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Abstract

This paper describes a method for studying idioms-basedeimp
mentations of crosscutting concerns, and our experiendsitw
in the context of a real-world, large-scale embedded soéwgs-
tem. In particular, we analyse a seemingly simple conceanirtg,
and show that it exhibits significant variability, despite tuse of
a prescribed idiom. We discuss the consequences of thibiféyi
in terms of how aspect-oriented software development igaes
could help prevent it, how it paralyses (automated) migragf-
forts, and which aspect language features are requireddier ¢o
obtain precise and concise aspects. Additionally, we etdbmon
the representativeness of our results and on the usefubfiess
proposed method.

Categories and Subject Descriptors  D.2.7 [Distribution, Mainte-
nance, and Enhancemént

General Terms Restructuring, reverse engineering, and reengi-
neering

Keywords Aspect-oriented programming, variability, idioms, cross
cutting concerns, formal concept analysis

1. Introduction

The lack of certain languages features, such as aspectsepton
handling, can cause developers to resort to the use of ididors
implementing crosscutting concerns. Idioms (informatigscribe
an implementation of required functionality, and can ofterfound
in manuals, or reference code bodies. A well-known exangled
return-code idiomwe have studied in a realistic setting in [5]. It

* This work was carried out during the tenure of an ERCIM feBbip.

1Also affiliated with CWI, P.O. Box 94079, 1090 GB AmsterdanheT
Netherlands

2Synonyms are code templates, coding conventions, patems

[Copyright notice will appear here once 'preprint’ opti@removed.]
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is used in languages such as C to implement exception hgndlin
It advocates the use of error codes that are returned byidmsct
when something irregular happens and caught wheneveridasct
are invoked. Idioms are also used purposefully as a mearesajid
reuse, for instance in the case of (design) patterns [7, 10].

Using idioms can result in various forms of code duplicaf@jn
Despite this duplication, idioms-based implementatiorss @ot
guaranteed to be consistent across the software, howexared
factors may give rise to variability in the use of the idionong
variability, which is essential, occurs if there is a defdte devi-
ation from the idiom, for example in order to deal with specifi
needs of a subsystem, or to deal with special cases not &rese
in the idiom description. In addition to this, variabilityiloccur
accidentally due to the lack of automated enforcement (densp
checking tools), programmer preference or skill, changewyiire-
ments and idiom descriptions, and implementation errors.

In this paper, we are interested in the answer to the follgwin
question:

Is the idioms-based implementation of a crosscutting con-
cern sufficiently systematic such that it is suitable for an
aspect-oriented solution (with appropriate pointcuts and
advice)?

While answering this question is an endeavour too ambitfous

this paper, we do take an important step towards an answer by
addressing the following sub questions: First, can we aeallie
variability of the idioms-based implementation of a cragtng
concern? And secondly, can we determine the aspect language
abstractions required for designing aspects that sugoaxipress

the common part and the variability of a crosscutting comeer

We have encountered a number of examples of idiomatically
implemented crosscutting concerns [6, 4, 5]. Several moee a
mentioned in the literature [9, 8]. The questions we askispbper
need to be answered in order to start migrating these critsgru
concerns to aspect-oriented solutions.

We present a generally-applicable method for analysing the
occurrence of variability in the idioms-based implemeotatof
crosscutting concerns, that will help us answer these ipusst
We show the results of applying this method in order to amalys
the tracing idiom in four selected components (ranging from 5
to 31 KLOC) of a 15 million line C software system that is fully
operational and under constant maintenance. Tracing i®btie
ubiquitous examples from aspect-oriented software devedmt
(AOSD), and although it is a relatively simple idiom, we shitat
it exhibits significant and unexpected variability.
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We also discuss the implications of this variability. Weush
trate the limitations of idioms-based implementations asduch
provide a solid motivation, based on our experiences witirgel
legacy system, for using aspect technology as a means tiiskca
implementations and avoid accidental variability. Thiswd inter-
est the AOSD community as a whole. We also discuss how vériabi
ity complicates and even paralyses efforts to migrate kegade
towards modern languages. Researchers investigating(auti+

SE

actually occur in the source code. We only need to know where w
can expect variabilities, given the definition of the ididfor exam-
ple, variability in the tracing idiom under investigatioarcoccur in
the specific macro that is used to invoke the tracing funetign In
practice, it might turn out that the same macro is used ctargly
throughout the source code, or it might not.

Additionally, it is preferable to model different levels éri-
ability separately in order to understand them fully, antssu

mated) migration of code can study our results and use them toquently to consider combinations. For example, in the tigad-

improve their methods and techniques, such that they cdmitba
the significant variability we observed. Additionally, thesults of
our method’s variability analysis can be used directly ttedwaine
the required aspect language features, capable of expgebs! id-
ioms with their essential variability. We discuss two suahguage
requirements for the tracing idiom under investigation.

The structure of the paper is as follows. The next sectiogflgri
presents our method for analysing variability by descgb&ach
individual step. Sections 3-7 then describe how we applath e
step on the selected components of our subject system in frde
analyse the tracing idiom’s variability. Section 8 thengengts a
discussion of the repercussions of these results and anatical
of our method. Section 9 discusses related work and Secfion 1
presents our conclusions.

2. A Method for Analysing Idiom Variability

This section proposes the general approach we use to aegieep
understanding of the variability in the idioms-based impdata-
tion of a crosscutting concern, and explains how to use thileu
standing in subsequent aspect specification and desigeghas

2.1

The aim of this step is to provide a definition that is as cleat a
unambiguous as possible for the idiom that we want to studg. T
input for this (manual) step is typically found in the docurtze
tion accompanying the software, by means of code inspex;timm

by discussions with developers. In this respect, this stegety re-
sembles theskim the Documentation, Read all the Code in One
Hour andChat with the Maintainerpatterns discussed in tiérst
Contactcluster of [11].

While this step may seem simple, in our experience idiom de-
scriptions in coding standard manuals often leave roomrfiari
pretation. When presenting our results, it happened maredhce
that developers started a heated debate on whether a fmartise
of the idiom was valid or not.

Idiom Definition

2.2 Idiom Extraction

In this step, the code implementing the idiom is automdgicat-
tracted from the source code. This requires that the idiode ¢s
recognised, and hence the output of the previous step isassied
put for this step. The result of this step is similar to a s[ige],
albeit that the extracted code does not necessarily neee ¢ad>
cutable. Nevertheless, the extracted code can be compiteareal-
ysed by standard tools, and it is much smaller than the aiigin
code, allowing us to scale up to large systems.

Naturally, the complexity of this step is strongly depertdem
the idiom: idioms that are relatively independent of theecadr-
rounding them are easy to extract using simple program foans
mations, whereas idioms that are highly tangled with therotbde
require much more work.

2.3 Variability Modelling

In this step, we describe which properties of the idiom cay sad
indicate which variability we will target in our analysi$is$ impor-
tant to note that we do not require a description of varitiedithat

iom there is the aforementioned variability in the way thecing
functionality is invoked, but also variability in the wayetfiunction
parameters are converted to strings before being traced.

