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ABSTRACT

The demand for air travel keeps growing at an exponential rate and this leads the aviation industry to have
even more of an adverse impact on the global climate and environment. The conventional tube and wing
design of an aircraft, despite experiencing steady improvement in its fuel economy over the last few decades,
can no longer keep up with this rise in demand. Novel aircraft designs like the Flying V, Prandtl Plane and the
Blended Wing Body show promise towards supporting sustainable aviation.

To gain insight into the flight mechanics behaviour of both conventional and unconventional aircraft,
Sub-scale Flight Test (SFT) is an effective method of testing during the preliminary stages of design. The
recent advancement in technology related to miniaturization of electronics and manufacturing techniques,
lead to building a more accessible SFT model. However, the effectiveness and the value of SFT is determined
by the similitude between the SFT model and the corresponding full-scale aircraft. To maximize the simili-
tude between the SFT model and the full-scale aircraft, the method of computational scaling is state-of-the-
art for SFT model design. Since this approach uses iterative computer-based disciplinary analyses, it is time
consuming and labor intensive. Given the limited time for SFT, the method of computational scaling for
designing a SFT model is often infeasible. Among the various analyses, the aerodynamic analysis takes the
most amount of time. Therefore, this thesis supports the computational scaling approach by speeding up the
aerodynamic analyses necessary to predict the flight dynamics behaviour.

In the past, the 3D-Panel Method was used for the aerodynamic analyses for the design of SFT model.
This surface-based method is computationally inexpensive, compared to other volume based Computational
Fluid Dynamics (CFD) methods. The method does not consider the effects of viscosity and it also employs
quasi-steady flow approximation for the analysis of dynamic behaviour. Although these engineering approx-
imations reduce the computational load, it also brings in a number of errors. This method has poor drag
predictions, fails to capture the effects of separation and shows insensitivity to changes in reduced frequency.

The limitations of the 3DPM can be overcome by using a CFD approach like Reynolds Averaged Naiver
Stokes (RANS) method that can both capture the effects of viscosity, and use a fully unsteady approach in
analyzing the dynamic behaviour. But this would be a very expensive computational approach, and therefore,
it was previously deemed to be an infeasible method to generate the aerodynamic database. Thus, in this
thesis, a multi-fidelity approach to generate the aerodynamic database for the SFT model design is developed.
This multi-fidelity surrogate model uses the RANS method as the high-fidelity method and 3DPM as the low-
fidelity method. A fusion-based Model Management Strategy is employed using co-kriging.

The multi-fidelity approach developed in this research, provides considerable value into generating the
required aerodynamic database. Compared to using a single-fidelity RANS method, this multi-fidelity surro-
gate model will be capable of generating the required aerodynamic database for one-fifth the computational
cost. This will help the computational scaling approach remain a feasible method for the design of SFT mod-
els. With the right SFT models, we will be able to gain insights into the flight behaviour of full-scale novel
aircraft designs, thereby getting a step closer towards more sustainable aviation.
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NOMENCLATURE

α = Angle of attack [deg]

αA = Amplitude of angle of attack [deg]

α0 = Mean angle of attack [deg]

ρ = Density of air [kg /m3]

µ = Dynamic Viscosity of air [Pa.s]

θ = Pitch angle [r ad ]

ζ = Scaling factor for multi-fidelity method

c = Reference chord length [m]

CL = Lift Coefficient

CD = Drag Coefficient

Cm = Moment Coefficient

Cx = Force Coefficient in x direction

Cz = Force Coefficient in z direction

Czα = ∂Cz
∂α

Cmα = ∂Cm
∂α

Cz = ∂Cz
∂

Cm = ∂Cm
∂

Czα̇ = ∂Cz
∂α̇

Cmα̇ = ∂Cm
∂α̇

M = Mach number

k = Reduced frequency

q = Pitch rate ∂θ
∂t [r ad/s]

Re = Reynolds Number

S = Reference Area [m2]

T = Time period of oscillation [s]

V∞ = Free stream velocity [m/s]

3DP M = 3D Panel Method

C F D = Computational Fluid Dynamics

DN S = Direct Numeric Solution

K BE = Knowledge Based Engineering

LES = Large Eddy Simulation

M AE = Mean Absolute Error

MD AO = Multi-disciplinary Design Optimization

M MG = Multi Model Generator

R AN S = Reynolds Averaged Navier Stokes

RMSE = Root Mean Square Error

SF T = Sub-scale Flight Test
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U DF = User Defined Function

V GM = Variable Geometry Model

V LM = Vortex Lattice Method



1
INTRODUCTION

1.1. CHALLENGES IN THE AVIATION INDUSTRY
The civil aviation industry has been growing exponentially with annual number of passengers nearing from
one billion in 1987 to two billion in 2005 and to over four billion in 2017[1]. As seen in figure 1.1, the industry
is expected to see an annual traffic growth of 4% over the next 20 years[2]. This growth will also have adverse
effects on the global climate and the environment. Civil aviation as a whole in 2019, was responsible for
emission of around 915 million tonnes of CO2, which accounts for global man-made emission of around
2.1% [3]. Global aviation is attributed with roughly 4% of the current anthropogenic climate change[4]. The
noise around airports also negatively impacts health [5, 6].

Figure 1.1: World passenger traffic evolution [1]

In order to mitigate the environmental and climate impact from the aviation industry, several strategies
are followed. These can mainly be categorized into three - the changes brought about by technology, changes
in operational methods and enforcing policies[7]. The technological changes relate to the improvement in
engines and air frame that result in lower drag and better fuel efficiency. There is also a focus on developing
alternative fuel that can reduce the impact on climate change[8]. Operational changes are those that are
achieved by optimizing the air traffic of aircraft on ground and in the air. Such changes can lead from 8% to
18% reduction in fuel burn[9]. Policies or regulations are set in place for certification of aircraft and engines,
that are enforced by global bodies like the International Civil Aviation Organization (ICAO). The adverse effect
that the aviation industry has, can be kept in check by having stricter policies in place. One such change, is
the Carbon Offsetting and Reduction Scheme for International Aviation(CORSIA) adopted by the ICAO, which
has regulations in place, in order to achieve carbon neutrality by 2050[10].

If the aircraft and the engines have to be certifiable in the future, they need to keep up with the stringent
regulations that are set in place, and technological changes will have a major role to play. The conventional

1



2 1. INTRODUCTION

tube-and-wing design of the commercial aircraft has seen a lot of improvement in fuel efficiency over the
last few decades. The Specific Fuel Consumption(SFC) of engines have improved by 40% from 1959 to 1995
while aerodynamic efficiency was improved by roughly 15%[11]. The major improvement in engines came
with the introduction of high bypass engines. While the the steady growth in aerodynamic efficiency, can
be attributed to the minor changes to the air frame, which is also a consequence of better materials that
improve structural efficiencies[11]. Figure 1.2 shows a qualitative graph depicting the progress in commercial
aircraft as compiled by Bravo-Mosquera et al.. The progress over the last four decades, is already approaching
asymptotic behaviour and to keep up with the demands, there is a need for radical changes in technology.

Figure 1.2: Compilation of progress in commercial aircraft [12]

Minor improvements to the conventional design will no longer be able to meet the economic, social and
environmental needs of the future. Therefore, there is a need to explore unconventional configurations [7,
8, 11, 12]. Novel aircraft designs like the Flying-V , the Blended Wing Body Aircraft, Multi-Fuel Blended Wing
Body and the Prandtl Plane (figure 1.3), show promise towards sustainable aviation[13].

(a) Blended wing body[14] (b) Prandtl plane[15]

(c) Flying V [16] (d) Multi-Fuel Blended wing body[17]

Figure 1.3: Unconventional aircraft designs
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1.2. ASSESSING THE FLIGHT BEHAVIOUR OF NOVEL AIRCRAFT DESIGNS
The novel aircraft designs need to meet the required safety standards, therefore, it is essential to know their
flight behaviour under various conditions. Manufacturing a prototype for flight testing, is both economically
unviable and risky during the initial stages of design [18]. Therefore, computer based simulation and physical
experiments on sub-scaled models are performed during preliminary stages.

With the current level of advancement in computer technology, engineers today, rely heavily on computer
simulation for analysing their design. This computational method involves iteratively solving the theoretical
model, that describes a particular phenomenon. Since the methodology avoids creation of a physical model,
it is usually the cheaper and sustainable alternative to physical tests[19]. The time required to perform a com-
putational simulation depends on the computational complexity of the theoretical model that needs solving.
An aircraft design involves designing with respect to multiple disciplines. These include the aerodynamics,
propulsion, noise and emissions, weights, structure, flight controls and manufacturing [20]. Consequently,
the behaviour of the aircraft is multi-disciplinary in nature. A theoretical model that captures the effects of
multiple disciplines is computationally very complex. The computations can be so complex that the cost of
the computational infrastructure required can even exceed those that of manufacturing a full-scale proto-
type. Even using the best of the computational facilities, the computational time required can far exceed the
life-cycle of an aircraft [21]. Therefore, engineers often need to make simplifications and approximations in
their computational approach which gives rise to errors called computational errors.

The experimental simulation often employs sub-scale models of prototypes to gain insights into the be-
haviour of the full-scale prototype[18]. Wind tunnel tests have been historically used to study the static be-
haviour. A complex experimental setup is required to study the dynamic behaviour using wind tunnel, which
usually makes it a less preferable method. The effects of horizontal buoyancy, solid blockage, wake block-
age and streamline curvature, that are often experienced in wind tunnels, lead to errors in the measured
behaviour of the test specimen [22]. Sub-scale Flight Test(SFT), involves testing a sub-scaled model of the
prototype with an onboard propulsion system. Building such a sub-scaled model has become more accessi-
ble with the recent advancement in technology, related to miniaturization of electronics and manufacturing
techniques [23]. This method of testing is very effective to study both the static and dynamic flight behaviour
of the sub-scaled model [24].

If the behaviour exhibited by the sub-scaled model is to be representative of that of the prototype, there
needs to be similitude between the sub-scaled model and the full-scale prototype. This is a necessity in order
to upscale the results. If we cannot establish similitude between the two, then the experimental approaches
that employ sub-scaled models, provide no value towards learning the behaviour of the novel aircraft design.
Two bodies in a flow are said to have Geometrical similarity if the ratio of geometrical dimensions are the
same everywhere. When the quantities associated with motion are the same everywhere, this is referred as
Kinematic similarity. Dynamic similarity is when the ratio of forces are same everywhere. For the flow to be
called similar it is required that all the Geometric , Kinematic and Dynamic similarity are satisfied simulta-
neously [25]. In practice, controlling the physical variables in order to maintain the same set of similarity
parameters is very difficult or impractical, and we end up not establishing perfect similitude between the
prototype and its scaled model[24]. Therefore these tests always contain scaling errors.

In order for SFT to be effective and provide value into learning the flight behaviour of the novel aircraft, the
SFT model requires careful designing, so as to ensure similitude. Historically, the classical similitude theory
was used in the design of SFT models. But this is a very simplistic approach that often fails to establish simil-
itude. The method of computational scaling is a state-of-the-art approach towards designing SFT models. It
uses computational methods to maximise the similitude between the prototype and SFT model design [18].
In the early stages, we do not know the behaviour of the full-scale prototype and therefore, we have no means
to validate the computational method used in the assessment of flight behaviour of the full-scale model. The
methodology of computational scaling would use computational methods to also assess the flight behaviour
of the sub-scale model. Although this is an additional step, the computational models that are utilized, can
always be validated in the early stages. The computational approach into establishing similitude means it is
a time-intensive process that often limits the use of this methodology into SFT model design. Therefore, a big
challenge in design of SFT model is having a time efficient computational scaling method.

1.3. PREVIOUS RESEARCH INTO SFT MODEL DESIGN
Raju Kulkarni et al. introduces a novel approach towards SFT model design, using the state-of-the-art com-
putational scaling approach [24]. The methodology employs the use of computational methods in a Multidis-
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ciplinary Analysis and Optimization (MDAO) framework, to maximize the similarity between the sub-scale
model design and the prototype of full-scale aircraft. A novel figure of merit called the Degree of Similitude
(DoS) was introduced, to quantify the similarity between the sub-scale design and the full-scale aircraft.

Figure 1.4: Method of testing and associated errors[24]

The figure 1.4 depicts the errors incurred with the various means of testing [24]. We are ideally interested
in the behaviour of the prototype which in this case is regarded as the Full-scale Experimental Response
(FER). Performing computational analyses on the computational model of the full-scale aircraft, results in
the Full-scale Virtual Response (FVR). The computational errors that result in this process are termed as Full-
scale computational error. Performing experimental simulation with a sub-scaled model of the prototype,
results in the Sub-scale Experimental response(SER). The errors that arise due to insufficient similitude are
called physical scaling errors. The computational scaling approach employs an additional step of performing
computational analyses on computational model of the sub-scale model. The behaviour exhibited is termed
as the Sub-Scale Virtual Response (SVR). The difference between the FVR and the SVR is called the Virtual
Scaling Error. The DoS is defined as the weighted sum of normalized virtual scaling errors and mathematically
represented as follows [24] :

DoS = 1− 1
n

n∑
i=1

wi ×
∣∣∣CiFV R −CiSV R

∣∣∣∣∣∣CiFV R

∣∣∣ ;
n∑

i=1
wi = 1 (1.1)

where, n is the number of selected aerodynamic coefficients, CiFV R is the i th relevant aerodynamic co-
efficient obtained by computational analysis of the full-scale model, CiSV R is the i th relevant aerodynamic
coefficient obtained by computational analysis of the sub-scale model and w is the degree of influence of
given aerodynamic coefficient [24].

The similitude is maximized by maximization of DoS. This maximization process is iterative and does not
come cheap. The aerodynamic analyses that are required in order to quantify DOS, are also iterative pro-
cesses. In order to analyze the large range of motions, the design space that needs exploration, is also large.
If the computational time of the aerodynamic analyses is large, then this methodology would be rendered
infeasible.

The input test parameters for obtaining the aerodynamic database for the aircraft of given SFT design are
- angle of attack, side slip angle, Mach number, roll rate, pitch rate, yaw rate and control surface deflection.
Considering the lower end, for a clean configuration we would have to consider 3 angles of attack, 3 side slip
angles , 2 Mach numbers, 2 roll rates, 2 pitch rates and 2 yaw rates which would result in 144 cases. And
the control surface deflected configuration needs to be simulated for at least 3 angles of attack, 3 side slip
angles , 2 Mach numbers and 2 control surface deflections which is a total of 36 cases per control surface.
Practically, when we take more than the bare minimum number of arguments for each variable, the number
of evaluations to be made are over 1000 as can be seen in the work of [26].
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Since there are a large number of cases to solve in order to obtain the database, there is a need for
a method that can make fast evaluations. The 3DPM was found out to be the optimal method for this
application[27]. In the field of Computational Fluid Dynamics (CFD), this is a fairly low-fidelity method.
Using this method for the aerodynamic analyses, the computational time required for the generation of aero-
dynamic database is roughly around 50 hours [26]. For similar set of evaluations, if higher fidelity method
like RANS were to be used, it would roughly take 250 days of computational time with similar computational
power.

1.4. RESEARCH OBJECTIVE AND RESEARCH QUESTION
The 3DPM that was used in the previous research was able to generate the aerodynamic database at afford-
able cost. This ensured the process of computational scaling approach to still be a feasible method into
designing SFT model. The reduced computational cost also results in reduced accuracy of the computational
method. The 3DPM method ignores the effects of viscosity which leads to poor prediction of drag character-
istics and an inability to predict effects of stall. Furthermore, the dynamic derivatives of the aerodynamic co-
efficients, which are essential into learning the dynamic behaviour, are obtained by means of a quasi-steady
approach. The quasi-steady approach into the study of fully unsteady phenomenon results in the method
showing an insensitivity towards the changes in reduced frequency, associated with a given dynamic motion.
Due to lack of experimental data for dynamic behaviour, the uncertainties associated with the corresponding
evaluations made by the 3DPM remain unknown.

