Adjusting the CO₂ cap to subsidised RES generation: Can CO₂ prices be decoupled from renewable policy?☆

Jörn C. Richstein☆, Emile J.L. Chappin☆, Laurens J. de Vries☆

☆Delft University of Technology, Faculty of Policy, Technology and Management, Energy & Industry Section, PO Box 5015, 2600 GA Delft, The Netherlands

Abstract

The low prices in the European Emission Trading System (EU ETS) have triggered discussions of various possible reforms. One option is to decouple the CO₂ prices from renewable energy policy by adjusting the emission cap to renewable energy investment overshoots. We introduce two ways of reducing the CO₂ cap in response to overshoots of renewable policy investment over previously announced targets. We investigate these options with the agent-based model EMLab-generation. We find that both policy implementations are successful in restoring prices. They also ensure that making public investments that exceed policy targets contribute to carbon emission reduction, and that renewable policy does not benefit the most emission-intensive power plants. However, neither policy is suitable for achieving specific levels of prices or price volatility.

Keywords: EU-ETS, Carbon Market, Renewable policy, Dynamic cap adjustment, Agent-based modelling, Electricity Market

1. Introduction

When a stringent emission trading system (ETS) is in place, the establishment of a renewable energy policy does not lead to additional emission reductions1 [1]. Indeed, within the electricity sector the emission reductions due to renewable electricity generation might be offset by a shift to more polluting power plants [1, 2]; or as Börhringer and Rosendahl [3] put it, “green promotes the dirtiest”. As the broad literature on CO₂ market and renewable policy interactions documents, renewable energy policy also lowers CO₂ prices in an ETS [1, 4, 2]. This effect may have contributed to the strong price drop in CO₂ prices in the EU ETS in recent years [5] (whereas Koch et al. [6] argue that this effect has been negligible).

While renewable and climate policies can, and have been, coordinated ex-ante [7, 8] to mitigate these effects, this paper investigates the implementation options of a dynamic rule-based cap adjustment mechanism that mitigates

☆Copyright © the authors, 2015. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/). The journal published version is available at http://dx.doi.org/10.1016/j.apenergy.2015.07.024
☆Corresponding author. T: +31 (0) 15 2783095 / F: +31 (0) 15 278342, @ J.C.Richstein@tudelft.nl
1Barring political-economical dynamics that might developed from low CO₂ prices.
CO₂ price drops and makes renewable policy climate effective under an ETS, even in cases when the development of renewable policy deviates from ex-ante targets. Such a mechanism could also be part of a broader cap adjustment mechanism that not only reacts to fluctuations in renewable energy production, but also to other indices such as economic growth, energy efficiency or estimated abatement costs [9, 10]; in this paper, however, we focus exclusively on adjustments with regard to renewable diffusion.

While such a mechanism has been proposed and qualitatively analysed by Diekmann [11], Del Río et al. [8] and Del Río [12], only one brief proposal for how to translate renewable policy fluctuations quantitatively into cap adjustments was found [12], and no quantitative evaluation of such a policy has, to the knowledge of the authors, been presented so far. The literature search was carried out with the search term ("EU ETS" OR "emission trading" OR "emissions trading" OR "cap-and-trade" OR "CO₂ market" OR "carbon market") AND ("cap adjustment" OR "adjusting the cap" OR "adjusting the emissions cap" OR "dynamic mechanism") AND (renewable OR RES) on ScienceDirect, Google Scholar and Google. Additionally, we searched for the titles of the three mentioned references [11, 8, 12] to find citing literature. We propose two heuristics for calculating cap reductions dynamically. We evaluate the two policies by extending the agent-based model (ABM) EMLab-Generation with these dynamic cap reduction mechanisms. We use an ABM because we wish to model realistic limitations to investment decisions such as the financial constraints and myopia of market participants (they do not know the future), the discreteness of investment choices in power plants. Since rule-based mechanisms act with a delay they cause dynamic effects which may even exacerbate the CO₂ price shocks which the policy is supposed to mitigate. These can be captured best with a dynamic model.

1.1. Related literature

The policy investigated in this paper is related to two strands of literature: on the one hand to the very broad category of ETS and renewable policy interactions, and on the other hand to the discussion of ETS design options, and more specifically possible reforms of the EU ETS.