Finally, we do not require all possible variability to be nedidd.
As we discuss later, we only study part of the variability loé t
tracing idiom, while other parts are not considered. Thisas
problem if this is taken into account when discussing theltes
of the analysis. In other words, these results can be seelvaga
bound of the amount of variability that occurs.

2.4 Variability Analysis

This step forms the core of our method, as it analyses thehii
ties actually present in the source code. This is achievediigg
the extracted idiom code, and analysing it considering il
ities that were modelled in the previous step. We are pdatilyu
interested in finding out how properties that can vary arecally
related. For example, is it the case that tracing maeris always
invoked with either parametes or ¢z, but never withes? Answer-
ing such questions can help us in designing the simplestasp
captures all combinations as occurring in practice.

To analyse such relations between variable properties we us
formal concept analysis (FCA) [16]. FCA is a mathematicahte
nigue for analysing data which takes as input a so-caltedext
This context is basically a matrix containing a sebbfectsand a
set ofattributesbelonging to these objects. The context specifies
a binary relation that signals whether or not a particul&itatte
belongs to a particular object. Based on this relation,e¢bbrique
finds maximal groups of objects and attributes — calledacept
— such that

¢ each object of the concept shares the attributes of the pnce

e every attribute of the concept holds for all of the concept's
objects;

¢ no other object outside the concept has those same atsjbute
nor does any attribute outside the concept hold for all dbjiec
the concept.

Intuitively, a concept corresponds to a maximal “rectahgie
the context, after permutation of the relevant rows androaki

The resulting concepts form a lattice and therefore we can
use relations between concepts, as well as characterddtittse
concepts themselves, to get statistics and interpret thdtse

2.5 Aspect Design

If we assume that accidental variability in the implemeaotabf an
idiom is ultimately removed, the next step is to design atspat
replace the idiom implementation, taking into account gseatial
variability. However, aspect design is constrained by theiae
of the target aspect-oriented programming language. lidéad
selected language should provide abstractions for reptiegethe
idiom’s common pattern and its variations, as defined in.[1/5]
not, the common pattern has to be repeated for each variation
which results in code duplicatiom the aspect Evidently, this
partly undermines the expected usefulness of the aspiectted
solution.

2007/2/16
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int f(chuck_id# a, scan_component b) {
int result = 0K;
char*x func_name = "f";

trace(CC, TRACE_INT, func_name, "> (b

"< (a

trace(CC, TRACE_INT, func_name, hs)

return result;

hs)",
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SCAN_COMPONENT2STR (b)) ;

%d", CHUCK_ID_ENUM2STR (a), result);

Figure 1. Code fragment illustrating the tracing idiom at ASML.

In this step, we determine the required abstractions incaspe
languages, which can be nearly directly distilled from #suits of
the variability analysis in the previous step. We discuss swch
requirements for the tracing idiom under investigatiordain in
the paper.

3. Defining the Tracing Idiom

The idiom we study in the paper is the tracing idiom, as adbpte
ASML. ASML is the world market leader in lithography systems
and their software controls wafer scanner machines usedtipe
computer chips. It consists of 15 million lines of code, sprever
approximately 200 components, implemented almost epiinghe

C programming language.

As we have discussed in previous papers [4, 5, 6], the saftwar
implements a number of crosscutting concerns, such asraci
parameter checking, memory handling and exception handlin
ASML uses idioms to implement these concerns, and in thisipap
we study one such idiom, tracing, and consider its impleatent
in 4 different components.

Tracing is a seemingly simple idiom, used at developmené-ti
to facilitate debugging or any other kind of analysis. Theeba
code is augmented with tracing code that logs interestirgtsv
(such as function calls), such that a log file is generatedrdaime.
The simplicity of the idiom is reflected in its simple defioiti
“Each function should trace the values of its input paramsete
before executing its body, and should trace the values ofuitgut
parameters before returning”

The ASML documentation describes the basic implementation
version of the idiom, which looks as in Figure 1. Theace
function is used to implement tracing and is a variable-argyot
function. The first four arguments are mandatory, and spebié
following information:

1. the component in which the function is defined;
2. whether the tracing is internal or external to that congmdn
3. the function for which the parameters are being traced;

4. aprintf-like format string that specifies the format in which
parameters should be traced.

The way in which each of these four parameters should be
passed on to therace function is described by the standard, but
not enforced. For example, some components follow the atand
and use thecC constant, which always holds the component’s
name, to specify the name, while others actually hardccgledime
with a string representing the name (as"tc3"). Similarly, the
func_name variable should be used to specify the name of the
function whose parameters are being traced. Shwe _name is
a local variable, however, different functions might ustedent
names for that variablef (name, for instance). The structure of

TUD-SERG-2007-001

the format string is also not fixed, and developers are thees tio
construct strings as they like.

The optional arguments farrace are the input or output pa-
rameters that need to be traced. If these parameters areoofi-a ¢
plex type (as opposed to a basic type like: or char), they need
to be converted to a string representation first. Often, acdest
function or macro is defined exactly for this purpose. In Fégl,
SCAN_COMPONENT2STR andCHUCK_ID_ENUM2STR are two such ex-
amples. Developers can choose to trace individual fieldsroéts
instead of using a converter function, however.

Although the idiom described above is the standard idiommeso
development teams define special-purpose tracing ma@as's,
wrap around the basic idiom. These macro’s try to avoid code
duplication by filling in the parameters tarace in the standard
way beforehand. Typically, tracing implementations by neeaf
such macro’s thus require fewer parameters, although soest
extra parameters are added as well, for example to includiegtime
of the file where tracing is happening.

It should be clear from this presentation that the tracirgnid
precisely prescribes what information should be tracetitHai the
way in which this information is provided is not specified.ride,
we can expect a lot of variability, as we will discuss in Sectb.

4. Extracting the Tracing Idiom

Extraction of the tracing idiom out of the source code is exhd

by using a combination of a code analysis tool, called Codegt

and a code transformation tool, called ASF+SDF [2]. The unde
lying idea is that the analysis tool is used to identify albid-
related code in the considered components and that thiemafo
tion is passed on to the transformation tool that extracsdiom
code from the base code. The end result is a combination of the
base code without the idiom-related code, and a repregamiait

the idiom code by itself.

5. Modelling Variability in the Tracing Idiom

Tracing is generally considered as a very simple exampleafss-
cutting concern that can be captured in an aspect easily.ig bon-
firmed by the fact that we can express the requirements fanga
in one single sentence, and hence we could expect an aspeet to
simple as well. However, the tracing idiom we consider hesg-
nificantly more complex than the simple example often meretib
and than the requirement would reveal. Rather, it represegbod
example of what such an at first sight simple idiom looks likexi
real-world setting.