Higher fidelity CFD method like RANS has the potential to cover the drawbacks of the 3DPM. The method
models the effects of viscosity and turbulence to a decent degree, and is known to give reasonable predictions
of viscous drag and effects of separation [21]. This method allows for simulating a fully unsteady flow, in order
to capture the dynamic behaviour of the aircraft. Due to the large computational costs associated with this
method, the previous research had to settle for the use of 3DPM, for generating the aerodynamic database as
required in the SFT model design.

This research will focus on developing a multi-fidelity approach, towards generating the aerodynamic
database, for SFT model designs. This will be achieved by using the previously used 3DPM as the low-fidelity
method and the RANS methods as the high-fidelity method. A fusion-based model management strategy is
employed. The fusion will be brought about by co-kriging and the resulting surrogate model will be referred
to as the multi-fidelity, kriging-based surrogate model. The main research question would be,
’What is the impact of utilizing a multi-fidelity approach in the generation of aerodynamic database as
compared to the classical single-fidelity methods?’

This could be broken down into the following sub questions:

• What are the costs associated with using the high-fidelity method and can they be minimized?

• How accurate is the low-fidelity method relative to high-fidelity method?

• What are the cost and accuracy of the multi-fidelity surrogate model?

• Does the multi-fidelity surrogate model actually show any value compared to using a surrogate-based
high-fidelity approach?

The answers to the above questions would help us assess the overall impact of the proposed methodology
and if it is a viable approach in the aerodynamic assessment of SFT model design.

1.5. SCOPE OF THESIS
For any research, it is important to highlight the scope, bounds and the assumptions that are made. This
research would mainly focus on improving the aerodynamic analysis part of the methodology laid out by
Raju Kulkarni et al. for the assessment of sub-scale designs. Due to time restraints the following bounds are
set:

• Upon going through the various fidelity levels for aerodynamic analysis, this research will only investi-
gate one method that would seem like the best fit.

• The previous aerodynamic analysis process was already automated and therefore this research will only
compare the time it takes to solve the relevant governing equations while assessing the feasibility.
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• Only longitudinal direction will be taken into consideration for generating the database.

• Since the research only pertains to sub-scale designs where the Mach number of the flow is low, the
simulation will be carried out for a fixed Mach number.

• This research mainly focuses on capturing the dynamic behaviour, the control surface deflected con-
figuration will not be considered.

• The previously used 3DPM could only simulate for pitch in a quasi-steady approach and is incapable of
simulating plunge. Therfore only pitching motion is considered for assessment of dynamic behaviour.

• Therefore, the simulation will be carried out for a range of angles of attack and pitch rate. The figure 1.5
shows the inputs and outputs that would be considered in this research.

Figure 1.5: Inputs and Outputs

1.6. OUTLINE OF THESIS
The chapter 2 will provide a background into multi-fidelity methods, CFD and computation of dynamic
derivatives. It will also discuss the methodology adopted in this research. Chapter 3 will contain the veri-
fication and validation of the methods that were followed in this research. The results of the grid dependence
studies conducted during this research are discussed in chapter 4. The first research sub-question will be
answered here. The main findings of this research, which is the impact of using a multi-fidelity approach
are discussed in the chapter 5. The answers to the remaining sub-questions will be found in this chapter.
This thesis will end with the chapter 6, which will consist of the conclusion and recommendation for future
research.



2
BACKGROUND AND METHODOLOGY

The method of computational scaling for design of SFT models requires a comprehensive aerodynamic database.
This database needs to be generated in a reasonable time frame. Otherwise the whole design process be-
comes infeasible. The 3DPM was previously used to perform the required aerodynamic analysis and gener-
ate the database. It was an optimal choice, since methods like RANS are computationally very expensive [27].
The figure 2.1 shows the accuracy and errors related to various methods. We need a method of generating the
aerodynamic database, that would be almost as accurate as RANS, while not being being computationally as
expensive. Therefore, a multi-fidelity surrogate model using the two methods is developed in this research.

Figure 2.1: Accuracy and error of various CFD methods

The section 2.1 provides a background into multi-fidelity methods. The multi-fidelity methodology adopted
in this research, is discussed in section 2.2. A background to the CFD methods shown in figure 2.1, is given
in section 2.3. The section 2.4 discusses the methodology of obtaining the dynamic stability derivatives that

7



8 2. BACKGROUND AND METHODOLOGY

make up the aerodynamic database. Finally the section 2.5, summarizes the multi-fidelity approach pro-
posed in this research and discusses the computational setup used.

2.1. MULTI-FIDELITY METHODS
Computational methods involve solving a set of mathematical equations that govern a physical phenomenon.
This set is referred to as the mathematical model. Therefore the terms method and model mean the same in
this context. Fidelity of a computational method or computational model refers to how accurate the method
is into simulating the reality. Multi-fidelity models or multi-fidelity surrogate models are methods that em-
ploy two or more computational methods of varying levels of fidelity to generate the data of interest[28].
According to Peherstorfer et al., the two key requirements for creating a multi-fidelity model are low-fidelity
model for a given computational model, and a model management strategy. The subsection 2.1.1 will dis-
cuss the methods of obtaining low-fidelity models and the following subsection 2.1.2 will discuss the model
management strategies that are often employed. The figure 2.2 shows an overview of creating a multi-fidelity
surrogate model.

2.1.1. LOW-FIDELITY MODEL
Simplified models are those derived from the the high-fidelity models by exploiting the domain expertise
and knowledge of implementation that form the high-fidelity method. In the field of CFD, the Large Eddy
Simulation(LES), RANS, Euler methods, Potential flow methods are derived from the Direct Numeric Simu-
lation(DNS) by making certain engineering assumptions, and they consequently lead to models that can be
evaluated faster compared to solving the full set of underlying equations. This is an example of using the
domain expertise. More details about these will be discussed in section 2.3. Solving the set of equations re-
quires discretization, and discretizing the domain into coarser grid would result in lesser computation time
as compared to that of solving on finer grid. This is how the knowledge of implementation can be exploited
in order to create a low-fidelity method by simplifying the high-fidelity[28].

Projection-based models are the surrogate models obtained by exploiting the mathematical structure of
the problem. Projecting the governing equations onto a low-dimensional subspace that is constructed to re-
tain the characteristics of the system input-output map, yield the surrogate model. Examples include Proper
Orthogonal Decomposition, Reduced basis method, Krylov sub spaces , Dynamic mode decomposition etc.
[28]

Data fit models are low-fidelity models that are created by curve fitting the given inputs and outputs from
the high-fidelity model. These are constructed by fitting the coefficients of the linear combination of the
basis function by interpolation or regression to inputs and the corresponding outputs. Examples include the
method of least squares, Lagrange polynomials, Piece-wise polynomial interpolation, Radial Basis Method,
Kriging etc.

2.1.2. MODEL MANAGEMENT STRATEGY
Adaptation is a model management strategy wherein the the data from the low-fidelity model is continuously
enhanced by data from high-fidelity method. In Efficient Global Optimization, a kriging model is adapted
in each iteration of the optimization process and high-fidelity evaluations are invoked when the variance
predicted by the kriging model is large [29]. Another example is the use of additive or multiplicative updates
to the low-fidelity model, based on the difference or ratio of the sampled set of low-fidelity and high-fidelity
evaluations. The correction models are usually based on Taylor series expansion or Gaussian process models
like kriging [30].

Fusion is model management strategy that deals with evaluation of low-fidelity and high-fidelity outputs
and then combining the data from all outputs. Examples for these include the control variate framework and
co-kriging [28].

In Filtering, the high-fidelity model is invoked when the low-fidelity model is considered to be inaccurate
based on a low-fidelity filter or the candidate point meets certain criteria as output from low-fidelity evalua-
tion. Example for these include importance sampling, Multistage Markov chain Monte Carlo algorithm and
multi-fidelity stochastic collocation [28].
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Figure 2.2: Schematic representation of Multi-fidelity Surrogate modelling

2.2. MULTI-FIDELITY SURROGATE MODEL FOR AERODYNAMIC ANALYSIS
This research developed a multi-fidelity surrogate model using RANS as the high-fidelity method and 3DPM
as the low-fidelity method. For the model management strategy, co-kriging is a highly suitable choice. The
method already shows the benefits of employing such a model management strategy for fusing the Euler and
RANS data for static simulation of a 2D airfoil [31, 32].

Kriging is an unbiased data fit model that takes into consideration the closeness, spatial continuity and
the redundancy of the available data while predicting the value at an unknown location. The unknown value
the random function Z at location X0, can be constructed as a linear combination of the known values at Xi

[33]. This is represented by the equation 2.1.

Z (X0) =
n∑

i=1
λi Z (Xi ) (2.1)

The weights λ are found such that the variance of the prediction is minimized. This leads to solving
the following set of equations represented by 2.2. The method followed in this research is called ordinary
kriging. Here the mean is assumed to be stationary but unknown. The unknown mean is evaluated directly
by solving the set of equations with this added constraint. A detailed breakdown of each of the intermediate
steps involved in this method can be found in appendix A.

n∑
i=1

λ j Cov(Z (Xi ), Z (X j )) =Cov(Z (X j ), Z (X0)) wher e j = 1,2....n (2.2)

The covariance between two points are obtained as the product of the correlation function ψ and the
variance si g ma for random variable function. This is shown in equation 2.3.

Cov(Z (Xi ), Z (X j )) =σ2ψ(Xi , X j ) (2.3)

Multi-fidelity kriging or co-kriging, predicts the high-fidelity values of the function Zh(X ) as a scaled
value of a low-fidelity function Zl (X ) and a discrepancy function Zd (X ) which is a Gaussian random function[34].
This is shown in equation 2.4 where ζ is the scaling factor.

Zh(X ) = ζZl (X )+Zd (X ) (2.4)

The covariance matrix evaluation in the case of ordinary kriging only involved a single random function.
This time there are three matrices that correlate the two fidelity levels involved. The set of extra covariance
matrix definitions are shown in equation 2.5. The subscript ’l’ and ’h’ refer to the quantities associated with
the low-fidelity function and high-fidelity function respectively.
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Cov(Zl (X ), Zl (X )) =σ2
l ψl (Xl , Xl )

Cov(Zh(X ), Zl (X )) = ρσ2
l ψl (Xl , Xh)

Cov(Zh(X ), Zh(X )) = ρ2σ2
l ψl (Xl , Xl )+σ2

dψd (Xd , Xd )

(2.5)

By solving the modified matrices, one can obtain the multi-fidelity kriging prediction. This research will
use the 3DPM as the low-fidelity model while using RANS to obtain the high-fidelity samples. The scaling fac-
tor ζ will be assumed to be a constant. When ζ= 0, the multi-fidelity kriging reduces to ordinary kriging. The
multi-fidelity surrogate model is not able to leverage any information from the low-fidelity model. In order
to assess if the low-fidelity method is truly impacting the multi-fidelity model, the results of ordinary kriging
will be used as a secondary reference. This would serve as a control group for the study. Mean Absolute Error
and Root Mean Square Error will be used as error metrics in this research. The mathematical definitions are
shown in equation 2.6 and 2.7 respectively.

M AE = 1

N

∣∣∣∣∣ n∑
i=1

(
Z r e f (Xi )−Z (Xi )

)∣∣∣∣∣ (2.6)

RMSE =

√√√√√ n∑
i=1

(
Z r e f (Xi )−Z (Xi )

)2

N
(2.7)

The figure 2.3 shows the schematic diagram of the multi-fidelity analysis developed in this research. A
background to CFD methods used for in this approach, will be provided in the next section.

Figure 2.3: Multi-fidelity Aerodynamic Analysis

2.3. COMPUTATIONAL FLUID DYNAMICS
Computational Fluid Dynamics (CFD) as the name suggests is the technique of computationally analysing
the fluid flow around/in a body by solving a set of governing equations. There are three main processes to
CFD:

• Pre-Process- This is where the geometry of the body is generated and discretized/meshed , the fluid
domain, boundary conditions and fluid properties are defined and appropriate governing equations
and solver settings are chosen.

• Solving - This is where the system of equations are iteratively solved until the required convergence
conditions are satisfied.

• Post-Process - The solution thus obtained are analysed and graphical representation are created.

The fundamental governing equations for the fluid flow, used in CFD analysis are given below [25]:
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Using the laws for conservation of mass the following differential equation is obtained as the following is
called the continuity equation.

∂ρ

∂t
+∇⃗.(ρv⃗) = 0 (2.8)

where ρ is fluid density and v⃗ is the velocity vector
Applying the laws of conservation of linear momentum we arrive at the momentum conservation equa-

tion more commonly known as the Navier-Stokes Equation.

∂v⃗

∂t
+ (v⃗ .⃗∇)ρv⃗ = g⃗ − ∇⃗p

ρ
+ µ∇2v⃗

ρ
(2.9)

where g⃗ is acceleration due to body forces, p is fluid pressure and µ is the kinematic viscosity.
Ignoring the body forces, the Navier-Stokes Equation is often represented in its multi-index form as[35],

∂ui

∂t
+ ∂ui u j

∂x j
=− 1

ρ

∂p

∂xi
+ ∂

∂x j

(
µ

ρ

∂ui

∂x j

)
(2.10)

Utilizing the laws of thermodynamic energy balance we can derive the following energy equation.

ρ
D−→v
Dt

+−→∇ .(ρ−→v −→v ) =−p
−→∇−→v +−→∇ (k

−→∇T )+Φ+S (2.11)

where k is coefficient of conductivity, T is Temperature, Φ is viscous dissipation term and S is the source
term.

The chaotic changes in fluid pressure and velocity which are characteristics of turbulence is a widely
observed phenomenon in everyday life and is crucial for analyzing fluid flows. There is still no theory that
explains turbulence, however, the effects can be calculated by solving the full set of governing equations
prescribed by equations 2.8, 2.9 and 2.11. This method is called the Direct Numeric Simulation (DNS).

To resolve all the turbulent scales in space and time, the number of discretized grid points required is pro-
portional to the cube of Reynolds number. For aerospace applications Reynolds number is around the order
of 106 which gives the requirement of about 1018 grid points. Solving for this entire set is computationally
extremely expensive and almost impossible even with today’s computational resources. It is impractical for
most every-day engineering simulations[21].

Even though DNS can potentially give the exact solution and is of highest fidelity in CFD, it is not suited
for engineering applications. Resolving the smallest of the turbulent structures by solving the set of governing
equations is what brings in the complexity in DNS and makes it impractical. Since most energy and momen-
tum are carried by the larger turbulent structures/large eddies, the flow can be spatially filtered to separate
the small and large scale turbulent structures. The flow is solved for the large eddies while a model is used
to resolve the smaller eddies. This is method of solving is called the Large Eddy Simulation (LES) and is
practically of the highest fidelity employed in engineering CFD applications[25].

Although LES is capable of capturing the turbulence effects very well, it is still computationally very ex-
pensive to employ. In Reynolds Averaged Navier-Stokes (RANS) method, the Navier-Stokes equation 2.10
is rewritten by statistically averaging the instantaneous components involved and upon solving these set of
equations we obtain averaged solution over the whole domain where the turbulence is modelled everywhere;
from the smallest to the largest of the scales[21].