Given the current state of technology, both climate and renewable policies are considered as necessary for achieving carbon and climate policy goals simultaneously and efficiently, while a single policy would achieve its respective single goal more efficiently [4, 13] (this does not necessarily hold theoretically [14]). While both RES quota and carbon prices are impacted by the other policy, it is usually found that the decreasing effect on prices in the ETS by a RES policy is stronger than the other way around [13, 5], until the ETS cap no longer is binding and the carbon price drops to zero. In terms of wealth redistribution, RES policy tends to relatively decrease consumer bills (this is known as the merit order effect, which may or may not² outweigh the increase in subsidy spending [15, 16]) and reduce producer rents, while the opposite is true for carbon policy [13, 17]. Del Río [12] and Del Río et al. [8] give a broader overview of the ETS and renewable policy interactions. Related to the discussion on cap reduction is the

²Depending on the design of the subsidy scheme and the cost of the used technologies.
1.2. Rationale for and against cap adjustment based on subsidised renewable electricity production

Several arguments can be brought forward in support of a cap adjustment based on subsidised renewable electricity sources (SRES). Renewable energy policies impact both electricity markets and, as discussed previously, carbon markets. As can be seen in Figure 1, and discussed previously, renewable energy policy does not lead to emission reductions when the ETS cap is binding [11, 3, 8, 12]. Instead, the marginal abatement cost curve is shifted to the left and the EUA price drops (from point A with price p_1 to point B with price p_2). A cap adjustment policy that effectively offsets the impact of SRES on carbon prices should reduce policy uncertainty for private investors in CO$_2$ abatement. In Figure 1, the objective would be to adjust the cap so the intersection of the demand curve and the cap would be in point C and the price would be p_1 again. For example, it should be possible to offset the effect of a sudden...
increase in investment in renewable energy, as can happen under a price-based policy. An example is the boom inphotovoltaic installations in Germany, which occurred under a feed-in-tariff.

A second argument for adjusting the CO$_2$ cap to unexpected increases in SRES is that it reinstates one of thekey benefits of, and arguments for, renewable energy policy, namely that it reduces carbon emissions. In the past, the Dutch government, for example, issued cost-benefit analyses of offshore wind projects in which the CO$_2$ benefits where judged to be zero [25, 26]. It could also be expected that a cap adjustment policy would reduce the requiredsubsidy per unit of SRES, since the market revenues from renewables rise with a higher carbon price. Del Río et al.[8] further point out that cap adjustment might increase the long-term dynamic efficiency because it supports the CO$_2$price; lower CO$_2$ prices and the shift to more polluting power plant might lead to less innovation in low-emission technologies in the ETS [27].

On the other hand there are potential disadvantages to a cap adjustment. An emission trading scheme theoretically delivers the most cost-efficient emission reductions, given a certain cap [2]. Such a cap should be set in a way as to avoid global warming3. A reduction of the cap would therefore impose additional costs. Such a political decision regarding greenhouse emission targets should in principle be made independent of renewable energy policy (following the one goal, one policy approach of Tinbergen [28]), which is currently usually made at a national level. The EUA price also signals to governments the degree of scarcity in the carbon market and renewable energy policy provides them a tool for mitigating scarcity without changing the carbon reduction goal.

1.3. Design options for a cap adjustment based on subsidised renewable electricity production

While the notion of offsetting the price effect of SRES and making public RES investments climate effective by reducing the emission cap appears simple, implementation of such a policy is not straightforward [8, 12]. In principle, the cap should be lowered by the volume of the “avoided emissions”5. This should prevent the drop of prices that SRES may cause otherwise. For the cap adjustment we only take subsidised renewable investment into account, while other drivers of renewable deployment may exist [29], such as climate and other energy policies or institutional and private incentives.

The first challenge is which level of renewable investment to choose as a baseline for adjusting the cap. A level of zero public investment is one possible answer. However, in the design of the third period of the EU ETS, policy makers explicitly took renewable energy policy into account in an impact assessment when setting the cap [7]. Since the cap was designed with renewable energy policy in mind, it seems appropriate to act only when more SRES is developed than anticipated ex-ante, instead of basing the policy action on the absolute quantity of SRES. While the cap could theoretically also be raised when renewable energy policy targets are not achieved, this would lead to a failure to achieve the climate goal4 and is therefore not desirable.

3While the EU ETS is limited in its scope to influence the global climate, in the long run, global climate policy is intended lead to regional climate policies that together avoid global warming.

4We assume the climate policy goal to be a minimum goal in this paper.
The second challenge is to calculate the extent of the cap reduction, a task which is far from trivial for a regulator\(^5\). In an ideal world, the regulator would have a perfect model of the carbon market. He would create counter-factual scenarios of the carbon market with and without SRES, isolating the effect of renewable energy policy, and use such an ideal model to calculate the cap reduction necessary to avoid an EUA price drop due to more ambitious development than planned originally of renewable energy policy. The problem with creating such a model is the uncertainty of the effects of the investment in SRES, since the counter-factual scenarios also need to take investments in other generation capacity into account that would have taken place without the deviation in SRES from the announced goals.

