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CHAPTER 1

INTRODUCTION

There is a Chinese curse which says: “May he live in interesting times.” Like it or
not, we live in interesting times...

Robert F. Kennedy, 1966

Our planet is facing the greatest problems it has ever faced. Ever. So whatever
you do, don’t be bored. This is absolutely the most exciting time we could possibly
hope to be alive in. Things are just starting...

The Kleptones, Careless or Dead, 24h, 2006

1.1 Socio-technical System Earth
Prehistory to 19th century Since man is around 1, production and trade have existed. As
early as 3000 years ago the Silk Road started connecting Asia, Europe and Africa, over land
and water, transporting goods, technology and ideas between the continents. Trade continued
and intensified as the cycle of the rise and ruin of civilizations continued. With the development
of sailing ships, all continents were connected, large-scale trade began, and the first multina-
tional companies emerged. The invention of the steam engine in the 18th century sparked the
Industrial Revolution. On the upside, this enabled a tremendous increase in the speed of pro-
duction and transport. On the downside, masses of workers were laid off and fell into extreme
poverty, and for the remainder of the employed the working conditions in the factories were
appalling. Industrialization included the building of railroad networks that enabled further
national industrial development, and international steam shipping led to a further increase in
international trade and colonialism. The poor working conditions incited the founding of labor
unions, which then increasingly affected politics and the way businesses were organized. At the
same time, an extensive telegraph network developed, enabling reliable global communication.
Some of the wealth generated started to trickle down to ordinary citizens, driving consumption.

1This introduction is not meant to be a complete historic account of the human history. It is a personal view
used to set the stage.
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Rise of engineering In the 2nd half of the 19th century industrial skills and practices rapidly
increased. The formation of engineering societies fostered the translation of scientific underpin-
ning and codification of industrial operations into formal R&D procedures (Dĳkema, 2004). By
World War I, major engineering disciplines such as electrical engineering, chemical engineering,
mechanical engineering and civil engineering had become well-established.

Twentieth century During the interbellum and in the years following WW II, the world
economy became increasingly networked. Decisions made in one part of the world began to have
direct impact across the globe. The achievement of large-scale electric power generation, and
especially the introduction of the incandescent bulb in the late 19th and early 20th centuries,
sparked the development of a new physically networked infrastructure that quickly spanned
entire continents. An explosive increase in telecommunications infrastructure, first through
telegraph, later the telephone and the Internet allowed the financial networks to emerge. These
were able to fund these large-scale technical systems already linked the greater part of the
globe, further increasing the speed of their development. They affected the world not only
economically and politically, but also in terms of real physical and social impact. The 1929
stock market crash and the subsequent global recession is a case in point.

Post WW II WW II not only changed the international scene; it also spurred technological
development, laying the foundations of post-war industrial development, e.g. in petrochemicals
and polymers. The discovery of the transistor and, later, the computer chip started the infor-
mation revolution. The discovery of DNA led to advancements in biotechnology and medicine.
In the military, notably in aircraft and aerospace engineering, a new engineering discipline was
in the making: systems engineering (Blanchard and Fabrycky, 1998; Dĳkema, 2004). Pub-
lic multinational organizations such as the UN, the WTO and the IMF entered the global
stage, while large multinational companies with their fast and massive capital flows dominated
the global economy. During this period the global distribution of income became increasingly
skewed (Melchior et al., 2000), creating a massive disparity between rich and poor. Despite
these excesses, the general level of welfare increased overall, especially in the developing world.

Twenty-first century The last decade of the 20th century saw the emergence of the Internet
and the World Wide Web, inspiring a new revolutionary era in network-based information
systems (Castells, 2000). The micro-electronics industry supporting them mushroomed, and
the resulting dramatic price drop and performance increase allowed for further developments.
Molecular biology and the Human Genome project sparked a biological information revolution
in the life sciences. Global supply networks, the extensive offshoring of manufacturing and
services and the global financial networks enabled by the Internet have transformed the planet
into a globally connected village (Friedman, 2005). The size of the World Wide Web in 2008
was estimated to be between 27 and 60 x 109 pages2, and the number of users is currently
growing at 300% per year 3. Global society has become a highly interconnected networked
system.

2http://www.worldwidewebsize.com/ Accessed August 19, 2008
3http://www.internetworldstats.com/stats.htm Accessed August 19, 2008
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Box 1: Vocabulary This thesis draws from many different scientific fields. This
has resulted in a multidisciplinary vocabulary being used in this thesis. Therefore,
not all concepts may therefore be familiar to the reader. Key concepts are briefly
defined below and are further elaborated in Chapters 3 and 4.
system A regularly interacting or interdependent group of components forming a

unified whole.

intractability A process is intractable when the fastest way to determine its outcome
is to perform the process, i.e., the outcome can not be determined in advance
by any computational device.

evolution The process of variation, reproduction and selection of individuals over
time. When applied to non-biological systems it describes the process of change
in the structure and the function of a system.

co-evolution As entities never evolves alone, but act and react with other entities,
evolution is often referred to as co-evolution.

attractor A set of states to which a system evolves. That is, once a system state
evolves to the point that it is relatively stable (the attractor point), it will remain
close to it even if the system is disturbed.

complex adaptive system A dynamic network of many components acting in par-
allel, constantly acting and reacting to what the other components are doing.

emergence Stable macroscopic patterns arising from the local interactions of system
components.

actor Any entity (person or organization) in the real world.

agent The abstraction of an actor, being the smallest component in a complex adap-
tive system.

formalism A well-defined language describing a certain knowledge domain, such as
mathematics, economics or psychology.

1.2 Global challenge
World problems The societal development described in the previous section has come at
a high environmental price. As The Kleptones point out, our planet is facing the greatest
problems it has ever faced. Population is growing, as is material and energy consumption,
resulting in an ever-increasing environmental impact. The IPAT equation (Impact-Population-
Affluence-Technology) (Allenby, 1999; Graedel and Allenby, 1995) (see Eq. 1.1) offers insight
into the situation.

Environmental Impact = Population× GDP

Person
× Environmental Impact

Unit of per capita GDP
(1.1)

By examining the components of this equation we can gain a sense of its scale of impact.
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Environmental Impact Current atmospheric CO2 concentrations are the highest in
400,000 years (Petit et al., 1999). Global warming is evident (KNMI, 2008; Parry et al.,
2007) and is already adversely influencing the human population. Deforestation and de-
sertification are destroying ecosystems across the globe (Skole and Tucker, 1993). This
habitat loss is leading to a record number of species going extinct (Barbault and Sas-
trapradja, 1995; Pimm and Raven, 2000).

Population In the last 50 years the earth’s population has more than doubled (UN,
2006).

GDP
Person

World industrial production has increased 100 fold over the past 100 years (Al-
lenby, 1999), the global GDP has increased by a factor of 50 (DeLong, 2002), and global
energy consumption has increased by a factor of 100.

Environmental Impact
Unit of per capita GDP

Economies are requiring more and more energy and materials per
unit of production (Bartelmus, 2003). For example, in China the direct material input
per unit of GDP doubled between 1989 and 1996. “Nowhere ... do we find a case of
’absolute delinking’ in the sense of absolute reductions of material input occurring while
the economy continues to grow” (Fischer-Kowalski and Amann, 2001), and thus nowhere
is a reduction in the environmental impact per unit of GDP observable.

Wicked problems While these aforementioned problems seem unrelated, their causes and
effects are deeply intertwined. They are sometimes described as wicked problems (Rittel and
Webber, 1984, 1973). Solutions to wicked problems are often difficult to recognize as such
because of the maze of interdependencies. They have contradictory and changing requirements;
and while attempting to solve them, the solution may reveal or create other, even more complex
problems. More and more of these wicked problems are emerging at the same time and on the
same planet. While it is possible to view them in isolation from each other, such a reductionist
approach has proven to be inadequate in solving these issues.

System collapse The world is indeed facing its greatest problems to date. Starting with
Rachel Carson’s “Silent Spring” (Carson, 1962) and the “Limits to Growth” report (Meadows
et al., 1972), a variety of ’system thinkers’ have postulated societal collapse (Diamond, 2005).
This collapse would be caused by environmental problems. The human presence does not just
affect the earth’s ecosystems; it dominates them (van der Voet, 2001). We are exceeding the
planet’s carrying capacity. At the same time, the human species is fully dependent on the
world’s ecosystems for its survival. Spaceship Earth (Fuller, 1969) is a large, networked system
of which each and every component has some effect on all other components, no matter how
small. In order to gain insight in to the interrelatedness of the world’s problems, and perhaps
attempt to solve them, it is necessary to have a broad, systems-based perspective.
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Box 2: Systems perspective Systems perspective is aptly defined by Bar-Yam
(Bar-Yam, 2003, 2008) :

Taking into account all of the behaviors of a system as a whole in the
context of its environment is the systems perspective. While the concept
of system itself is a general notion that indicates separation of part of
the universe from the rest, the idea of a systems perspective is to use a
non-reductionist approach in the task of describing the properties of the
system itself.