We can split an instantaneous component ui into its mean 〈ui 〉 and a fluctuation part ui
′ as follows

ui = 〈ui 〉+ui
′ wher e 〈ui 〉 = 1

N

N∑
l=1

ui |l (2.12)

Applying the averaging function we rewrite the equation in 2.9 as

∂〈ui 〉
∂t

+ ∂〈ui 〉
〈

u j
〉

∂x j
=− 1

ρ

∂
〈

p
〉

∂xi
+ ∂

∂x j

(
µ

ρ

∂〈ui 〉
∂x j

)
− ∂Ri j

∂x j
(2.13)

Ri j = ρ
〈

ui
′u′

j

〉
is the Reynolds Stress Tensor and it needs to be modelled by a set of transport equations.

Depending on the number of of equations involved in the set of transport equations, the RANS turbulence
models in increasing fidelity levels are[36]:



12 2. BACKGROUND AND METHODOLOGY

• Prandtl, zero equation model

• Spalart-Allmaras (SA), one equation model

• Standard k-ϵ, two equation model

• Standard k-ω, two equation model

• Shear Stress Transport (SST) k-ω, two equation model

• Reynolds Stress Model, seven equation model

There is no one model that is suitable for all flows and often each model is developed to best capture the
turbulence effects for a given flow. In the field of aviation, the SA and the SST RANS models are widely used
because they are relatively less expensive methods for capturing the averaged turbulence effects[36]. The SA
model is cheaper compared to SST and will be used in this research for the aerodynamic analysis.

In the field of aviation which deals with high Reynolds and Mach number, the contribution from the
viscous terms are negligible as long as the flow is not separated [21]. The Euler equations are the inviscid flow
equations which can be formulated as the limiting case of Navier-Stokes equation where the viscosity tends
to zero. The equation in 2.9 therefore becomes[25]:

∂v⃗

∂t
+ (v⃗ .⃗∇)ρv⃗ = g⃗ − ∇⃗p

ρ
(2.14)

This is the Euler method. Solving this set of equations is computationally cheaper than RANS and pro-
vides fairly accurate results when the main focus is to find the lift distribution resulting from the pressure and
velocity distribution. They still account for compressibility and non-linear effects in the governing equation.
This method is the cheapest among methods that utilize volume mesh.

By neglecting the body forces and taking the curl of the Navier-Stokes equation in 2.9, the equation takes
the following form

ρ
∂
−→
ζ

∂t
+ρ(−→v .

−→∇ )
−→
ζ +ρ−→ζ .

−→∇−→v =µ∇2−→ζ (2.15)

where the
−→
ζ = (

−→∇ ×−→v ) is the vorticity.

If we assume an irrotational flow, then the vorticity
−→
ζ = 0 and for a scalar functionφ the following identity

holds true.

−→∇ × (
−→∇φ) = 0 wher e −→v =−→∇φ (2.16)

The scalar function φ is called the velocity potential function and we can obtain the velocity field as the
gradient of this function and this method is called the potential flow method[25]. Often a source or a sink
term is used with finite vorticity strength and the solution is obtained by integrating and superimposing the
solutions that arise from uniform flow and vortices. The 3DPM and Vortex Lattice Method (VLM) are potential
flow based methods.

In 3DPM, the flow around the airfoil is modelled as the summation of uniform series of vortex panels on
the body which forms a closed polygon that approximates the shape of the body. Each panel has a linearly
varying vortex strength such that the strength of end of a panel is same as the strength of the next panel.
Using this basis the Laplacian shown in equation 2.16 is solved in order to obtain the pressure and velocity
distribution. This provides a time effective way to compute lift [25]. Unlike the previous methods, this method
only requires a surface mesh for analysis.

VLM utilizes the Lanchester–Prandtl lifting line theory or the Lanchester–Prandtl wing theory to model
the aerodynamic lift characteristics. The lifting line theory is a mathematical model which predicts the aero-
dynamic properties for a wing of finite span. It simulates a finite wing by a number of horseshoe vortices
distributed across the span which constitute to the lifting line. The trailing vortices formed induces a down-
wash which modifies the local angle of attack at that section[37]. Using such a method the Laplacian shown
in equation 2.16 is solved to compute the pressure and velocity distribution. This method is faster than the
vortex panel method since it does not consider the actual thickness of the body and only considers the lifting
surfaces for solving but it also results in loss of accuracy.

Utilizing the methods discussed in this section, one can obtain the pressure/velocity distribution around
the body in the flow. The forces and moments on the body can be computed from this distribution. The
method of computing the dynamic stability derivatives will be discussed in the next section.
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2.4. DYNAMIC STABILITY DERIVATIVES OF AN AIRCRAFT
The evaluation of dynamic stability derivatives are important in the assessment of stability, control and han-
dling characteristics of an aircraft[38]. These dynamic derivatives in this research will be obtained from the
classical forced oscillation method. This research restricts the dynamic motion of the aircraft in the longitu-
dinal direction only. The dynamic motion of the aircraft in the longitudinal direction concerns the pitch and
the heave motion of the aircraft. The forces and moments experienced by an aircraft are a function of angle of
attack and the freestream velocity. The dynamic motion results in a change of these quantities, which change
the forces and moments experienced by the aircraft. The equation 2.17 shows the Taylor series expansion for
the normal force coefficient of the aircraft.

Cz =Cz0 +Czαα+Czα̇ α̇
c

2V∞
+Czq q

c

2V∞
+Czq̇ q̇

(
c

2V∞

)2

(2.17)

When the aircraft purely pitches/rotates about a reference point, the angle of attack is also changed by
the same amount. In the case of plunging motion (also called heaving motion), the vertical velocity that the
aircraft experiences results in change of angle of attack. These are illustrated in figures 2.4 and 2.5 respectively.
A combination of pitching and plunging is called a flapping motion[39]. In this case, the effective change in
angle of attack is the superimposition of the two.

Figure 2.4: Change in angle of attack with change in pitch

Figure 2.5: Change in angle of attack with change in vertical position

In the forced oscillation method, the aircraft is given a sinusoidal excitation of the following equation

α=α0 +αA . sinωt (2.18)

The equation 2.17 now takes the form of

∆Cz =αA(Czα −k2Czq̇ )sin(ωt )+αAk(Czα̇ +Czq )cos(ωt ) (2.19)

where k = ωc
2V∞ is the reduced frequency and ∆Cz =Cz −Cz0

The LHS of equation 2.19 is obtained by CFD methods that can simulate unsteady flow. In this research, it
is RANS. The unknown derivatives on the right can then be obtained by performing inverse Fourier transforms[40].
If we ignore the effects of the higher derivative q̇ , then we have the following equations

Czα =
2

αAnT

nT∫
0

∆Cz (t )sin(ωt )d t (2.20)
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Czα̇ +Czq = 2

kαAnT

nT∫
0

∆Cz (t )cos(ωt )d t (2.21)

where n is the number of cycles and T is the time period. Similar equations hold true for the moment
coefficient.

Czα̇ +Czq is called the combined dynamic derivative. When the aircraft is in pure-pitching motion, (see
figure 2.6) the combined derivative contains both the contribution from α̇ and q . While the input motion
is a pure plunging motion, (see figure 2.7) the combined derivative only contains the contribution of α̇. A
pure flapping motion (see figure 2.8) is where the change in angle of attack caused by pitching is negated by
that caused by plunging. In such a case, the combined dynamic derivative contains only the contribution by
q . Therefore, in order to separate each contribution, one has to simulate any two of the above three input
motions[38]. The derivatives obtained on respective simulation are shown schematically in figure 3.2. Since
the quasi-steady method from 3DPM does not have the means to separate the individual components, and
always gives the combined derivatives, this research will only simulate the pitch motion in order to obtain the
combined derivatives in the longitudinal direction. The aerodynamic database will also contain the lateral
and directional dynamic derivatives. The same approach can be followed using RANS to compute those
derivatives. The figure 2.9 shows a schematic diagram of the motion and the associated derivatives across all
directions.

Figure 2.6: Harmonic pitching motion of the aircraft [39]

Figure 2.7: Harmonic plunging motion of the aircraft[39]
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Figure 2.8: Harmonic flapping motion of the aircraft [39]

Figure 2.9: Dynamic derivatives across all directions [38]

The 3DPM which uses the quasi-steady method, cannot be used to compute the dynamic derivative us-
ing forced oscillation method. The quasi-steady method essentially solves the same steady-state equations
with a modified velocity field [27]. The velocity field is modified to include a radial component of the velocity
based on the pitching frequency as seen in figure 2.10. The dynamic derivatives are obtained from the dif-
ference between the coefficients of the quasi-steady and the steady method and is given by equation 2.22.
The drawback with this method is that it is insensitive to changes in reduced frequency. Furthermore, there
were no experimental results to quantify the errors in the dynamic stability derivatives that were computed.
The dynamic derivatives computed from RANS in this research, will serve as a reference to quantify the errors
relative to a method of higher fidelity.

Czq +Czα̇ =
CQS

z −C S
z

k
(2.22)



16 2. BACKGROUND AND METHODOLOGY

Figure 2.10: Modification of the flow-field for quasi-steady simulation

Figure 2.11: Activity diagram for forced oscillation method
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In order to obtain the dynamic derivatives with the method of forced oscillation, we first need to perform
a steady-state analysis at given angle of attack. The pre-process requires the availability of a volume mesh
and setting up of the required boundary conditions. Since this is a steady-state analysis, the solution can be
initialized by using the inlet boundary condition or hybrid initialization[41]. The solution of the steady-state
analysis will be used as initial condition for the dynamic analysis. The Cz0 required in 2.19, is the steady-state
normal force coefficient at given angle of attack. The Cz is the dynamic normal force coefficient obtained
from the unsteady simulation. This is the output response of the aircraft for the forced harmonic excitation.
The harmonic motion is implemented by means of mesh motion. The static and dynamic derivatives can be
obtained by performing inverse Fourier Transforms as given by equation 2.20 and 2.21. The activity diagram
for obtaining the static and dynamic derivatives using the forced oscillation method, is shown in figure 2.11

2.5. METHODOLOGY AND COMPUTATIONAL SETUP

This section summarizes the multi-fidelity approach into generating the aerodynamic database, and dis-
cusses the computational setup used in this research. Furthermore, a brief background into the motivation
for the upcoming chapters is discussed here. Figure 2.12 shows the generic activity diagram to obtain multi-
fidelity aerodynamic database using co-kriging.

Figure 2.12: Activity diagram for obtaining multi-fidelity database
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In this research, the aerodynamic analysis of Variable Geometry Model(VGM) is performed. VGM is a 8.8%
geometrically scaled model of the Cessna Citation II 550[26]. The motion is restricted to the longitudinal di-
rection. The multi-fidelity aerodynamic database is generated using RANS as the high-fidelity method and
3DPM as the low-fidelity method. Generating the geometry and creating a mesh is part of the pre-processing.
In step 1a, the geometry of the aircraft is created using SpaceClaim, a software owned by ANSYS. The mesh is
then generated using ANSYS meshing in step 2a. Guidelines from the work of Gottee et al. are followed while
creating the mesh for RANS. The geometry (1b) and mesh (2b.) as required for the 3DPM is generated by the
Multi Model Generator(MMG) which is an in-house tool developed at TU Delft. This is a Knowledge-Based
Engineering (KBE) application that supports aircraft MDAO [43]. The pre-processing is usually intensive be-
cause of the manual labor that is involved. The MMG automates this process for the 3DPM. Therfore, the
time required for pre-processing of the two methods will not be compared.

ANSYS Fluent is the commercial CFD solver used to solve the RANS model in step 3a. The user manual
and the tutorial manual of this software, provide guidelines for optimal solver settings and solution strategies
[36, 41]. The recommended settings and solver strategies are used, and they will be highlighted in chapter
3. The step 3b utilizes the commercial software Flightstream, for solving the 3DPM. Obtaining the dynamic
derivatives through forced oscillation method using RANS requires the implementation of mesh motion. The
harmonic pitching motion of a body is not a part of the standard package provided by Ansys. User Defined
Function (UDF) needs to be used to generate the required motion[44]. This script is compiled using Microsoft
Visual studio and loaded within the software before solving the case. The dynamic derivatives are obtained
by post-processing the solution obtained in step 3a. This is done using a script that runs on the commercial
software MATLAB. The process of obtaining the dynamic derivative required creating the necessary script
files. Therefore, the process will be verified in section 3.2 of chapter 3. Flightstream readily outputs all the
required data for the generation of the low-fidelity aerodynamic database (4b). The high-fidelity aerodynamic
database (4a) would be a sparse set of data containing results at sample locations.

In step 5, the sparse high-fidelity database and the dense low-fidelity database will be fused using co-
kriging. This forms the multi-fidelity surrogate model developed in this research. Using this, we obtain
the multi-fidelity aerodynamic database (6). Once again, this code was developed in-house. Therefore, this
multi-fidelity surrogate model is first validated in section 3.3 of chapter 3. Note that the steps 1b, 2b and 3b
were not performed during the thesis. The low-fidelity aerodynamic database (4b) was readily available and
obtained from the author Raju Kulkarni et al..

The specifications of the computer used in this research are shown in table 2.1. The comparison of com-
putational time is only restricted to the solving part of the CFD and will not include the pre-processing time.
Furthermore, the time corresponds to computational wall time which is the real time it takes for solving a
given computational model, with all the cores working in parallel. The process can be sped up by using more
cores in parallel, thereby reducing the computational wall time. From the work of Epanchintsev et al., it can
be seen (figure 2.13), that the gains start to decrease after a certain point. In a parallel process, a task needs
to be distributed between the cores and information exchange has to take place. The tasks may not be al-
ways equally distributed. This results in some of the cores remaining idle until all other complete their share
of tasks. When these offsets overtake the gains of parallel processing, we see a reduction in speed up [45].
This research did not study the impact of the number of cores on the computational wall time. During the
research, a single node on the High Performance Computing (HPC) cluster at TU Delft was reserved, and all
20 cores of that node were used for computation.

Product Intel Xeon Processor
Processor Number E5-2660v3
Number of cores 20
Base Frequency 2.6GHz

Total RAM 128 GB
Cache 25MB

Table 2.1: Specifications of the computer used in the analysis
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Figure 2.13: Speedup in computational time with increasing number of CPU cores [45]





3
VERIFICATION AND VALIDATION

The verification and validation of the computational methods used in this research are discussed in this chap-
ter. The section 3.1 begins with validating the RANS method by comparing the static results to that obtained
from wind tunnel experiment. The process of obtaining the dynamic derivative using the forced oscillation
method is verified in section 3.2. This study did not make use of commercial tools for multi-fidelity surrogate
model. Instead an in-house application was developed. This will be validated in section 3.3.

3.1. VALIDATION OF VGM
In this section, the static results obtained from steady state RANS for the VGM are validated using the wind
tunnel results from the previous work of Raju Kulkarni et al.. Furthermore, the results from 3DPM data are
also used to highlight the accuracy between the 3DPM and RANS. The wind tunnel tests on the VGM was
carried out in the Low Turbulence Tunnel(LTT) at the Delft University of Technology. This is a low-speed,
closed return wind tunnel with test-section dimensions of 1.8m × 1.25m. The turbulence measured in the
wind tunnel was less than 0.1% [24]. The figure 3.2 highlights the key dimensions of the VGM. The setup of
the physical model of the VGM in the LTT is shown in figure 3.1.

Figure 3.1: Wind tunnel setup of VGM [24]

21
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Figure 3.2: Dimensions of VGM

The RANS method was used to simulate the static behaviour for a Reynolds number of 500,000 and a
Mach number of 0.13. The nose of the aircraft is at the origin and a rectangular domain of 45m ×30m ×30m
is used. Relative to the origin, the domain extends 30m in the downstream direction and 15m in every other
direction. Furthermore, in order to have better resolution of the wake in the proximity of the aircraft, a body
of influence in the shape of an elliptical cylinder is used. This has a semi-minor axis of 0.5m, semi-major axis
of 3m and a width of 2m. The domain and the zoomed in image of the body of influence are highlighted in
the figure 3.3.

