to come to a constant energy level. This means that also the noise will be
amplified. A filtered experimental impulse response is needed in the region where the energy
level is assumed to be constant. This in order to not amplify the uncertainties in the high
frequency region.

In order to find the impulse response in the region with assumed constant energy, the time
domain data is converted to the frequency domain, the signal is low-pass filtered and the filtered
impulse response is found after the inverse Fourier transform. A more direct approach can be
presented since the cutoff frequency fc of a low or high-pass filter can be linked to a single
eigenvalue λfc in the linear region of the eigenvectors spectral distribution (see figure 3.4).

Using the singular value decomposition the pseudo-inverse of the auto correlation matrix
can be easily computed as follows. Let R be decomposed into V ΛV T , then

R: “ V Λ:V T (3.26)

where the matrix Λ: takes the form:

Λ: “

»

—

—

—

–

1
λ1

0 ¨ ¨ ¨ 0
0 1

λ2
¨ ¨ ¨ 0

...
... ¨ ¨ ¨ ...

0 0 ¨ ¨ ¨ 1
λQ

fi

ffi

ffi

ffi

fl

(3.27)

for all of the non-zero singular values. If any of the λi are zero or assumed zero, then a zero
is placed in corresponding entry of Λ:. If the amplitude of the eigenvalue corresponding to the
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cutoff frequency is used as a tolerance for the pseudo inverse of the auto correlation matrix, the
least squares minimum norm is found for a filtered impulse response.

For a low-pass filter, all eigenvalues higher or equal to the eigenvalue of fs will be tolerated
in the pseudo inverse. As an example, the non-perfect impact of figure 3.5 is considered and the
inverse filter is defined using R:. The filtered and original impulse response and it’s spectral
representation are show in figure 3.6.
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Figure 3.6: The original and low-pass filtered frequency and impulse response. The cutoff
frequency fc at the vertical gray line.

Figure 3.6a shows that the low frequency signals are passed and are a close match to the
original signal. It is also seen that the frequencies higher than the cutoff frequency are atten-
uated. The filtered impulse response in figure 3.6b skips the high frequency oscillations in the
first four milliseconds of the response. After this period a more smoothed signal is seen due to
the attenuated high frequency noise.

3.5 Time domain averaging
All experimental data is imperfect and the goals is to minimize errors. The systematic error
will stay unknown, but the random error is minimized by doing several replicate measurements
and taking the average. In our case performing several impacts to the system and measuring
the output. The signal to noise ratio will be increased, theoretically in proportion to the square
root of the number of measurements.

3.5.1 Response function estimators

The impulse response function estimator of equation (3.5) is given by the convolution of the
inverse filter with the output response. The response function estimation in the frequency
domain is more well-known and is derived in a similar manner. The most common approach for
the estimation of frequency response functions is also by use of least squares techniques. The
algorithms referred to as the H1 and H2 estimators are used based on the assumed location
of the noise entering the estimation process [1]. Next the H1 estimator will be given and the
direct link to the time domain inverse filter deconvolution:

H1pωq “ Gfupωq
Gff pωq

DFTðñ hptq “ R´1ptqF T ptquptq (3.28)

The cross-power spectral density matrix Gfupωq is equal to F T ptquptq since the transpose of
the Toeplitz matrix multiplied with any vector produces the linear cross correlation. The auto-
power spectral density matrix Gff pωq of the force signal is stored in the time domain equivalent
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auto correlation matrix R, as shown in section 3.4. This means that the impulse response
function estimation assumed that the location of noise is on the output response. By taking
several replicate measurements and finding the average, the noise on the output is minimised.
The H2 estimator and the coherence function will not be given since a time domain equivalent
can not directly be found in the deconvolution definition presented here.

3.5.2 Multiple input IRF estimation

The replicate measurements minimise the error on the output response and will be used in the
time domain averaging. Section 3.5.1 showed that the time domain deconvolution is equivalent
to the H1 estimator, which for multiple inputs is defined as:

H1pωq “
1{Navg

Navg
ř

i“1
Gi
fupωq

1{Navg

Navg
ř

i“1
Gi
ff pωq

(3.29)

Note that one over the number of averages can be divided out of equation (3.29) and the cross
and auto correlations needs to be calculated for every measurement.

The multiple input impulse response estimation suggested here will again make use of the
Toeplitz matrix, but will now be used for storing multiple force inputs F avg. The next example
gives the time domain averaging for two (i “ 1, 2) measurements

»

—

—

—

—

—

—

—

—

—

—

—

—

–

u1r1s
u1r2s
...

u1rN s
u2r1s
u2r2s
...

u2rN s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f1r1s 0 ¨ ¨ ¨ 0
... f1r1s ...

f1rM s ... . . . 0
0 f1rM s f1r1s
... . . . ...
0 ¨ ¨ ¨ 0 f1rM s

f2r1s 0 ¨ ¨ ¨ 0
... f2r1s ...

f2rM s ... . . . 0
0 f2rM s f2r1s
... . . . ...
0 ¨ ¨ ¨ 0 f2rM s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

h1
h2
...

hN´M`1

fi

ffi

ffi

ffi

fl

∆t (3.30)

Again the least squares minimum norm will be used in finding the impulse response. The auto
correlation matrix for multiple input forces is defined as

Ravg “ F T
avgF avg “

Navg
ÿ

i“1
Ri (3.31)

The energy densities, as show in section 3.4, will be stores in the auto correlation vector but
now for the averaged impact. The conditioning of the averaged auto correlation matrix will
determine the accuracy of the inverse filter and it’s therefore interesting to see how this number
is influenced by the sum of the auto correlation matrices.
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Eigenvalues The eigenvalues of the sum R1 `R2 of two Hermitian Q by Q matrices can be
written in terms of the eigenvalues of R1 and R2. The eigenvalues are bounded by the
inequalities [16]

λpR1 `R2qk`l´1 ď λpR1qk ` λpR2ql for k ` l ´ 1 ď Q (3.32)

The biggest eigenvalue of R1`R2 is bounded by one inequality: λpR1`R2q1 ď λpR1q1`
λpR2q1, whereas the following sum of eigenvalues is bounded by an increasing amount
of inequalities. Since the condition number depends on the first and last eigenvalue:
λpR1`R2qQ ě λpR1qQ`λpR2qQ, the condition number decreases more beneficial than the
linear combination of the separate eigenvalues could suggest. This means that a replicate
measurement with a large condition number can also be included into the averaging process
without sacrificing on the accuracy.