The following characteristics of the tracing idiom distingh it
from a simple logging concern:

3 www.grammatech.com
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CC1 CC2 CC3 CC4 global
LOC 29,339 17,848 31,165 4,98583,337
functions 328 134 174 68| 704
parameter types 108 71 65 49 249
tracing macro’s 1 1 2 1 2
component name 2 3 1 2 6
function names 3 1 1 1 3

Table 1. Basic statistics of the analysed components.

e A simple logging aspect typically weaves in log calls at the
beginning and end of a function, and often only logs the faat t
the function has been entered and has been exited. Thegracin
idiom described above also logs the values of actual pasmet
and the module in which the function is defined. Moreover, it
differentiates between input and output parameters, wiasie
to be traced differently.

e Tracing the values of actual parameters passed to a C fanctio
is a quite complex matter. Basic types suchas or bool can
be printed easily, but more complex types, sucls®sucts
andenums, are a different story. These should be converted to
a string-based representation first, which differs forediht
structs andenums. Moreover, certain fields of a struct may
be relevant in the context of a particular function, but may n
be relevant elsewhere. Hence, the printed value dependson t
context in which the type is used, and not only on the typéfitse

The conversion of complex types to a string representason i
quite different in C than in Java, or any other modern pro-
gramming language. C does not provide a defauBtring
function, as do all Java classes, for example. Consequently
special-purpose converter method for complex types needs t
be provided explicitly. Additionally, since C does not sopp
overloading of function names, each converter functiordaee
to have a unique name.

These issues, together with the way tracing is invoked as ex-

plained in Section 3, show that variability can occur at mdify
ferent levels. In the remainder of this paper, however, wefe4
cus onfunction-levelandparameter-leveVariability. The variabil-
ity present on those levels possibly has the biggest impatche
definition of aspects for the tracing concern.

At the function-level, the variability occurs in the specifvay
the tracing functionality is invoked. This depends on foiffiedent
properties: the name of the tracing function that is usedefam-
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components define 704 functions in total, which in turn defi4@
different parameter typés.

The table also lists the different number of ways in which
tracing is invoked, i.e., the different tracing macros tha used,
as well as the different component names and function nanags t
are specified The numbers clearly show the variability present in
the idiom at the function level, since globally 2 differerading
macro’s, 6 different ways to specify the component name and 3
different ways for specifying the function name are used.

The goal of our analysis is to identify, at the function level
which functions invoke tracing in the same way, and at the pa-
rameter level, which parameter types are converted cemshgt
Analysing this allows us to make headway into answering eyr k
question, since it shows us where the implementation i€Byetic
and what is variable. Since FCA, introduced in Section Z4a-
pable of identifying meaningful groupings of elements, we it in
our variability analysis.

The FCA algorithm needs to be set up before it can be applied,
i.e., we need to define the objects and attributes of the cgniext.
The next subsection explains how this is achieved for oueexp
ment. Subsequent subsections then describe, for funiel@hand
parameter-level variability, the results of running FCAeach of
the components separately, as well as on all componentthtage
This will allow us to discuss the variability within a singtempo-
nent, as well as the between different components.

6.1 Setting up FCA for Analysing Tracing

We first explain how objects and attributes are chosen for our
experiment, and how we run the FCA algorithm. Afterwards, we
explain how we interpret the results.

6.1.1 Objects and Attributes

For studying function-level variability, the objects antfributes
are chosen such that all functions that invoke tracing inste
way are grouped. Hence, the objects we use in the FCA conext a
the names of all functions defined in the components we censid
The attributes are different instantiations of the fourgandies used

to invoke tracing, as discussed in Section 3. A sample coiigex
shown in the upper part of Table 2.

For the analysis at the parameter level, the objects arbtlislig
less obvious to choose. Our goal is to let the FCA algorithaugr
functions that have a parameter of a certain type and cotivatrt
parameter in the same way. The objects thus have to be unique
for a particular function that uses a particular parametee t This
means that functions cannot serve as objects, since theyhavay

pletrace), the way the component name and the function name are different parameters. Similarly, parameter types caneoves as

specified (by usingC andfunc_name, for example), and whether
internal or external tracing is used. More properties aresictered
when a different tracing idiom requires more parameterswhis
called, for example the name of the file in which the tracedfiom
is defined.

At the parameter-level, the variability involves the diffat
ways in which a parameter of a particular kind is traced. As ex
plained in Section 3, a parameter of a complex type can beditag
firstinvoking a converter function that converts the compige to
a string representation, or by tracing the fields of the cemp}pe
individually. In this case, we are interested in verifyingether a
particular type of parameter is traced in a systematic arfdnm
manner across the considered components, and if not, hown muc
variability occurs.

6. Analysing the Tracing Idiom’s Variability

As shown in Table 1, our experiments involve 4 different comp
nents, comprising 83,000 lines of non-white lines of C cddese

objects, since they can be used by many different functidaace,
we form a combination of the parameter type and the functian t
uses it.

The attributes we consider are, on the one hand, the types
used in the considered components, and on the other hand, the
particular converter functions that are used (if any) ordbestant
no_tracing when the parameter is not traced by that particular
function.

A sample of a corresponding context can be found in the
lower part of Table 2. The functions andh both define a for-
mal parameter of type&C_scan_component and both use the
CC_SCAN_COMPONENT2STR converter function. Similarly, the func-

4Note that types may be shared across components, henceaheumber
of types is smaller than the sum of the numbers of types pepoaent.

5Due to space restrictions, we do not provide equivalent rmxmfor the
parameter-level variability. Such numbers would have tcspecified for
each type defined by the four components, and the table waerdeh
contain more then 249 rows.

2007/2/16
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f_name

Figure 2. Function-level variability in the CC1 component

tionsf, g andi define a formal of typ&€C_chuck-id, but only
function£ uses a converter function, the other two functions do not
trace their parameter of that type.

6.1.2 Applying FCA

Once the context is set up, the algorithm can be applied. We us
Lindig’s Concepts tool to compute the actual concepts [Zhe
context is specified in a file in a specific format, which we gate
using ASF+SDF and the extracted tracing representatian filee
tool can output the resulting concepts in a user-defined avad/we
tune the results so that they can be read into a Scheme emérntn
This allows us to reason about the results using Schemesscrip

An alternative is to use the ConExp tbolwhich requires a
slightly different input format, but that can visualise tbencepts
(and the resulting lattice) so that it can be inspected yeaFEiie
graphical representations of lattices in this paper araioétl by
this tool.

6.1.3 Interpreting the Results

From running the FCA algorithm, we obtain a concept lattfet t
shows the different concepts identified and the relationvben
them. An example lattice appears in Figure 2. Each dot indhe |
tice represents a concept, and the lines connecting thereipts
resent concepts that are related because they share chnjeléts
attributes.

While traversing a lattice from top to bottom, following the
edges that connect concepts, attributes are graduallydaddbe

Bruntink, van Deursen, d’Hondt, Tourwé — Simple crosscutting concern sorts are not so simple

functions share the same (complete) set of attributes, asthrer
attribute is shared by these functions. In Figure 2, the eptsowith
own objects are denoted by nodes whose bottom half is caloure
black and whose size is proportional to the number of ownabje
they contain. They also have white labels indicating the loemm
of own objects and the percentage of own objects with regpect
the total number of objects of the concept. The largest quisce
contains 190 own object, which are functions in this case.

We observe that a particular kind of variability occurs when
either input and output tracing in the same function are kado
in a different way, or a single type is converted using twdedif
ent converter functions. Such situations, which are in ncases
clearly examples of accidental variability, immediatefyow up in
the concept lattice. They are embodied by concepts with dwn o
jects that have at least one parent concept with own objectsed,
such concepts have more attributes than is necessary, bene
of these attributes are different variations for the saroprty. As
an example, consider again Figure 2 and observe the two ptance
in the lower left part that contain 1 and 2 own objects, respely.
From their positions in the lattice, it can be derived thatlgftmost
concept uses bothFUNCTION__ andfunc_name for specifying the
function name when tracing, and the other concefat1" andcC
for specifying the component name.