(a) Domain (b) Body of influence

Figure 3.3: Geometry used for the simulation of VGM

A tetrahedral unstructured mesh with 19.6 million cells and 6.1 million nodes is used in the simulation
of both the static and the dynamic simulation of the VGM throughout this research. In order to resolve the
boundary layer, 20 prism layers are used with the initial cell height of 8×10-6m and a growth ratio of 1.175.The
maximum element size within the body of influence region is restricted to 5× 10-2m. The mesh was con-
structed using the commercial software ANSYS Mesher following the best practices in this field of study, that
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can be found in [42]. The figure 3.4 shows the resulting surface mesh that is used throughout this study. The
decision to use this mesh was based on a study where the influence of different types of mesh was investi-
gated. The results of this study will be discussed in the upcoming chapter along with other sensitivity studies
that were carried out.

Figure 3.4: Surface mesh of the VGM

The static simulation is carried out for angles of attack from -5 to +14 degrees in steps of 1 degree. A
pressure-based solver is used with the steady formulation. The SA-Turbulence model is used with Sutherland
formulation for the viscosity model. Pressure outlet boundary condition is used on the face downstream of
the flow while velocity inlet conditions are used for the remaining five faces in the domain. The choice of
the various solver setting that will be discussed here are based on following the tutorial manual provided by
Ansys. [41]. Turbulent viscosity ratio of 10 is used for the boundaries which is a default value provided by the
software. Coupled scheme is used for the pressure-velocity coupling and Green-Gauss Node based scheme
is utilized for the gradient discretization. The solution is initialized using hybrid initialized scheme based on
the inlet and outlet boundary conditions.

A lower order scheme for interpolation offers more stability while solving but lacks accuracy when com-
pared to the higher order schemes. Under relaxation factors are used for faster convergence. Higher value
leads to slower convergence. Therefore the solution is obtained by performing first few iterations of lower
order scheme with lower relaxation factor, followed by higher under relaxation factors at higher orders of in-
terpolation schemes. This ensures that the intended solution quickly moves towards an approximate value
with increased solver stability, and once the solver is stable enough it can move towards the solution as pre-
dicted by that of higher order schemes. The order of the schemes and under relaxation factors that are used
for in this simulation are highlighted in table 3.1 and 3.2 respectively. The Ansys user Guide provides us with
the optimal strategies for solving different CFD problems [36].

Interpolation Scheme First 50 iterations Following 250 iterations
Pressure First Order Second Order
Density First Order Third Order MUSCL
Momentum First Order Third Order MUSCL
Modified Turbulent Viscosity First Order Third Order MUSCL
Energy First Order Third Order MUSCL

Table 3.1: Order of interpolation schemes used in the steady state simulation
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Under relaxation factor First 50 iterations Following 250 iterations
Momentum 0.3 0.5
Pressure 0.3 0.5
Density 1 1
Body Forces 1 1
Modified Turbulent Viscosity 0.8 0.95
Turbulent Viscosity 0.8 0.95
Energy 1 1

Table 3.2: Under relaxation factors used in the steady state simulation

Temperature 288K
Pressure 1 atm
Density 1.225 kg/m3

Velocity 44.23 m/s
Reference Chord 0.165 m

Reference area 0.2179 m2

Viscosity 1.78 x 10-5 kg/ms

Table 3.3: VGM flow parameters

The mean aerodynamic chord or the reference chord length is 0.165m and the reference surface area
is 0.2179m2. The reference point for moment center used in this validation case is (0.680m,0m,-0.0565m).
This corresponds to the quarter-chord location of the central section of the main wing of this aircraft. The
flow parameters corresponding to the Mach number and Reynolds number are listed in the table 3.3. The
simulations were carried out for a total of 300 iterations which roughly cost a computational wall time of 2
hours per angle of attack. Residual reduction of 7 orders were achieved for the corresponding iterations. The
3DPM incurs a computational time of 4 minutes for a given angle of attack.

In figure 3.5, the lift coefficient curves for the wind tunnel results are compared with that of the RANS
and 3DPM. The Wind Tunnel curve shows a linear behaviour at low angles of attack from -5 to +8 degrees and
from 9 degree AoA, a drop in lift is seen. This is due to the flow over the wing starting to seperate at high angles
of attack. The 3DPM that is based on potential flow is not able to capture this separation and over predicts
the lift at higher angles of attack. The lift computed from the RANS results show a better match at low angles
of attack and it is still able to capture the non-linear behavior at higher AoA.

Figure 3.5: Lift coefficient vs Angle of Attack
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At the range from 10 to 14 degree AoA, the 3DPM incurs a MAE of 30% and a RMSE of 21% when compared
to that of wind tunnel. The RANS method on the other hand has a MAE of 9% and a RMSE of 6%. This shows
that although the RANS method used in this research is not as reliable at high AoA , it is still able to give
an indication for the onset of stall. The effects of stall can be studied using RANS by refining the mesh in the
region of wake. Further, the oscillations in the wake make it more of an unsteady behaviour which would need
transient formulation for better resolution. Since all of this would lead to a study in itself and goes beyond the
scope of the research which is to be able to generate aerodynamic database during in the conceptual design
phase, the value obtained at the end of the 300th iteration is used as the result while comparing.

Figure 3.6 shows the drag polars obtained for the VGM in Wind tunnel , 3DPM and RANS. At low angles
of attack from -5 to +5 degrees , it can be seen that the RANS predictions are roughly off by 60 drag counts
compared to that of the wind tunnel. However this does not necessarily mean that RANS has a poor predic-
tion. The drag measured in the wind tunnel is in fact atypically large despite the blockage corrections that
were applied. Referring to the setup shown in figure 2.5 we can see that the body is almost as wide as the test
section and could lead to slight over-prediction of drag because of interference effects from the walls of the
wind tunnel. At high angles of attack, the drag from the body is large enough that the interference effects are
made negligible and the predictions from RANS are roughly off by 2 drag counts.

The 3DPM compared to that of the wind tunnel incurs a MAE of 350 drag counts and a RMSE of 200
drag counts. This is the consequence of being unable to capture the viscous effects. In a study that assess
scaled designs that are often attributed with lower Reynolds number, the effects of viscous forces does play a
significant part in the overall drag of the design. Therefore a large drawback of using 3DPM for the predictions
of drag is seen. It must be noted that these results were obtained from the 2017 version of Flightstream. These
results are purely obtained from solving the potential flow field discussed in chapter 2, and do not contain
any viscous correction effects.

Figure 3.6: Drag coefficient vs Angle of Attack

Figure 3.7 shows the pitching moment curves for VGM from the Wind tunnel tests, 3DPM and RANS that
are computed at the reference point of (0.680m,0m,-0.0565m). The moment curves show a similar behaviour
to that of the lift curves wherein RANS is better at capturing the non-linear behaviour that occurs after the
onset of flow separation at high AoA, compared to 3DPM. The 3DPM is not sensitive to such changes and
continues a downward linear trend. The difference in absolute values of the moment curve between RANS
and wind tunnel would be the consequence of the reference point that the moments are measured around.
In a simulation, one can always measure desired result at any given location and the errors arise from the
interpolation of the data based on the presence of computational cells. While conducting an experiment
with physical models, errors also arise from the placement of the measuring instruments. The discrepancy
between the reference considered and the point of actual measurement can lead to such a difference between
the moment curves.
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Figure 3.7: Moment coefficient vs Angle of Attack

3.2. VERIFICATION FOR COMPUTING THE DYNAMIC DERIVATIVES
There exists no data for the validation of the dynamic results for VGM which was a major gap in the previous
research. In this section, the method that is used in obtaining dynamic derivatives is verified by simulating
the harmonic pitch of NACA0012 airfoil which can be found in the work of Ronch et al.. The NACA0012 airfoil
is simulated at Mach number of 0.755, with mean AoA of 0.016 degree , with an amplitude of 2.51 degrees
and reduced frequency of 0.0814. These are the wind tunnel test conditions that can be found in the AGARD
report of Landon. Ronch et al. used this case for validation. Therefore, this is an indirect validation.

The airfoil used has a chord length of 1m and both the location of the moment centre and pivot point
correspond to the quarter-chord location. The simulation uses a 2D stuctured CH mesh comprising of 34,951
quadrilateral cells. Figure 3.8 highlights this mesh that is employed for the dynamic simulation. The sim-
ulation employs Euler method with a pressure-based solver while the reference literature makes use of a
density-based solver. A total of 3 cycles were simulated with each cycle consisting of 128 time steps and 30
inner iterations per time step.

(a) Mesh highlighting domain extents (b) Close up view of mesh near airfoil

Figure 3.8: Structured quadrilateral mesh used in harmonic pitch of NACA0012
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The hysteresis curve for the dynamic moment and normal force coefficient are shown in figure 4.4. The
dynamic derivatives computed by performing the inverse Fourier transforms are shown in table 4.1. The
reference case has a slightly negative moment while the verification case has a slightly positive moment. Es-
sentially, the moments around the reference point is zero and the difference is due to small moment arm
difference which is in the order of the cell size that occurs on the airfoil. The dynamic derivatives for the veri-
fication case closely match that of the reference case with differences under 3%. The errors can be attributed
to the differences that occur to due to mesh and solver schemes that are used in the simulation.

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure 3.9: Force and moment Hysteresis for harmonic pitch of NACA0012 airfoil

Derivative Reference value Simulated value Difference
Cm0 -7.15x10-5 3.43x10-5 -
Cz0 3.51x10-3 3.66x10-3 4.27%
Cmα -0.103 -0.095 7.76%
Czα 7.66 7.74 1.04%

Cmα̇ +Cmq -3.14 -3.22 2.54%
Czα̇ +Czq -37.2 -36.6 1.61%

Table 3.4: Comparison of dynamic derivatives for NACA0012

This verifies the method used in the thesis. Being able to obtain nearly identical set of curves ensures that
the UDFs and the post processing scripts are working as intended. In the upcoming chapters, this method will
be used to obtain the dynamic derivatives for the VGM. The method is almost the same with a slight excpetion
of SA-RANS turbulence model being used instead of EULER model since we are interested in resolving the
drag arising from viscous effects.

3.3. VALIDATION OF MULTI-FIDELITY KRIGING MODEL
The kriging-based multi-fidelity model that is used in this research, was also developed in-house. Therefore,
this section serves to validate the application that was built. It is validated using Forrester function y, which
is given by the equation 3.1 where x ∈ [0,1] [34]. The low-fidelity function in this case is given by the equa-
tion 3.2. The low-fidelity function is evaluated throughout the range with a step of 0.05 while a total of four
high-fidelity samples at x = [0,0.4,0.6,1] are used to construct the multi-fidelity kriging-based interpolation.
The scaling factor is assumed to be a constant scalar and the results corresponding to different values are
obtained. This is the scaling factor ζ between the low and the high-fidelity models. It should not be confused
with scaling factor as used in SFT models. The results of ordinary kriging that utilizes only the high-fidelity
samples are also evaluated to showcase the effectiveness of leveraging the low-fidelity results.

y = (6x −2)2 sin(12x −4) (3.1)

yLF = 0.5× (6x −2)2 sin(12x −4)+10(x −0.5)−5 (3.2)
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Figure 3.10: Validation of multi-Fidelity Kriging Model using Forrester Function

From figure 3.10, it can be seen that the surrogate model constructed with just using the high-fidelity
evaluations fails to capture the curve under consideration. This model is the ordinary kriging model which
is essentially a multi-fidelity kriging model with a scaling factor of zero. It means that the surrogate does not
leverage the low-fidelity evaluations at all. The scaling factor of 2 in this case best fits the given curve while a
factor of 3 results in over-scaling and factors under 2 under scale the given curve. Finding the optimal scaling
factor has its own challenges.

The scaling factor in this case was modelled as a scalar constant but this can very well be a nonlinear rela-
tion. The computation already involves finding the best weights that minimize the variance in the prediction,
and optimizing for the scaling factor makes the computation more expensive. Even though the low-fidelity
function in this case has larger errors compared to the reference function, it does have more similarity when
it comes to the location of maxima and minima. When it comes to 3DPM and RANS, it was seen that the
low-fidelity function just does not behave the same as the high-fidelity function. Therefore, in this research
the scaling factor will be assumed to be a constant scalar of value unity. This is a reasonable assumption since
the goal of the research is to study the impact of the use of a multi-fidelity approach and not implementing
the best multi-fidelity model itself.

3.4. SUMMARY
The results from the steady state simulation using RANS method were validated by comparing to that ob-
tained from wind tunnel tests. The results as obtained from previous research work using the 3DPM were
also compared. The low-fidelity 3DPM takes about 4 minutes of computational wall time for a simulation at
given angle of attack while the corresponding solution from RANS roughly takes 2 hours. The RANS method
is capable of predicting the separation that occurs at high angles of attack while the 3DPM fails to do so.
Furthermore, drag is severely under predicted by 3DPM. The section 3.1 was able to answer the research
questions regarding the accuracy and costs related to the high-fidelity methods for steady-state analysis. Sec-
tion 3.2 verified the computational method that would be used in carrying out unsteady simulation for the
harmonic pitch in order to compute the dynamic derivatives. The multi-fidelity Kriging model that would be
utilized in this research was validated in section 3.3.
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The multi-fidelity approach needs to have good accuracy and also reasonable computational time, if the
method of computational scaling needs to be a feasible approach. Reducing the cost of the high-fidelity eval-
uations will result in overall reduction of the multi-fidelity analysis. Therefore, this chapter aims to study
potential means of minimizing the computational time without losing out on accuracy. This chapter will an-
swer the following research sub-question:

What are the costs associated with using the high-fidelity method and can they be minimized?

Coarser mesh leads to errors called discretization error[21]. The discretization errors are minimized by
solving on a finer mesh. Beyond a particular refinement, the solution will remain unchanged. The Grid
Independence Study(GIS) is a study conducted for obtaining the solution that is invariant of the grid size.
Similarly, the size of the time steps bring in discretization errors in unsteady analysis. This chapter will study
the dependence of RANS method on some of the factors that affect the computational time and accuracy of
the solution. The effect of different types of meshes are studied in section 4.1 of this chapter. The steady-state
cases are used to study the dependence of spatial discretization.

The unsteady simulation in this research involves computing the dynamic derivatives using the method
of forced harmonic oscillation. As discussed in section 2.4 of chapter 2, the aircraft is forced to harmonically
pitch in the longitudinal direction. The dynamic derivatives are then computed using inverse Fourier trans-
forms of the resultant output forces and moments (see equation 2.21). Higher the amplitude of oscillation,
the greater the motion of the mesh. The section 4.2 will study dependence of the results on the pitch am-
plitude of the input excitation (figure 4.1a). Solving the unsteady case requires discretization of time. The
dependence on the size of time step or the total number of steps per cycle of the input excitation(figure 4.1),
is studied in section 4.3. The solution needs to converge at each time step seen in figure 4.1. The section
4.4, discusses the dependence of the number of iterations employed per time step. Finally a summary of the
findings are presented in section 4.5.

(a) Input excitation with varying amplitudes (b) Input excitation with varying time step sizes

Figure 4.1: Example of input excitation for forced harmonic pitch motion

29
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4.1. GIS USING STRUCTURED AND UNSTRUCTURED MESH
The type of cells, the size and the number of cells used in a mesh for computational analysis directly affects
the results that are computed. Finer cells lead to more accurate solution but are computationally intensive
while coarser cells compromise on accuracy but are relatively fast. The topology of the mesh also dictates the
accuracy and computational time.