The most costly operation is taking the inverse of the auto correlation matrix. In this averaging
method, the inverse autocorrelation matrix is only calculated once and has the same size as
the auto correlation matrix of a single input force. Now the inverse filters are found when the
inverse averaged auto correlation is correlated with the reversed single force pulses

f invi “ R´1
avgF

T
i δ (3.33)

The impulse response reconstruction of multiple replicate measurements is estimated by the
summation of the inverse force filters convolved with the corresponding output responses ui

havg “
Navg
ÿ

i“1
f invi ˙ ui (3.34)

If the time domain IRF estimation of equation (3.34) is compared to the FRF estimator of
equation (3.29), it is seen that the factor 1{Navg is divided out of the equation in the spectral
representation and in the time domain this factor is found back in the inverse averaged auto
correlation vector. A difference between the two equations is that the auto correlation in the
time domain is only calculated once, whereas the spectral estimation needs to calculate the auto
correlation for every replicate measurement. The time-domain method is compared to that of
the frequency domain estimator in figure A.1. A perfect match is found for both the amplitude
and phase.

3.6 Method validation
The accuracy and the computational time depend on two variables. In this section the sensitivity
to these variables will be determined.

The Condition number of the auto-correlation matrix R is given by the ratio between the
biggest and lowest eigenvalue. The condition number for an unit impulse will be equal
to one, which means that its inverse necessary for finding the inverse FIR filter can be
computed with good accuracy. If the condition number is large, then the matrix is said to
be ill-conditioned. Practically, such a matrix is almost singular, and the computation of
its inverse, or solution of a linear system of equations is prone to large numerical errors.
A matrix that is not invertible has the condition number equal to infinity. An example
to a non invertible auto-correlation matrix would be a sinusoidal force function of a single
frequency.
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The condition number of three experimentally obtain impulses is show in figure 3.7a as a
function of the output sample length. It is observed that the condition number reaches an
upper bound, which means that the additional information in the autocorrelation matrix
does not contribute to a more accurate calculation of the eigenvalues. If the replicate
measurement with the lowest condition number is found in the accuracy plot of figure 3.7b,
it is seen that a correlation matrix with the lowest condition number results in the inverse
force filter with the best accuracy.
As shown in section 3.4, the eigenvalues represent the amount of energy and the eigenvector
determines the distribution of the energy. If the point of observation is the frequency
domain, the ratio between the highest and lowest value of the auto power spectral density
will give a good estimate for the condition number of R.

The accuracy of the inverse filter also depends on the dimensions of the Toeplitz matrix. The
accuracy is defined as the absolute length of the samples that construct the unit impulse.
Because the theoretical value should be equal to one, this number is also subtracted from
this vale in order to graphically show the accuracy in figure 3.7b. The solid lines represent
the accuracy check for time-domain acquired inverse force filters and the dashed lines
represent the inverse filter found by frequency domain operations. The inverse filters in
the frequency domain are found by the following operation IDFTr1.{DFTrfptqss and is
graphically shown in figure 3.8.
It is observed that the frequency domain gives an more accurate inverse filter. There
are more calculations required for the time-domain approach, which gives more round off
errors, compared to that of the frequency domain method. For every force filter there will
be an optimum sample length N . The inverse filter will gradually get more accurate as
the output length increases and find an optimum between the region of lack of information
in the auto-correlation matrix and the region where the round-off errors are dominant.

The computational time is calculated as a function of the inverse filter length. Although
speed optimisations are not in the context of this thesis, for completeness the comparison
is made between the frequency and time-domain acquired inverse force filter. The results
are shown in figure 3.7c. It is seen that the time-domain approach is at less time effi-
cient (optimisations in the calculations, shown in appendix A.1, can lead to better time
efficiency).

3.7 Summary
Time-domain deconvolution is possible by defining an inverse FIR force filter which is indepen-
dent of the output response. This inverse filter is convolved with the output response in order to
obtain the impulse response function. The eigenvalue decomposition of the correlation matrix
makes choosing between replicate measurement and signal filtering possible. Averaging of mul-
tiplicative measurements in time domain is possible and is equivalent to the frequency domain
H1 estimator. The accuracy of the inverse filter is sensitive to the conditioning of the auto-
correlation matrix and the inverse filter length. Due to more computations, the time-domain
approach is less accurate and less time efficient compared to that of the frequency domain ac-
quired inverse filter. For a better understanding of the inverse force filter, a comparison is made
between the two operational domains in figure 3.8.
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Figure 3.7: Sensitivity analysis on the accuracy of the time-domain inverse FIR filter (solid
lines), for three experimentally obtained impacts. The dashed lines are inverse
force filters found through the frequency domain.
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Chapter 4

Dynamic substructuring using
impulse response functions

4.1 Introduction

Now that the impulse response functions are calculated, the theory behind the impulse based
substructuring scheme is presented. The dynamics of the substructures will be coupled, such
that the dynamics of the total structure is found. This is done by introducing the interface
probem. The numerically simulated and experimental obtained impulse response functions will
be tested in the dynamic substructuring scheme for stability and compatibility.