Another approach would be to base the cap reduction on displaced emissions, either using the marginal emission rate of the power system, or the average emission rate. This however, presents the regulator with the same conundrum as in the previous approach; the regulator would need to build counter-factual scenarios of which emissions would have taken place in absence of subsidised RES-E. Simply using average observed emissions of previous years, as briefly suggested by Del Río \([12]\), can lead to a less effective policy, since these are downward affected by the cap reduction policy (given that there is excess SRES), and in turn affect the policy itself. This would make the policy less effective for high shares of renewables\(^6\).

A simpler, more pragmatic approach is to reduce the cap proportional with the volume of additional SRES in the generation mix. This raises the question to which baseline the additional SRES is compared to. One could set the excess SRES in relation to only thermal, or even only fossil generation and lower the cap. However, again the regulator would be forced to build counter-factual scenarios of how private investment had evolved in absence of the additional subsidised renewables.

The remaining approach is to set the volume of additional SRES in proportion to directly observable quantities of production: the entire generation mix, or only the non-subsidised part of the generation mix. In case of the proportional reduction with regard to the total electricity production, the CO\(_2\) cap in \(t\) is reduced proportionally to the excess SRES of the previous year \((G_{SRES,t-1} - G_{SRES,Announced,t-1})\) over the total electricity production of the previous year \((G_{t-1})\). This is termed in this paper as total electricity production-based adjustment or short TBA.

\[
C_{CO_2,t,TBA} = (1 - \frac{\max(G_{SRES,t-1} - G_{SRES,Announced,t-1},0)}{G_{t-1}}) \cdot C_{CO_2,t,original} \tag{1}
\]

In case the reduction is only proportional to the non-subsidised electricity production, the CO\(_2\) in \(t\) is reduced in proportion to the excess SRES of the previous year \((G_{SRES,t-1} - G_{SRES,Announced,t-1})\) over the originally planned electricity production of all non-subsidised generators (termed from now on relative electricity production based adjustment, RBA). This is equal to reducing the cap proportionally to the amount of non-subsidised electricity that has

\(^5\)Since the policy is currently not implemented, it is open who would have that regulatory power. The European Commission would be a logical option.

\(^6\)We confirmed this effect in simulations, but decided to exclude it from the paper for conciseness.
been displaced by SRES. The cap reduction is thus stronger than in the RBA case.

\[C_{CO_2,RBA} = (1 - \frac{\max(G_{SRES,t-1} - G_{SRES,Announced,t-1},0)}{G_{t-1} - G_{SRES,Announced,t-1}}) \cdot C_{CO_2,original} \]

(2)

While we limit our analysis to the power sector, the two approaches can be extended to the entire ETS by considering all SRES generation (including non electric sources) in comparison to all energy consumption that is covered by the EU ETS. As an overview the discussed design options, their characteristics and whether they are simulated in this work are given in Table 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>Strength of cap reduction</th>
<th>Preciseness</th>
<th>Method</th>
<th>Complexity</th>
<th>Simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect model</td>
<td>Medium</td>
<td>High</td>
<td>Counter-factual scenario</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>Displaced emissions</td>
<td>Medium</td>
<td>Medium-High</td>
<td>Counter-factual scenario</td>
<td>High</td>
<td>No</td>
</tr>
<tr>
<td>TBA</td>
<td>Weaker</td>
<td>Medium-Low</td>
<td>Heuristic</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>RBA</td>
<td>Stronger</td>
<td>Medium-Low</td>
<td>Heuristic</td>
<td>Low</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of design options.

1.4. Choice of modelling methodology

The long-term development of electricity markets and carbon markets is characterised by several features which make modelling them a challenge: the decisions of actors are non-linear, as is the formation of prices (due to the non-continuous merit order). Power plants are discrete, very long-lived objects with different technological characteristics and long building times. In competitive electricity markets, operation of and investment in electricity production are in the hands of several private parties. As Olsina et al. [30] noted, the electricity market can therefore not be assumed to be on a cost-optimal trajectory and is prone to business cycles. Thus path dependence is a challenge. Furthermore, power companies do not have perfect foresight, they are limited in their forecasting capabilities by the long-term complexities of fuel and technology markets and by their processing power, causing them to have bounded rationality [31].

Agent-based models (ABM) are well suited to match these challenging characteristics. In an ABM, the behaviour of a system is modelled by introducing autonomous decision making entities (the agents), who assess situations and make decisions based on rules [32]. Their behaviour is encapsulated in algorithms and then executed by computers. ABM is especially suited when behaviour is non-linear, discrete, involves if-then rules and when behaviour is boundedly rational and heterogeneous [33]. It is thus well equipped to model non-equilibrium economics and path dependencies [34], as we find in long-term power markets. As a result, ABMs have become more popular in modelling long-term dynamics in the power sector, such as interactions with CO$_2$ markets [35, 36], renewable policies [37, 13], generation adequacy [38] and market concentration [39].