In the systems perspective, once one has identified the system as a
separate part of the universe, one is not allowed to progressively decompose
the system into isolated parts. Instead, one is obligated to describe the
system as a whole. If in describing system properties one separates them
into parts, this produces an incomplete description of the behavior of the
whole. Any description of the whole must include an explanation of the
relationships between these parts and any additional information needed
to describe the behavior of the entire system.

Multiple levels and perspectives Given the scale and complexity of the whole earth sys-
tem, it is impossible to understand it in its totality. In order to systematically study it, we need
to deconstruct it into smaller, interrelated components. These components can be aggregated
into three system levels: micro, meso and macro, which generally correspond respectively to
the local, regional and global scales. The interactions of many local components create regional
components, and many regional components together create the global systems state.

The identity of any component consists of two parts: the first part being the nature of the
component itself, and the second part being the interactions it has with other components.
Because of this dual nature, the description of any component is dependent on the perspective
from which it is observed. In other words, whether a given interaction is taken into consideration
or not determines the way the component is viewed by a particular observer.

Each component in the system can and must be viewed from a variety of perspectives, as
no component can be fully defined and understood from a single perspective (Mikulecky, 2001;
Nietzsche et al., 1961). Obviously, a system comprising of these components will also require
a multiple-perspective approach. In the context of understanding socio-technical components,
these perspectives can be understood as scientific disciplines. Each discipline, be it engineer-
ing, economics or psychology, views system components differently. For example, from the
engineering perspective, the chair you are sitting on is a stable structure, carefully designed
using geometric principles to hold certain forces in the vertical direction. From an economic
perspective, it is a product of the global economic system, its price resulting from the market
equilibrium of supply and demand for office furniture. From a psychological perspective, the
chair is an extension of its user. Whether you are sitting on a cheap Ikea chair or in a luxurious
leather armchair projects a certain image of you to others.

Avoiding system collapse In order to avoid a system-wide collapse, we need to change the
system’s components, whose identity and interactions give rise to the aforementioned problems.
Whenever a change is made to the way a system component is and interacts, the change im-
mediately affects the entire system. The moment the change has taken place, the system is
effectively changed. The observable effects of this change, however, may not be apparent right
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away. Observable, system-level changes in a systems state may happen over very different time
scales than the actions that cause the change to happen. Sometimes these changes are immedi-
ate: for example, banning cars from driving through Beĳing during the 2008 Olympics directly
improved the air quality in the city. However, because the global system operates on biogeo-
chemical time scales of millennia and distances of thousands of kilometers (Lovelock, 2000),
while the human perception horizon is measured in a few kilometers and six months (Allenby,
1999), the effects are either too large or happen too slowly for humans to directly perceive.
Furthermore, every change in a system component causes many other system components to
react, further changing the system. The system thus evolves over time, through visible changes
to its state and through changes in its internal interaction structure.

Problem of prediction and design The challenge is thus not only to change the system
components, but also to be able to anticipate and evaluate the long-term effects of our actions,
since they can easily turn out to be undesirable. This means that we need to learn how to more
accurately predict the possible future outcomes of evolving systems, both when the systems are
managed and when they evolve autonomously.

The following situation is an example of such an effect. Cooling food is an important
measure in prolonging its usability and allowing it to be stored for lean times. The first
mechanical cooling systems, invented in 1756 and developed in the following decades, used
either very flammable (diethyl ether) or very toxic (ammonia) substances in their operation.
In the 1920s a safe, non-toxic and non-flammable solution was finally found in the form of
chlorofluorocarbon compounds (CFCs). These compounds were used on a massive scale, and
based on their toxicological and physical safety, and because of the structure of the production
system, no recycling was performed. Only in the 1980s was it realized that CFC emissions were
responsible for the rapid depletion of the earth’s ozone layer. It seemed a simple case of single
cause, single effect; and CFCs were relatively quickly banned by the Montreal protocol (Ozone
Secretariat of the United Nations Environment Programme, 2006) in 1987. The treaty was
hailed as a victory of global environmental policy. However, HFC-23, the main replacement for
CFCs, was found to have a global warming potential (GWP) 12,000 times greater than that of
CO2 . Since global climate responds even much more slowly to emissions than the ozone layer
does, the full effect of HFC emissions is today barely observable but will slowly reveal itself
as the earth’s atmosphere transports them to the stratosphere in the coming hundred years
(Sand et al., 1997). As previously mentioned, such problems are wicked. There is no central
coordinator that can ’solve’ or ’optimize’ the system. Even worse, there is no single solution,
only the possibility to change one or more of the system components, creating new problems
which we can not predict in advance.

Addressing global problems Given the interrelatedness of global problems and the over-
whelming complexity of the systems perspective with its multiple components, how does one
go about solving these problems? A new approach is needed.

The first thing we need to realize is that there is no ’quick fix’. There is, by definition,
no single-perspective solution possible to a multi-perspective problem. We must be prepared
to constantly shift perspectives and choose system levels based on what is appropriate at the
time, sometimes even considering multiple perspectives and levels in concert. We must make
decisions and perform actions that we know will affect the entire system, across all components,
levels and perspectives.
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Self vs. interaction The approach to solving these problems is two-tiered. First, we must
change the identity of the components from which the system is built, either through changing
the components themselves or by changing the interactions between them. Second, since in
changing the system’s components we change the entire system, we must understand how the
system will react to a change in any one of its components. We must therefore learn how the
entire system changes as well, and then shape its evolution towards a more sustainable state.

Challenge summarized The world of today is a fabric of interconnected, co-evolving, net-
worked socio-technical systems that have large environmental impacts. In explicitly recognizing
this interconnectedness, we realize that global problems must be understood from an integrated
perspective: a whole system view across multiple levels (local, regional and global) and across
multiple perspectives (multidisciplinary and multicultural). The solution to these global prob-
lems must be sought in interventions in multiple networks (socio-political, economic, knowledge,
energy, mass etc.). In view of the evident public interests involved, the central problem this
thesis attempts to answer can be defined as: How can we shape the evolution of large-scale
socio-technical systems towards a more sustainable state?

1.3 Discovering Patterns
The pattern of evolution Some 2500 years ago Heraclitus (Fowler, 1977) said “Panta Rei�.

Everything flows; the only constant is change. This still holds true today, and yet the speed of
change has dramatically increased (Garreau, 2006). The constant change, or more specifically,
constant evolution of systems, is the subject of this thesis.

Knowing the future It has been suggested that the universe can be viewed as a giant
computational device (Bostrom, 2003; Fontana, 2005; Hayes, 1999), in which the computation
is performed by the local interactions between system components (Wolfram and Gad-el Hak,
2003). The algorithm running in the universe, with the human species being one of its many
components, is intractable (Dennet, 1996). Any attempt to predict the ’result’, or future state
of the universe, in advance would require the presence of something larger than the universe
itself, containing a perfect description of the universe within it. For the creatures running
around inside the universe who are themselves part of the computation (Adams, 2002), it is
clearly impossible to predict the future state of the universe around them.

The problem to be addressed The problem this thesis addresses is that, while the exact
prediction of the future state of the earth system is impossible, we need to have insights into the
future development of the earth system as a result of our actions in order to sustainably develop
further. The reasons for this inability to predict are that there are a myriad of different (types
of) things interacting at the same time, and that we ourselves are part of the equation. Much
of this interaction is path-dependent, and we have no perfect record of how these interactions
have taken place in the past. Furthermore, humans have a limited time and space horizon
when gathering information and are limited in their ability to process the available information.
Finally, the environment is full of random and unpredictable events that further increase the
difficulty of prediction.
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Recognizing patterns If we cannot get an exact prediction of the future, the second best
we can do is to try to grasp a sense of general direction. However, even this is difficult,
since analyzing as many of the different interactions as possible and logically working out their
consequences is something we humans do relatively poorly. In order to solve that deficiency,
computers have been designed to do just that: systematically process lots of information.
Humans, on the other hand, are very good in recognizing patterns, something computers have
great difficulty with. Recognizing things that look like things we have seen before and basing
our actions on them is something we do in our daily lives. The challenge is thus to use the
combination of the systematic processing ability of machines and the creative pattern-analyzing
ability of humans to gain insight into possible future behavioral patterns of systems and peer
forward into the mist.

The solution is in the patterns This thesis aims to develop a testable and repeatable
method for combining different types of knowledge from many different people or domains to
create computer simulations of how the world changes. The models created by this method
allow us to examine the way the simulated systems change over time under different conditions
and reveal patterns to help us predict possible system futures. These patterns can then be
used to make better informed decisions about which actions we should take so as to positively
shape the future of our world. The method is based on using experts to collect and formalize
knowledge, thereby allowing computers to systematically create patterns from this knowledge,
and letting decision makers learn from these patterns and thus start understanding the systems
of which we are a part.
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Part I

Theory: Towards a co-evolutionary
modeling method
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CHAPTER 2
RESEARCH THEME AND QUESTION

2.1 Perspective
This thesis opened by a brief illustration of the development of socio-technical systems. The
deep interconnectedness of social and technical systems was addressed. The global ’whole
earth system’ can be seen as an evolving entity wherein the social and technical components
are co-evolving at an ever-increasing rate. As a consequence, the earth’s human population is
facing a global sustainability challenge, which requires timely and effective actions in order to
address the interconnected, multiperspective and multilevel systemic problems. Using a systems
perspective, the ability (or lack thereof) to quantitatively predict system-wide evolution subject
to such actions was explored. It was concluded that instead of focusing on the exact prediction
of a single evolutionary path, multiple potential system-wide evolutionary pathways must be
generated when analyzing emerging patterns in response to certain actions.