Impulse
respons
function
Chapter 3

Experiment
Section 2.4

Subsystem

Numerical
model

Section 2.5
Newmark

Modal
synthesis

Impulse
based sub-
structuring
Chapter 4

Coupled
system?

Figure 4.1: Overview and subjects addressed in this chapter in gray.

4.2 Impulse based substructuring

In this section the dynamics of structures will be coupled by means of the impulse responses.
In order to assemble the interface degrees of freedom of the substructures, two conditions need
to be satisfied:

Compatibility is accieved when two matching interface degrees of freedom have the same
displacements and rotations, i.e., up1qi “ up2qi , where the subscript i denotes the interface
degrees of freedom. The compatibility condition for the full set of DoF can be elegantely

29
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written using the signed Boolean matrix B, which selects the substructures interface DoF

Ns
ÿ

s“1
Bpsqupsqn “ 0 (4.1)

Note that also compatibility can be claimed for the accelerations and velocities. In sec-
tion 4.2.1, the interface DoF of the substructures are assumed to have the same velocity.

Equilibrium on the interface DoF is realised when the reaction forces are equal in magnitude
and opposite in sign: gp1q` gp2q “ 0. By making use of the same signed Boolean operator
from equation (4.1), this condition can be written as:

„

gp1q
gp2q



“ ´BTλ, (4.2)

where λ are the unknown Lagrange multipliers that must be determined in order to satisfy
the compatibility condition. So, the Lagrange multipliers represent the force necessary for
keeping the interface DoF connected.

4.2.1 Assembly of impulse responses

The velocity in time for a general applied force fptq can be found by approximating the convo-
lution integral from equation (2.6) by the finite sum

9upsqn “
n
ÿ

i“0

9Hn´i pf i ` giq∆t (4.3)

where the subscripts indicate the present time step: 9un “ 9uptnq. The sum running from i “ 0 to
n states that 9H0 is non zero, this is also true for the accelerations :H0. When the displacements
are used for the impulse based substructuring, the impulse responseH0 on the first time step is
zero and the summation limits can be shortened. The impulse response matrix for our system
writes:

9Hn “
«

9hp1q0 pnq 9hp1qL pnq
9hp1qL pnq 9hp1q0 pnq

ff

(4.4)

Equation (4.3) is not consistent with the Newmark time integration scheme as shown in [12],
since it assumes the force to be piecewise linear between tn and tn`1. If the impulse superposition
needs to be consistent with the constant average acceleration Newmark, the impulse responses
are averaged and substituted in equation (4.3), as was proposed in [15]:

9̂
Hn “ 1

2p 9Hn ` 9Hn`1q (4.5)

Substitution of the equilibrium and compatibility condition, respectively equations (4.1) and (4.2),
into the impulse response in terms of velocities of equation (4.3), results in the coupled equations.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9upsqn “ ∆t
n
ÿ

i“0

9̂
H
psq
n´i pf psqi ´BpsqT λiq

Ns
ÿ

s“1
Bpsq 9upsqn “ 0

(4.6)
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The Lagrange multipliers λ represent the impulse needed for compatibility. By expanding the
velocities in time from equation (4.6), it can be quantified into two parts: a known part and an
underlined unknown part:

9upsqn “ ∆t
n´1
ÿ

i“0

9̂
H
psq
n´i

´

f
psq
i ´BpsqTλi

¯

`∆t 9̂
H
psq
1 f psqn ´∆t 9̂

H
psq
1 BpsqT λn (4.7)

A prediction can be made from the known part in equation (4.7), called ũpsqn , of the substructures
velocities when the interface forces gpsqn are equal to zero. The total velocities are thus written
as

9upsqn “ 9̃upsqn ´∆t 9̂
H
psq
1 BpsqT λn (4.8)

With this prediction on the velocities, the Lagrange multipliers needed to ensure compatibility
are calculated by substituting equation (4.8) in the compatibility condition of equation (4.6).

λn “
˜

∆t
Ns
ÿ

s“1
Bpsq 9̂Hpsq

1 BpsqT
¸´1 Ns

ÿ

s“1
Bpsq 9̃upsqn (4.9)

The term inside the braces needs to be inverted and can be seen as the effective dynamic stiffness
tensor for the interface degrees of freedom. The Lagrange multiplier is the magnitude of the
force necessary to keep the substructures together, i.e. the same internal force which is always
present between discretised structural elements. Note that solving for the Lagrange multipliers
on the interface is similar to the dual interface problem for the frequency based substructure
[5]. Finally, a correction on the predicted velocity 9̃upsqn is made by solving equation (4.8). This
procedure is repeated for every time step.

4.3 Substructuring with numerical models
The full system is split up into two symmetric numerical models, as introduced in section 1.2.1.
The impulse based substructuring scheme will try to ensure that the two substructures to-
gether behave in the same way as the numerical full system. Next, the two ways of numerical
simulations, described in section 2.5, are tested for stability and compatibility.

4.3.1 Newmark time integration

The impulse response, found if the external excitation is equal to the unit impulse, is proven to be
consistent with the impulse based substructuring algorithm [12]. This means that the coupling
process is independent of the time step. It will therefore be no surprise that the coupled response
is stable and compatibility ensures overlap of the full Newmark simulated response, as shown in
figure 4.2a. The inherent periodicity error of the constant average acceleration scheme is equal
for the coupled and full simulated response.