Structured meshes have cells that are related to one another and therefore avoid the need of explicit matrix
that stores the mapping. This leads to structured meshes having faster convergence and lower simulation
time [21]. However, creating a structured mesh is a very tedious process because of the manual labor involved.
Unstructured meshes can be generated easily because of the various algorithms that automate this process.
In this section, three different types of meshes are created with varying number of cell sizes in order to study
the effect the grid has on the solution.

The study involves tetrahedral unstructured mesh of 5 different sizes, hexahedral structured mesh of 6
different sizes and polyhedral unstructured mesh of 5 different sizes. The polyhedral mesh is obtained by
converting existing tetrahedral mesh by means of merging existing cells. The mesh utilized and the corre-
sponding number of cells are shown in in tables 4.1, 4.2 and 4.3. The polyhedral mesh 1 is obtained by merg-
ing cells in tetrahedral mesh 1 and so forth. The construction of hexahedral mesh is totally a manual process
and therefore it is easy to double or half the number of cells.

The construction of a tetrahedral mesh took roughly 3 hours while that of structured hexahedral mesh
took 40 hours to pre-process. The polyhedral mesh requires the construction of a tetrahedral mesh and the
conversion roughly took 15 additional minutes. As mentioned in the previous chapter, this study was carried
out before the validation and in this study only half the domain was considered with symmetry plane at Y=0.
The domain was 30m×7.5m×15m with the outlet face being 22.5m downstream of the origin and rest of the
faces excluding the symmetry plane being 7.5m away. Figures 4.2, 4.3 and 4.4 shows the mesh and close up
image of the main wing.

The simulations were carried out for an angle of attack of 5 degrees. The solver settings and the flow
parameters are the same as that discussed in the previous chapter. But unlike the validation case, these cases
are run for a total of 550 iterations wherein the solution is solved for 500 more iterations past the first 50
iterations with lower discritization schemes and under relaxation factor. It is also important to note that the
reference point is that of the C.G. which is located at (0.660m,0m,-0.022m). The results of the steady state
analysis for each are tabulated in tables 4.1, 4.2 and 4.3.

Unstructured
Tetrahedral Mesh

Number of cells
(millions)

Computational
wall time (hrs)

CL CD Cm

Mesh 1 4.62 0.87 0.6975 0.0432 -0.1706
Mesh 2 6.72 1.20 0.6962 0.0422 -0.1701
Mesh 3 9.49 1.67 0.7018 0.0455 -0.1715
Mesh 4 25.66 4.40 0.7212 0.0470 -0.1755
Mesh 5 65.46 12.25 0.7219 0.0469 -0.1757

Table 4.1: GIS results of unstructured tetrahedral mesh

Unstructured
Tetrahedral Mesh

Number of cells
(millions)

Computational
wall time (hrs)

CL CD C m

Mesh 1 1.72 0.33 0.7174 0.0436 -0.1706
Mesh 2 3.10 0.71 0.7145 0.0446 -0.1689
Mesh 3 6.13 1.27 0.7147 0.0445 -0.1701
Mesh 4 11.18 2.52 0.7129 0.0447 -0.1705
Mesh 5 22.24 4.57 0.7120 0.0447 -0.1704
Mesh 6 42.83 9.33 0.7111 0.0450 -0.1702

Table 4.2: GIS results of structured hexahedral mesh
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Unstructured
Tetrahedral Mesh

Number of cells
(millions)

Computational
wall time (hrs)

CL CD Cm

Mesh 1 2.70 0.68 0.6901 0.0427 -0.1716
Mesh 2 4.48 1.2 0.6883 0.0420 -0.1709
Mesh 3 7.49 1.7 0.6901 0.0439 -0.1699
Mesh 4 17.98 4.27 0.7248 0.0450 -0.1764
Mesh 5 24.6 7.92 0.7250 0.0450 -0.1768

Table 4.3: GIS results of unstructured polyhedral mesh

Figure 4.2: Structured Hexahedral Mesh

Figure 4.3: Unstructured Tetrahedral mesh

Figure 4.4: Unstructured Polyhedral mesh
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Figure 4.5 highlights the results of this study. The errors that are plotted are relative to the values that cor-
respond to the mesh with highest grid size in each type of mesh. In figure 4.5a the computational cost for each
mesh can be seen. The slope of the curve for the polyhedral mesh is higher than that of the tetrahedral mesh.
This means that the polyhedral cells have higher simulation time for a given number of cells but since a small
number of cells can fill up a given domain size, the overall simulation time is still reduced. The tetrahedral
mesh 5 consisting of roughly 65 million cells was reduced to 25 million polyhedral cells. The corresponding
reduction in computational time was 35%. The polyhedral mesh 3 roughly takes the same time as that of the
tetrahedral mesh 3 and there is no extra merit to merging the cells before solving. The hexahedral cells show a
higher slope than the tetrahedral cells but this is just because of solving both the structured and unstructured
mesh using ANSYS fluent. The software stores both the meshes as unstructured meshes and the solver does
not use dedicated algorithm into solving the structured mesh. Despite not taking advantage of the structured
behaviour, the mesh still sees a benefit of the cells being oriented more perpendicularly to the fluid flow.

From figures 4.5b, 4.5c and 4.5d, it can be seen that in the case of unstructured tetrahedral mesh, it takes
roughly 25 million cells to reach grid independence but this is achieved much sooner when a structured
mesh is employed. A structured mesh with roughly 6 million cells has similar accuracy as that of a unstruc-
tured mesh with 25 million cells. In such a case, the structured mesh has a computational cost that is 70%
lower than that of the corresponding unstructured mesh with similar accuracy. The cost can potentially be
further reduced by employing dedicated algorithm for solving the structured mesh. The residuals had al-
ready reduced by 7 orders past the 200 iteration mark and therefore a total of 300 iterations were considered
sufficient for future simulation.

(a) Computational wall time Vs number of cells (b) Relative error in Lift coefficient Vs number of cells

(c) Relative error in Drag coefficient Vs number of cells (d) Relative error in Moment coefficient Vs number of cells

Figure 4.5: Computational time and associated relative errors from GIS

After conducting the GIS, the tetrahedral mesh 3 was considered as optimum since the deviations were
less than 3% while in the case of structured mesh , mesh 4 was selected as optimal since the computational
time was roughly similar to that of the unstructured mesh 3. In the case of polyhedral mesh, the mesh ob-
tained from the conversion of tetrahedral mesh 3 was considered as optimal. Using these three meshes that
are highlighted in figure 4.2, 4.3 and 4.4, the lift, drag and moment polars are generated for angles of attack
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ranging from -5 to +14 deg. The figure 4.6 shows the results of this study. The results from the wind tunnel
and the 3DPM have also been plotted for reference. The moments were converted back to the reference point
as used in the wind tunnel experiment.

Looking at the lift curve in figure 4.6a, it can be seen that the structured mesh has the best match to
that of the wind tunnel results. The results from the polyhedral mesh do have lower errors at high angles of
attack but it fails to resolve the separation that occurs from 9 degree AoA. In figure 4.6b, the hexahedral and
the polyhedral mesh roughly predict 8 drag counts lower than the tetrahedral mesh. Even in this case the
structured mesh has a better match with the wind tunnel results at higher AoA than the tetrahedral mesh.
The noisy behaviour of the polyhedral mesh can once again be seen here. Finally, the moment polars can be
seen in figure 4.6c. Once again, the trend is similar to that of the lift curve with the structured mesh displaying
less noisy behaviour at high AoA compared to that of the unstructured mesh.

(a) Lift Coefficient Vs Angle of attack (b) Drag Coefficient Vs Angle of attack

(c) Moment Coefficient Vs Angle of attack

Figure 4.6: Lift, drag and moment polars for GIS

For results with similar accuracy, the structured mesh roughly provides the solution in half the time com-
pared to unstructured mesh. The mesh roughly takes 13 times more pre-processing time compared to that of
the unstructured mesh but this is mainly due to the process being mostly manual. With the use of KBE, this
process can be automated in the future to produce good quality structured meshes. Unfortunately the struc-
tured mesh utilized in this research kept breaking down during mesh motion. This was due to few highly
skewed cells within the domain. The task of generating structured meshes of better quality was very time
consuming. Therefore, only unstructured meshes were used for the dynamic analysis.
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4.2. DEPENDENCE ON PITCH AMPLITUDE
This section studies the influence of the pitch amplitude, αA of the harmonic excitation on the dynamic
derivatives of the VGM.The simulation is carried out with three different amplitudes for Mach number of 0.13
and reduced frequency of 0.05 for mean AoA of zero degrees. A total of three cycles are simulated with each
cycle containing 64 time steps and 30 inner iterations per time step.

Since all simulations were carried out for the same number of cycles, time steps and inner iterations, they
had the same cost of 36hrs of wall time. The hysteresis curves for forces and moments are shown in figure
4.7 and the corresponding time domain curves are shown in figure 4.8. The size of time step in each of these
cases is the same but the mesh needs to move a larger amount for higher amplitudes. This results in larger
step sizes with respect to angle of attack. The figure 4.9 and 4.10 show the static and dynamic derivatives.
The variation in the results are around 0.1%. The number of time steps per cycle was 64 and this provided a
sufficient resolution. Therefore, it can be concluded that the pitch amplitude does not influence the accuracy
of the derivatives that are computed under these conditions. An amplitude of two degrees will be used for all
upcoming simulations.

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure 4.7: Hysteresis curves for amplitude dependence

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure 4.8: Time Domain curves for amplitude dependence



4.3. DEPENDENCE ON NUMBER OF TIME STEPS 35

(a) moment coefficient derivative (b) normal force coefficient derivative

Figure 4.9: Static derivatives Vs pitch amplitude

(a) moment coefficient derivative (b) normal force coefficient derivative

Figure 4.10: Dynamic derivatives Vs pitch amplitude

4.3. DEPENDENCE ON NUMBER OF TIME STEPS
The unsteady solutions require discretization of time. A larger time step size will bring in more discretization
error. The harmonic motion is simulated for given number of cycles. The frequency of the solution deter-
mines the time period T of the solution. The time step size is determined by the number of divisions/steps
considered per cycle. More time steps results in smaller step sizes, thereby getting better accuracy. Con-
versely, lesser time steps imply larger step sizes and more errors. Larger steps also mean that the cycle is
traversed faster. This section studies the influence of the time steps per cycle that are employed for simu-
lating the longitudinal pitch of the VGM. The aim is to find an optimum number of time steps that is both
accurate and computationally not expensive. The simulation is carried out for a set of four different num-
ber of divisions/time steps for pitching motion, for Mach number of 0.13 and reduced frequency of 0.05 for
mean AoA of zero degrees and amplitude of two degrees. A total of three cycles are simulated with each cycle
containing 30 inner iterations per time step.

From figure 4.11 it can be seen that as the number of divisions per cycle are reduced the hysteresis loop
bulge up on one side of the motion. This motion as the aircraft pitches from the max angle of attack to the
minimum as can be seen in figure 4.12. The lag between the reaction and the input disturbance is typical of
any hysteresis loop but in this case the lag simply arises from insufficient resolution of the pitching motion
that is simulated. Consequently the dynamic derivatives that are computed have higher errors for lower
number of time steps (seen in figure 4.14). From fig 4.13 it can be seen that the static derivatives are not
really affected and have errors less than 0.5%. Figure 4.15 shows the computational time incurred vs number
of time steps per cycle.
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(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure 4.11: Hysteresis curves for dependence on number of time steps

(a) Moment coefficient vs normalized time (b) Normal Force coefficient vs normalized time

Figure 4.12: Time Domain curves for dependence on number of time steps

(a) Moment coefficient (b) Normal Force coefficient

Figure 4.13: Static derivatives Vs number of time steps
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(a) Moment coefficient (b) normal force coefficient

Figure 4.14: Dynamic derivatives Vs number of time steps

Figure 4.15: Wall time vs time steps

Compared to the case with 128 time steps, the one with 64 time steps has an error or 3% in the case of
dynamic moment derivative, and the normal force coefficient derivative has an error of 8%. Given that the
computation time of the case with 64 time steps is half that of the 128 time steps, it is optimal to use 64 steps
in all the upcoming cases.

4.4. DEPENDENCE ON NUMBER OF ITERATIONS PER TIME STEP
This section studies the influence of the iterations on the computational time and errors. These iterations are
necessary for convergence of a solution at a given time step. The simulation was carried out for a set of five
different number of divisions of pitching motion, for Mach number of 0.13 and reduced frequency of 0.05 for
mean AoA of zero degrees and amplitude of two degrees. A total of two cycles are simulated with each cycle
containing 64 time steps per cycle. Two cycles as opposed to three in the previous section, will also help to
gauge the impact of cutting the simulation sooner.
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(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure 4.16: Hysteresis curves for dependence on iterations

(a) Moment coefficient vs normalized time (b) Normal Force coefficient vs normalized time

Figure 4.17: Time Domain curves for dependence on iterations

(a) Moment coefficient (b) Normal Force coefficient

Figure 4.18: Static derivatives Vs iterations
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(a) Moment coefficient (b) Normal Force coefficient

Figure 4.19: Dynamic derivatives Vs iterations

Figure 4.20: Computational time vs iterations

The time step corresponding to 64 division for a reduced frequency of 0.05 is already in the order of milli-
seconds, and reducing the inner iterations per time step is not as penalizing in terms of the errors that are en-
countered. The force and moment curves are almost overlapping with the case of 10 iterations being slightly
more bulged towards the peaks as seen in figure 4.16 and 4.17. The computational time can be significantly
reduced by choosing 20 inner iterations compared to 30. This only leads to a drop in accuracy by roughly
0.1% while being able to save computational time by 30% as can be seen in figure 4.19 and 4.20. Furthermore,
the case corresponding to 30 iterations in this section utilizes 64 time steps per cycle for a total of two cycles.
This roughly costs 24 hours of computational time. In the previous section the case corresponding to 64 time
steps used 30 inner iterations per time step and a total of 3 cycles. This cost 40 hours of computational time
(seen in figure 4.15). The errors in the dynamic derivatives are again less than 0.5%. Therefore, it can be con-
cluded that 20 iterations between time steps, with 64 time steps per cycle and a total of 2 cycles are optimal
parameters for dynamic simulation of VGM at k=0.05.
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4.5. SUMMARY
The section 4.1 discussed the influence of different types of mesh on the accuracy and computational costs in
predicting the static aerodynamic data. The structured mesh shows the most promise with higher accuracy
and lower computational time. The downside of generation of a structured mesh can be overcome with use
of concepts of KBE in the future.

The errors are more sensitive to the time steps that are considered and a total of 64 divisions per cycle
for reduced frequency of 0.05 is seen to be a good compromise from the study in section 4.3. A total of 20
inner iterations per time step is sufficient as found from section 4.4. Since the study in section 4.3 considered
three cycles and the one in 4.4 considered two, it can be further concluded that the third cycle does not
improve the results to justify simulating the extra cycle. With each cycle costing the same computational time,
a reduction in computational time by 33% can be achieved by just simulating two cycles of dynamic motion
compared to simulating 3 cycles. Considering these parameters, a dynamic simulation roughly takes 19 hours
for evaluation at the reduced frequency of k=0.05 which is a total of 21 hours including the computational
time for the steady state simulation, which serves as the initial condition for a dynamic case. Thus, this
chapter provided an answer to the first research sub-question.
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The generation of aerodynamic database required for the method of computational scaling, for the design
of SFT model, is computationally intensive. Accurate results are required to establish similitude between
the SFT model and the full-scale aircraft design. At the same time, we require the evaluations to be made
in a reasonable time frame. Otherwise the method of computational scaling will be infeasible for the design
of SFT models. In order to support the method of computational scaling, this research developed a multi-
fidelity surrogate model for generating the aerodynamic database. The method utilizes the previously used
3DPM as the low-fidelity method, and RANS as the high-fidelity method. The 3DPM had issues with accuracy,
while single fidelity RANS method was too expensive to be used [27]. This chapter provides answers to the
following sub-questions that would help answer the main question.