To analyse the question of CO$_2$ cap adjustment, we decided to extend the agent-based model EMLab-Generation, which was previously used for analysing national and international price caps [22]. Besides the general advantages of an ABM for modelling electricity markets, CO$_2$ cap adjustment policy is best modelled in a dynamic setting in order to
capture the delay caused by the rule-based mechanism. Additionally, myopia of market participants\(^7\) may exacerbate the price effect of additional investment in SRES on the EU ETS. This myopia is captured in the agent-based model EMLab-Generation.

2. Model description and assumptions

In this section, we summarise the model description of the agent-based simulation model that we use and introduce in more detail the changes introduced to the model. The full model description was published by Richstein et al. [22] and de Vries et al. [40], who provided more extensive and formal specifications of the model. Except for the differences that we will mention here, the model and scenario inputs are identical. Sections 2.2 and 2.3 describe the extensions to the model that were made for this paper.

2.1. General model structure & agents

EMLab-Generation is an agent-based simulation of two interconnected electricity market and a common CO\(_2\) market, which is published as open-source\(^8\). The modelled interconnected prize zones are Central Western Europe (CWE, consisting of Belgium, France, Germany, Luxembourg and The Netherlands) and Great Britain (GB). The EU ETS is scaled down to the electricity markets of CWE and GB. Market clearing is done via market coupling. The generation capacity evolves endogenously by investment of energy producers in discretely modelled power plants of different generation types\(^9\). The model has time steps of one year length, and the electricity load is approximated via a load duration curve with different segments (load levels), based on ENTSOE data from 2010.

The main agents of the model are energy producers. They submit bids to the electricity markets (based on the fuel mix, efficiency of the power plant and a 10\% general mark-up for market power), pay for maintenance and their loans, determine the fuel mix of power plants and dispatch them. Most importantly they invest in new generation capacity, based on bottom up forecasts of the net present value (NPV) for a reference year (6-8 years ahead) and the different generation technologies. These forecasts are based on regression analysis of input variables to the merit order forecast, such as of fuel prices, electricity demand trends and the long-term CO\(_2\) price. The agents are thus not omniscient, which is an important characteristic for modelling long-term dynamics (cf. Section 1.4). Investment occurs in several rounds, where investment actions of the agents are reflected in subsequent profitability calculations of other agents. When no energy producer is willing to invest any more the investment rounds are stopped.

The other important agent of the model is the ElectricitySpotMarket agent which clears the joint electricity and carbon market, including modelling the joint banking behaviour of the energy producers\(^10\). It does so by clearing

\(^{7}\)Caused by their limited foresight, but also by their limited ability to bank CO\(_2\) permits above their hedging needs due to risk management procedures.

\(^{8}\)The model and input data used for this paper can be found at: https://github.com/EMLab/emlab-generation/tree/paper/resCapAdaption

\(^{9}\)Technologies are based on the World Energy Outlook 2011 New Policies Scenario [41] and additional assumptions [22].

\(^{10}\)This is a departure from pure ABM modelling; however, the focus of this models lies in the long-run not the short-term
the two electricity spot markets via market coupling: first the market is cleared for all segments of the load duration curve under no transmission constraints (operational are not considered). If the existing interconnected capacity is not exceeded the market is considered as cleared (done individually for the different segments). Otherwise the markets are cleared separately with the market loads adjusted by the interconnector capacity. This clearing of the electricity markets is nested in an iterative price search for an EUA price which clears the CO₂ market. The clearing condition for the CO₂ market is encapsulated in the following condition:

\[C_{CO₂,t} + C_{CO₂,t+3} + \Delta T_B/r = E_t(p_t, CO₂) + \hat{E}_{t+3}(p_t, CO₂ \times (1 + i_B)^3) \]

(3)

It states that emissions of the current year (\(E_t \), dependent on the EUA price \(p_t, CO₂ \)) and the expected emissions in three years time (\(\hat{E}_{t+3}(p_t, CO₂ \times (1 + i_B)^3) \)) are equal to the current emission cap \(C_{CO₂,t} \), the emission cap in three years time \(C_{CO₂,t+3} \) and the delta from the banking target of energy producers divided by a target banking speed factor \(r \) of three years. The banking target of producers is set by 80% of expected emissions in the one year time, 50% of expected emissions in two years time and 20% in three years time and based on empirical data of energy producers hedging behaviour [42, 43]. The condition ensures that on the one hand producers bank according to their hedging needs, yet some inter-temporal optimisation takes place.

The other agents in the model are mostly implementations of exogenous variables and policy actions (CommoditySupplier, EnergyConsumer), or are agents which are used for the accounting of the energy producers’ costs (PowerPlantManufacturer, PowerPlantMaintainer, BigBank). Fuel prices are based on triangular distributions for lignite, biomass and uranium [22]. Hard coal and gas prices are correlated stochastic Ornstein-Uhlenbeck processes [22], based on data from UK Department of Energy and Climate Change [44].