4.3.2 Modal synthesis

The modally synthesised impulse response functions of the substructures, as presented in sec-
tion 2.5.2, are not suitable for the coupling process. The result of the impulse based substruc-
turing scheme with averaging shows a uncoupled stable response, see figure B.1b. From the
impulse response function of the substructures, in figure B.1a, it is observed that the magnitude
of the extremal values of the waves are underestimated.
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Figure 4.2: Impulse based substructuring using simulated impulse response functions.

The transient dynamic substructuring algorithm is proven to be consistent with the Newmark
time integration scheme. This implies that the inputs for the coupling process have to be equal to
the time integrated responses. This is only the case for time steps which approach zero: ∆tÑ 0,
in which the Newmark time integrated response converges to the exact modally superimposed
solution. The convergence of the Newmark time integration to the analytical solution is sketched
in figure 4.3.
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Figure 4.3: The convergence of Newmark (as a function of the step size) towards the analytical
solution.
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If the model is simulated with a time step which is ten times smaller as that of the experiment,
the substructuring scheme produces a stable coupled impulse response, as shown in figure 4.2b.
The coupled impulse responses are compared to that of the full model, with length equal to 2L.
The results are in good agreement but come at a higher cost. The very small time step makes
the algorithm more computationally expensive. Due to the nature of the convolution product,
the number of calculations grows quadratically with the number of samples.

4.4 Substructuring with experimental data

The experimentally obtained impulse response functions of the subcomponents are found with
the time-domain deconvolution operation, proposed in chapter 3, for 5 replicate measurements
and were shown in figure 2.7. The results of the impulse based substructuring scheme together
with the measurement of the full system are shown in figure 4.4.
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Figure 4.4: Impulse based substructuring using measured impulse response functions.

The end face 9h
pfullq
2L shows correct coupling up to the first period, which is at 0.6ms. The

rest of the signal is dominated by instability, which is assumed to start growing at tε; the first
wave of the cross point 9h

p1q
L . At this instant in time, energy is gained into the system due to

increased amplitude of the impulse response compared to the first wave of the driving point 9h
p1q
0 .

Chapter 5 will give more detail to this reasoning, when its tried to alter the measured impulse
response functions.
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4.5 Summary
The impulse response functions resulting from modal superposition will be a downsampled
version of the continuous underlying function, similar to that of the measurement. The Newmark
time integrated responses will converge to the analytical solution for very small time steps. Since
the impulse based substructuring scheme is consistent with the Newmark time integration, only
modally superimposed impulse response functions with high sampling rate can be used. This
will make the coupling process possible but at a higher cost.

The direct time-domain deconvolved, experimentally obtained, impulse response functions
do not lead to a stable coupled system. The coupled results are dominated by instability, which
renders them useless.



Chapter 5

Strategies for improving
experimental IRF’s for dynamic
substructuring

5.1 Introduction

The direct time domain deconvolution method did not change the impulse response function in
such an extend that dynamic substructuring was feasible, as was shown in section 4.4. Therefore,
the flow chart in figure 5.1 does not give the operations necessary to get to the desired result:
coupling experimental impulse response function. The problem of why the the coupling does
not takes place is unknown and turns this part of the thesis into an exploratory research. Due
to the fundamental nature of this research, not all the possible options are investigated. The
most feasible options, in the effort of coupling experimental impulse response functions, are
presented in this chapter. The system was identified in chapter 2 both experimentally and
numerically, in order to spot the immediate difference between the two methods. Insight in
these differences gives rise to the formulation of hybrid impulse response functions. The perfect
modelled responses are also used to investigate operations which jeopardise the substructuring
routine, i.e. filtering, re-sampling and measurement errors. This chapter concludes with an
operation that gets rid of some experimental errors introduced into the impulse response.

Subsystem
Experiment
Chapter 1

Impulse
respons
function
Chapter 3

Impulse
based sub-
structuring
Chapter 4

Coupled
system:

No

Figure 5.1: The operations in flowchart do not lead to coupling of experimental impulse re-
sponse functions.

5.2 Exploratory research

In contrast to the measured response, both simulated response functions could be successfully
used in the coupling process, as shown in chapter 4. In this section the apparent differences be-
tween the two worlds of acquiring the impulse response are listed. These differences are labelled
as possible problems why no coupling between measured responses takes place or instability

35
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occurs. After the possible problem definition, the measured impulse response can be altered
and the sensitivity of the impulse based substructuring scheme be analysed.

• The first sample of the driving point 9h
1
0 of the model is eight times larger as the first

sample of the measurement (see figures 2.7b and 2.9a). The driving point impulse response
suggests that energy is gained during the fist period of the signal, as shown in figure 5.2b,
rendering the system non-causal. This first sample is of great importance because its
value is used in every time step of the convolution operation, see equation (4.9). The
impulse response should start at a maximum after which an exponential decay is seen,
since we deal with a non-conservative system. The origin of this problem is observed when
examining the output velocity, as shown in figure 5.2a. Due to the non perfect impact, the
velocity of the returning wave is of higher amplitude than that of the initial wave. This
makes sense when you imagine pushing in a mass-spring system. During the time when
the force is applied, potential energy is build up in the spring. When the mass-spring
system is released, it will have more velocity returning to the equilibrium position since
all the kinetic energy is released.

Sections of the measured response are replaced with simulated ones in section 5.3 and the
sensitivity of the exponential decay of the mobility functions is shown in section 5.4.4.
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Figure 5.2: Defects in the measured output and impulse response.

• The simulated response functions are without any noise. The influence of noise will be
examined in section 5.4.1

• The measurement and simulations all have different sampling rates. This makes it difficult
to create a hybrid model. The effects of re-sampling and filtering are shown in section 5.4.2.

