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Abstract Adaptation planning for flood risk forms a significant part of global climate change
response. Engineering responses to higher water levels can be prohibitively costly. Several
recent studies emphasize the potential role of ecosystems in flood protection as adaptive risk
reduction measures while also contributing to carbon fixation. Here, we use a conceptual
model study to illustrate the built-in adaptive capability of ecosystems to reduce a wide range
of wave heights, occurring at different water levels, to a narrower range. Our model shows that
wave height of waves running through a forested section is independent of initial height or of
water level. Although the underlying phenomenon of non-linear wave attenuation within
coastal vegetation is well studied, implications of reducing variability in wave heights for
design of ecosystem and levee combinations have not yet been properly outlined. Narrowing
the range of wave heights by a vegetation field generates an adaptive levee that is robust to a
whole range of external conditions rather than only to a maximum wave height. This feature
can substantially reduce costs for retrofitting of levees under changing future wave climates.
Thereby, in wave prone areas, inclusion of ecosystems into flood defense schemes constitutes
an adaptive and safe alternative to only hard engineered flood risk measures.
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1 Introduction

Rising sea levels, land subsidence, more extreme storms, and increasing river discharges will
increase future flood risk and make future flood risk reduction more costly (Hallegatte et al.
2013). Uncertainty on how this risk will manifest requires flexible measures that can easily be
adapted to changing external conditions (Ranger et al. 2013; van Wesenbeeck et al. 2014).
Current flood risk mitigation strategies focus on hard engineering measures that are not
adaptive and have additional negative impacts (Winterwerp et al. 2013; van Wesenbeeck et
al. 2014). Typically, these defenses are designed to provide a specified standard of protection
by withstanding flooding up to a certain water level and wave height (CIRIA et al. 2013). In
coastal areas, rising sea levels will necessitate a corresponding increase in levee height to
continue maintaining the same standard of protection. This can mean substantial future costs
especially along coastlines that are now poorly defended and densely populated (Jonkman et
al. 2013). Designing a flood defense system that can adaptively withstand a widening range of
dynamic conditions, e.g., a spectrum of increasing water levels or wave heights, would help
achieve more robust, cost-effective, and climate proof designs. Integration of ecosystems into
levee designs and flood risk reduction strategies has the potential to achieve this.

Restoration and conservation of coastal and riparian ecosystems as alternatives to infra-
structural measures are increasingly being explored (Barbier et al. 2008; Borsje et al. 2011).
Ecosystems can help reduce flood risk in multiple ways by attenuating waves, stabilizing
shorelines, and reducing current velocities (Gedan et al. 2011; Shepard et al. 2011).
Additionally, they offer many co-benefits such as enhancing fisheries and recreation and
tourism (Cheong et al. 2013; Spalding et al. 2014). Ecosystems can contribute actively to
climate change mitigation by sequestrating and fixating carbon (Duarte et al. 2013). In the
meantime, they can also enhance the adaptive capacity of the coastal system and as such form
an important part of climate change adaptation measures (Cheong et al. 2013; Duarte et al.
2013). In this respect, the discussion on the role of coastal ecosystems has been mainly limited
to their capacity to grow with rising water levels by trapping sediment (Borsje et al. 2011;
Kirwan and Megonigal 2013).

Both mangroves and marshes can keep pace with rising sea levels through sediment
trapping (Morris et al. 2002) (Fig. 1a), depending on sediment budgets and relative sea level
rise (including subsidence) (Mclvor et al. 2013; Lovelock et al. 2015). Basin mangroves can
also keep pace with sea level rise through accumulation of organic matter mostly under
nutrient poor conditions (McKee 2011). Besides soil elevation, some attention has been paid
to the resilience of ecosystems and their capacity to self-repair after minimal to moderate
disturbances (Borsje et al. 2011; Spalding et al. 2014) (Fig. 1b). Another useful feature of
coastal ecosystems such as mangroves, marshes, and sea grass beds is their ability to dampen
waves of different incoming heights over a certain distance to a narrow range (Fig. 1c). This
mechanism is explained by the fact that wave attenuation within vegetation is a non-linear
process (Barbier et al. 2008; Koch et al. 2009). The extent of wave attenuation is exponentially
proportional to the incoming wave height. While the phenomenon of wave attenuation within
vegetation has been widely studied, the implications of this process to flood defense design
and functionality under a range of conditions have not yet been widely acknowledged. Here,
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Fig. 1 Conceptual drawing showing three adaptive features of ecosystems that can contribute to flood risk
mitigation. a Accretion with rising water levels. b Self-repair (resilience) after small disturbance events. ¢
Reduction of waves with different heights to almost similar height

we illustrate with a simple modeling exercise how combinations of levees with fronting
vegetation will create a levee that is more robust to external changes in wave climate and to
rising water levels. Therefore, levee-vegetation combinations may become important adapta-
tion options for climate change effects.