2.2. Modelling the adjustment of the cap based on renewable policy

As discussed in Section 1.3, we implemented two different rule-based cap adjustment mechanisms based on the volume of subsidised renewable energy production that exceeds the policy targets. In the first, the SRES excess is set in proportion to the total electricity production (TBA). In the second, it is only set in proportion to unsubsidised electricity production only (RBA). We assume that implementation is based on observed data, which is available with a delay. Therefore, indicators of the previous year’s data (electricity production, emissions and SRES) are used to calculate the current year’s cap reduction. If the regulator would wish to adjust the cap in real time, he would need to rely on forecasts and estimations.

The adjustment of the cap needs to be implemented in two parts of the electricity & carbon market clearing. Firstly in the current cap \(C_{CO₂,t,TBA} \) or \(C_{CO₂,t,RBA} \), which replaces \(C_{CO₂,t} \) in Equation (3). This is a certain adjustment, because it occurs in the current year. Secondly, in the future the expected cap \(\hat{C}_{CO₂,t+3,RBA} \) or \(\hat{C}_{CO₂,t+3,TBA} \), depending on the, replaces \(C_{CO₂,t+3} \) in Equation (3). The expected cap adjustments needs to be estimated from expected generation of renewables. The formulas that are used to implement the TBA and RBA policy options in the current market are
introduced in Section 1.3, by Equations (1) and (2). The expected cap in \(t + 3 \) is calculated with the same equations but with forecasts\(^{11}\):

\[
\hat{C}_{CO_2,t+3,TBA} = (1 - \frac{\max(G_{RES,t+2} - G_{RES,Announced,t+2},0)}{\hat{G}_{t+2}}) \cdot C_{CO_2,t+3,original}
\]

(4)

\[
\hat{C}_{CO_2,t+3,RBA} = (1 - \frac{\max(G_{RES,t+2} - G_{RES,Announced,t+2},0)}{\hat{G}_{t+2} - G_{RES,Announced,t+2}}) \cdot C_{CO_2,t+3,original}
\]

(5)

Since the renewable and overall generation in \(t+2 \) needs to be estimated, the values for \(\hat{G}_{t+2}, \hat{G}_{t+2} \) and \(G_{RES,Announced,t+2} \) are linearly interpolated between the generation results current market clearing (in time step \(t \)) and the future generation results of the market clearing in time step \(t+3 \) (which is a direct result of the market clearing algorithm). Since the RES investment targets are given in the model as absolute capacity, not as relative production targets, \(G_{RES,Announced,t+2} \) need to be calculated as a counter-factual scenario. This is done by scaling the production according to the ratio of the planned capacity to the actual installed capacity.

2.3. Investment in RES

In order to represent renewable policy in the model, an investor with exogenous renewable investment time series is implemented in the model. In deviation from [22], renewable energy policy is also a stochastic parameter in this paper. The national governments in the simulation have announced renewable policy targets in terms of absolute capacity targets, however actual renewable investment by governments may deviate from it. This is done in order to depict the uncertainty that private market parties face when it comes to renewable policy. The implementation takes the yearly installation target and multiplies it with a stochastic realisation drawn from a normal distribution (separately for each year, so over time governments achieve there targets on average). In the case of this paper the normal distribution has a standard deviation of 0.5 and the expected mean corresponds to the renewable policy scenario\(^{12}\). Thus while large stochastic deviations from government targets may occur in single years, over several years they average out. The mean shares of the different renewable scenarios are given in Figure 2.

3. Model results and discussion

We combine the discussion and analysis of our results in one section. We begin with the description of the scenarios used in our analysis. Next, we present our model results regarding the effects of the different CO\(_2\) cap adjustments on CO\(_2\) prices and emissions in Section 3.2. All statistical evaluations and graphs were made in GNU R [45].

\(^{11}\)Denoted by a hat above the forecasted variables

\(^{12}\)That is, for a case in which the government just reaches its policy targets, the mean of the distribution is 1. In a scenarios where the government over-achieves its targets by 50% the distribution mean is 1.5.
3.1. Scenarios

We investigate three CO\(_2\) policy scenarios: the original EU ETS (“PureETS”, following the EU ETS cap reduction scaled to CWE and the UK, but without the backloading measure), the adaption of the emission cap based on the total electricity production as a baseline (“TBA”) and the emission cap adaption based only on the non-subsidised part of the electricity generation as a baseline (“RBA”). We also vary the overshoot of renewable installations in excess of the announced governmental targets. We include five different scenarios: a scenario without overshoot (0POvershoot), with 50%, 100% and 150% of excess installed capacity as compared to the original target (50POvershoot, 100POvershoot and 150POvershoot), and finally a scenario in which an investment surge takes place over a period of 4 years, in which 400% excess capacity of the yearly targets is installed in the years 2030 to 2033. The reason for investigating an investment surge is to investigate the sensitivity of the carbon price to such an event. The years 2030-2033 have been chosen because they represent a relatively stable price period in the PureETS case. The average share of subsidised renewable generation is shown in Figure 2. Please note that we took a rather conservative relative share of renewable energy policy as a base case. This was to better illustrate the effects of a cap reduction in response to an overshoot of renewable energy targets.