6.2 Function-level Variability

The upper half of Table 3 presents the results of analysieg th
function-level variability in the four components we cafesi. The
first row of data contains the total number of concepts that ar
found by the FCA algorithm. The second row lists the number of
different tracing invocations that are found (i.e., theatatumber

of concepts containing own objects). The third row therslisie
number of functions that implement the standard tracingnidas
described in ASML's coding standards (i.e., the number af ol-
jects found in the concept with attributesace, CC, TRACE_INT

or TRACE_EXT andfunc_name), and the last row presents the per-
centage of those functions with respect to the total numbme-
tions in the component.

The most striking observation revealed by these resultsais t
only 5.7% (40 out of 704) of all functions invoke tracing ireth
standard way, as described in Section 3. This immediatédesa
the questions why developers do not adhere to the standatdf a
a new standard should perhaps be considered, more spéygifieal
way most functions invoke tracing. Whereas we cannot ctlyren
answer the first question, we can provide an answer to thexdeco

Looking at the second row in the upper half of Table 3, we see
that 29 different tracing variants are used in the four conepds. If
we consider each component separately, we find 31 variatttain
This difference can be explained by the fact that 3 companient
voke tracing according to the standard idiom, and that thetfans
of these components doing so are all grouped in one singlgepon

concepts, and objects are removed from them. The top conceptwhen considering the components together. This resultsércon-

contains all objects and all attributes shared by all objé€any),
whereas the bottom concept contains all attributes andb@dcts
shared by all attributes (if any). At some point in the lafia
concept contains objects that are not contained within driyso
sub-concepts. Those objects are the concept/a objects The
attributes associated with the own objects of a conceptleszya
“complete”, in the sense that in the input context passeded&CA
algorithm, the own objects precisely are related to précidmse
attributes.
A concept with own objects represents a single variant for

invoking tracing, or a single variant for converting a peutar type.
In the first case, for example, the own objects are functaihthese

Shttp://conexp.sf.net
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cept replacing three other concepts, hence the reductitimtwo
concepts. Reversing this reasoning also means that theveiher
way of invoking tracing that is shared by different compdseir
in other words, all components invoke tracing by using tloain
variant(s). Consequently, we can not select one singlanathat
can be considered as the standard among these 29 variahtthevi
other variants being simple exceptions to the general fithes is
confirmed by looking at the lattices.

Looking at Figures 2 and 3, it is clear that both components
use a similar tracing variant implemented by most functi¢iré
or 58% functions in the case of CC1, 123 functions or 92% in the
case of CC2). Additionally, CC1 has yet another “big” vatitirat
uses the _FUNCTION__ preprocessor token instead of the variable
func_name. This variant is used in 121 functions (37%).

2007/2/16
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trace | CC_.TRACE | TRACELINT | TRACELEEXT | CC | func.name | f_name

IRY - v - v v -

g| - v - - - v -

h| v - - v v - v

i - Vv - - - Vv -

il v : v : Vi oV :

CC_SCAN.COMPONENT2STR| CC_.CHUCK_.ID_ENUM2STR | no.tracing | CC_chuckid | CC_scancomponent

f_CC_scancomponent v - - - v
f_CC_chuckid_enum - v - Vv -
g-CC_chuckid_enum - - \/ Vv -
h_CC_scancomponent V4 - - - Vv
i_CC_chuckid_enum - - v Vv -

Table 2. A sample input context.

| CC1 CC2 CC3 CC4 total | global
Function-level variability

#concepts 11 6 24 2 43 47
#tracing variants 6 4 19 2 31 29
#functions w. std. tracing 13 1 26 0 40 40
% of total functions 4 0.7 15 0 7.5

Parameter-level variability
#concepts 191 120 194 84 | 589 517
#not traced 61 49 4 16 | 130 115
#consistently traced 15 5 16 19 | 55 40
#inconsistently traced | 32 17 45 14 | 108 94
#w.0. not traced 11 6 39 8 64 57

Table 3. Function-level and parameter-level variability results

TRACEINT

[func_name| | [trace]

Figure 3. Function-level variability in the CC2 component

Figures 5 and 4 show significantly different results. The CC4
component implements only two tracing variants, impleradrity
31 and 37 functions respectively. The difference betweero
variants is that one is an extension of the other: one vatiaes

ability in this case stems from the fact that the CC3 compbnen
defines its own macro for invoking tracing, and that this raer
quires one extra argument, namely the name of the file in wikich
defined the function that is being traced. This is clearlyblésin
the lattice: each concept corresponding to a specific tga@niant
that corresponds to a specific file in the source code, cantain
extra attribute that denotes the constant used in the tedlceccre-
sponding with the file. Interestingly, although CC3 defirteivn
macro, it is also the component that uses the standard idiem t
most. Whether the mixing of the standard idiom with the deigtid
macro is a deliberate choice or not is an issue that remaibse to
discussed with the developers.

Summarising, we can state that very few functions implement
the standard tracing variant, that no other standard viaciam be
identified that holds for all components, but that within ivggle
component a more common variant can sometimes be detected.

The previous subsection discussed an example of accidental
variability in the CC1 component. A similar situation ocsum the
CC2 component, as can be seen in Figure 3, where one function
usescC and"cc2". The CC3 component contains one variant that
is accidental, as confirmed by the ASML developers, comgjif a
copy/paste error when passing a constant representindgeinafe
in invoking theCC3_trace macro.

6.3 Parameter-level Variability

The parameter-level variability involves the way a paranetf
a specific kind is traced, i.e., whether it is converted toragt

CC4_LINE to denote the component name, whereas the other usesrepresentation by means of a converter function, whetletraiced

both CC4_LINE and CC4_CC. The CC3 component implements 19
different variants, and none can be selected as the mostsepr
tative or resembles the variants of another component. &ahe v

in a different way or whether it is not traced at all. Note thet
do not show lattices for this part of experiment since thgdar
number of parameter types generates too many conceptsadhst
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‘

Figure 4. Function-level variability in the CC3 component

[TRACEINT | [cc4.cc]

"

Figure 5. Function-level variability in the CC4 component

as well on a global level, is due to the fact that the diffe@po-
nents share types, and that the different ways in which ttygees
are traced are combined into a single inconsistency.

One immediate conclusion that we can draw from these results
is that 37.7% of the types (94 out of 249) are traced in an incon
sistent way, and only 16% (40 out of 249) is traced consiltelfit
we consider that 115 types are not traced at all, we can ewen sa
that, of all types that are traced, 70.1% (94 out of 134) isddan-
consistently and 29.8% is traced consistently. Howevershorld
take into account one particularity of the tracing idiomth&ugh
its definition states that each function should trace altoparam-
eters, in practice this does not happen. Helper functiongsaiticu-
lar, often do not trace all of their parameters, since thes@assed
in from the calling function, and are traced there. In oraetake
this into account, we exclude from the number of inconsisten
traced types those types that are traced using one singlerten
function or are not traced at all. Hence, the fifth row in thieléa
shows the types that are converted using more than one ¢enver
function, and thus we can conclude that 42.5% (57 out of 184) o
all types are not traced consistently, and 57.5% (77 out 4 a8
traced consistently.

