Development of a DMD-based fluorescence microscope

More Info
expand_more

Abstract

We present a versatile fluorescence microscope, built by complementing a conventional fluorescence microscope with a digital micro-mirror device (DMD) in the illumination path. Arbitrary patterns can be created on the DMD and projected onto the sample. This patterned illumination can be used to improve lateral and axial resolution over the resolution of a wide-field microscope, as well as to reduce the illumination dose. Different illumination patterns require different reconstruction strategies and result in an image quality similar to confocal or structured illumination microscopy. We focus on the optical design and characterization of a DMD-based microscope. Estimation of the optical quality of the microscope has been carried out by measuring the modulation transfer function from edge profiles. We have obtained optically sectioned images by applying multi-spot illumination patterns followed by digital pinholing. The sectioning capabilities of our DMD-based microscope were estimated from the dependence of the signal-to-background and signalto-noise ratios on the pitch of the projected multi-spot patterns and the size of the digital pinhole. In addition, we provide an outlook on the use of pseudo-random illumination patterns for achieving both sectioning and resolution enhancement

Files