Long-range 3D Range Detector Based on Time-correlated Single-photon Counting

More Info
expand_more

Abstract

Three-dimensional (3D) range detectors enabling 3D computer vision is now popular in automotive industry. With their participation, automobile safety has been further enhanced, autonomous driving has become realizable. Time-correlated single-photon counting (TCSPC) technique utilizing complementary metal-oxide semiconductor (CMOS) single photon detectors (SPDs) and time-to-digital converters (TDCs) embodies the proper participant of automotive 3D vision, with low power consumption, low cost, high speed, high robustness, small size, and portability. In this thesis, a TCSPC 3D range detector for automotive application was studied and modeled. The model covered all main components of a TCSPC system, including the TCSPC range detection process, the signal, and the noise. It was designed to predict the behavior of TCSPC systems and help future designers optimize the performance in accordance with the targeted application. To verify the model, a experimental setup was designed, implemented, and characterized. The setup consists of a data acquisition system, data processing procedures, and an optical-mechanical system. Measurements performed using the setup have confirmed that the model was designed correctly. For further exploration, range detection from 0.2 m to 60 m were carried out.