• The inherent periodicity error ω2h2{12 of the Newmark constant acceleration scheme is
seen back in the comparison with the measurement and the modally synthesised response.
This error will not be examined further because the measurement is, like the modal syn-
thesised response, a down-sampled version of the underlying continuous function.

• Compared to simulations, the measurement shows more dynamics in the high frequency
region. The frequency response functions in figure 2.6 also shows that the dynamics in
this region are not in good agreement. The effect of different underlying high frequency
dynamics is worked out in section 5.4.3
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• The rigid body motion in the measurement is shifted to approximately 7Hz due to the
suspension of the experimental setup, see figures 2.7a, 2.7c, 2.9a and 2.9c. This low
frequent oscillation is not seen back in the simulations. This is investigated in section 5.4.3

5.3 Hybrid substructuring

The measured impulse response of the substructures are partially replaced with simulated data
before the coupling process and is called hybrid substructuring. The first point of the impulse
response of the driving point 9h

p1q
0 p1q is replaced with that of the numerical model. In order to

see what happens to the Lagrange multiplier, equation (4.9) is recalled:

λn “
˜

∆t
Ns
ÿ

s“1
Bpsq 9̂Hpsq

1 BpsqT
¸´1 Ns

ÿ

s“1
Bpsq 9̃upsqn

If the magnitude of the first point of the driving point is to large, the Lagrange multiplier is
underestimated meaning that there is too little force to keep the substructures together. This
will result in an uncoupled response. If the denominator is to small, the force is overestimated,
resulting in instability in the impulse based substructuring scheme.

The result of the hybrid substructuring is shown in figure 5.3. The blue line is a stable but
uncoupled response and has the first driving point value of the simulation. Next, this value is
gradually lowered, resulting in increasingly unstable behaviour. The transition point between
the uncoupled response and unstable behaviour is not equal to the desired coupled response.

Replacing the entire driving point impulse response or shorter sections with numerical data
also leads to an uncoupled or unstable response, depending on the length of the copied section.
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Figure 5.3: The response after substructuring of point 9h
pfullq
0 to investigate the sensitivity of

the first driving point 9h
p1q
0 p1q. The highest value results in the uncoupled response.

Gradually lowering this value gives an unstable and uncoupled response.

5.4 Substructuring sensitivity analysis

The methodology for evaluation of the effects of the measurement imperfections is as follows: the
imperfections of the measurement are represented with numerical models to see their sensitivity
to the impulse based substructuring scheme.
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5.4.1 Influence of noise

The influence of noise on the coupling of the impulse responses is examined by introducing noise
in the deconvolution operation. It is said that measurement noise has a blurring effect on the
evolution of dynamical systems, which can be seen in figure 2.6. Modelling the precise effects
of noise on a dynamical system can be very difficult, especially the high frequency part. It can
involve a lot of guesswork because the exact measure of the noise is not known. However, one
can already gain insight into the effect of noise on a system by adding Gaussian white noise.
This noise is a mathematical construct that approximates the properties of many kinds of noise
encountered in experimental situations.

As a basis, the impulse responses of a Newmark simulation with constant average acceler-
ation is used. The influence of noise on the output signal will be examined, as is done in the
experimental case for the H1 estimator (see section 3.5.1). The ’perfect’ impulse is convolved
with an experimental impact force, resulting in the output response, according to the following
formula:

fptq˙ hptq∆t “ uptq ` ζptq (5.1)

where the added white Gaussian noise is represented by ζptq. Now the direct time-domain
deconvolution finds the impulse response corresponding to the input force and the noisy output
response. This impulse response is than used as the input to the coupling process. With the
introduction of the noise on the output, two extrema test cases can be constructed:

No noise on the output signal (ζ(t)=0). The impulse response is now only contaminated
with numerical noise due to the convolution with the force and the deconvolution with the
inverse force filter. The impulse responses are coupled and the result show in figure 5.4b as
the solid line, were a correct coupled response is found with double the period time between
the running waves, compared to that of the symmetric substructure. Also the compatibility
condition of equation (4.1) is examined for amplitude and stability. Figure 5.4c shows
the difference between the two interface degrees of freedom

ˇ

ˇ

ˇ
:u
p1q
L ´ :u

p2q
0

ˇ

ˇ

ˇ
. The maximum

absolute acceleration gap between the two interface degrees of freedom is 0.25pm/(s2 N)
and a decaying to a constant numerical error is observed.
Next to the test case described in equation (5.1), the non perfect impact fptq was also
used as the external excitation in the Newmark time integration scheme. The output
response was convolved with the inverse force filter, resulting in the impulse response.
After dynamic substructuring, this also resulted in perfectly coupled full system responses.

Maximum noise is introduced on the output signal until the moment that the coupled system
shows some sign of instability. The power of the output response is measured in decibel
watt and the signal-to-noise ratio is set to 27dB. The result is shown in figure 5.4a
as the dashed line. The magnitude of the compatibility condition is in the same order
of magnitude as the case were no noise was applied but the signal shows a growth in
acceleration difference around 10ms, rendering the coupling unstable. Note that the same
instability result can be found in the Lagrange multiplier. The coupled full system response
in figure 5.4b starts to decouple, seen by the small wave in between the running waves.

5.4.2 Re-sampling and filtering

If the measurement is similar to that of the modally synthesised impulse response, due to
the underlying continuum response, the measurement needs to be up-sampled in order for the
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Figure 5.4: The input, output and the gap between the substructures of the dynamic sub-
structuring process when noise is added.

impulse based substructuring scheme to work. It is possible for the modal superimposed result
of the substructures to be re-sampled before acquiring the coupled response. The same attempt
on the measurement failed due to the inclusion of measurement noise on the signal.