This chapter introduces the concept of large-scale socio-technical systems, central to this
thesis. Within this concept the perspective of sustainability as an emergent property of the
global evolving system is discussed. Finally, the core theme of this thesis, ’What models to
use to generate evolutionary patterns and how to develop them,’ is elaborated into research
questions.

2.1.1 Large-Scale Socio-Technical Systems
λ-systems Large-Scale Socio-Technical Systems is a term used in Thomas Hughes’s system
theory (Bĳker et al., 1987). To avoid having to spell out the lengthy term, these systems
will be referred to as λ-systems throughout this work. λ-systems are a class of systems that
span technical artifacts embedded in a social network, by which a large-scale, complex socio-
technical artifact emerges. Examples of λ-systems include organizations and institutions that
develop around and sustain a particular industrial system, be it a single plant, an industrial
complex, a set of interconnected supply chains or an entire global enterprise. They consist of
a large number of diverse technical artifacts, such as machines, factories, pipelines and wires.
They also consist of social components, such as policies, organizations and institutions that
shape the technical components and at the same time are shaped by them. Regional industrial
clusters, interconnected power grids, multimodal transport networks and telecommunication
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networks are examples of such systems. λ-systems thus consist of interwoven physical and
social networks.

Socio-technical paradigm In the classic engineering view, individual technologies are placed
in a physical system context, isolated from issues such as economics, policy or regulation. How-
ever, in a social context, activities such as R&D, investment and consumption only take place
as a result of decisions made by individuals or organizations. Individuals either affect the
technology directly as consumers or indirectly when organized in groups. Groups such as com-
panies or governments generally reflect the desires and behavior of individuals, but usually have
much more constrained behavior patterns (Luhmann, 1995). These groups create institutions,
rules, regulations, policies and habits. Technology is developed under, and is subject to, these
rules and regulations. Its use is driven by desires, emotions and the availability of knowledge
(Williamson, 1987). Given this, the idea of socio-technical systems emerges as a wider systems
perspective (Herder et al., 2008).

Our industrial society can be viewed as a collection of interconnected large-scale socio-
technical systems. Connections between these systems are of multidimensional nature; system
content, structure and boundaries shift and evolve. At the global level there is no central
coordinator, but order and structure emerge from widely distributed bottom-up interactions
of subsystems, some of which do have local centralized control, and some of which are fully
distributed.

Physical networks Physical networks consist of interconnected physical entities or things.
Connections and interactions between things are governed by laws of nature, and their design
tends to be relatively fixed in time, as they often involve large material and financial invest-
ments. For example, chemical processing plants consist of unit operations (mixers, reactors,
heat exchangers, etc.) that exchange mass and energy (Coulson and Richardson, 1999). Pro-
cessing plants are in turn connected to global supply networks that produce a bewildering
range of goods. Other examples of physical networks include the network industries of electric
power, natural gas, water, etc., as well as road and rail infrastructures. In physical networks
interactions are mainly causal.

Social networks When dealing with social networks we explicitly consider the social science
perspective. Social networks are seen to consist of interconnected actors, be it organizations
or individuals. In these networks, the interactions are intentional. While human beings are
physical entities and have physical interactions with each other and the world around them, we
will consider only the social connections between people (Watts and Strogatz, 1998).

Connections between people are governed by social laws, rules and conventions and take
many forms. These connections are as real as physical ones and vary in duration from very
short and informal (e.g. interaction with a clerk in store, a passing acquaintance) to very long
and fully formalized (e.g. governments, religious organizations, etc.) (Williamson, 1987).

Given that humans are both physical and social beings, they naturally interconnect the so-
cial and physical networks. Information flows between people can have large effects on physical
realities. Flows of money between actors affect how mass and energy are allocated and used.
Social networks are limited by laws of nature in the ways they shape physical networks. The
flows of mass and energy through physical networks are governed by contracts, which are hon-
ored because of the legal structures of which they are a part, and which are formed and broken
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in response to market dynamics. The structure and size of a physical network is determined
by the private and public actors that decide and influence the investment in physical assets. It
is the co-evolutionary interaction between these networks that causes the global sustainability
problems discussed earlier. At the same time, the solution also lies in them.

2.1.2 Sustainability
Modern society Industrial society has become dependent on highly advanced and complex
socio-technical networks (Castells, 2000). Due to global demographic, ecological, economic
and geopolitical trends, these systems are being strained in their capacity (especially transport
and energy networks) (Kraay, 1996), they are actively being threatened by political unrest
(Farrell et al., 2004) and have an unacceptable and ever-growing environmental impact. These
problems of the 21st century require a change in the way infrastructure networks, industrial
networks, regional clusters and entire economies are used, managed and developed (Rotmans,
1998; Sterman, 1994). At the same time, the inter-dependencies between λ-systems and their
surroundings, as well as the rapid changes in the internal components of λ-systems, make it more
difficult than ever to understand them well enough to allow successful intervention (de Bruĳne
and van Eeten, 2007).

Sustainable development What, then, is sustainability? In the now famous words of the
Brundtland (1987) Commission:

Sustainable development is development that meets the needs of the present without
compromising the ability of future generations to meet their own needs.

The basic idea behind this classic definition is the maintenance of a comfortable human
existence on the planet. While this is something that everyone can agree with, the definition
has a major oversight: it does not consider the world outside the human species at all. It is a
purely anthropocentric perspective on sustainability (Achterberg, 1994). As such, it does not
address multiperspective and multidimensional nature of the global system. A definition rooted
in the systems perspective is needed.

Emergent sustainability The great difficulty with sustainability is that it cannot be defined
at the individual level, nor at a particular time. An individual or a technology cannot be
sustainable in itself. System-wide sustainability is an emergent property of the networked
individual components in parallel action (Kauffman, 2000). Therefore, a new definition, based
on the work of Allenby (2006) will be used in this thesis:

Sustainability is an emergent property of the global evolving multidimensional
(social, technical and biogeochemical) networked system to indefinitely continue
existing while retaining its ability to evolve.

Evolving sustainability Managing the evolution of sustainable λ-systems involves shaping
the desired emergent behavior and avoiding the unsustainable emergent properties. This is
somewhat like driving a race car through a minefield in a thick mist with 6 billion people all
pulling at the steering wheel at the same time.
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A sustainable state of the world cannot emerge by blindly doing things and hoping that they
will work out for the best. Emergent behavior is a collective property of all system elements
and their interactions. It is chaotic, as small changes in individual elements can potentially
have large effects. It is path dependent, as past decisions will affect the availability of options
for future decisions. Predicting which local interventions will lead to a sustainable state over
time is difficult. As Ehrenfeld (1997b) argues, true sustainability will require a paradigmatic
change in the structure of λ-systems that support human society. This means that we need to
find a radically different way to address the design and management of λ-systems and to deal
with their complexity.

2.1.3 Modelling the evolution of λ-systems
This section will present some of the theories and concepts necessary to model the

evolution of λ-systems. It is a short overview used to set the scene. For a detailed
discussion of the theoretical backgrounds, please see Chapters 3 and 4.

In order to start the discussion on how to understand and model the evolution of λ-systems
we need to examine the three traditional approaches relevant to systems modelling. These
approaches, described in the following paragraphs, are: Computable General Equilibrium mod-
elling, System Dynamics and Process Systems Engineering.

Computable General Equilibrium and System Dynamics Static equilibria in the form
of Computable General Equilibrium (CGE) models (Jones, 1965; Leontief, 1998) have gained
widespread attention, and the already large body of literature continues to grow. In this domain
of neoclassical economics the emergent properties of λ-systems are the subject of analysis. Due
to the nature of these models, they have little to offer in terms of steering λ-systems. These
continue to be aggregate, static models that only implicitly include the generalized, aggregate
behavior of consumers, producers and others.

In System Dynamics models, a system’s structure is described and its response over time to
a variety of inputs is examined (Forrester and Wright, 1961; Meadows et al., 1972). While these
models do not assume the world to be static, the system structure modelled is necessarily static.
System dynamics models are typically set up to construct models of global system dynamics.
System aggregation is applied as a rule, as the scope and goal of many models is to get a feeling
of a system’s overall dynamic response.

General equilibria models and system dynamics models have drawbacks for the modelling of
λ-systems: they are top-down and employ system aggregation. Decision-making is not explicitly
modelled. To mimic the evolution of socio-technical systems, we need models that account for
the fact that in evolution the ’devil is in the detail’. It may be a single individual and his action
that causes the overall emerging system behavior to change dramatically. Furthermore, it is
not only system utilization, operation and behavior that changes with time but also system
structure and content. Yet in neither of the above two classical approaches to modelling can
such changes be included.