In contrast to the situation at the function-level, closealg-

we produce statistics from the results of the FCA algorithith w )
our Scheme scripts. sis of the results at the parameter-level reveals that nfotieo

The lower half of Table 3 summarises the results for this ex- types that are traced inconsistently are converted in twihiee
periment on our four components. The first row describesdtst t ~ different ways only. This result is found by counting the rmen
number of concepts found for each component. The second rowOf unique conversion attributes that are included in cotscéat
shows the number of types that are never traced, while the thi & type appears in (except for the bottom concept, which dedu
and fourth depict the number of types that are used congisten all attributes but does not represent a meaningful grogpifige
(i.e., that are always converted in the same way) and the euafb medlan and mode of the number of conversion functions fonan i
types that are not used consistently. consistently traced type are both 2. .

The fact that the global number of consistently-used tyges i There are two interesting outliers in this result. The bagie
lower than the sum of the numbers of consistently-used tppes ~ double, and simple derived typeool, are traced respectively in
component shows that there is variability between diffecempo- 13 and 11 different ways. What appears strange is that tresie b
nents: one type can be converted consistently per compoment  types are sometimes con_verted with a converter functlomeldaf_l
if these components each convert it in their specific waytype for another type. This might be explained by C's weak typing
becomes inconsistently-used at the global level. The dfgpissof mechanism: the other types are basically defined in ordeetept
course not possible: if a type is used inconsistently withisin- overloading of the basic type and to make the code more résdab
gle component, it can never become consistently used atgdhalg ~ butare not always used consistently by the developers.
level. The fact that the number of inconsistently-tracqueydrops
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Studying the results at the level of individual componems r
veals interesting issues as well.

SE

In the next subsection we describe how the results of our
method’s variability analysis can be used directly to detee

As can be seen in the table, the tracing implementation in the required aspect language abstractions, capable of exmgete
CC1 and CC3 components appears to be less consistent then int concern with its essential variability. In the two followgirsubsec-

other two components. If we take into account the basicssitgi
from Table 1, this seems logical: CC1 and CC3 are by far thyekir
components. However, taking into account size does noaexpl

tions, we discuss two such concrete language requirementisef
tracing idiom under investigation.

everything: the CC2 component defines more types than C@3, bu 7.1 From Variability Analysis to Language Abstractions

is more consistent.

Even when excluding types that are either traced consigtent
or not traced at all, the CC3 component still traces a lot &f it
types in many different ways. When we take a detailed lookeut t
way in which the 39 parameter types are traced inconsigtent
can observe a clear pattern however. It turns out that 28esfeth
types are traced using a slightly different variant of thendard
tracing idiom: the value of the parameter is traced, as awhyt
this value is accompanied by the memory address of the pggame
as follows:

CC3_TRACE( CC, TRACE_INT, func_name,
FILE_CONSTANT ,
"< (p = [%p], xp = [%s])”,
P, p_store_values_ptr_args (p));

Our variability model does not take into account this slight
variation in the idiom, and hence reports a lot of variaili&
refinement of the variability model could prevent this.

Some cases very clearly show that the variability is notidés.
For example, the CC2 component uses a typeck_enum and a
type chuck-id_enum. Each of these types has its own converter
function, but the converter function for thehuck_id_enum type
is used twice for converting a parameter of tyfieick_enum. The
CC3 component also uses ttieuck_id_enum type, and converts it
in three different ways, using converter functions definediffer-
ent components. It is not clear why this happens, and prdsyma
this is undesirable behaviour.

7. Aspect Design

This section considers how the results of the variabilitplgsis
can be used in aspect design, more specifically to deterrhime t
required language abstractions for representing thecpéaticon-

cern. The purpose here is not to come up with new language fea-

tures that should be provided by every aspiring aspect kEggu
nor to conduct a study of existing aspect languages for mhiarg
the degree in which they can implement the required vaitgbiih
our concrete case, this exercise would be incomplete anysirae
we analysed part of the variability of the ASML tracing comce
— enough to demonstrate the relevance of our method. Instead
attempt to point out that from our method it is straightforavéo
determine the required (aspect) language abstractionsfturing
the variability. Note that even if the target aspect langudges not
provide the required abstractions, it can probably stifiress the
concern in one way or another. However, the resulting asgpect
plementation will be long and complicated, which we attenapt
demonstrate later on in this section.

Typically, not all the discovered variability will be refgented
in an aspect-oriented solution, since a substantial amaoiuittis
undoubtedly accidental. With our proposed method for asiady

The results of the analysis described in the previous sestion-
marise the tracing idioms and their variability. For examphe
most common variant of the tracing idiom for component CC4
can be described quite succinctly as followal:functions invoke
tracing with the functiontrace and valuesCC4_CC, TRACE_INT
and func_name, except for functiong, , ., fn, which invoke
this trace function witleC4_LINE in addition toCC4_CC. Similarly,
the most common variant of the tracing idiom for componen8CC
can be expressed aall functions invoke tracing with the function
CC3_TRACE, valuesCC, TRACE_INT and func_name , and a vari-
able that varies according to the name of the.file

We observe that such statements can serve as a concise-specifi
cation for a future aspect implementation per componewnieéd,
they clearly specify what the common part of the aspect is, as
well as its variation points. We argue briefly in Section Zhatt
the choice of the target aspect language should be such frat i
vides abstractions for capturing the specified variabilftyot, the
amount of duplication in the aspect implementation willrease
with a factor that is equal to the number of variations. Weratit
to express this in a more systematic way below. Considerdhe f
lowing representation of an aspect:

VZ1, ey Tn o fT1, ..

The variables:1, ..., z,, each correspond to different join points
or values from join points. The types of these variables ements
of the program definition or executibriThe predicatef expresses
that the functionality of the crosscutting concern will beven for
all z1, ..., z,. When employing an aspect language that supports
quantification of all the types of elements to whieh, ..., z,, are
bound, the aspect specification and implementation aretatally
similar. However, if the aspect language does not supp@mtifi+
cation of the type of element to whiah is bound for example, the
aspect implementation becomes:

I IT’-)

( L1, T 1 T = a1 N\ f(:tl, ey Ti—1, bl,$i+1, ---,Zn))/\
A
(V&1 ooy Tn t @i = @m A f(T1, ooy Tim1, by Tige1y ooy Tn))

wherem is the number of ways in which; can vary. As a result,
the aspect implementation contains code that is duplicatéthes.
Additional limitations in quantification will again resutt the code
duplication increasing with a factor, and so on.