A possibility for finding cleaner impulse response functions is by applying a low pass filter.
This will get rid of the high frequency noise and mismatching dynamics. There are again two
ways of filtering the system, a time-domain approach as proposed in section 3.4.1 and in the
frequency main with a Butterworth filter [3]. The filtering process was tested on simulated
responses. Dynamic substructuring after the responses of the substructures were filtered led
to instability in the results. The filtering process has a big influence on the first point of the
driving point, such that no fluent exponential decay is spotted in the impulse response functions
of the substructures.

5.4.3 Change underlying dynamics

In order to see the influence of the mismatching high frequency dynamics, as was seen for the
measured substructures (figure 2.6), a numerical model will be tuned. The modal parameters
of the perfect simulation are altered to give a different impulse response for one of the interface
degrees of freedom. The cross point 9h

p1q
L is the modelled response and the driving point 9h

p1q
0 is

altered. The high frequency response, after 9 kHz, now contains different eigenfrequencies and
damping parameters. The frequency response function is shown in figure 5.6a, where the dotted
black line is changed into the red dashed line. The effects in the transient response is shown in
figure 5.5a. It clearly shows different high frequency dynamics in the beginning of the signal as
long as the damping ratio allows.

The substructures with mismatching underlying dynamics are now tested in the impulse
based substructuring scheme. The result is presented in figure 5.5b. The substructured response
does not show perfect coupling during the first period of the signal (the red dashed line). The
introduced error has however no influence on the remaining response. This is remarkable, since
the Lagrange multipliers ensuring compatibility in the first period are also used in the proceeding
calculations of the convolution operation. The error is not big enough for creating an immediate
unstable behaviour. As the error is quickly damped out, due to the high frequency damping
ratio, also does the error on the Lagrange multiplier.
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the impulse based substructuring scheme is conducted.
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Figure 5.6: Frequency response functions of the driving point where first the dynamics and
later the amplitude is changed.

The same procedure was also followed by shifting the rigid body mode to a higher frequency,
but mismatching for the two interface degrees of freedom. Again a stable and coupled response
was observed.

5.4.4 Exponential decay

The simulated data shows constant exponential delay in the impulse response functions. Fig-
ure 5.2b shows that this is not at all the case for the measurement. No exponential function
can be plotted through the peak of the waves. Four obvious points are picked at time p1 to p4
in this figure. The non perfect impact is the cause for the amplitude error of peak p1. Mea-
surement induced errors such as small differences in the frequency of the rigid body mode and
discretisation error can be the cause for the amplitude error of peak p3.

This problem is again simulated using numerical data. At time tε an error is introduced
into the impulse response function. The simulation is shown in figure 5.7a, where the dotted
black line is the perfect response and the solid blue line containing the small amplitude error.
The error in this example is ε “ 5%, but the same behaviour also occurs for an error of less
than one percent. The impulse response functions are now coupled and shown in figure 5.7b.
An amplitude error on the second (or any) period will decouple the subsystems. If the change
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in amplitude is small, the compatibility error starts to accumulate and will cause complete
decoupling after several periods.
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Figure 5.7: A small amplitude error on the impulse response of the substructure results in an
uncoupled response.

The influence of the amplitude error on the spectral part of the data is shown in figure 5.6b. It
is seen that the eigenfrequencies of the signal are not changed, but the first three anti-resonances
are. Since λ contains the eigenfrequencies and damping values, the change of anti-resonance is
accounted for by a change in the underlying mode shapes.

5.5 Modal fit
The last effort in the coupling of experimental data is by fitting the time response. A modal fit
of the experimental data is necessary when interested in modal analysis or in our case; obtaining
a clean set op impulse response functions for coupling purposes. Modal parameters are most
commonly identified by curve fitting. Curve fitting is a process of matching a mathematical
expression to a set of empirical data points. This is done by minimizing the squared error
between the analytical function and the measured data1. The least squares complex exponential
(lsce) method will be used. A description of this algorithm is given in appendix C [8].

The number of modes is over-specified to be 38, whereafter the computational modes are
removed. The stabilisation diagram in figure C.1 shows that modal parameters up to 5 kHz
can be distinguished. The poles represent the frequency and damping and the components
of the mode shapes form the residue. When manually adding a rigid body mode (at zero
Hertz), the impulse response function can be synthesised according to section 2.5.2 and is
shown in figures 5.8a and 5.9a. It is clearly seen that the fitted response is cleaner in spectral
representation, lacks the high frequency content and shows a transient exponential decay.

The impulse based substructuring scheme results in the coupled response and is shown in
figures 5.8b and 5.9b. The impulse response shows that the period time is correctly estimated
compared to that of the low-pass filtered measurement. Also the frequency response function
shows the shift in harmonic frequencies compared to that of the substructure. Note that the
there is a factor ten sampling frequency difference is this comparison.

1Note the similarities with the time-domain deconvolution operation.
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5.6 Summary
The differences between the measurement and the simulated data were defined. In order to
get rid of one of these differences, a quick solution of defining a hybrid impulse response was
explored but did not achieve the desired coupled response. The experimental induced errors
such as noise, different underlying dynamics and errors in the exponential decay were intro-
duced on perfect numerical models to see their sensitivity to the impulse based substructuring
scheme. The addition of noise and the changed underlying dynamics had no influence on the
coupling process. A small amplitude error of the travelling waves resulted in decoupled results.
This led to the identification of the modal parameters of the measurement to get rid of these
amplitude errors, by means of the least squares complex exponential method. The acquired
impulse response functions are, like the modal synthesised responses, perfectly usable in the
impulse based substructuring scheme. The flowchart in figure 5.10 shows the processing steps
necessary for experimental dynamics substructuring using impulse response functions and the
additional subjects addressed in this chapter.
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Figure 5.10: Overview of subjects addressed in this chapter. The solid arrows give the process-
ing steps necessary for dynamic substructuring with measured impulse response
functions.