1. How accurate is the low-fidelity method relative to high-fidelity method?

2. What is the cost and accuracy of the multi-fidelity surrogate model?

3. Does the multi-fidelity surrogate model actually show any value compared to using a surrogate-based
high-fidelity approach?

The 3DPM is known to show insensitivity to changes in reduced frequency, and the errors in dynamic
derivatives obtained from a quasi-steady analysis were never quantified. The results from RANS will be used
as a reference to quantify the errors with 3DPM and the surrogate models. It is important to note that the
high-fidelity method of RANS, is not free from computational errors. But for the purpose of this research,
the errors discussed in this chapter are relative to RANS. The first sub-question is answered by a dynamic
analysis of Variable Geometry Model (VGM, a 8.8% geometrically scaled model of Cessna Citation II 550)
using 3DPM and RANS, and comparing the results. Case studies and time studies are performed using multi-
fidelity surrogate model with varying sample sizes, in order to answer the second sub-question. The studies
are split for the static and dynamic analysis. The predictions from the ordinary kriging-based surrogate model
are also used as a secondary reference. This will help assess if the 3DPM is truly providing any leverage.
The performance of this surrogate-based high-fidelity approach would help answer the third sub-question
mentioned above.

The section 5.1 discusses the results of the dynamic analysis of VGM using RANS. This serves as the ref-
erence to compare the results of the 3DPM. This section consists of two case studies. A dynamic analysis for
varying angles of attack and other with varying reduced frequency. A case study for the surrogate models for
static analysis is presented in section 5.2. The table 5.2 specifies each case. Note that the 3DPM is a specific
case of a surrogate model where no RANS samples are used. Similarly, the section 5.3 discusses the results of
the surrogate models for dynamic analysis. The details of each case can be found in table 5.3. The section 5.4
provides a time study for the surrogate models used in sections 5.2 and 5.3. Finally a summary of the results
is provided in section 5.5. The table 5.1 provides an overview of each section in this chapter.

5.1. DYNAMIC ANALYSIS OF VGM
Before creating the multi-fidelity surrogate models, the results of the dynamic analysis of VGM are discussed
in this section. The dynamic motion in this research is restricted to harmonic longitudinal pitching of the
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Section Purpose Total cases

5.1
Assessment of accuracy of 3DPM

relative to RANS
2

5.2
Assessment of accuracy of Surrogate models

for static analysis
9

5.3
Assessment of accuracy of Surrogate models

for dynamic analysis
6

5.4
Assessment of computational time of

Surrogate models
2

Table 5.1: Overview of studies performed in each section

aircraft. The input parameters that vary are the mean angle of attack and reduced frequency for the motion.
The dynamic derivatives for varying angle of attack at a given reduced frequency are discussed in subsection
5.1.1. Subsection 5.1.2 would then discuss the dynamic derivative for varying reduced frequency at a given
angle of attack.

5.1.1. DYNAMIC DERIVATIVE FOR VARYING ANGLES OF ATTACK
The VGM is simulated for longitudinal pitch for a mach number of 0.13 and reduced frequency of 0.05 for
angles of attack ranging from -4 to +14 in intervals of 2 degrees. The amplitude of oscillation is 2 degrees.
Two cycles are simulated with each cycle containing 64 time steps and 20 inner iterations per time step. The
decision for the simulation parameters are based on the sensitivity study previously conducted. The refer-
ence point for the moment that was considered here was (0.680m,0m,-0.0565m) with respect to nose of the
fuselage (see figure 3.2). The dynamic derivatives are shown in the figure 5.1.

(a) Normal Force coefficient derivative vs Angle of attack (b) Moment coefficient derivative vs Angle of attack

Figure 5.1: Dynamic derivatives for harmonic pitch of VGM for varying AoA

The figure 5.1a shows the dynamic derivative for the normal force coefficient for varying angles of attack.
The hysteresis curves at each mean angle of attack, can be found in appendix B. For low angles of attack upto
6 degrees the slope of the graph is zero indicating that the dynamic forces also have a linear behaviour in
this region. A spike is seen at 8 degrees which is a result of the aircraft encountering separated flow. The
dynamic moment derivative as seen in figure 5.1b also shows a similar behaviour i.e, a spike. The 3DPM
results contain some noise but it also comes close in capturing the trend at lower angles of attack. Compared
to the high fidelity RANS method, the 3DPM roughly has 35% error in the prediction of the normal force
dynamic derivative and about 20% in the case of the dynamic derivatives for moments.

5.1.2. DYNAMIC DERIVATIVE FOR VARYING REDUCED FREQUENCIES
The dynamic simulation for the VGM is performed at three different reduced frequencies of k=[0.002, 0.01,0.05]
at mean angle of attack of zero and amplitude of two degrees. Two cycles are simulated using first order
transient formulation. The simulation in this case study were performed using 64 time steps per cycle. But
decreasing the reduced frequency leads to increase in the time period of oscillation. Therefore, the case with



5.1. DYNAMIC ANALYSIS OF VGM 43

a reduced frequency of 0.01 and 0.002 used 96 and 128 time steps per cycle receptively. This leads to an in-
crease in computational time as the frequencies are reduced. The case with the reduced frequency of 0.002
roughly takes 56 hours while that of 0.01 takes 43 hours of wall time. The reference point for the moment that
was considered in this study was the c.g. location of (0.660m,0m,-0.022m) from the nose of the fuselage (see
figure 3.2).

The output signal for the normal force coefficient and the moment coefficient in the normalized time do-
main are shown in figure 5.2 and the corresponding hysteresis are shown in figure 5.3. The figure 5.2a shows
the normal force coefficient against the time which is normalized with the cycle’s time period. The simula-
tion starts with the aircraft at zero degrees and then moves towards a peak of +2deg after which it pitches
to -2 and then returns to the mean position. The dynamic normal force is lower than corresponding steady
state normal force as it reaches the peak, and higher than the corresponding steady state normal force coef-
ficient as it moves towards a trough. Theses differences increase as the magnitude of the reduced frequency
increases which shows the effects of unsteadiness in the flow. The corresponding hysteresis shown in figure
5.3a highlights this effect with the progressive increase in the thickness of the loop as the reduced frequency
increases.

(a) Normal Force coefficient vs Normalized time (b) Moment coefficient vs Normalized time

Figure 5.2: Force and moment history for harmonic pitch of VGM

(a) Normal Force coefficient vs Angle of Attack (b) Moment coefficient vs Angle of Attack

Figure 5.3: Force and moment Hysteresis for harmonic pitch of VGM
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A similar effect is seen with the moments as can be seen in the time domain plot in figure 5.2b and the
hysteresis plot in figure 5.3b. The hysteresis loop for the moments are much thicker than that of the normal
forces. This is only a consequence of the choice of the moment center that is considered that scales the
effects of the forces on the body. But it is important to note that the as the unsteadiness increases, i.e. as
value of reduced frequency is higher, the more the forces deviate from the steady-state lift. Since the 3DPM
is incapable of providing the forces in dynamic manner, the dynamic derivatives computed are compared to
that of the RANS.

The combined derivatives that are obtained are plotted in figure 5.4 along with that obtained from the
3DPM. The figure 5.4a compares the dynamic derivative for the normal force coefficient for varying reduced
frequency. It can be seen that the 3DPM is insensitive to the changes in reduced frequency which is a direct
consequence of the quasi-steady process-based evaluation. The 3DPM is less accurate at evaluating the dy-
namic derivative at lower frequency. The accuracy does improve at higher frequency. But the major problem
is the insensitivity of the 3DPM towards changes in reduced frequency. The figure 5.4b shows the dynamic
derivatives for the moment coefficient for varying angles of attack and once again a similar behaviour can be
seen where the 3DPM is roughly insensitive to the reduced frequency with the relative errors being the larger
as the frequency is decreased.

The 3DPM is insensitive to changes in reduced frequency. This research does not model the scaling factor
ζ. It is assumed to be a constant. A multi-fidelity surrogate model with such an assumption cannot be created.
This is because the low-fidelity function is a constant function itself. In this research, the multi-fidelity model
is created using a different quantity that is not a constant. The equation 2.22 for obtaining the dynamic
derivative using the quasi steady method can be rearranged into the following:

(Czq +Czα̇ ).k =CQS
z −C S

z (5.1)

The dynamic derivative multiplied by the reduced frequency is essentially the difference in the force or mo-
ment coefficient between the ones obtained for a steady-state and the corresponding quasi-steady analysis.
This quantity does vary as the reduced frequency changes(seen on the right Y-axis of figure 5.4), and it allows
for the creation of multi-fidelity surrogate model. It will be used to create the surrogate model and discuss
the errors henceforth. In the case of the dynamic derivative for normal coefficient, the relative error is about
88% at the lowest reduced frequency and about 34% for the highest frequency considered in the study. For
the dynamic derivative for moment coefficient, the error is about 59% at the lowest reduced frequency and
about 24% at the highest. The curves of RANS and 3DPM diverge, which implies greater absolute error with
increasing frequency. Therefore, the absolute value of the predicted forces and moment co-efficient by the
3DPM is poor, and increases with increasing unsteadiness in the flow.

(a) Normal force coefficient derivative vs reduced frequency (b) Moment coefficient derivative vs reduced frequency

Figure 5.4: Dynamic derivative vs reduced frequency
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5.2. CASE STUDY FOR MULTI-FIDELITY STATIC ANALYSIS
This section discusses the results of the case studies of multi-fidelity surrogate model for the static analysis.
Varied number of high-fidelity RANS samples are picked to best illustrate the effectiveness and limitations of
using surrogate model. The sample set contains one data point to 5 data points. The ordinary kriging which
serves as a secondary reference, can be constructed when there are three or more sample points from the
high-fidelity method.

The table 5.2 gives the description of the case studies considered and the corresponding computational
time. The case number 1 corresponds to the single-fidelity 3DPM, which is in need of accuracy improvement.
It roughly takes four minutes a case for the 3DPM to evaluate a given angle of attack while it takes roughly
2 hours for one simulation by RANS. The computational time for the surrogate model predictions are in the
order of milliseconds, which is negligible when compared with other quantities. Therefore the cost of running
a multi-fidelity analysis would be the cost of running each sample point and that of the full set of the 3DPM
evaluations. The ordinary kriging model predicts based on just the high fidelity samples, therefore it saves
the time that is required in obtaining the low fidelity results.

Case Number Description Computational Time (hrs) Discussed in
1 Single-Fidelity 3DPM 1.3 All
2 Multi-fidelity kriging with one sample 3.3 5.2.1
3 Multi-fidelity kriging with two samples 5.3 5.2.2
4 Ordinary-Kriging with three samples 6 5.2.3
5 Multi-fidelity kriging with three samples 7.3 5.2.3
6 Ordinary Kriging with four samples 8 5.2.4
7 Multi-fidelity kriging with foursamples 9.3 5.2.4
8 Ordinary Kriging with five samples 10 5.2.5
9 Multi-fidelity kriging with five samples 11.3 5.2.5

Table 5.2: Surrogate Model used for static analysis

5.2.1. CASE STUDY USING ONE HIGH-FIDELITY SAMPLE
This subsection discusses the results of the case number 2 of table 5.2 of this study. One high fidelity sample
at 0 degree angle of attack is utilized in construction of the surrogate model. A single data point offers insuf-
ficient information into constructing the ordinary kriging model whereas a multi-fidelity kriging model can
be constructed by leveraging the information from the low fidelity data. The lift curve can be seen in figure
5.5. It can be seen that the multi-fidelity curve has a better match at low angles of attack but results in over
prediction of the lift coefficient at higher angles compared to the 3DPM. The drag curve sees a major benefit
of multi-fidelity approach as seen in figure 5.6. At low angles of attack it has a very good match. At higher
angles, the drag is under predicted compared to the reference RANS data but there is still some improvement
in accuracy as compared to that of the 3DPM. The RMSE of the 3DPM are reduced by 37.5% by utilizing a
sample from the RANS.

Figure 5.5: Multi-fidelity Lift Curve using one sample Figure 5.6: Multi-fidelity Drag Curve using one sample
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The moment curve as seen in figure 5.7 shows a behaviour similar to that of the lift where the predicted
values have a good match at lower angles of attack but get worse than the 3DPM at higher angles.

Figure 5.7: Multi-fidelity Moment Curve using one sample

5.2.2. CASE STUDY USING TWO HIGH-FIDELITY SAMPLES
For case number 3 of table 5.2, two high-fidelity samples are considered, one at an angle of attack of -1 deg
and the other at 10 degrees. These points lie on the first and the third quartile of the range respectively.
The results of this surrogate model are discussed in this section. Like the previous study, two points do not
provide sufficient information to construct an ordinary kriging-based surrogate model. From figure 5.8, it can
be seen that the multi-fidelity surrogate model has a better match with the reference data compared to just
using a single point. However it also needs to be noted that, it was a consequence of having a high-fidelity
sample in the non-linear region. Since the 3DPM provides no indication of separation, the sample selected
at higher angles of attack need not always undergo separation. Although the curve has a better fit at higher
angles of attack, it comes with a compromise of accuracy at angles of attack ranging from 2 to 7 degrees when
compared to that of the model with a single sample.

Figure 5.8: Multi-fidelity Lift Curve using two samples Figure 5.9: Multi-fidelity Drag Curve using two samples

The drag polar as seen in 5.9 has a better fit at higher angles as compared to that of the model with a single
sample. But once again the accuracy is slightly compromised at lower angles of attack. The RMSE is reduced
by 75% in this case. The moment curve also shows a similar behavior as that of the lift curve with two samples.
From angles of attack from -5 to -1 degrees and from +10 to +14 degrees we see under prediction of the drag
while that between -1 to +10 contains slight over prediction. These errors can be further minimized by using
the optimal scaling factor (see 3.3) between the two methods, but this is outside the scope of this study.
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Figure 5.10: Multi-fidelity Moment Curve using two samples

5.2.3. CASE STUDY USING THREE HIGH-FIDELITY SAMPLES
The results of the surrogate model utilizing three high-fidelity samples are discussed in this section. The
samples are taken at an angle of attack of -3,4 and 12 degrees. Three samples form the minimum number
of data points into constructing a meaningful ordinary kriging-based surrogate model, which forms the case
number 4 of table 5.2. Case number 5 of table 5.2 corresponds to using the multi-fidelity kriging with these
samples and the full set of 3DPM data.

The lift curve from both the surrogate models show a good match with the reference curve as seen in
figure 5.11. The same is the case with the drag polar seen in figure 5.12. From both these curves it can be seen
that the surrogate model based on ordinary kriging already gives a desirable fit even without any leverage
from the low-fidelity data. Further it is interesting to note that the surrogate model that was based on multi-
fidelity kriging ends up having some error that is the result of leveraging information from the low fidelity
method.The moment curves from both the surrogate model in figure 5.13 see a good fit with the reference
curve which can be attributed to the sample lying at 12 degrees of angle of attack that proves to be favourable.

Figure 5.11: Multi-fidelity Lift Curve using three samples Figure 5.12: Multi-fidelity Drag Curve using three samples
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Figure 5.13: Multi-fidelity Moment Curve using three samples

5.2.4. CASE STUDY USING FOUR HIGH FIDELITY SAMPLES
This section discusses the results of the surrogate model with four samples, with the a sample not being
located at a critical region. The results of this section belong to case number 6 and 7 of table 5.2, which are
based on ordinary kriging and multi-fidelity kriging respectively. In these cases the four sample points lie at
angles of attack of -5, 1 , 7 and 14 degrees.