Since we want our results to be robust against different fuels, demand and renewable capacity variations, we conduct a Monte-Carlo simulation of the policy scenarios. For each combination of the CO\(_2\) and renewable deployment scenarios, we run the simulation with 120 stochastically generated time series of fuel price development, electricity demand growth and the exact capacity of yearly installed renewable generation capacity. The 120 time series are, as a group, identical in the different policy scenarios. This assures that there are no random variations in the results due to fuel and demand development and enables us to make pairwise comparisons of the policy scenarios with exactly the same time series.

3.2. Results and analysis

The main focus of the results section is on the differences in EUA price development between the different scenarios (Section 3.3) and on the effect of the policy on CO\(_2\) emissions (Section 3.4).
3.3. EUA prices

In order to show the price differences between the PureETS-0POvershoot scenario (i.e. no modification of the ETS and the governments are on average meeting their announced renewable targets) and the other scenarios, we make a pairwise comparison of EUA prices in the corresponding Monte-Carlo runs in each scenario. The prices in the PureETS-0POvershoot scenario are depicted in Figure 3. Figure 4 shows the price differences; the rows show the different CO₂ policies, and the columns the subsidised renewable deployment scenarios. The black line is the median of the price difference, the darker shaded area corresponds to a 50% envelope, and the lighter area to a 90% envelope.

As can be seen in the first row, which depicts the PureETS case under different renewable deployment scenarios, the stronger the renewable deployment, the stronger the carbon price drop, as compared to the planned SRES development. While the impact on the carbon price is nominally lower in the initial years (2011 to 2020) in the 100POvershoot and 150POvershoot scenarios, it should be noted that this still is caused by a complete collapse of the EUA price during several years. The original prices in the 0POvershoot scenario (Figure 3) are very low, so a price reduction of around 20 EUR/ton corresponds to a total price collapse in those years. In the rightmost subgraph, the price drop during the investment surge can also clearly be seen. This lasts longer than the underlying investment surge, which ends in 2033, because of course the additional SRES stays in the market for several more years and the market only slowly adjusts to the sudden EUA price drop.

Comparing the cap adjustment scenarios in the lower two rows to the PureETS scenario, it can be seen that in both cap adjustment scenarios the median line and the envelope of the price difference are significantly closer to the

13 This means that for each pairwise comparison, the fossil fuel price development, the exact renewable deployment and the demand growth are identical.
Strong median EUA price drops as compared to 0POvershoot scenario.

Median EUA price drops partly compensated as compared to the overshoot scenario.

Median EUA price drops nearly fully compensated as compared to the overshoot scenarios.

Figure 4: EUA price differences relative to the PureETS-0POvershoot scenario.

zero line. This means the price drop that is induced by excess SRES is mitigated in the mean case of all renewable deployment scenarios. However, the range of uncertainty is relatively large, with both far higher and lower prices occurring than in the corresponding PureETS-0POvershoot scenario. In most cases of the TBA scenario, the price deviation is still negative, which means that despite the cap adjustment the prices are still lower than without the
SRES overshoot. Only in a few outlier cases, in a limited number of years, does the cap adjustment overcompensate the effect of the excess renewable deployment. In the RBA scenario, the price adjustment is stronger. While in most years the median line is slightly below zero, in the last years of the simulation the price is over compensated. The stronger price compensation is no surprise. Per definition, the volume of non-subsidised generation is smaller than total generation in a given year. Thus the denominator in the RBA equation (Equation (2)) is smaller than in the RBA equation ((Equation (1)), resulting in a stronger cap adjustment. Table 2 shows the average price difference between the PureETS-0POvershoot scenario over the entire simulation horizon. The price differences in the table between three CO$_2$ policy scenarios are significant over all renewable scenarios with overshoots, except for the InvestmentSurge400P4Years renewable scenario, in which RBA and TBA are not significantly different from each other (cf. Appendix A).