Based on the results of our analysis of the tracing idiom, we
identified two aspect language abstractions that are ed)uv
capture the discovered variability and thus avoid duplcain
the aspect implementation as described above. In the wasst c
when employing an aspect language that is not able to mes# the
requirements, the aspect implementation converges toevstere
there is one aspect per function. These aspects duplicatntire
tracing idiom but differ in the essential variability, whicloes not
offer substantial advantages over an idioms-based impitatien

the variability we are able to make some educated guesses as t Of the tracing concern.

what is essential variability and what is accidental. Hosvethe
process of confirming these findings is one that requiresbfsed
from the software developers, which is outside the scopéisf t
paper but is discussed briefly in Section 8.3. In the contexspect
design, we assume that only the confirmed, essential véiyaoill

be considered.

7.2 Quantification of Parameters

Our experiments with respect to parameter-level varigbdhow
that complex parameter types require a converter functortlzat

7 Depending on the join point model being static or dynamispeetively.
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each type requires a different function. If we look at maiesin 8. Discussion and Evaluation

aspect Itanguages, the tjo'nt point model dt(}gsblnot Iexpllm;ttwge This section discusses the implications of variability s by
parameters or parameter types as quanuniable element&vaow —qi5 s hased development from the perspectives of softwlar

Webcan gnly selec'gffuntctlons based on .th‘“;'r: nlmebcte_r of pa_exm(tet velopment and legacy system migration. Whereas the distuss
gr a}se on Spec '?] ypis OcigmlnSQ n e‘d unctlons S'%;? in the previous section concerned the essential varighiie dis-
ew languages, such as Aspect] [18] , provide extensivetiete cussion here is based on the occurrence of accidental ifayiab

access to the current join point, however, and as such th@lact  piret however, we discuss the consequences of taking autouat
gr_]d fo_rmal parameters can be retrle\_/ed. For expre_s_s[ngablag additional variability that was not considered in our asay
idiom in an aspect language for C with such capabilities ciwiid

the best of our knowledge does not exist, the per-functioncad 8.1 Further Variability
needs to be parameterised with the list of parameters, antkec:
to be able to refer to the individual elements of this list ider to
determine their converter method.

Let us consider an aspect language that is able to repreaent p
rameters as quantifiable elements directly. In pseudo-aadeus-
ing a logic-based pointcut language, the pointcut expoessould
look as follows

It is important to note that we have only considered functarel

and parameter-level variability in our experiments, andun dis-
cussion above. However, the tracing idiom has other cheniatits
that we did not analyse in depth, and these characteristi&e tine
idiom richer. Hence, more features might be needed in ancaspe
language then the ones we described above if we wish to expres
ASML's tracing idiom in an aspect.

execution( * *(?params)) For example, ASML code distinguishes between input and out-
put parameters. Our analysis did not make that distinctimhcan-

which selects all functions regardless of their name andmeype, sidered input and output tracing together. Although thisved us
and binding their parameter list to thgarams variable. The ad-  to detect accidental variabilities that we would not hasediered
vice code corresponding to the pointcut should then be alviefér otherwise, it also prevented us from considering the impacan
to the individual parameters contained within thearams vari- aspect implementation. An aspect needs to know which paease
able, and retrieve their corresponding converter funstidihis re- are input and which are output in order to construct the gpjate
quires meta-programming facilities to be present in theeatsian- input and output trace statements. An aspect weaver cotridoex
guage, not only to iterate over all parameters, but also tstcoct such information from the source code using data-flow aiglys
the actual trace call that will be woven into the code out efdif- and could make it available in the aspect language, for el@mp
ferent parameters that it requires. Other characteristics that we did not consider but that elre r

. . . . evant for such a discussion include the position of the irgmat
7.3 Specifying Default Functionality and Exceptions output trace statements in the original code (do they alvaagsir
Another requirement is an aspect-language mechanismitbasa right at the beginning and at the end of a function’s exea®jothe
us to specify default functionality as well as some exceystito tracing of other variables besides parameters (such aksdodéor
that general rule. As we have seen in our analysis, the ingslem  global variables), the order in which the parameters amttaand
tation of the idiom is never consistent, not in a single congmt the format string that is used, together with the format syfur
and not even when we only consider essential variability. % parameters contained within that string.
ample, a parameter type might always be converted with tine sa Clearly, the results we obtained can thus be seen as a lower
converter function, except in one particular case when theld bound of the real amount of variability present in the trgcid-
oper is actually interested in the address of the paranmettad of iom’s implementation. Since the variability we found wasisid-

in its value. Another example occurs in component CC3 wheze t  erable already, we arrive at our claim that simple crossmution-
use of a special-purpose tracing macro is mixed with the tifeeo cerns do not exist, at least not for software systems of inilis
defaulttrace function. size.

One obvious solution for dealing with this kind of behaviagir

to define separate aspects for these special cases. Hoeawkeex- 82 The Limitations of Idioms

ception then requires its proper aspect, and one single @oem A first point in the discussion of variability is more concedh
might need many different aspects that have a lot of comnitgnal  with its cause than its implications. As is expected, shawother
This is undesirable, since it can (and probably will) agaiad to work [4] [9], and again confirmed by the results in this paper,
accidental variability and code duplication. Indeed, fquaaticu- idioms-based development as opposed to the use of (aspaet) |
lar function, one single parameter might need to be congatiie guage abstractions introduces accidental variabilityha itmple-
ferently, but the other parts of the tracing implementatiemain mentation of (crosscutting) concerns. Aspect-orientedjuages
standard, but need to be specified as well. typically provide abstractions for implementing cross$icigt con-
We argue that a mechanism for specifying default functibnal  cerns in a localised way, thus avoiding code duplication amate
together with its exceptions should be incorporated inéoabpect importantly, accidental variability in this duplicateddm
language. This allows us to define one main aspect for a single  Consider for example the results of the analysis of vaiitghbit
component, that specifies what the default tracing impleatiem trace calls in the component CC2: 123 functions call theetfanc-
for that component looks like. Additionally, it allows foedoting tion using the same idiom. However, 11 functions introdugeara
those few cases where variability occurs. For example, icpéar ation in this idiom: nine functions use one variation, wizerévo
function that traces a particular parameter type in a diffeway, remaining functions each implement yet another variatiResed
or that uses a different tracing macro. on these quantitative results and on an inspection of theceou

The addition of annotations to the Java language and the way code, we conclude that 123 functions implement the defeaautt t
these annotations can be addressed in the Aspect] langu#age a ing idiom, whereas the other 11 functions exhibit accidievea-
good starting point for experimenting with such a featureefault ability. This is confirmed informally by several ASML develers,
aspect is defined and used for all elements that have no diemota  (although we did not investigate systematically why ASMivele
attached to them. When such an annotation is present, ifdshou opers introduced this variability in the idiom).
specify what it denotes and the weaver should then know how to ~ Assuming our interpretation is correct, and the aforenoeeiil
handle the situation. variability is indeed accidental, the question is raisecttlbr an
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aspect-oriented solution for tracing would have prevethedcci-
dental variability. Ignoring for now the parameter valuleattneed

to be traced, it is easy to imagine an aspect that capturésnaH
tion executions, specifies that input and output tracingighbe
invoked around those executions, and provides the appitepsc-
tual parameters for the trace invocati®g¢2", trace, TRACE_INT

and func_name in this case). Such an aspect would be preferred
over an idioms-based implementation, since it specifieg ama
single place how tracing should be invoked, and hence ptetea
accidental variation exhibited when using idioms.