Once again it can be seen from all the curves that ordinary kriging by itself gives a good estimate and
leveraging the low fidelity data does not give any more benefit to the multi-fidelity kriging model. The errors
due to over-scaling end up even more prominent at low angles of attack, as seen from the drag polar in figure
5.15. The lift curve based on the surrogate model show a very good fit at low angles of attack from -5 to 7
degrees (figure 5.14), where the separation is absent and at higher angles of attack it is still able to capture
some of the non linear behaviour but not as good as the model with 3 samples (see figure 5.11). A similar
trend is seen in the moment curve as seen in figure 5.16. The consequence of the absence of the sample point
at 12 degrees can be clearly seen from these plots.

Figure 5.14: Multi-fidelity Lift Curve using four samples Figure 5.15: Multi-fidelity Drag Curve using four samples

From subsection 5.2.3 and 5.2.4, we see the performance of the ordinary kriging model is similar to that
of the multi-fidelity kriging model. This implies that when there are sufficient high-fidelity samples, using a
surrogate-based approach with ordinary kriging is viable. Using the 3DPM would be redundant. The multi-
fidelity kriging model using the 3DPM and RANS sees a lot of value when ordinary kriging model cannot be
constructed.



5.2. CASE STUDY FOR MULTI-FIDELITY STATIC ANALYSIS 49

Figure 5.16: Multi-fidelity Moment Curve using four samples

5.2.5. CASE STUDY USING FIVE HIGH-FIDELITY SAMPLES
It is clear that the multi-fidelity approach is redundant when there is enough data to construct a surrogate
model based on ordinary kriging. The 3DPM has a limitation of capturing the effects of separation, and at
conceptual design stage this is already an interesting design point for investigation. Therefore, the case num-
ber 8 and 9 of table 5.2, were constructed using ordinary kriging and multi-fidelity kriging model respectively
to see the efficacy of the surrogate model for learning the onset of separation. The 3DPM is usually run with
steps of 1 degree Angle of Attack. Since this would be too dense of a data set, the high fidelity evaluations are
done in steps of 5 degrees, which in this case, leads to a total of 5 samples. Note that the idea here is not to
strictly use 5 samples, but utilize a surrogate-based approach with larger step sizes. Since the angle of attack
spanned a range of 20, we get 5 samples.

Figure 5.17: Multi-fidelity Lift Curve using five samples Figure 5.18: Multi-fidelity Drag Curve using five samples

The drag polar from the multi-fidelity method, as seen in figure 5.18 only introduces more errors trying
to leverage low-fidelity data with sub-optimal scaling factor. Even though the lift curve in figure 5.17 predicts
separation a little prematurely, it is still able to give better insights into this behaviour which would otherwise
have not been possible with the previously used 3DPM. The moment curves in figure 5.19 also have a better
fit at higher angles of attack showcasing the pitch break behaviour of the aircraft. Therefore the ordinary
kriging-based surrogate model using RANS with larger angle of attack step sizes, can be a viable approach
into learning the separation behaviour in the early stages of design.
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Figure 5.19: Multi-fidelity Moment Curve using five samples

5.2.6. ERROR METRICS FOR MULTI-FIDELITY STATIC CASES
The discussion thus far involved a qualitative take on the impact of the surrogate model with different sample
sizes. The sample size of zero corresponds to the full set of 3DPM data. The error metrics are shown in figures
5.20, 5.21 and 5.22. The errors are quantified in termes of MAE and RMSE. It is important to note that the
MAE is a metric that ends up being more lenient towards larger individual errors where as the RMSE is more
penalizing.

The figure 5.20a shows the MAE in the lift coefficient curve while the figure 5.20b shows the corresponding
RMSE. The MAE with one sample is still lesser than that of the 3DPM while the corresponding RMSE is higher.
This doesn’t necessarily mean that the model is poor. It is a result of some of the poor predictions being much
poorer and this was clearly seen in figure 5.5 where the errors past 9 degrees angle of attack were much higher.
The surrogate model with three samples that included a critical location had performed better than that with
four as can be seen numerically from these graphs. The errors associated with the ordinary kriging as shown
by the blue bar are almost equal to less than that of the multi-fidelity kriging models further supporting the
redundancy of a multi-fidelity approach with 3DPM.

The MAE and RMSE in the drag coefficient are shown in figures 5.21a and 5.21b respectively. The drag
polar saw the most benefit with multi-fidelity surrogate model. The errors that resulted from sub-optimal
scaling of the low-fidelity results can be clearly seen in these graphs, where the errors associated with the
multi-fidelity kriging are slightly higher than the corresponding ordinary kriging errors.

Figures 5.22a and 5.22b show the MAE and RMSE in the moment coefficient, which also show a similar
behaviour as that of the metrics with the lift co-efficient. The 3DPM curve has under-prediction of the mo-
ments at low angles of attack and over-prediction at higher angles which leads it to have lower MAE. Despite
a good fit at low angles of attack, the RMSE associated with that of the 3 samples are higher due to having
larger errors at 13 and 14 degrees of angles of attack.

Looking at the error metrics across the various coefficients, it can be concluded that the multi-fidelity
approach can be justified when the there are insufficient samples to run ordinary kriging-based surrogate
model. Running an analysis with just the high fidelity method of RANS with ordinary kriging based surrogate
model is a viable approach into investigation of separation during the early stages.
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(a) MAE (b) RMSE

Figure 5.20: Errors in Lift coefficient

(a) MAE (b) RMSE

Figure 5.21: Errors in Drag coefficient

(a) MAE (b) RMSE

Figure 5.22: Errors in Moment coefficient
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5.3. CASE STUDY FOR MULTI-FIDELITY DYNAMIC ANALYSIS
In this section, the dynamic derivative results obtained in the section 5.1.2 are used to study the effects of im-
plementing the multi-fidelity surrogate model. The full set of RANS data serves as the reference. As discussed
in section 5.1, instead of the dynamic derivatives themselves, the dynamic derivatives times the reduced fre-
quency is data that would be predicted.

Unlike the steady-state simulation, the computational time for a transient simulation depends on the
size of the time step and the number of time steps that are considered. If one requires to preserve a similar
resolution of the solution by having similar time step sizes across the reduced frequencies, then consequently
the number of time steps that are needed increases as the reduced frequency decreases. This results in the
lower reduced frequency solutions costing higher computational time. A multi-fidelity model using a single
sample at various frequencies are studied and shown in subsection 5.3.1. The subsection 5.3.2 shows the
outcome of surrogate model with two samples. The table 5.3 shows the various surrogate models that were
studied.

Case Number Description Computational Time (hrs) Discussed in
1 Single-Fidelity 3DPM 0.2 All

2
Multi-fidelity kriging with a sample

at highest reduced frequency
21.37 5.3.1

3
Multi-fidelity kriging with a sample

at median
43.03 5.3.1

4
Multi-fidelity kriging with a sample

at lowest reduced frequency
55.86 5.3.1

5 Multi-fidelity kriging with two samples 77.03 5.3.2
6 Ordinary Kriging with two samples 76.86 5.3.2

Table 5.3: Surrogate Model used for dynamic analysis

5.3.1. CASE STUDY USING ONE HIGH-FIDELITY SAMPLE
The figure 5.23 shows the results of the multi-fidelity kriging model with a single sample at the highest re-
duced frequency of k=0.05, which forms the case number 2 of table 5.3 of this study. Using a sample at such a
point comes at a relatively lower computational time compared to lower reduced frequencies. The dynamic
derivatives for the normal force coefficient in figure 5.23a shows a drop in accuracy of the predicted values
as the the frequency reduces, which is a consequence of the data lying further away from the known sample
point. The dynamic derivatives for the moment coefficient also show a similar behaviour as seen in figure
5.23b.

(a) Normal force coefficient dynamic derivative vs reduced frequency (b) Moment coefficient dynamic derivative vs reduced frequency

Figure 5.23: Multi-fidelity model with single sample at k=0.05
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The reduced frequency of k=0.01 is the median of the range considered in this study and the figure 5.24
shows the results of the multi-fidelity surrogate model with a sample considered at this location. This is the
case number 3 of table 5.3 of this study. As compared to the previous case number 2, this case shows better
prediction accuracy at the lowest frequency for the dynamic derivative of the normal force coefficient as seen
in figure 5.24. The predicted value at this highest frequency has more error since the sample that is chosen is
located much closer to lowest frequency in the range of frequencies considered for the study. This is clearly
seen from the figure 5.24b which shows the surrogate model results for the dynamic derivatives of moment
coefficient.

(a) Normal force coefficient dynamic derivative vs reduced frequency (b) Moment coefficient dynamic derivative vs reduced frequency

Figure 5.24: Multi-fidelity model with single sample at k=0.01

The case number 4 of table 5.3 of this study, uses a single high-fidelity sample at the least reduced fre-
quency of k=0.002 and the results are shown in figure 5.25. The behaviour is similar to that of the case number
2 but the prediction errors in this case get larger with increasing reduced frequency. The dynamic derivatives
for the normal coefficient as seen in figure 5.25a show a better fit than the corresponding predictions of case
number 2 as seen in figure 5.23a but it is also important to note that case number 3 roughly takes 2.5 times
more computational time than case number 2.

(a) Normal force coefficient dynamic derivative vs reduced frequency (b) Moment coefficient dynamic derivative vs reduced frequency

Figure 5.25: Multi-fidelity model with single sample at k=0.002

5.3.2. CASE STUDY USING TWO HIGH-FIDELITY SAMPLES
The case number 5 and 6 of table 5.3, are surrogate models that are constructed with two high-fidelity sam-
ples. The case number 5 is a surrogate model based on multi-fidelity kriging while the case number 6 uses
ordinary kriging. Strictly speaking, two points are insufficient data to construct ordinary kriging model since
all it does is make a linear interpolation. Since the data themselves show a fairly linear trend in the range of
reduced frequency, the model is just constructed to compare the corresponding multi-fidelity results. The
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results are shown in figure 5.26 and it can be seen that there are no significant differences between the multi-
fidelity kriging and ordinary kriging. It is important to take note that this conclusion is only valid due the the
already linear behaviour of the dynamic data.

(a) Normal force coefficient dynamic derivative vs reduced frequency (b) Moment coefficient dynamic derivative vs reduced frequency

Figure 5.26: Multi-fidelity model with two samples

5.3.3. ERROR METRICS FOR MULTI-FIDELITY DYNAMIC CASES
The errors for the various surrogate models are quantified in terms of the MAE and the RMSE and have been
shown in figure 5.27. The figure 5.27a shows the corresponding errors in the dynamic derivative for the nor-
mal force coefficient. The 3DPM with a MAE of 0.2 already roughly corresponds to a mean relative error of
about 40%. The case number 2 which uses a single sample at the highest frequency already has MAE about
0.03. The accuracy is already improved by 85% on an average by using just a single high fidelity sample. The
errors are practically negligible while using a surrogate model with two samples. The improvement in accu-
racy corresponding to these models are 98%. In the case of dynamic derivatives for moments as seen figure
5.27b, the accuracy is improved by 92% using the sample at the highest reduced frequency. The case number
four which has the highest average errors also sees a 78% improvement in accuracy compared to that of the
3DPM.

(a) Errors in Normal Force coefficient dynamic derivative (b) Errors in Moment coefficient dynamic derivative

Figure 5.27: Errors in dynamic derivatives



5.4. TIME STUDY 55

5.4. TIME STUDY
In this section, a time study is conducted for all the previously constructed surrogate models. The study will
only compare the time required in solving and not the pre-processing time. The post-processing to obtain the
dynamic derivatives in the case of RANS involves solving the Inverse Fourier Transforms. This is in the order
of milliseconds and when compared to the time taken by the solution, it is negligible. The surrogate model
also experiences a similar computational time that is in the order of milliseconds. The simulations are carried
out using a computer with 20 cores running in parallel, the specification of which were highlighted in chapter
2 in table 2.1. The time discussed in this section refers to the wall time which is the real time consumed by
running all the 20 cores in parallel.

5.4.1. TIME STUDY FOR MULTI-FIDELITY STATIC ANALYSIS
The feasibility of the surrogate model for the static analysis are assessed in terms of RMSE and the compu-
tational time and is shown in figure 5.28. The description for each case can be found in table 5.2. The case
number 1 corresponds to the full set of the 3DPM results. A single case of the 3DPM for the static analysis
roughly takes 4 minutes which leads to a total computational time of 1.3 hours for a total of 20 angles of at-
tack that were considered. A single case of RANS takes roughly 2 hours to solve which is 30 times the cost
of the 3DPM for a given angle of attack. Despite the 3DPM being able to capture the trend, it has RMSE of
200 drag counts which roughly correspond to 50% error in the computation of drag, compared to that of the
high-fidelity RANS method.

The multi fidelity surrogate model with just one single sample as represented by case number 2 has a
RMSE of 125 drag counts. It is important to note that the metric of RMSE heavily penalizes larger errors in the
prediction , and despite this behaviour the accuracy of the 3DPM is improved by 37.5% by the multi-fidelity
approach. This however leads to a total computational time that is roughly twice as high as running the 3DPM
alone. The case number 3 which uses two samples is able to improve the accuracy by 75% with a RMSE of 50
drag counts.

The case number 4 and onwards have sufficient samples to construct ordinary kriging based surrogate
model and it can be seen that in all such cases the errors related to that of the ordinary kriging model is
similar to that of the multi-fidelity kriging model for a given number of samples. The surrogate model with
3 samples corresponding to case number 4 already shows 86% improvement in accuracy with RMSE of 28
drag counts, and the increase in accuracy up to 96% with a RMSE of 8 drag counts with four samples does not
justify the 33% increase in computational time.

The case number 8 utilises the ordinary kriging-based surrogate model with angle of attacks steps of 5 de-
grees instead of 1 degree as typically used. This case highlights the benefits of using a single-fidelity surrogate
model that uses a high-fidelity method like RANS but with larger steps. Despite the RANS method costing 30
times the computational as that of the 3DPM for a given angle of attack, the overall computational time is
only 8 times that of the 3DPM. This roughly saves 73% of the computational time as compared to simulating
for steps of 1 degree and only comes with a compromise of RMSE of 6 drag counts. Therefore, if a sub-scale
flight test engineer wants to opt for a high-fidelity method then the use of ordinary kriging with larger steps
of angles of attack is viable process.

Figure 5.28: Time study for static analysis
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5.4.2. TIME STUDY FOR MULTI-FIDELITY DYNAMIC ANALYSIS
In the case of computation of dynamic derivatives, the simulations were carried out for 3 different reduced
frequencies and the feasibility of the various surrogate models are assessed in this section. The description
of the various cases can be found in table 5.3. Practically, the quasi-steady formulations for the dynamic
simulation follow a similar solution to that of the static cases and therefore also have a computational time
of 4 minutes for a given angle of attack at given reduced frequency. Whereas the fully unsteady transient
formulation with the RANS method requires the solution to the steady-state equation which is the initial state
for the dynamic case. The computational time then depends on the number of time steps that are solved for
a given case. For similar resolution of the solution, more time steps are required at lower reduced frequencies
and the corresponding computational time is much larger.

The computational time for the dynamic case with a reduced frequency of k=0.05 is roughly 21 hours
which is about 320 times the cost of the quasi-steady 3DPM. The computational costs for dynamic simulation
at low frequency is about 3 times as high as that of the high frequency which would roughly be 900 times that
of the 3DPM. To put things more into perspective, a single case of dynamic simulation at high frequency, costs
twice as that of the obtaining the static data using RANS method. Trying to obtain dynamic derivatives across
all the reduced frequencies is simply not feasible during the early stages. But on the other hand, the 3DPM
has very poor accuracy that it will cause an issue in the evaluation of sub-scale flight test model designs.