Process Systems Engineering The traditional engineering approach is based on designing
system components, products and processes that are independent of each other (DeLaurentis
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and Crossley, 2005). This approach serves us well as long as the component’s interconnect-
edness is minor and the social, economic and environmental impact is limited. Our thinking
appears to be largely siloed in monodisciplinary thinking based on clearly delineated physi-
cal systems in particular domains, e.g. applying chemical engineering in the chemical industry,
aerospace engineering for aircraft design and mechanical engineering in automobile manufacture
(DeLaurentis and Crossley, 2005).

The need for a different dimension of engineering knowledge in order to be able to design at
a higher, integrated system level has been articulated by Westerberg et al. (1997). Subsequent
progress in Process Systems Engineering (PSE) has led to more integrative approaches, through
the use of superstructures, non-linear models, etc. (Dĳkema, 2004; Grossmann and Westerberg,
2000; Westerberg et al., 1997). This progress has mainly 1 focused on improving current proven
technology and design at the processing plant level 2. While this has paved the way towards
more integrative systems thinking, the level is not sufficient for understanding and shaping
λ-systems.

What we effectively do in the design of technical components of λ-systems is linearize these
systems around a known point and then extrapolate to the point solution we seek. In other
words, we assume a closed system boundary and a limited set of components that may be part
of our solution. We then optimize somehow to find a ’best’ solution - closed, fixed end-point
problem solving (DeLaurentis and Crossley, 2005; Dĳkema, 2004). However, in order to get
to that ’best’ system state, a variety of actors must decide on the system components. As a
consequence, it often happens that by the time the design has been created and implemented,
the system’s internal structure has evolved and changed from the initial assumption. Mean-
while, the conditions external to the physical system, including the stakeholders’ preferences
and objectives, may also have changed.

Engineering λ-systems Given the nature of sustainability as an emergent property of the
global system, we must focus on the way λ-systems evolve. λ-systems are dynamic, multidimen-
sional networks whose internal structures and functions change over time. While the technical
sub-components of λ-systems can be engineered, their social networks and the emergent system
structures currently cannot, even though through laws, regulations and customs we attempt to
manage them. Their current states have evolved as the result of a series of discrete decisions
made on the basis of the actions, interests and influences of the involved stakeholders. Their
actions are driven by pressures exerted from the λ-systems’ external environments and from the
limitations of their internal structures. Global markets, national and international rules and
regulations, availability of and access to capital, knowledge and skilled labor are examples of
external pressures. Internal pressures are caused by, e.g., changes in the composition and pref-
erences of the working populations, or by replacement of old assets with new, more advanced
ones.

Shaping evolution The exact state of an evolving system is intractable (Dennet, 1996).3 A
system’s being intractable means that no model or simulation can be predictive of the exact
details of the evolutionary development of any particular λ-system in response to a given change.

1Notable exceptions are supply chain models by Perea-López et al. (2003), regional production planning
models by Sung and Maravelias (2007) and a functional modelling approach by Dĳkema et al. (2003).

2For examples of plant level integrative design, see (Ingram et al., 2004) and (Henrion et al., 2001).
3For an extensive discussion of evolution and intractability, please refer to Section 3.4 and Box 1.
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Any evolving system is chaotic, i.e., potentially sensitive to small parameter value changes, plus
it receives random input from the environment. However, evolving systems are path dependent
and they have a robust, characteristic attractor structure (see Section 3.3). This means that
evolving systems come from somewhere and that they preferentially ’want’ to go to somewhere.
Every evolving system has a stable pattern of possible regions (attractors) it can be in. Exactly
which state the system will take is impossible to know in advance, but we might be able to
estimate to which attractor (region) it will head.

By carefully changing a system’s parameters, namely the identity of its components, their
interactions or the system’s environment, we can steer or at least alter the path of the evo-
lutionary process. If we steer correctly, we might prevent the system from going towards an
undesirable attractor, even if we do not have control over its exact state.

2.1.4 Generativist paradigm
Generative Science approach In the traditional scientific paradigm used since Bacon, in
order to understand a system one has to break it down into small components to be tested
and experimented upon in isolation. The assumption is that when each component has been
understood in isolation, then the entire system has been understood as well. Such a reductionist
paradigm results in models that remove the emergent and evolutionary properties of λ-systems,
exactly the behavior that is of interest to researchers and useful for managers and planners. In
order to understand the emergent properties, we need to think about describing the world in
entirely new terms. The new holistic paradigm is called Generative Science (Epstein, 1999) and
describes complex behaviors as generative processes. The central principle is that phenomena
can be described in terms of interconnected networks of (relatively) simple units. In this
approach deterministic and finite rules and parameters of natural phenomena interact with each
other to generate complex behavior. Epstein (1999) poses the generativist’s question as: “How
could the decentralized local interactions of heterogeneous autonomous agents generate the
given regularity?” The experiment that answers this question is: “Situate an initial population
of autonomous heterogeneous agents in a relevant spatial environment; allow them to interact
according to simple local rules, and thereby generate - or ’grow’ - the macroscopic regularity
from the bottom up.”

Reductionism vs. Holism The generative science approach begs the question, how is this
different from the traditional reductionist approach to science? To start, Dennet (1996) dis-
tinguishes acceptable and useful reductionism from greedy reductionism. Greedy reductionism,
often arises when reductionism is applied too far, claiming that everything can and must be
explained by the smallest possible parts. For example, a greedy reductionist approach would
claim that consciousness must be explained solely in terms of electron movement. Holism on
the other side is the idea that a system, be it physical, social or biological cannot be determined
or explained by its component parts alone. Extreme application of holism states that is makes
no sense to examine the components, and that we should only study the system in its entirety.
Both greedy reductionism and extreme holism can not be sustained, especially when trying to
understand λ-systems evolution.

The middle, as is often the case, is a more fertile ground. Reductionism in its milder form
allows for new types of phenomena, or epiphenomena, to be caused by interactions of compo-
nents. Reductionism implies that these epiphenomena exert no causality on the fundamental
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phenomena that explain and cause them. However, this is where reductionism breaks, as almost
any example of a complex system will posses the property of "reflexive downward causation".
It is the property of a system as a whole to causally influences the state of its own constituents,
which in turn determine the causal powers of the whole system (Kroes, 2009). This property
comes straight from the holistic corner.

So, as reductionism denies that there is nothing new when speaking about epiphenomena,
and holism says that they are real and cause downward causation, we need to examine the
notion of emergence in more detail in order to be able to position this work.

Role of emergence According to Kroes (2009):

The following general characterization of emergence is our point of departure:
emergent features in (complex) systems are 1) novel, qualitatively different features
in comparison to the features of the system’s parts, which 2) cannot be reduced to
the features of those parts and their relations. Of course, we must explicate in more
precise terms what the meaning of the notions of “novel”, ”qualitatively different“
and “reduced”. Following Van Gluck(2001: 16 sq) we distinguish between a meta-
physical/ontological and epistemic reading of this characterization of emergence;
the former concerns emergence with regard to real world items, the later with our
representation of the world

The notion of emergence that will be used in this thesis is of an epistemic nature, not
ontological. Ontological understanding of emergence leans to extreme holism, as all emergent
properties are embedded in the “essence” of the system, and can not be examined by any
reduction. The epistemic notion allows for a degree of (useful) reductionism, meaning that
there is no “magic” involved in emergent properties, but that they can be understood as novel
and surprising properties, arising from lower level element interactions. Furthermore, Kroes
(2009) states that :

In an epistemic reading, notions such as “novel”,“qualitatively different” and
“reduced” are to be interpreted in terms of relations between knowledge of emergent
features and knowledge of the features of the emergence base. This implies that
relations of epistemic emergence "turn crucially on our abilities or inabilities to
comprehend or explicate the nature of the links or dependencies among real-world
items [the emergent features and the features of the emergence base]"(Van Gulick
2001: 16)

Emergent properties, according to the epistemic notion are not “greedily reducible”, as
emergent properties at the system level can and do influence the elements that they arise from.
This leads us to the notion of simplification, that any model of a complex system must do.

Simplification Creating any model means taking a mental conceptualization of reality and
formally codifying it in a model. In order for a model to be useful, it has to be simpler than
the reality it is aiming to describe, while retaining all the aspects relevant to understanding the
system. While the requirement of being simpler than the reality is fairly straightforward, being
relevant is much more problematic. Relevance is a subjective property that is determined by the
modeller. Depending on who is trying to understand the system, many different, and equably
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valid models are possible. This property of Complex Adaptive Systems known as observer
dependency will be discussed in more detail in section 3.5. Because of observer dependency
there is no objective manner to determine what is a correct simplification, and it is impossible
to remove the modeller from the model. In cases where an objectively measurable physical
reality is being modelled, the task of simplifying is much more straightforward and less observer
dependent than in our case, where real world, socially constructed aspects of λ-systems need
to be encoded as well. As they are socially constructed, they can not be fully objectively
determined. This means that there is a certain degree of arbitrariness in the models created.
While this does not stand in the way of good scientific work, it is something modellers and
model users must be aware of.