If an aspect-oriented solution can prevent accidentahidity,
the question remains whether all tracing idioms identifigcobr
analysis can be expressed in a certain aspect languagethaich
the accidental variabilities are avoided, but the essevaigabili-
ties can be expressed. We believe the answer is yes, altiibagh
conciseness and declarativeness of the solution highlgrdispon
the presence of certain aspect language characteristfestores,
as discussed in Section 7.

It is important to note that the above doasst show that over
the course of many years, by large teams of changing devslope
the aspect-oriented solution would not have introduceero#t-
cidental variabilities, ones that we cannot even envisiamently
because of the lack of legacy aspect-oriented systems.

The work presented in this work should therefore be comple-
mented by a study of the ‘human’ causes behind the varigbilit
we observed in the code. A study of that kind would focus on the
reasons for the use of a particular deviant idiom, and magalev
additional opportunities for useful abstraction withinaapect lan-
guage. An example of such a study in the context of clone tietec
is presented by Kinet al.[19].

8.3 Migration of Idioms to Aspects

Given that an aspect-oriented solution has benefits ovetiams-
based solution, it is relevant to study the risks involvedhigrating
the idioms-based implementation to an aspect-orientedeimgn-
tation.

In general, migrating code of an operational software sysge
a high-risk effort. Although one of the biggest contribistéo this
risk is the scale of the software system, in our case this eatehblt
with by approaching the migration of tracing incrementgly,
for instance on a component-per-component basis. Howetresy
sources of risk need to be accounted for: the migrated codé is
course expected to be functionally equivalent to the oalgbode.

Our findings concerning variability of idioms-based comcer
implementations introduce an additional risk dimensionpartic-
ular, accidental variability is a complicating factor. tging such
variabilities by defining an aspect that only implementsebksen-
tial variability means we would be changing the functiotyabf
the system. A particular function that does not executdrigaas
its first statement but only as its second or third statenmaight
fail once an aspect changes that behaviour, for examplea) otig-
inally a check on null pointers preceded the tracing of a teoin
value. So this risk is real even with functionality that iesengly
side-effect free, as is the tracing concern, and will becbigber
when the functionality does involve side-effects.

On the other hand, migrating the idiom including its acctdén
variability is undesirable as well: aspect-oriented laaggs are not
well-equipped for expressing accidental variability ahd tesult-
ing aspect-oriented solution quickly converges tma-aspect-per-
function solution. So the issue boils down to a trade-off between

minimising the risk on the one hand, and on the other hand re-

ducing the variability in favour of uniformity, in order teach a
reasonable aspect-oriented solution.

SE

tal variability — at this point we do not even know whahagh
degreeof accidental variability is, nor do we know whether auto-
mated migration towards aspects is feasible at all in pectf a
simple aspect such as tracing already exposes difficultigmad
This discussion only serves to point out that the risk isgmeand
that there are currently no processes or tools availablefioimis-
ing the risks. Nevertheless, we can say that in the particolatext
of ASML, the initial proposal for dealing with the migratiorsk
is to (1) confirm or refute the detected accidental varighili2)
eliminate the confirmed accidental variability in the idismased
implementation of the legacy system incrementally andifebe
resulting implementation is behaviour-preserving by carmg the
compiled code, (3) remove the remaining idioms-based imete
tation of the crosscutting concern, and (4) represent tloenicind
its essential variability as aspects.

8.4 Variability Findings

Our results indicate that only 7.5% of the functions impleime
tracing according to the standard predefined idiom, thatthero
standard idiom can be identified in the source code, and that4
of the types defined by those functions is not traced comglgte

An important question is to what extent the figures we obthine
for ASML’s tracing idiom are representative. Assessing tép-
resentativeness of our findings allows us to answer the ignest
whether we can expect similar figures for (1) other ASML compo
nents than the ones we studied; (2) other idioms in use at ASML
or (3) idioms-based software not developed by ASML.

The four components represent systems of different sizs, ag
and maintenance history. The components we studied wexetsél
by ASML developers because these components are currestly b
ing reworked, and they wanted an initial assessment of thiabik
ity present in the tracing implementation. They did not etpkat
variability to be significant. In other words, the comporsewere
chosen fairly randomly, and not with high or low variability the
tracing concern in mind.

We believe the amount of variability we observed for theitrgc
idiom will not be significantly lower for other idioms as apga by
ASML. In another study [5], we have shown that the exceptiam-h
dling idiom they use is responsible for approximately 2 tayler
1000 lines of code, because the idiom is not applied comgigte
Additionally, when studying the parameter checking idiath fve
observed that 1 out of 4 parameters was not correctly cheeked
that the implementation of the idiom was not at all unifornorgt
over, tracing is regarded as a very simple concern, sinsenioi a
core functionality of the ASML software, and it is not tightan-
gled with this core functionality, as opposed to exceptiandiing
and parameter checking. Hence, analysing such more coritplex
ioms might result in significant more variability.

The question whether the ASML software is representative fo
software developed through idioms-based developmentiehto
answer. We can state that the software is developed usirgjea st
of-the-art development process, that includes analyssigd, im-
plementation, testing and code reviewing. The reasonshéopb-
served variability can however be manifold: inadequateiammte-
cise documentation, many different developers working eBrg
large code base, no adequate automated verification, gevelnot
understanding the relevance of tracing and hence payis@tén-
tion to it, etc. This situation is probably not that much erént
for software developed in other organisations, or even gpeince
software. Hence, we are inclined to believe that a varigtélnal-
ysis for other software would show similar results. Howewesrce

At the moment, we do not have an answer to the question how again this is only speculation, and remains to be investayéir-

to migrate idioms of legacy systems with a high degree ofteti
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Lattice creation
0.03s
091s

| Fact extraction
Function ‘ 96.39s

Parameter| 140.8 s

Table 4. CPU times for tool execution on an AMD Athlon 64
3500+ with 1 GB RAM. Input consists of all components.

| O A Relation Fillratio Concepts
Function | 573 29 2331 0.14 47
Parameter| 2219 385 4592 0.005 517

Table 5. Context and relation sizes for all components considered
together.

8.5 Genericity of the Method

Another question concerns the genericity of the varigbditalysis
method. ASML has expressed interest in conducting the rdetho
themselves, in order to assess the variability of tracingthrer
components. Furthermore, they would like to analyze th@bdr
ity of other idioms. Likewise, we are interested in using &
proach on non-ASML systems as well.

Several of the steps of our approach are largely manual.€Thes
include the idiom definition and variability modeling steps well
as the aspect design step. These steps will be very similapen-
dent of the idiom or component analyzed, and hence are suffigi
generic.

The idiom extraction and variability analysis steps regja@ol
support. For the idiom extraction, the tools have to be conéid
so that they recognize the idiom at hand. Given our ASF+SDF
and CodeSurfer infrastructure, this is a fairly simple stepoes,
however, require knowledge of these tools, which for ASMLyma
not be readily available. The formal concept analysis tdolsiot
have to be adjusted: all that is needed is creating (digect,
attribute pairs in a simple textual format.

Based on these observations, we believe that the approach i
applicable to different idioms and systems.

8.6 Scalability

The scalability of our approach is determined by two facttwel
execution time and the size of the resulting lattices. Thetsiees
have to be processed by a human.