The figure 5.29 shows the computational time and the RMSE associated with the dynamic derivatives of
the moment coefficient with the various surrogate models. The case number 2 which utilizes a high-fidelity
RANS sample at k=0.05 already shows significant reduction in the RMSE. This is mainly due to the fact that
the sample is chosen at the highest frequency where the absolute errors are usually the largest. This exploit
allows the surrogate model to leverage the low-fidelity data and have accuracy improvement of 92% . This is
already a satisfactory improvement and simulating with more samples is not optimal considering the excess
computational time involved. This multi-fidelity surrogate model with one sample at the highest frequency
roughly takes 21 hours which is still 105 times cost of of the full set of the 3DPM data that roughly takes 12
minutes. But the improvement in accuracy brought about, justifies the use multi-fidelity approach in assess-
ment of SFT model design. Moreover, using just RANS to obtain the dynamic results with higher accuracy
would have led to the computational time being roughly 5 times as large.

Figure 5.29: Time study for dynamic analysis
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5.5. SUMMARY
In section 5.1, the error of the low-fidelity method relative to the high-fidelity method was quantified. Com-
pared to the high-fidelity RANS method, the 3DPM roughly has 35% error in the prediction of the normal force
coefficient dynamic derivative and about 20% in the case of the dynamic derivatives for moment coefficient.
With this, the first sub-question mentioned at the beginning of this chapter has been answered.

The sections 5.2 and 5.3 showed the accuracy of the various surrogate models. Multi-fidelity kriging model
which utilizes two RANS samples, has a RMSE of 50 drag counts. Compared to the single-fidelity 3DPM with
RMSE of 200 drag counts, this is a 75% improvement in accuracy. Accuracy improvement of 86% (RMSE of
28 drag counts) could be achieved with utilizing three RANS samples, but a similar accuracy is achieved by
ordinary krigng with the same set of RANS samples. This makes the use of 3DPM totally redundant. 3DPM
used in the research, is fundamentally incapable of capturing effects of separation. The 3DPM therefore, can
no longer provide any meaningful leverage. This results in the ordinary kriging model being just as good as
the multi-fidelity kriging model. The multi-fidelity kriging model only has value, when there are insufficient
samples to create ordinary kriging model. The multi-fidelity model is especially valuable when it comes to
prediction of dynamic derivative. Using just a single high-fidelity sample, accuracy improvement of 92%
could be achieved. Compared to running a single-fidelity RANS, this multi-fidelity approach can achieve
almost the same accuracy for one-fifth the computational cost, as seen in section 5.4.

To conclude, the multi-fidelity kriging model can be used to predict the dynamic derivatives with using
just one RANS evaluation. The evaluation is optimal at the highest frequency, since the computational time
increases as the frequency of the oscillation is reduced. When it comes to the static analysis, the multi-fidelity
analysis sees some benefit with a single sample or two samples. For sample sizes where ordinary kriging
can be constructed, the multi-fidelity approach becomes redundant. The table 5.4, highlights the preferred
surrogate-based approach for generating the aerodynamic database.

Type of analysis Accuracy improvement Surrogate model to be used
Static 40-70% Multi-fidelity kriging with two samples
Static >90% Ordinary kriging

Dynamic >90% Multi-fidelity kriging with one sample

Table 5.4: Choice of surrogate model
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6.1. CONCLUSION
Sub-scale Flight Test (SFT) can be an effective method to learn the flight behaviour of novel aircraft designs.
There needs to be similitude between the sub-scale model used in SFT and the full-scale prototype of the
novel design, for the method to provide valuable information. SFT models designed based on classical simil-
itude theory are often simplistic and similitude is not established. The method of computational scaling
is state-of-the-art for designing SFT models. Computational scaling method iteratively uses computational
analysis to propose designs which have the best similarity to full-scale aircraft.

Previous research into SFT model design by Raju Kulkarni, quantified the differences between designing
SFT model using classical similitude theory and that by computational scaling approach[18]. The research
introduced a novel figure of merit called Degree of Similitude (DoS), which would quantify the similitude
between SFT model and the full-scale prototype. It demonstrated the significant benefits of utilizing the
computational scaling approach over the classical similitude theory, into designing SFT models.

The evaluation of DoS often requires a comprehensive aerodynamic database. Computational methods
used for aerodynamic data generation are labour and time intensive, which make them a critical bottleneck in
computational scaling approach. The 3D-Panel Method(3DPM) was used in the generation of aerodynamic
database in the previous research. In the field of Computational Fluid Dynamics(CFD), this is regarded as a
low-fidelity method, which can give quick evaluations, but also has low accuracy. Using methods of higher fi-
delity such as Reynolds Averaged Naiver Stokes (RANS) or Large Eddy Simulation (LES) were deemed to make
the process infeasible. This is because these methods can take from days to weeks to evaluate a single design,
let alone an iterative computational scalling approach. Therefore, the main aim of this research was to sup-
port the SFT designs using computational scaling, by developing a multi-fidelity approach for the generation
of aerodynamic database that is required in the evaluation of DoS. This can be achieved by finding the answer
to the follwing research question :

What is the impact of utilizing a multi-fidelity approach in the generation of aerodynamic database for
SFT model design, compared to the classical single-fidelity methods?

The 3DPM ignores the effects of viscosity,leads to poor predictions of drag characteristic and fails to pre-
dict the effects of stall. The method uses a quasi-steady formulation to simulate the dynamic behaviour of
the aircraft. Based on the study performed in this thesis, dynamic derivatives obtained from 3DPM are insen-
sitive to the input changes of reduced frequency. Spallart-Allmaras(SA) is a one equation RANS model, and
is used as the high-fidelity method. This is a high-fidelity method that includes the effects of viscosity and
is able to carry out fully unsteady simulation. Compared to other CFD methods such as two equation RANS
models or LES, SA-RANS requires lower computational time. This made it the optimal choice to be used in
the multi-fidelity process.

Since RANS is slow and 3DPM is fast, multi-fidelity approach was used to combine the two methods to
improve the speed of aerodynamic data generation without significantly lowering the accuracy. Fusion-based
model management strategy was utilized for the multi-fidelity approach. Co-kriging was used to fuse the low
and high fidelity data. This is the multi-fidelity kriging based surrogate model, developed in this research.

59



60 6. CONCLUSION AND RECOMMENDATION

To prove the effectiveness of the proposed method, computational analysis was performed on the Variable
Geometry Model(VGM), which is a 8.8% geometrically scaled model of a Cessna Citation II 550. The compu-
tational time of the multi-fidelity process would be directly affected by that of the high-fidelity method. A
study was performed to find the optimal size of the grid and time step (see chapter 4.1). Using these optimal
sizes, solving a single static case using RANS takes 2 hours of computational wall-time. A total of 21 hours is
required for a single dynamic simulation. The 3DPM takes 4 minutes for both static and dynamic simulation.

In this research, the data set for the static analysis consists of 20 evaluations and 3 evaluations in the case
of dynamic analysis. The multi-fidelity model uses the full set of data from the 3DPM and some sample points
from the high-fidelity data set. The errors are computed relative to the full set of RANS data. In a multi-fidelity
surrogate model, the low-fidelity function provides a leverage while predicting the high-fidelity output. A
surrogate model based on ordinary kriging is created that serves as a secondary reference. This single-fidelity
surrogate model utilizes only the samples from high-fidelity data set. Comparing the multi-fidelity surrogate
model to ordinary kriging surrogate model, showcases the leverage provided by 3DPM.

In the case of static simulation, the 3DPM had a Root Mean Square Error (RMSE) of 200 drag counts
compared to that of RANS. This RMSE was reduced to 50 drag counts using the multi-fidelity model with two
high-fidelity samples. This corresponds to an improvement in accuracy by 75%. Increasing the number of
high fidelity samples helps reduce the errors further. Whenever there are enough samples in constructing
a ordinary kriging model, the performance of the single-fidelity surrogate model is almost the same as that
of the multi-fidelity surrogate model. Therefore, using 3DPM to provide leverage in such a case, would be
redundant.

The computational time of the dynamic simulation increases with decrease in reduced frequency of a
flow. It took 20 hours for a dynamic simulation at high frequency while the set of three evaluation approx-
imately takes 100 hours. Using the multi-fidelity approach with a single sample at the highest reduced fre-
quency, an accuracy improvement of 92% was obtained. Therefore, compared to using a single-fidelity RANS,
the multi-fidelity approach develop in this research, can generate the database in 20% of the computational
time.

The multi-fidelity kriging model developed using RANS and 3DPM, is capable of generating the aerody-
namic database that has reasonable accuracy and computational cost. This helps solve the bottle neck in the
computational scaling approach, making it feasible approach for design of SFT models. These SFT models
with well established similitude, will help us learn the behaviour of the novel designs and get a step closer
towards sustainable aviation.
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6.2. RECOMMENDATION
This section provides recommendation to broaden the scope/applicability of this research.

• KBE tools like MMG has the potential to automate the generation of high quality structured meshes.
Using structured meshes in the aerodynamic analysis would further help reduce the computational
cost of the high-fidelity method. The reduction in cost of high-fidelity analysis reduce the overall costs
of generating the aerodynamic database using the multi-fidelity approach

• RANS method is able to both capture viscous effects and simulate a fully unsteady case for the com-
putation of the dynamic derivatives. Euler method can be used to compute a fully unsteady case but
it would ignore the effects of viscosity. If the viscous effects are not deemed to be important while
studying certain dynamic motions, then RANS can be replaced by Euler method. Using Euler method
as the high-fidelity method and 3DPM as the low-fidelity method, would bring down the costs of the
multi-fidelity approach.

• In this study the combined derivatives were not separated because the low fidelity method does not
have a means to do so. But future research can also include the plunging motion in order to separate the
derivatives. Furthermore, the motion can be carried out across all axis instead of just the longitudinal
motion considered in this study and for wider range of flow parameters.

• The scaling factor ζ, for the multi-fidelity method using the 3DPM and RANS was assumed to be con-
stant in this research. A research that studies modeling the scaling factor for multi-fidelity kriging be-
tween the 3DPM and the RANS would useful to this approach. The method of computational scaling
would assess wide range of SFT model designs. It could potentially be worth the time to use one of
those designs to model the scaling factor between the two computational methods. Once modeled, it
can be used to in the multi-fidelity approach of successive designs to obtain better accuracy.
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KRIGING AND CO-KRIGING

The unknown value Y (X0) of a random function Y, can be constructed as a linear combination of the known
values[33]. This is represented in the equation A.1 where µ is the known stationary mean and λ is the set of
weights. This equation can be rewritten by considering the residuals about the mean value and is shown in
A.2.

Y (X0) =
n∑

i=1
λi Y (Xi )+

(
1−

n∑
i=1

λi

)
µ (A.1)

Z (X0) =
n∑

i=1
λi Z (Xi ) (A.2)

The weights are found such that the variance of the prediction is minimized. The variance is the expec-
tation of the difference between the predicted value and the true but unknown value (Z∗). This is shown in
equation A.3. Using equation A.2, we obtain the following expansion as shown in equation A.4. The expecta-
tion can be written as co-variances between the data and this equation A.5 shows this.

E {[Z∗(X0)−Z (X0)]2} (A.3)

n∑
i=1

n∑
j=1

λiλ j E {Z (Xi )Z (X j )}−2
n∑

i=1
λi E {Z (Xi )Z (X0)}+E {[Z∗(X0)2]} (A.4)

n∑
i=1

n∑
j=1

λiλ j Cov(Z (Xi ), Z (X j ))−2
n∑

i=1
λi Cov(Z (Xi ), Z (X0))+Cov(0) (A.5)

The covariance between two points are obtained from the correlations ψ between the random variable
function.This is shown in equation A.6. Also Cov(0) = σ2 which is the total variance in the set of data. Since
we need the weights that minimize equation A.5, we can obtain them by differentiating this with respect to
the weight which then enables to solve the set of equations shown in equation A.7.

Cov(Z (Xi ), Z (X j )) =σ2ψ(Xi , X j ) (A.6)

n∑
i=1

λ j Cov(Z (Xi ), Z (X j )) =Cov(Z (X j ), Z (X0)) wher e j = 1,2....n (A.7)

This set of equations assumed the stationary mean to be known prior to solving and this method is called

simple kriging If the the constraint of
n∑

i=1
λi = 1 is added within the set of equations this results in the solu-

tion that computes the local mean. Adding such a constraint alleviates the need to know the mean and this
method is referred to as ordinary kriging. The predictor variance can be computed using the equation A.8.

V ar i ance(X0) =Cov(0)−
n∑

i=1
λi Cov(Z (Xi ), Z (X0)) (A.8)
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Equation A.8 only depends on the covariance matrix which as seen in equation A.6 only depends on the
distribution of the data and not the data values at a given location. This property of being able to evaluate the
prediction variance irrespective of the predicted value is called homoscedastic property.

The multi-fidelity kriging or co-kriging, predicts the high-fidelity values of the function Zh(X ) as a scaled
value of a low-fidelity function Zl (X ) and a discrepancy function Zd (X ) which is a Gaussian random function
[34]. This is shown in equation A.9 where ζ is the scaling factor.

Zh(X ) = ζZl (X )+Zd (X ) (A.9)

The covariance matrix evaluation in the previous case only involved a single random function whereas
there are three matrices that correlate the two fidelity levels involved. The set of extra covariance matrix defi-
nitions are shown in equation A.10. Furthermore, the constraint equation in this case contains the weights to

the high-fidelity data
n∑

i=1
λh

i = 1 and the low-fidelity data
m∑

i=1
λl

i = 0

Cov(Zl (X ), Zl (X )) =σ2
l ψl (Xl , Xl )

Cov(Zh(X ), Zl (X )) = ρσ2
l ψl (Xl , Xh)

Cov(Zh(X ), Zh(X )) = ρ2σ2
l ψl (Xl , Xl )+σ2

dψd (Xd , Xd )

(A.10)

By solving the modified matrices, one can obtain the multi-fidelity kriging prediction.



B
HYSTERESIS CURVES FOR VGM

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.1: Hysteresis curves for AoA -4 degrees

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.2: Time Domain curves for AoA -4 degrees
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(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Angle of Attack

Figure B.3: Hysteresis curves for AoA -2 degrees

(a) Moment coefficient vs Normalized time (b) Time Domain curves for AoA -2 degrees

Figure B.4: Force and moment Hysteresis for harmonic pitch of NACA0012 airfoil

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.5: Hysteresis curves for AoA -0 degrees
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(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.6: Time Domain curves for AoA 0 degrees

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.7: Hysteresis curves for AoA 2 degrees

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.8: Time Domain curves for AoA 2 degrees
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(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.9: Hysteresis curves for AoA 4 degrees

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.10: Time Domain curves for AoA 4 degrees

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.11: Hysteresis curves for AoA 6 degrees
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(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.12: Time Domain curves for AoA 6 degrees

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.13: Hysteresis curves for AoA 8 degrees

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.14: Time Domain curves for AoA 8 degrees
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(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.15: Hysteresis curves for AoA 10 degrees

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.16: Time Domain curves for AoA 10 degrees

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.17: Hysteresis curves for AoA 12 degrees
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(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.18: Time Domain curves for AoA 12 degrees

(a) Moment coefficient vs Angle of Attack (b) Normal Force coefficient vs Angle of Attack

Figure B.19: Hysteresis curves for AoA 14 degrees

(a) Moment coefficient vs Normalized time (b) Normal Force coefficient vs Normalized time

Figure B.20: Time Domain curves for AoA 14 degrees
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