<table>
<thead>
<tr>
<th>CO2Scenario</th>
<th>50POvershoot</th>
<th>100POvershoot</th>
<th>150POvershoot</th>
<th>InvestmentSurge400P4Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>PureETS</td>
<td>-7.37</td>
<td>-14.84</td>
<td>-22.81</td>
<td>-5.61</td>
</tr>
<tr>
<td>TBA</td>
<td>-3.21</td>
<td>-6.60</td>
<td>-9.75</td>
<td>-1.71</td>
</tr>
<tr>
<td>RBA</td>
<td>-1.05</td>
<td>-1.63</td>
<td>-1.66</td>
<td>-0.88</td>
</tr>
</tbody>
</table>

Table 2: EUA price difference as compared to the PureETS-0POvershoot scenario.

Regarding the level and volatility of EUA prices, no general conclusion can be drawn. Since the policy acts to restore the CO$_2$ price levels without an overshoot of renewable energy targets, the outcome in terms of price level and volatility depends on the counter-factual scenario that is being restored. In case of acceptable price levels and volatility, or in the case of relatively low prices, the cap reduction would serve to stabilise prices by restoring an acceptable price environment. On the other hand, if the original cap is set ambitiously, leading to potential price shocks, exceeding the renewable policy target could dampen price extremes and the cap reduction could restore a volatile environment.

In Section 1.2 we hypothesised that with a higher CO$_2$ price induced by a cap adjustment policy, the renewable revenues from the spot market would increase, and thus the expenditure of governments and/or consumers to subsidise them would decrease (via market premiums or quota systems). While this effect is visible in the model, it is relatively small. The largest difference in the market value of renewables (the revenue that they earn per MWh) under the TBA policy, as compared to the PureETS-0POvershoot scenario, occurs on average in the years 2024 to 2026, in the 150POvershoot scenario, and ranges between 11.40 and 13.79 EUR/MWh at an average EUA price difference of 26 to 28 EUR/ton. In the RBA-150POvershoot scenario, the market value difference with the PureETS scenario ranges between 15.61 €/MWh and 20.20 €/MWh during the same years. In most other years and policy scenarios, the difference is small (less than 6 EUR/MWh). While the CO$_2$ price difference is similarly high in the years 2045 between the PureETS and RBA case in the 150POvershoot scenario of the simulation, the mean difference in market value is still only 4.41 EUR/MWh in the RBA-150POvershoot scenario. The relatively small difference in market value can be explained from the way in which the merit order curve changes in comparison to earlier years.

13
power sector is largely decarbonised by the end of the simulation, the marginal prices in the base load and shoulder
load hours are usually not set by CO\textsubscript{2} intensive generation units. Thus the renewables receive relatively little revenue
from high EUA prices as their share increases. It should be noted, though, that due to the simplified modelling of
the short-term market and the absence of storage technologies, the model may represent the effects of high shares of
renewables only in a limited fashion.

3.4. CO\textsubscript{2} emissions

Since the policy under investigation directly affects the emission cap, it is interesting to evaluate how the actual
emissions change under different scenarios with increased production of renewables. Figure 5 shows the probability
density distribution of CO\textsubscript{2} emissions over the entire simulation as compared to the CO\textsubscript{2} emissions allowed under
the original cap14. A high density at 100% on the x axis means that emissions are close to the original cap in a
large percentage of cases. This is for example true for nearly all of the simulations in the PureETS scenarios and the
OPOvershoot scenarios (since in either scenario the cap is not adjusted).15 Our simulations correspond with earlier
theoretical and equilibrium-model based results [1, 2] that renewable policy under an ETS does not lead to additional
emission reductions, but to a shift in the market to more polluting power plants.

As can be seen, both the TBA and RBA reduce the emission cap, rendering additional renewable policy beyond
the original targets climate-effective. In the case of the 150POvershoot scenarios, the cap is reduced by around 20%
over the entire simulation for the TBA adjustment and around 25% for the RBA adjustment. It is clear that the RBA
reduces the cap more because it sets it in relation to only the non-subsidised part of generation. The spread of the
emission distributions increases with the higher overshoot scenarios. The reason for this lies with the stochastic nature
of the SRES target investor agent, which causes small differences in actual installed renewable capacity in the different
scenarios and the ensuing adjustment of the cap.

3.5. Green promotes the dirtiest - cap adaption impedes them

Our simulation confirms the analytic result of Böhringer and Rosendahl [3], that “green promotes the dirtiest” in
a dynamic transition setting. Figure 6 shows the relative share in generation of lignite, the “dirtiest” technology in
our simulation, over the three CO\textsubscript{2} and four renewable scenarios (we exclude the investment surge scenario for an
easier to read figure). As can be seen, in the PureETS case, the larger the overshoot, the larger is the share of lignite
in the overall generation mix; this is part of the reason why the emissions stay unchanged in the PureETS scenario,
regardless of the renewable policy overshoot. This effect is stronger in the medium term, rather than at the end of the
simulation. The two cap adaption policies undo this effect in the medium term and effectively reverse it towards the
end of the simulation when there are high shares of renewable energy.