Chapter 6

Conclusions and recommendations

6.1 Conclusions

In this work, a direct time-domain deconvolution operation has been developed and tested.
This method is based on writing the Cauchy product in tensor form and the impulse response is
found by solving a least-squares linear system. The formulation of the inverse FIR force filter,
which is independent of the output response, allows for averaging between measurements and a
high, low or bandpass filter can be built into the deconvolution operation. The latter is done by
making use of the eigenvalues of the auto correlation matrix and formulating a pseudo inverse
(section 3.4). The magnitude of the eigenvalues are similar to the auto power spectral density
and can thus be used as a selection criteria between replicate measurements. The definition
of the inverse filter is tested on three non perfect impacts to gain insight in its performance
(section 3.6). It was found that the size of the Toeplitz matrix and the conditioning of the auto
correlation matrix defines the accuracy and computational cost of the inverse filter. The inverse
filter can also be defined by using a Fourier transform and its inverse. If both methods are
compared, it is shown that the time-domain approach is less accurate and time efficient.

The equations of motion are solved by a Newmark time integration scheme and a modal syn-
thesis. It was shown that the velocity can best be used for experimental dynamic substructuring
purposes (section 2.5). The velocity is a superposition of delayed cosine functions and is less
sensitive to trigger issues compared to the superposition of sine functions of the displacement
and acceleration around t “ 0. Another reason for abandoning the acceleration is the negative
analytical value at time equal to zero, which leads to direct instability in the impulse based
substructuring scheme.

The time integrated response functions can be used in the impulse based substructuring
scheme independent of the size of the time step. The modally synthesised impulse response
function can only be used for dynamic substructuring if the time steps are very small. The
Newmark time integration scheme, which is consistent with the substructuring scheme, con-
verges to the analytical solution for these small time steps. This makes coupling of modal
synthesised impulse response functions very computationally demanding. The close correspon-
dence of the measurement and the analytical solution, which are both down-sampled versions of
the underlying continuum response, implies that the experimental data also needs a time step
that is very small (section 4.3).

The direct time-domain deconvolution did not change the impulse response in such an extend
that impulse based substructuring was possible (section 4.4). The observation of the differences
between the measured and simulated data resulted in several test cases. A hybrid impulse
response was constructed, sections of the measurement are replaced with simulated data, but did

45
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not lead to a coupled stable response. The impulse based substructuring scheme is not sensitive
to change of noise level, change in underlying dynamics and up-sampling of the analytical
response. Note that this does not imply that a combination of these factors lead to a stable
coupled response. The scheme is very sensitive to amplitude errors on the travelling waves. An
amplitude error, a change in the exponential decay, less than one percent lead to decoupled full
system responses (section 5.4.4).

The modal parameters of the measured impulse response functions are obtained by using the
least squares complex exponential method, which operated in the time-domain. These modal
parameters were utilised in synthesising a clean impulse response with a perfect exponential
decay. The clean impulse response functions as the input for the impulse based substructuring
scheme resulted in successful coupling (section 5.5).

6.2 Recommendations
Due to the fundamental nature of the exploratory research, not all the possible changes to the
time measured impulse response were investigated in the effort of finding a coupled experimental
response. Chapters 4 and 5 showed that dynamic substructuring with raw and slightly changed
experimental impulse response functions was not possible. Fitting a pole-residue model on the
empirical data made dynamic substructuring possible. The modal fit is a costly procedure and
would ideally be avoided. The peaks of the travelling waves of the measurement could be scaled
to a numerically obtained exponential decay, such the energy in the system is gradually reduced.
Another change to the impulse response without fitting a model would be to compensate for
the error in the output response, due to the non perfect impact, by the law of conservation of
energy.

If the modal fit of the measured data stays necessary, the impulse based substructuring
scheme is too expensive for the calculation of long time responses. Since it uses modal synthesised
impulse response functions, the time step needs to approach zero to be consistent with the
substructuring scheme. A substructuring scheme that is independent of the time step for modal
synthesised response functions is very welcome.

6.2.1 Outlook

Next, the possibilities of the inverse filter will be discussed. Using the inverse filter is attractive
when either the input or impulse response is known on forehand and the deconvolution operation
needs to be performed in real-time. Another application would be to avoid the frequency domain
effect of leakage.

Lightly damped structures are costly to test experimentally. The long vibration time makes
testing and data storage expensive. The system must be completely damped out to obtain
the most accurate frequency and damping parameters and avoid the frequency domain
effect of leakage. The inverse force filter could change this procedure by deconvolving
only the first part of the output response. Since the inverse filter is independent of the
output response and operates in the time-domain, spectral leakage has no influence on the
obtained impulse response. The truncation error, made by only taking a small section of
the output response, is shown in figure D.1. A modal fit can be used on a short section
of the impulse response for finding correct amplitude and phase parameters. These modal
parameters are used for synthesising the complete impulse response.

The impulse response is known either from experimental testing or numerical modelling.
This means that the inverse impulse response can be computed on forehand. If the output



Chapter 6. Conclusions and recommendations 47

response is measured in real-time, the inverse filter allows for obtaining the input response
with a theoretical delay of the time step ∆t. The truncation error of only using the first
few periods is small, as graphically shown in figure D.1. This is done to keep the inverse
filter of reasonable length.
A possible example for this application would be in the railway industry, where there is
a need for the determination of different imperfections on the track. These imperfections
introduce impact forces on the steel wheels of the train during motion. If the output
response is measured in the bearings, the inverse impulse response could determine the
impact force, if the system is assumed to behave linearly, in real time. With the known
impact force, different imperfections can be quantified by examining the magnitude of its
eigenvalues, i.e. the spectral content of the impact.