2 Methods
2.1 Model set up

To assess effects of vegetation on wave reduction with different wave heights and water levels,
the third generation spectral wave model SWAN (Simulating Waves Nearshore) was used
(Booij et al. 1999). SWAN is a single layer wave model and vegetation can be implemented
using the Mendez and Losada (2004) formulation (Suzuki et al. 2012). This formulation
accounts for the effects of vegetation on the wave attenuation in addition to regular wave
attenuation processes. The vegetation is modeled as cylinders with a certain height (g,),
diameter (b,), density (N), and drag coefficient (Cp), based on Dalrymple et al. (1984). The
overall effect of the vegetation on energy reduction can be expressed as the vegetation factor
Vi, calculated by b *N*Cp (Suzuki et al. 2012). For further information on SWAN and
SWAN-VEG, we refer to online manuals (link) and Booij et al. (1999) and Suzuki et al.
(2012).

In SWAN-VEG, a horizontal field of 200 m long was implemented. No coastal slope was
implemented as the main aim was to assess the sole effect of trees on wave reduction. Of the
field, the last 170 m is covered with woody emergent vegetation. For vegetation parameters,
we use an example of a well-developed forest that is over 5 years old. Tree height is set at 10 m
for all types such that the vegetation is emergent for all scenarios. Tree density of 1 tree per m?
and a stem diameter of 50 cm are assumed for all wave and water level scenarios. A drag
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coefficient of 0.9 was taken for each type as this evaluation is performed with woody
vegetation that has little to no flexibility (Massel et al. 1999). Chosen values for vegetation
parameters are representative of tropical coastal mangroves (for example, Avicennia sp.) as
well as temperate riparian forests (for example, Salix sp.) (Naiman et al. 1998; Bao 2011). The
vegetation factor (V) of this vegetation type is the product of the diameter, the density, and the
drag coefficient and thus is 0.45 in this model.

The design implications of wave attenuation within vegetation depend on both vegetation
and hydraulic parameters. For this study, we evaluated the effects of trees in attenuating regular
waves of different heights (Hs) with a fixed steepness (ratio of Hs and wavelength) of 0.03 in
different water levels. In the model, the default formulations and parameters settings for wave
breaking and white capping are included. The effects of wind (growth) were ignored. The
model was run with vegetation for six wave heights (1.5, 1.25, 1.0, 0.75, 0.5, and 0.25 m) and
for three water depths (2, 3, and 4 m) to assess the influence of water depth on wave
attenuation.

3 Results
3.1 Model output

Figure 2 shows the propagation of waves with different wave heights running through woody
emergent vegetation. It can be seen that incoming waves of heights between 1.5 and 0.25 m are
reduced to a range of 0.1 to 0.4 m after propagation through 170 m of vegetation. Larger waves
show a steep and rapid decline in height whereas smaller waves show a smaller, more gradual
decline in height. The rate of wave attenuation and the rate of convergence of absolute wave
heights are highest within the first 40 m of the vegetation field. Similarly, effects of water level
on wave attenuation are shown for three different water depths (2, 3, and 4 m) with an
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Fig. 2 Attenuation of waves with different wave heights through woody emerged vegetation. Vegetation starts at
30 m. Significant wave heights are shown on the y-axis and distance within the vegetation is depicted on the x-
axis. The black line represents the reference situation without vegetation. The different colors indicate the
different initial wave heights

@ Springer



Mitig Adapt Strateg Glob Change

incoming wave height of 1 m (Fig. 3). An increase in water depth reduces the rate of wave
attenuation within the vegetation as the effects of bed friction are reduced. However, with
emergent vegetation, the effect of water levels on the rates of wave attenuation is relatively
small. At the lowest water levels, bottom friction still contributes to attenuation, which is
visible in the wave height reduction before the vegetation.

The effect of vegetation on wave attenuation is mainly due to the energy dissipation of
waves obstructed by a rigid object. Since wave energy is proportional to the square of the wave
height, this results in a non-linear reduction of wave heights, with an increase in the rate of
attenuation with increasing wave heights (Denny 1988). As a result, waves running over
vegetation show asymptotical dampening which is empirically supported by numerous field
and laboratory measurements on wave attenuation through mangrove forests (Mazda et al.
2006; Bao 2011) and over marshes (Moller and Spencer 2002). This phenomenon is also
incorporated in a number of wave models (Mendez and Losada 2004). This model is also used
in this study, and as a consequence, a broad range of incoming wave heights gets attenuated to
a small range of wave heights when traveling through a vegetation field. Therefore, a levee
designed for a 0.4 m wave can be robust for waves up to 1.5 m if a woody emergent vegetation
field exists in front.