Modelling approach The main modelling approach used in this thesis is a generativist one,
allowing for a certain degree of reduction, as after all, we are breaking down complex phenomena
into lower system level interactions, and at the same time it allows a degree of holism, as it
allows for reflexive downward causation as a natural part of the process of emergence. We aim to
acquire an understanding of the evolution of λ-systems by describing the socio-technical aspects
of the smallest system elements and their behavior. By using computers to systematically
simulate the potential interactions and behaviors of these components, possible future system
states are allowed to emerge. These emergent system states will be examined and inferences
made about which actions are likely to lead to desireable, sustainable states in the systems
under study. These insights can then be used in steering the evolution of real-world λ-systems.

2.2 Thesis Focus
This section will start with a recapitulation of the argumentation given so far. Next,

the system level at which the work will focus is identified. Finally, the problem owner
and the thesis domain focus are delineated.

Recapitulation So far the following argumentation has been presented:

1 The system Earth is an interconnected multidimensional fabric of λ-system networks.

2 These networks are continually evolving, due to both their internal dynamics and the
changes in their environment.

3 Exact prediction of the direction of their evolution is impossible.

4 In order to explore patterns in a λ-system’s evolution, a model based on the system’s
perspective and a generative approach are needed.

Hypothesis Models created in this way will enable better insights into the evolution of
λ-systems and aid decision makers in shaping them.

These arguments are generic to any type of λ-system. It is therefore important to further
specify which decision maker will be served, and which specific λ-system will be studied. First,
the system level at which this work will focus will be discussed. Based on the choice of system
level, the problem owner and the system under study will become apparent.
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System levels It is possible to discern three system levels at which relevant λ-system prob-
lems and solutions can be placed. Please note that many different conceptualizations of system
levels are possible, depending on what is conceptualized and who is doing the conceptualization.
We present them as they will be used in this thesis.

Macro level The highest conceivable level of study is in this case the global (plane-
tary) level. At this level the system behavior is dominated by the emergent properties
caused by interactions from elements at lower levels. Examples of system level properties
observable at this level are global warming, global population dynamics, world trade,
global telecommunications, etc. While many urgent problems manifest themselves at the
global level, it is difficult to directly affect them by acting at this level because, as already
mentioned, their sources are rooted in lower levels.

Meso level At the meso level one can discern countries, regions, governments, etc. At
this level the aggregate interactions of the smallest elements form intermediate entities
that themselves interact to form the macro level. The meso level includes properties such
as the eutrophication of river basins, regional energy networks and supply chains, and
concentrations of various population groups. Problems at this level are somewhat easier
to influence, as national and local governments have jurisdiction. Measures at this level
can have large effects on global emergent properties. For example, the Kyoto Protocol
was signed by parties at meso level, and if implemented fully could have the power to
lower global CO2 levels.

Micro level The smallest system elements are located at the micro level. Examples
of elements at this level are individual persons, firms or pieces of equipment. The in-
teractions and aggregations of micro-level elements form meso elements, which in turn
interact to form the macro level. Examples of micro-level properties are the efficiency of
a gas-burning central heating system in a household, the annual disposable income of a
person or the profits of a firm. The properties of individual elements at this level can be
directly influenced; for instance, the efficiency of a boiler can be improved, and income
can be raised or lowered by taxes. However, changes in the observable behaviors of single
individual elements often have very little or no effect on higher levels of aggregation 4,
and many micro elements must be influenced at once if one is to create emergent behavior
at the macro level. For example, simply increasing the efficiency of the central heating
system in my home will not solve the problem of global warming, but increasing the
efficiency of all heaters installed in households in Europe will have a noticeable effect.

Relations between levels It is important to emphasize that the system levels presented
above are just conceptual divisions, helpful when thinking in terms of systems. They are not
real distinctions, as there is only one complex, networked system. The global economy defined at
the macro level is created by the interrelations between countries, economies, etc. For example,
the economy of The Netherlands is open for 55%. For every euro a Dutch citizen spends, 55
cents leaves the country and influences the economy elsewhere (Oosterwĳk, 2006). System
components do not interact only through money; energy and mass flows interconnect elements

4Obviously, Complex Adaptive Systems are chaotic, and a change in the behavior of a single element could
potentially have very large effects. This is, however, very rare.
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and levels, too. An average apple sold in a European shop can have up to 30,000 kilometers of
transport embedded in it (Jones, 2002; Nielsen et al., 2003). In the systems perspective used
in this thesis the system levels are interconnected. The macro level is the emergent property of
the meso level and the meso level emerges from the micro level.

Level of focus The focus of this thesis is to examine the behavior of agents at the micro level
through modelling and simulation, and to observe the effects on the meso level. The problem
owner is defined at the meso level, as will be discussed below.

Problem owner The main problem owner considered in this thesis is the Regional Develop-
ment Agency (RDA). The RDA is a typical actor at the meso level, shaping industrial networks
in an evolving world over which it has largely no control. An RDA is a public or private organi-
zation whose primary role is to drive and sustain the socio-economic and ecological prosperity
of the region under its control. RDAs do this by actively attracting investment, organizing
infrastructure and creating suitable social networks. In some cases RDAs own land which they
sell or rent to companies wishing to settle in the region. For many RDAs this represents a
formidable task, responsibility and challenge. Not only must RDAs adapt their policies in a
timely manner to a changing world, but the very economic structure of their region is shaped
by decisions at the macro level over which the RDA has no direct control. Examples of effects
outside RDA’s span of control include companies investing in facilities to produce goods or
services outside RDA’s region, the EU setting new directives, or a national government con-
structing major infrastructures in competing regions. Depending on the type of activities, the
relevant stakeholders may be part of a regional social network (e.g. a business park for life
sciences start-ups) or one that effectively spans the globe (e.g. the chemical industry).

In the Netherlands, examples of RDAs are the port authorities like the Rotterdam Port
Authority, Groningen Seaports and the Havenbedrĳf Amsterdam or the Provincial develop-
ment agencies, like the Provinciale Ontwikkelingsmaatschappĳ Limburg or the Investerings- en
Ontwikkelingsmaatschappĳ voor Noord-Nederland.

Focus on industrial networks This thesis will focus on industrial and infrastructural net-
works, which are λ-systems. They consist of many physical artifacts and numerous social actors
that design, maintain and control them. They have very long life spans: 15 to 30 years in the
case of industrial plants, while some infrastructures have been in use for centuries. They have
initial investment costs in the billions of euros and usually involve private-public funding and
decision-making. They are deeply embedded in the social, economic and spatial structure and
often have significant environmental impacts. Industrial networks are difficult to change be-
cause of path dependency caused by past investments and their large physical size. Society,
however, depends on them to quickly adapt to new needs. RDAs often manage industrial
regions that are full of industrial processes and infrastructures that support them. My own
domain expertise as a chemical process engineer matches this.

2.3 Research Question
In this section the thesis hypothesis, the research objectives, the central research

question and three sub-questions are defined.
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2.3.1 Research Objectives
Hypothesis The main hypothesis of this thesis is that the use of models of simulated λ-system
evolution can improve decision-making about industrial cluster development. By examining
patterns of evolution across different simulation scenarios, we can reduce decision makers’
uncertainty by answering ’what if’ questions about λ-system evolution.

Objectives The objective of the work is to increase our knowledge of λ-system evolution
patterns through simulation of the co-evolution of physical and social networks. The ultimate
goal is to provide decision-making support for those involved in shaping the development of
industrial clusters. The objectives can be stated as follows:

Gain insight in to the social, economic and technological aspects of the co-evolution
of λ-systems, and more specifically, of regional industrial systems.

Create a method for compiling models that suitably represent the social and technical
realities of industrial networks. These must comply with the laws of conservation of energy
and mass and must enable exploration of the design space of sustainable industrial network
evolution.

Support decision makers by creating a scientifically sound tool that could be used to
support critical actors, notably the RDAs, in decision-making processes regarding regional
industrial development.

2.3.2 Research Questions
Given the research objectives and the previous discussion, the central research question can be
formulated as:

How can we create a model for exploring the evolutionary patterns of
λ-systems?

Three subquestions can be derived from the central research question:

RQ 1: How can a generativist Complex Adaptive Systems perspective be
operationalized in models that capture λ-systems evolution?

RQ 2: What are the content specifications of such models in terms of the
relevant formalisms (knowledge domains)?

RQ 3: What are the specifications for a method that would create such mod-
els?

2.4 Readers’ Guide
In the final section of this chapter, the intended audience is briefly discussed and the

structure of the thesis is presented.
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Intended audience In general, this thesis is meant for anybody who is dealing with λ-
systems and is trying to better understand the behavior of these systems over time. As the
thesis will cover both methodological and practical issues in operationalizing the evolution of
λ-systems, it is interesting for both researchers and practitioners.

Practitioners Ideally, this thesis will be read by development managers seeking to
understand the processes of evolution happening in their regions. It will provide the reader
with ideas for how to build models of their local λ-system and a sense of which types of
results to expect. A practitioner who is not interested in the theoretical background but
is eager to find out about this study’s practical implications is advised to read part II.