14It is a Gaussian kernel density estimate, using the R inbuilt function density.
15On average emissions are slightly above 1, since agents start out with banked EUA permits. They reduce thus starting stock over the course of
the simulation, which leads to emissions over the cap.
Figure 5: Total CO$_2$ emissions in different Monte-carlo scenarios (Probability density function).

Figure 6: Relative generation of lignite in CO$_2$ and renewable policy scenarios.
4. Conclusions and policy implications

We discuss possible options for dynamically adjusting the CO$_2$ emission cap in response to overshoots in subsidised renewable electricity generation as compared to the policy targets for renewable energy. The goals of such a CO$_2$ cap adjustment policy would be to reduce the impact of the renewable energy policy on the CO$_2$ price and to make public subsidies in renewable energy climate-effective.

While the concept is fairly straightforward, devising a cap reduction policy that removes the impact of renewable policy on CO$_2$ prices is not a simple task for a regulator because he would need perfect knowledge to create counterfactual scenarios in order to correctly adjust the cap. We propose two ways to adjust the CO$_2$ cap to unexpectedly high investment in renewable energy generation. They reduce the cap in proportion to the volume of subsidised renewable electricity generation that exceeds ex-ante government targets, as compared to either total generation (termed TBA), or as compared to the originally planned electricity production of all non-subsidised generators (termed RBA). We use the agent-based model EMLab-Generation, which simulates the investment in two electricity markets (based on Central-Western Europe and Great Britain) to investigate the possible effects of such a policy implementation.

We find that both policy implementations perform reasonably well within the simulation with regard to the aforementioned goals: on average, they restore price levels to close to what they would have been without an overshoot of renewable policy versus originally planned targets; however, in individual cases the policies may over or under compensate significantly. TBA is the weaker instrument and tends to not fully restore prices. RBA leads to prices closer to the counter-factual scenario; however, it sometimes leads to higher CO$_2$ prices. Both policies reduce the cap and the emissions in the simulation, and thus render public investment above governments minimum targets climate-effective. The policies also undo the “green promotes the dirtiest” effect [3], so that an overshoot in renewable energy results in less electricity generation by the most emission-intensive power plants.

It should be noted that neither method of CO$_2$ cap adjustment is suitable for achieving specific CO$_2$ price goals or volatility goals because they merely restore a counterfactual CO$_2$ price that would have existed without the renewable energy policy overshoot, which may be relatively high or low, volatile or not. To achieve these aims, price floors and price caps [22, 21] or an independent authority adjusting the cap [23] would be better suited.

As the cap adjustment policies lead to higher CO$_2$ prices, they should lower the need for financial support for renewable generation. However, this effect appears to be small and declines over time as the power plant stock is decarbonised and carbon-intensive power plants set the marginal price less frequently.

Implementation of the proposed options is not straightforward: because the cap adjustment is a function of renewable policy targets, subsequent adjustment of these targets would change the response strength of the policy. This raises the question of how long in advance formal policy targets should be formulated and how to treat changes to policy targets in the future.
Acknowledgements

Jörn C. Richstein has been awarded an Erasmus Mundus Joint Doctorate Fellowship in Sustainable Energy Technologies and Strategies (SETS) hosted by the Universidad Pontificia Comillas, Spain; the Royal Institute of Technology, Sweden; and Delft University of Technology, The Netherlands. The authors would like to express their gratitude towards all partner institutions within the programme as well as the European Commission for their support. This work was further supported by the Energy Delta Gas Research program, project A1 – Understanding gas sector intra-market and inter-market interactions and by the Knowledge for Climate program, project INCAH – Infrastructure Climate Adaptation in Hotspots. The authors would also like to thank the two anonymous reviewers for their valuable comments and suggestions.
We performed pairwise Wilcoxon tests for the mean difference of EUA prices between CO2 policy scenarios for a given renewable scenario. For a significance level of 5% all the policy scenarios are statistically different from each other, except the RBA and TBA scenario in the InvestmentSurge400P4Years renewable scenario.

<table>
<thead>
<tr>
<th>Renewable Scenario</th>
<th>PureETS</th>
<th>TBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>50POvershoot</td>
<td>TBA 3.26e-06</td>
<td>RBA 8.20e-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.40e-02</td>
</tr>
<tr>
<td>100POvershoot</td>
<td>TBA 2.80e-12</td>
<td>RBA 1.27e-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.61e-08</td>
</tr>
<tr>
<td>150POvershoot</td>
<td>TBA 4.81e-20</td>
<td>RBA 9.64e-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.44e-10</td>
</tr>
<tr>
<td>InvestmentSurge400P4Years</td>
<td>TBA 5.04e-08</td>
<td>RBA 1.81e-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.76e-01</td>
</tr>
</tbody>
</table>

Table A.3: EUA mean price Wilcoxon test
References

URL: http://www.R-project.org/.