4 Discussion

A direct implication of the capacity of vegetation to reduce a broad range of wave heights to
narrow ranges is that wave heights are considerably reduced at the levee, thus lowering the
crest height requirement and/or structural requirements (i.e., an earth bund versus a concrete
levee) for a given standard of protection. Fronting coastal or riparian vegetation can provide a
significant portion of the reduction of wave overtopping that is traditionally provided
by extra levee height. In this case, levee design criteria such as crest height and width
can thus be limited to the minimum necessary to prevent inundation and structural
(macro-stability) failure.
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Fig. 3 Attenuation of waves of 1 m with different water levels through emerged woody vegetation. Vegetation
starts at 30 m. Significant wave heights are shown on the y-axis and distance within the vegetation is depicted on
the x-axis. The different colors indicate the different water levels (gray=2 m, red =3 m, black=4 m)
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Another implication for existing coastal defenses is that vegetation in front of an existing
levee can extend the useful design life of the levee by limiting the upper range of wave heights
at the toe of the structure (Hughes 2008). Thus, a levee designed for a certain standard of
protection can provide this functionality for longer with fronting vegetation. This will help
save the substantial costs associated with levee upgrades in high risk coastal areas that are
faced with increasing sea levels and/or a changing wave climate. This is a valuable feature as it
limits hydraulic loading on the levee even under dynamic conditions such as rising sea levels
and higher waves.

The results from the numerical model simulations suggest that wave attenuation within
emergent vegetation is not significantly affected by an increase in water depth. It is also likely
that this functionality is enhanced by the well-documented adaptive capacity of coastal
vegetation to keep pace with sea level rise through sediment accretion. Examples where these
concepts are implemented are found in Vietnam where large areas of mangroves are restored to
reduce levee maintenance (Reid and Swiderska 2008). In the Netherlands, a levee and willow
combination is currently constructed as part of the Room for the River program and will be
operational in 2016 (Borsje et al. 2011). The latter shows that vegetation levee combinations
can be designed, constructed and tested.

In this study, we have focused on foreshores with stiff woody vegetation that are
not fully submerged during high water levels as a proxy for mangrove or willow
forests and on wave conditions up to 1.5 m. However, the wave attenuation will be
less if vegetation is fully submerged (Moller et al. 2011), if the vegetation is more
flexible such as grasses or reeds (Mendez and Losada 2004; Mdller et al. 2011) or if
waves are higher and, thus, have longer periods (Mclvor et al. 2012a, b).
Additionally, wave attenuation through vegetation increases with the distance that
the wave travels over the vegetation and with vegetation height (Koch et al. 2009;
Shepard et al. 2011). Longer and higher waves will require longer vegetation stretches
for dampening. However, these waves may also cause structural damage to vegetation,
which is repeatedly reported during hurricanes and tsunamis (Cochard et al. 2008).

Nevertheless, it is likely that flexible vegetation also has a significant reduction effect that
will influence levee height (Moller and Spencer 2002; Moller et al. 2014). Yet, little research
has specifically looked into the combination of flexible vegetation with levees. To get a better
grip on the amount of reduction by flexible vegetation, species-specific and location-specific
traits, such as the biomass per square meter, stem flexibility and stem density need to be
known. Most of these factors are currently captured in the vegetation factor which includes a
drag coefficient that functions as a calibration factor for each vegetation type (Mendez and
Losada 2004). For mainstreaming vegetated foreshores into levee design and testing, further
validation of the vegetation factor and a better physical understanding of the drag coefficient
will improve reliability of modeling results. These improvements will allow us to better assess
the effect of the width of designed or existing vegetated belts, especially under changing wave
conditions.

Conventionally, coastal levees are designed to withstand a maximum wave height-water
level combination that occurs with a certain probability. By recognizing wave dampening by
vegetation as an adaptive capacity, levee designs can account for the non-linear wave reduction
effects of fronting vegetation rather than assuming a uniform reduction factor for all incoming
wave heights. Furthermore, due to the added safety level of this effect to existing dikes, the
decision to upgrade a dike to new safety levels, caused by changing conditions or for instance
subsidence, could be postponed, saving investments.
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5 Conclusions

Levees and dikes combined with vegetated foreshores can be considered promising climate
change adaptation measures due to their capacity to sequester and store carbon and to adapt to
changing external conditions. For example, they may be able to keep pace with sea level rise
(Kirwan and Megonigal 2013) and have a certain amount of self-repairing capacity by
reducing a broad range of wave heights to a small range of wave heights. In this way, they
have the potential to offer a cost-effective adaptation strategy that is relatively robust to
changing external conditions. Achieved reduction of levee height will also allow for a smaller
levee base, thereby needing less volume and decreasing the levee impact on subsoil compaction
and on the surrounding landscape. Levees combined with fronting vegetation can also be used for
simple and cheap, yet effective, flood risk reduction measures in areas where the level of risk does
not make a convincing case for hard engineering measures and where wave impact is an issue.

Including ecosystems into flood risk mitigation designs is not possible everywhere. In
urban areas, space is often a confounding factor and external conditions for suitable habitat
creation, restoration, or conservation, such as sediment availability and wave climate, should
be favorable. Further, in areas where levee height is determined by water level, fronting
vegetation will provide little benefits. Like for any engineering structure, a concern regarding
fronting vegetation for flood risk mitigation is to quantify uncertainties with regard to presence
and functioning under extreme events. Tackling some of these questions through monitoring
and experiments will allow wider implementation of vegetation and levee combinations and
further mainstream flood risk mitigation measures that include coastal and riparian ecosystems.
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