Scientific A researcher who is interested in understanding and modelling λ-systems will
be well served by this thesis. Researchers from such diverse fields as industrial ecology,
regional geography, economics and infrastructures policy will find the presented approach
useful. The thesis centers around creating and underpinning a social process that effec-
tively formalizes relevant knowledge which will lead to the creation of working models
of λ-systems’ evolutionary paths. The underlying concepts of complex adaptive systems
evolution, of model development and of implementation and application are reported.
The thesis will present many theoretical and practical insights into the social processes
leading to model formalization. A series of case studies explains the technical details of
simulation and points out the ways such models can be used, their limitations and their
strengths.

The thesis is organized into three parts and eleven chapters. The structure is presented
below in Figure 2.1.

Chapter 1: Introduction In this chapter the background is sketched and the research prob-
lem and goals are stated. The approach to solving the problem is presented.

Part I Theory: Towards a co-evolutionary modelling method In this part the theoret-
ical background and the design of the modelling method are explored.

Chapter 2: Research Theme and Question In this chapter the systems perspective used
in solving the proposed problem is presented. The focus and object of the study are
delineated. The research goals and questions are presented.

Chapter 3: Theoretical Foundations In this chapter the first research question is explored.
The results of a literature review are compiled into a single framework for understanding
the evolution of Complex Adaptive Systems.

Chapter 4: Modelling Foundations In this chapter the second research question is ex-
plored. Through a literature review, the elements necessary for building evolutionary
models of λ-systems are identified. Industrial Systems and Agent-Based Modelling are
discussed.

Chapter 5: Modelling method and requirements In this chapter the third research ques-
tion is explored. The method of co-evolutionary model development is presented. The
requirements shaping the co-evolution between the social process for knowledge collec-
tion, technical design, collected knowledge and collected facts are addressed. The method
steps are described.
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Figure 2.1: Structure of the thesis

Part II Practice: Co-evolutionary method in action In this part the development and
demonstration of the method is reported in seven case studies.

Chapter 6: Learning: Case Studies and Knowledge Engineering This chapter presents
the first three case studies, each having several important learning points. The Flow-
Based Evolution model is the first network growth model presented, based on consuming
and producing entities. The Chocolate Game models a λ-system based on the flow of
discrete goods. The Combination of Infrastructures model examines the combinability
of infrastructures and the knowledge representation needed to implement it. The main
result of the learning case studies is the System Decomposition Method used for system
formalization.

Chapter 7: Full-scale Case Study: CostaDue This chapter reports an extensive case study
wherein a λ-system simulation is created of an existing industrial network in order to ex-
plore the options that will allow it to evolve towards a different state.

Chapter 8: Method verification: evolution of three case studies In this chapter three
advanced models are presented, each with successive learning points. The Bulk Biochem-
icals case models a cluster exploring its economics environment. The Metals Network
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model explores a different knowledge domain and simulates a global metals production
network. Bioelectricity case is the most complex model presented, where all the lessons
learned are brought together and a complete new formalism is added.

Part III Insights In this part the results and insights obtained are presented.

Chapter 9: Results and Discussion Here the results of the study are presented, some of
the shortcomings are discussed.

Chapter 10. Conclusions In this chapter the thesis conclusions are presented.

Chapter 11: Reflection and Outlook The last chapter reflects on the modelling method
and model outcomes, and provides directions for future work.
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CHAPTER 3
THEORETICAL FOUNDATIONS

If you didn’t grow it, you didn’t explain its emergence...

(Epstein, 1999)

3.1 Introduction
Goal and approach The goal of this chapter 1 is to answer the first research question:
How can a generativist Complex Adaptive Systems perspective be operationalized in models
capturing λ-system evolutions? In other words, how can we systematically understand λ-
systems evolution as a generative process based on the interactions of low-level components?
The approach to answering RQ1 will consist of a literature review exploring views on complex
systems from literature across different domains and disciplinary perspectives. The review
will deliver the necessary building blocks for creating a unified conceptual framework that will
enable us to systematically think about complex evolving λ-systems.

Connecting formalisms What this chapter attempts to do is connect different knowledge
domains, or formalisms, that deal with similar issues. As already discussed in Chapter 1,
Complex Adaptive Systems, such as λ-systems require multiple different formalisms to be fully
described. The main assumption in this chapter is that a generativist systems perspective
on λ-systems will ease the integration of multiple formalisms into a single, shared language.
Creating such a language is not a trivial exercise; it requires significant effort.

Shared language Why is such a shared language important? As already discussed, when
attempting to understand and describe λ-systems, multiple formalisms are required. If we
understand multiple formalisms as multiple knowledge domains or fields, and if we assume that
most people master only one field, this means that many different researchers and stakeholders
need to communicate and understand each other if we are to understand λ-systems. In order
for this understanding to happen, a shared language is needed.

1Parts of this chapter are based on
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Even though English has evolved as the lingua franca of science, different disciplines actually
do not speak the same language. The use of specialized jargons and terminologies by specific
domains only slows the communication (NAS et al., 2005) across domain boundaries. Further-
more, academics may not question the meaning of words that they already know (Bracken and
Oughton, 2006) and often assume that they are generally understood. This may even happen
with very simple words like “infrastructure”, “network” and “system”, that can hold different
meanings for different people. For example, where management scientists talk about group
think to describe groups that have aligned their behavior in a social system, and economists
talk about lock-in effects to describe the impossibility of change in organizations in the eco-
nomic system, while physicists talk about path dependent trajectories and their attractors. The
fact that terms that have different meanings for different people is an important source of
miscommunication (Heemskerk et al., 2003).

This problem directly affects us when we attempt to understand λ-systems. Hansman et al.
(2006) underscore the necessity for interdisciplinary research on λ-systems. In situations where
multiple formalisms and knowledge domains need to be brought together, this issue of a shared
language must be resolved.

Unifying languages Different multidisciplinary fields have attempted to deal with the prob-
lem of unifying languages in order to enable collaboration. A short literature review will ex-
amine the available options and their suitability for undertanding and modelling λ-systems.

In the field of software design and engineering, the ’Unified Modelling Language’ (UML) is
the most notable example (Booch et al., 1999). UML is a standard language for specifying,
visualizing and constructing software systems, designed by the Object Management Group 2.
It represents software constructs as visual elements and enables the direct translation from a
software concept to a software implementation. The main problems with UML are that it is
designed to deal only with software concepts and not to represent physical or social concepts.
In the field of medicine biology, the ’Unified Medical Language’ was created (Bodenreider,
2004; Lindberg et al., 1993) by the US National Library of Medicine. While spectacularly
successful, the Unified Medical Language is domain-specific and thus unsuitable for λ-systems
modelling. The field of learning and collaboration theory, decision support and common ground
negotiations (Approach, 2007; Beers et al., 2007; Kirschner et al., 2008) has extensively studied
the processes of creating shared languages between multidisciplinary groups. The work in these
fields does not provide practical multidisciplinary languages. However, the theoretical concepts
are useful when creating shared languages, as will be demonstrated in section 6.5.

In the Artificial Intelligence community, ontologies have been developed as a useful means
of knowledge representation. Ontologies are formal descriptions of entities and their properties,
relationships, constraints and behaviors that are not only machine-readable but also machine-
understandable. When two agents are communicating about certain concepts, we want to be
sure that they interpret these concepts in the same way. Therefore, it is of utmost importance
to unambiguously specify each concept and its meaning, i.e., create a standard interface by
defining a common language (McGuire et al., 1993; Mizoguchi et al., 1997). The meaning of
each concept is stored not only in the subclass relationship is, e.g. apple is a fruit, red is a color,
but also in the property relationship has a, e.g. an apple has a red color. In other words, an
ontology contains explicit formal specifications of the terms within a domain and the relations

2http://www.omg.org/
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among them (Gruber, 1993).
Ontologies, together with the concepts defined by collaboration theory, provide us with a

basis for exploring formalisms.

3.2 Formalisms
What is a formalism? A formalism can be seen as a pre-defined representational knowledge
format. We define it as a set of concepts and their relations (ontology) that is used to represent
knowledge, plus a set of accompanying rules for using the formalism. The concepts and relations
in a formalism are often specific to a particular task. For instance, Suthers (2001) developed a
formalism called Belvedere to enhance scientific discourse.

Why use them? The benefits of using formalisms are twofold. First, they can add task
rationality by representing a task conceptually. For instance, specific formalisms have been
developed for: the support of collaborative design tasks (the Questions-Options-Criteria ap-
proach of Buckingham Shum (1997)), negotiation of common ground (the Negotiation Tool of
Beers et al. (2006)), and argumentation (the Issue-Based Information System of Conklin and
Begeman (1987)). All of these are based on an analysis of the task they aim to support. Sec-
ond, formalisms provide a common interface for collaboration between researchers. In this way
existing differences among disciplinary jargons are alleviated by adding a common component
to the discussion that is understood and used by all collaborators.