The input force is known in advance with a specific degree of certainty. The deconvolution
operation, using the inverse filter, allows for the determination of the impulse response at
a delay of the time step. The point wise availability of the impulse response can be used
in the impulse based substructuring scheme, such that coupling in real time is possible (if
the time step approaches zero).
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Appendix A

Inverse force filter

A.1 Implementation

1 function[h,time] = irf(f,u,N,dt)
2 % irf Performes the deconvolution between the input f and output
3 % u resulting in the impulse response h, for single
4 % or multiple measurements.
5 % [f] Interval of the force function of interest, column matrix
6 % [f1;f2;..] (windowed with lower and upper bound), M an odd number.
7 % [u] Output u starts at the lower bound of the force window,column
8 % matrix [u1;u2,..].
9 % [N] An odd number specifying the accuracy of the inverse filter, scale

10 % approx 4001 (depending on theconditioning of R).
11 % [dt] Samping rate.
12 %
13

14 [M,b] = size(f);
15 Q = Ń M+1;
16 U = numel(u(:,1));
17 % Correlation matrix
18 S = 2*M´1; % length autó correlation vector
19 r = zeros(1,S);
20

21 for j = 1:b
22 r = r + xcorr(f(:,j)).'; % (sum) autó correlation vector
23 end
24

25 % Auto correlation matrix
26 R = sparse(N+M´1,Q);
27

28 for i=1:Q,
29 R(i:((S+i´1)),i) = r;
30 end
31 O = (N+M´1́ Q)/2;
32 R = R(O+1:N+M´1́ O,:);
33

34 % Inverse force filter and convolution
35 f_inv = zeros(Q,b);
36 hhat = zeros(U+Q´1,b);
37 for j= 1:b
38 frv = [zeros((Q́ M)/2,1); flipud(f(:,j));zeros((Q́ M)/2,1)];
39 f_inv(:,j) = R\frv;
40

51
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41 % Impulse response
42 hhat(:,j) = conv(f_inv(:,j),u(:,j));
43 end
44

45 c = (N+1)/2;
46 if b>1
47 h = sum(hhat(c:c+Ú M,:),2)/dt;
48 else
49 h = hhat(c:c+Ú M)/dt;
50 end
51

52 time = 0:dt:(Ú M)*dt;
53 end

A.2 Averaged comparison
Five repeated measurements are averaged. A perfect comparison if found, both in the amplitude
and phase, see figure A.1.
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Figure A.1: In blue the time-domain deconvolved impulse response function for 5 repeated
measurements, in spectral representation. The red dashed line is theH1 estimator,
also for 5 measurements.



Appendix B

Impulse based substructuring

The result of the IBS scheme for the impulse response functions at the end faces of the full bar.
The sampling frequency of the analytical IRF’s are equal to that of the measurement.
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Figure B.1: Modally synthesised IRF’s of the substructures for different sample frequencies.
The result after IBS: an uncoupled response for the sample frequency of 1/32000
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Appendix C

Least-squares complex exponential

Different curve-fitting schemes are available for extracting modal parameters from experimental
data. The least squares complex exponential method is chosen since is operates in the time
domain. It calculates the system poles in the time domain by making use of the impulse response
functions. When the system parameters are known, clean impulse response functions can be
synthesised according to section 2.5.2. Assuming a constant sampling rate, equation (2.24) is
rewritten in the form:

hpm∆tq “ 2Re
˜

n
ÿ

j“1
RjV

m
j

¸

(C.1)

The abbreviation Vj “ eλj∆t is used. Note that the values of Rj and Vj are not known. For the
solution, Prony’s method is used. Because the roots for a non-critically damped systems always
occur in complex conjugate pairs, so does the abbreviation Vj . Auto regressive moving average
models are introduced to solve the polynomial of order L with real coefficients β:

β0 ` β1Vj ` β2V
2
j ` . . .` βLV L

j “ 0 (C.2)

First the values of βp are solved with the following overdetermined system of equations, in the
same least squares manner as seen in chapter 3, by assuming βL “ 0

L
ÿ

p“0
βphpm∆tq “ 0 (C.3)

Then, Vj follows from the polynomial roots of equation (C.2). The abbreviation of the expo-
nential function helps in finding the system poles:

λj “ 1
∆tpln |Vj | ˘ i argpVkqq (C.4)

This procedure can be expanded to a single input multiple output method by increasing the
overdetermined system of equation (C.3) in a similar way as the time domain averaging. In the
averaging case was the impulse response independent of the replicate output measurements and
here are the constants β independent of the number of impulse responses.
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56 C.1. Stabilisation diagram

C.1 Stabilisation diagram
The stabilisation diagram in figure C.1 shows the result of the least-squared complex exponential
fit. It was used for determining the modal parameters of the experimental obtained IRF’s of
the subcomponents.
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Figure C.1: LSCE stabilisation diagram of subsystem measurements.



Appendix D

Response truncation

Since the inverse FIR force filter is independent of the output response, the output can be
truncated in the time domain without any effects of leakage. The truncated versions of the
impulse response are transferred to the frequency domain (leakage has effect on the displayed
results and the frequency resolution is significantly different since no zeros are added). The
results are shown in figure D.1. The reference impulse response has nmax “ 32.8ˆ 103 samples.
The truncation at t1 uses 0.06nmax, t2 uses 0.065nmax, t3 uses 0.08nmax and t4 uses 0.11nmax
samples.
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Figure D.1: The impulse response obtained from convolving the inverse filter with the trun-
cated versions of the output response is converted to the frequency domain and
compared to the reference frequency response, found with the full length output
response (tmax).
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