First, fact extraction is performed using the ASF+SDF Meta
environment. The tracing code is parsed using a generalired
parser (SGLR) [29], followed by a single traversal of thesgar
tree to extract the relevant facts (see Section 3). Subadguene
FCA tool concepts is used to produce the concept latticdse a
contains timing results for both the function-level andgvaeter
level studies. In both cases, the timing results apply texeeution
of the tools on all components together.

Second, concept lattices can grow exponentially with tke si
of the object—attribute relation. However, if a relationsfgarsely
filled, quadratic growth is observed in practice [20]. Tablghows
the context and relation sizes for our studies. filhetio is defined
by the actual relation size, i.e., the number of objectikatte tuples
in the relation, divided by the maximum relation size, i@.; A
whereO is the number of objects, antlthe number of attributes.

A sparsely filled relation (i.e., fill ratio below 0.1) appsdo be
no guarantee for a small enough number of concepts, as imishow
by the parameter-level study. Inspecting 517 conceptsasbig
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be significantly lower, as can be seen in Table 3. The ‘tracing
variants’ there correspond to concepts containing ownotdje
Furthermore, the number of concepts containing own objects
a valuable indicator by itself. It tells us the number of a#ions
on the idiom. Based on this number alone one could concluate th
too much variability will prevent automatic transformatiof the
idiom. In that case the actual concepts do not have to bedtepe
by hand.

9. Related Work

The work presented in this paper can be situated betweendte w
onaspect miningnd that oraspect refactoring

Aspect mining is the activity of (automatically) identifg
crosscutting concerns in source code. Several techniguesteen
investigated, among which techniques based on formal gonce
analysis [28, 27]. An overview of these techniques can badou
in[17, 23].

Once identified, the crosscutting concerns can be refatiote
an aspect. Several authors have proposed a process for ggrelh m
tion [1, 24, 13]. All authors note that after such (semi-paoiatic
migration, the aspects should be “tidied up” in order to middesn
more general, for example by generalising advice code agat-cr
ing sensible pointcuts. [13] even includes extra steps énptto-
cess to test whether the migration preserved the behaviaineo
software as a whole. Both Binklest al [1] and Marinet al [13]
present results of applying their process to JHotDraw, aiuned
sized object-oriented software system, while Monteiro kedhan-
dez [24] illustrate their approach on simple examples only.

Our work is situated in between these activities, since wenkn
what the crosscutting concern code looks like a-priori, aod
analysis can provide hints about the difficulties we can enter
when refactoring it. Given our analysis of a simple concewh aur
conclusions about the difficulties with automated migmatiib is
worthwhile to study the behaviour of all these differenti@gches
for ASMLU’s tracing concern. Additionally, it would be intesting
to study how the results of our analysis could be fed intoghes
approaches in order to determine automatically the refiagf® that
should be applied, for example.

Lippert and Lopez [22] present a study in which they (manu-
ally) extracted the design-by-contract and exception lagde-
haviour from a software system into aspects. Just as in @€, ca
they found that some of the variability present in the ormgjiim-
plementation could not be expressed easily in the (earhgjme of
AspectJ they were using. Interestingly, this variabilitgoenvolved
formal parameters. Another study, by Coaelyal [8], describes
how the prefetching concern of the FreeBSD operating system
be migrated into an aspect. Both lines of work are closebteel to
ours, but have a different focus: they are meant as a studythiet
benefits of AOSD technology. Hence, the focus of both pajgars i
the potential gains when using aspects, and little or naudison
is present on how the aspects were extracted from the soodes c
and what the difficulties are when doing so.

Coyler et al. also observe that variability is present in the id-
iomatic implementation of a tracing policy of a product lifg3.
Their work is focused on refactoring the tracing concerndagn
others), and in their case studies the variability is (parlimi-
nated by the use of aspects. In comparison, our work takeg@ mo
cautious approach by visualizing any variability that weedg and
facilitating the process of distinguishing between aceideand es-
sential variability.

Our use of formal concept analysis and the results it pravide

a task to be performed by a human. Fortunately, such a manualcan be seen as a means to identify appropriate aspects, alven

inspection is not required in our approach. The conceptstefest,
i.e., those that contain own objects (see Section 6), aradfou
automatically. The number of concepts containing own dbjean
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concern-related code. Many researchers, Siff and Repslflig
and Snelting [21], and van Deursen and Kuipers [12] have been
using formal concept analysis for exactly that purposegitilin
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a procedural versus object-oriented context. The idea listtthe
FCA algorithm group functions that use data structureserstime
way, and that the concepts found in this way correspond alatur

to classes. Interestingly, both [25] and [12] mention a fewhthat
resembles the tangling of concerns and a solution to théiqmro

[25] refers to it as “tangled” code that uses multiple datacitires

at the same time, whereas [12] considers the problem of large
data structures that are actually a combination of manylemahd
largely unrelated, data structures.

The work on aspect languages, and in particular on which fea- 2]
tures should be added in order to improve the expressivemess
conciseness of aspects is of course relevant for our résaangell.
Several aspect languages for C have been proposed [8, 131]26,
and some of them could even express the variabilities weugrnco
tered. Most of these languages are experimental in natones\rer,
and it remains an open question whether they scale to thefsize
dustrial systems. On the other hand, mature aspect langusgeh
as AspectJ and JBoss AOP, seem to lack most of the required fea
tures for expressing the variabilities we found in the mgddiom.

(1]

13

[4

10. Concluding Remarks

In this paper, we have studied “tracing in the wild” usingpiulis-
based development. It turns out that for systems of incalgtize,
tracing is not as simple as one might think: in the code we-anal
ysed, the idiom used for implementing the tracing concehitsts
remarkable variability. Part of this variability is accidal and due
to typing errors or improper use of idioms, which could bensee
as a plea for using aspect-oriented techniques. A signfzam of
the variability, however, turns out to be essential: aspeutst be
able to express this variability in pointcuts or advice. iEwgth our
partial analysis of the variability of the so-called “t@Vi tracing
concern, we discover the need for quite general languageaabs
tions that probably no aspect language today can provideebnt
and certainly not in the context of an industrial system.sTwill
only worsen when more variability is considered or more clexp
concerns are investigated.

In summary, this paper makes the following contributions:

(5]

(6]

[7]

(8]

[9

1. We proposed a method to assess the variability in idioased
implementation of (crosscutting) concerns.

. We have shown how existing tools for source code analysis a
transformation, and for formal concept analysis can be co
bined and refined to support the variability analysis preces

. We presented the results of applying the method on selecte
components of a large-scale software system, showingititat s
nificant variability is present.

. We show how the results of the variability analysis candedu
almost directly to determine the appropriate languagerafst
tions for expressing the concern and its essential vaitiabil

. We discussed the implications of the accidental vaitgbil
caused by idioms-based development in the context of cross-
cutting concerns from the perspectives of software deveétop
and legacy system migration.

The most important direction for further research is stteng
ening the empirical basis of our work. This involves botheexi-
ing the code base to which we have applied our variabilityyesig
techniques, and involving more concerns, such as paractetek-
ing or exception handling, in our case studies.
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