How to use formalisms? The art of using formalisms is to use one that is fit for the task it is
meant to support (Van Bruggen et al., 2002). When creating models, one should use a formalism
that is in line with the type of model one is constructing. It is of little use, for instance, to
use a linear programming formalism when one is constructing an agent-based model. If, on
the other hand, one is busy making a system-dynamics model, it helps if the domain experts
reconceptualize their own knowledge in terms of stocks, flows, feedbacks and delays (Senge
et al., 1994; Sterman, 1994). Likewise, for agent-based modelling, using a tailor-made agent
formalism would assist modellers and domain experts in their collaboration.

Creating formalisms To effectively make a formalism, one should first analyze the task at
hand in order to identify the basic building blocks that constitute it (task primitives). Next,
rules need to be defined that describe how these building blocks are to be used, so that the
task can be effectively carried out. The formalism thus consists of the task primitives and the
rules for using them. While using a formalism, one should make sure that all collaborators
have a shared understanding of it and act accordingly. This thesis will present the System
Decomposition Method (SDM) in section 6.5, where the task to be structured is the agent-
based modelling (ABM) of λ-systems. The SDM is based on an analysis of what ABMs are
and how they are designed, with the aim of supporting multidisciplinary modelling teams and
their exercises by delivering a standardized modelling procedure.

Need for ontologies In the case of understanding industrial networks, Allenby (2006) makes
the following argument in support of using ontologies:
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One of the interesting aspects of dealing with complex systems is that the bound-
aries of the appropriate system are determined by the query which one poses to the
system (Allenby, 2005). Thus, for example, if I ask what the police arrest rate is for
New York City, I have implied by my query the existing political boundaries of the
City. If, however, I ask what the water supply infrastructure is for New York City,
I have included at least a third of the State of New York, which has been legally
structured, and engineered, to provide water supplies through a complex infras-
tructure to the City (Gandy, 2002). Following Sarewitz (2004), therefore, one can
make the observation that any industrial ecology study is equivalent to querying a
complex adaptive system (the economic and industrial system) and thus implicitly
defining the relevant boundaries for the inquiry. This necessarily involves at least
two inseparable but very different ontologies: the personal and cultural normative
ontology the individual researcher brings to the query, which defines a set of bound-
aries that, from the perspective of the overall systems, are essentially arbitrary, and
the “scientific” and more objective process the researcher applies to the particular
study.

Allenby identifies the need for ontologies and highlights an important problem. As already
discussed, multiple formalisms are at the base of any λ-system. Therefore, many ontologies can
be created for any one λ-system, which might be incompatible with each other. In this thesis
I hope to offer a practical method for resolving this problem by creating an ontology that is
explicitly meant to be continually added to by the participants through collaborative research
(see Chapter 7).

Formalizing Complex Adaptive Systems Having defined what formalisms are and how
they are used, it is time to describe the main formalism used in this thesis, namely the formalism
of Complex Adaptive Systems. In the following section Complex Adaptive Systems thinking
and literature is reviewed. The insights gained are used to compile a single framework to be
used in communicating knowledge across disciplines.

3.3 Complex Adaptive Systems
This section explores complexity and Complex Adaptive Systems from many different

fields and identifies shared concepts. The complexity definition used in this work is
presented and discussed, as is a three-layer approach to systemizing Complex Adaptive
Systems thinking from a generativist systems perspective.

3.3.1 Complexity Across Disciplines
Across disciplines There are so many scientific fields that have relations to complexity that a
complete review is not feasible. The literature review performed here will therefore be limited to
fields that relate to λ-systems and their modelling, design and management. Complex systems
and complexity have gained increasing attention in diverse scientific domains, such as ecology
(Ehrenfeld, 2000), management science (de Bruĳn and ten Heuvelhof, 2000; Koppenjan and
Klĳn, 2004), thermodynamics (Prigogine and Stengers, 1984), economics (van den Bergh and
Janssen, 2005), sociology (Wasserman and Faust, 1994, reprint edition 2005), system dynamics
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(Forrester, 1958; Senge et al., 1994; Sterman, 2000), Complex Adaptive Systems (Bertalanffy,
1968; Holland, 1997, 1996; Kauffman, 1993), Chaos Theory (Gleick, 1988) and educational
psychology (U. and M., March 1999). Examples of complex systems described in these fields
are ecosystems, multinationals, the Internet, the human body and social systems.

Different names Ubiquitous as Complex Adaptive Systems are, many different names have
been given to them in different fields. Examples relevant to λ-systems are terms like: complex
socio-technical systems (Bonen, 1981), socio-technical systems (Geels, 2004), large technical
systems (Bĳker et al., 1987), complex innovation systems (Katz, 2006), complex engineering
systems (Ottens et al., 2006) and system of systems engineering (DeLaurentis and Crossley,
2005). We present a range of definitions used in different fields, namely artificial intelligence,
management sciences, economics, systems analysis and agent-based modelling.

Complex Adaptive Systems Below is a definition from the field of Complex Adaptive
Systems by Gandolfi (1999), adapted by Bertuglia and Vaio (2005):

An adaptive complex system is an open system made up of numerous compo-
nents that interact with one another in a nonlinear way and constitute a single,
organized and dynamic entity, able to evolve and adapt to the environment.

John H. Holland (Waldorp, 1992) defines a Complex Adaptive System as:

...a dynamic network of many agents (which may represent cells, species, indi-
viduals, firms, nations) acting in parallel, constantly acting and reacting to what
the other agents are doing. The control of a CAS tends to be highly dispersed and
decentralized. If there is to be any coherent behavior in the system, it has to arise
from competition and cooperation among the agents themselves. The overall be-
havior of the system is the result of a huge number of decisions made every moment
by many individual agents.

The definitions of Holland and Gandolfi indicate that complex adaptive systems are char-
acterized by diverse agents that interact in a dynamic, open network. This interaction results
in an overall system that evolves and adapts to its environment.

The above definitions are from the field of complex adaptive systems. Let us also explore
some other definitions of complex systems, used in other fields, that are relevant to understand-
ing λ-systems. Please note the variety, breadth and depth of these definitions.

Operations Research In the Operations Research literature, complex systems are described
as follows (Miser and Quade, 1985):

...structures that combine people and the natural environment with various ar-
tifacts of man and his technology.
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Policy Analysis In the related field of Policy Analysis, a complex system is defined as follows
(Walker, 2000):

A [complex] system includes people, social structures, portions of nature, equip-
ment and organizations; the system being studied contains so many variables, feed-
back loops and interactions that it is difficult to project the consequences of a policy
change. Also, the alternatives are often numerous, involving mixtures of different
technologies and management policies and producing multiple consequences that
are difficult to anticipate, let alone predict.

These descriptions are more domain-specific than the definitions from the field of CAS. The
above definition given by Walker is far more focused on solutions and intervention. However,
the definitions do acknowledge the diversity of components and interactions. They also em-
phasize that the behaviors of complex systems are hard to predict or anticipate because of the
interactions and feedback of the components.

In General Systems Theory and related fields, the following definitions can be found.

System Dynamics In the System Dynamics field, a complex system is described as (Maani
and Cavana, 2000):

...a collection of parts that interact with one another to function as a whole.
However, a system is more than the sum of its parts; it is the product of their
interaction. A system subsumes its parts and can itself be part of a larger system.

Organizational Learning The Organizational Learning field describes a complex system as
follows (Senge et al., 1994):

A system is a perceived whole in which the components “hang together” because
they continually affect each other over time and operate toward a common approach.

These definitions betray a top-down orientation in these fields. A system is considered foremost
as a single entity. However, like in CAS, these definitions also acknowledge that system behavior
arises from component interaction.

Educational Psychology In educational psychology, complex systems are described as fol-
lows (Hmelo-Silver and Azevedo, 2006; U. and M., March 1999):

Complex systems have a hierarchical nature and have multiple interacting levels.

This definition mainly discusses the importance of hierarchy and interaction between system
levels, adding the concept of levels to the composite definition we are building.

Public Administration In mainly social fields the term ’network’ is used to denote a com-
plex system; below we provide examples from public administration. The public administration
field describes a system as a network consisting of (de Bruĳn and ten Heuvelhof, 2000):

...a dynamic entirety of actors, mutually dependent, experiencing variety, and
relatively closed vis-a-vis to one another.
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Similarly, the concept of policy networks is defined as (Kickert et al., 1997):

...(more or less) stable patterns of social relations between interdependent actors,
which take shape around policy problems and/or policy programs.

In the definitions above, networks are viewed as collections of parts which are bound to a
certain problem or program and which interact with one another to function as a whole. These
definitions, like those in other fields, acknowledge that interactions between individuals lead to
certain structures and behaviors.

Insights Examining the literature and example definitions provides us with important in-
sights. The necessary components for a holistic, integrative and generativist understanding
of Complex Adaptive Systems are present but not yet integrated. Each definition presented
above, originating it its respective field, contributes a piece that can be used in a new, unified
definition. At present there is a lack of a coherent vocabulary, and the view of systems differs
widely between disciplines. In order to proceed and create a coherent and generativist view,
the two definitions that together offer a complete view that suits the multiformal and genera-
tivist systems view will be presented. Based on this, a unified generativist Complex Adaptive
Systems framework will be constructed.

3.3.2 Complexity Defined
The two definitions presented below will be used in concert throughout this thesis.

Multiple formalisms Mikulecky (2001) defines complexity as being:

...the property of a real world system that is manifest in the inability of any
one formalism being adequate to capture all its properties. It requires that we find
distinctly different ways of interacting with systems. Distinctly different in the sense
that when we make successful models, the formal systems needed to describe each
distinct aspect are not derivable from each other.

Please note that Mikulecky further narrows the concept of perspectives as formalisms. For-
malisms should be understood as formal, encoded languages used to express something. Math-
ematics and psychology are examples of formalisms that are not derivable from each other 3.
Paraphrasing Mikulecky, integrating knowledge of various domains and disciplines is essential
for capturing in full the properties and behavior of any system. Assuming that most people
master only one or very few formalisms or disciplines, the definition essentially says that one
cannot understand a complex system alone. This definition forms the basis for the multiformal
and multidisciplinary study of Complex Adaptive Systems. Furthermore, one could say that
modelling λ-systems requires that knowledge from many experts be transformed into a model
able to hold different formalisms.

Mikulecky’s’ definition is rather abstract and cannot be directly made operational. For a
practical definition we need to turn to John Holland.

3Even though Hari Seldon(Asimov, 1989) will disagree some 20,000 years from now.
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Dynamic network John H. Holland (Waldorp, 1992) defines Complex Adaptive Systems as:

...a dynamic network of many agents (which may represent cells, species, indi-
viduals, firms, nations) acting in parallel, constantly acting and reacting to what
the other agents are doing. The control of a CAS tends to be highly dispersed and
decentralized. If there is to be any coherent behavior in the system, it has to arise
from competition and cooperation among the agents themselves. The overall be-
havior of the system is the result of a huge number of decisions made every moment
by many individual agents.

A Complex Adaptive System (CAS) is a system consisting of many agents that interact
with each other in various ways. Such a system is adaptive if these agents change their actions
as a result of the events in the process of interaction. Since this is the case with λ-systems,
we can conclude that they are Complex Adaptive Systems. The system structure and content
can be changed from within the system by agents that develop new behavior through learning
and strategic behavior, introduction of novel agents or adoption of novel technologies. This is
confirmed by Kay (2002), who also identified similar characteristics of λ-systems.

By adopting a CAS view and by including multiple formalisms, one can observe dynamic
patterns of system behavior emerging from local interactions between system components (Hol-
land, 1996; Kauffman and Johnsen, 1991; Newman, 2003). System structure is not prescribed
in advance. Interaction occurs at multiple dimensions and across multiple levels. Thus, while
the span and nature of local interactions is explicitly specified, the total system behavior is
not; it emerges. CAS theory recognizes that in order to understand the evolution of real Com-
plex Adaptive Systems, a multitude of perspectives is required to capture the richness of their
dynamics and the behavior of their components.

3.3.3 System Levels
From the definitions presented above, three system levels become apparent. The lowest or
agent level, the middle, or network level and finally the top or system level. It is important
to realize that these levels do not exist per se and are conceptualizations only; they create a
useful framework with which to view and understand a system. Three presented levels form
the basis of the Complex Adaptive Systems framework. The levels are depicted in Figure 3.1
and discussed in the following paragraphs. Figure 3.1 represents a system situated in some
environment.

Figure 3.1: Conceptual levels in Complex Adaptive Systems
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Agent level The level of the smallest system components is the agent level. It corresponds
to the micro level discussed in Chapter 2.2. Agents are abstractions of the lowest level entities,
the individual components from whose properties and interactions all system behavior emerges.
It is the level that drives the generative nature of the framework.The definitions presented 4 all
refer to these lowest level agents.

Network level The second level describes the structure of interactions between the agents
of the system. When observing the system at this level we perceive the structure of agent
interactions as a coherent entity, a network. Networks are a natural abstraction for describing
things and their relations as nodes and edges. The network level corresponds to the meso level
discussed in Chapter 2.2 See definitions referring to the organization of agents 5.

System level The system level presents the emergent system properties caused by agent-
level individuals and their properties, interacting through networks at the network level 6. The
system level corresponds to the macro level discussed in Chapter 2.2.

Box 3: System levels example In order to illustrate the Agent, Network and
System levels, a concrete example will be presented. Let usconsider the schooling
behavior of fish (Bonabeau et al., 1999). It is one of the most mesmerising of natural
phenomena: many thousands of individual fish behaving as a single organism, evading
predators and maintaining a tight school. Let’s examine the system.

Agent Each fish in a school is a relatively mindless automaton, following four
basic rules. First, separation. A fish will preferably maintain a certain distance
between itself and its neighbors in order to avoid collision. Second, alignment.
A fish will try to follow the average direction and speed of its neighbors. Third,
cohesion. A fish will steer towards the average position of its neighbors. Fourth,
self-presevation. When a fish feels threatened by a predator, it will flee.

Network Each fish observes its neighbours and watches out for predators. A
school is effectively a very large and dense network of perception, action and
reaction. If a fish at the fringe of the school notices a predator and starts to
flee, neighbouring fish react to its movement by adjusting their own speed and
position. Because everybody is watching everybody, the signal that a predator is
attacking travels quickly through the network of fish interaction.

System At the system level, coherent and coordinated behavior emerges from
each individual acting and reacting through the interaction network of many
individuals. The emergent school behaviour can be considered an entity in itself,
maintaining cohesion and evading predators as if it werea single organism.

.

4(de Bruĳn and ten Heuvelhof, 2000; Gandolfi, 1999; Maani and Cavana, 2000; Miser and Quade, 1985; Senge
et al., 1994; Waldorp, 1992; Walker, 2000)

5(de Bruĳn and ten Heuvelhof, 2000; Gandolfi, 1999; Maani and Cavana, 2000; Miser and Quade, 1985;
Newman, 2003; Senge et al., 1994; Waldorp, 1992; Walker, 2000).

6(Gandolfi, 1999; Maani and Cavana, 2000; Senge et al., 1994; Waldorp, 1992)
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Approach Appendix A presents the components of the complexity framework. In this ap-
pendix, a detailed description of each level (Agent, Network and System) is presented, its
dominant field’s vocabulary is adapted and the most relevant properties of the individual levels
are discussed. Where necessary, examples are provided from other fields to illustrate alternative
meanings of the properties. The insights from these levels will be brought together in a unified
generativist framework (see Section 3.5) describing how higher system level behavior emerges
from lower levels, forming a continuum from the small to the large.

The next step The defining property of Complex Adaptive Systems is adaptivity, or the
ability to change. Evolutionary theory will be introduced in the next section as a comprehensive
theoretical framework for understanding system change.

3.4 Evolution
First, a short and basic introduction to biological evolution will be given. Second,

evolutionary theory is translated to the domain of λ-systems. Finally, two concepts most
relevant to this thesis, intractability and co-evolution, will be discussed in some detail.

As discussed in Chapter 1, λ-systems can be seen as systems that evolve. The conjecture is
that to view them using an evolutionary perspective will yield insights useful in understanding
and shaping them. In this thesis, evolutionary theory serves as a pervasive background theory.
It views all changes in λ-systems in this light. It does not seek to further develop evolutionary
theory itself, but to apply it. This means that the main question answered in this section is
that of how to operationalize the concept of evolution for λ-systems.

3.4.1 Biological Evolution
An enormous body of knowledge exists on the evolution and co-evolution of biological systems.
It started with the publication of Darwin’s book “On the Origin of Species” (Darwin, 1985) and
has developed into one of the best researched and supported scientific theories today. In this
section the basic tenets of the biological evolution theory will be presented, and some aspects
relevant for this thesis will be discussed.

Basic view Darwinian evolution is summed up in the famous maxim (Darwin, 1985): “Vary,
multiply, let the strongest live and the weakest die”. The theory of evolution can be seen as
a generativist theory, as it describes how higher level system behavior (species changing over
time) emerges from the behavior and interactions of low-level components. When organisms
reproduce, their offspring are born with slight modifications in their genes, introduced through
mutation. These changed organisms display a fitness that is different from an unmutated indi-
vidual. While often negative for an individual’s fitness, some mutations improve an organism’s
ability to grow and reproduce successfully. Over time, fitness-improving mutations accumulate,
creating new forms. While this is a strongly simplified description of the actual process, it is
sufficient for our needs.
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Randomness and the environment The carrier of biological information, the DNA mo-
lecule, is highly sensitive to the only true source of randomness in the universe: the quantum-
driven decay of atomic nuclei and its resulting electromagnetic radiation (Erber and Putterman,
1985). Every organism and its DNA exist within an environment permeated with radiation,
which acts as a permanent driver of DNA mutation. The environment may be static but is
mostly periodic within the lifetime of an organism. Yearly climate patterns and diurnal rhythms
are an example of this periodic regularity. Organisms are adapted to and selected by this rel-
atively predictable and ordered environment 7. This order, or regularity, is the conceptual
counterpart of the randomness affecting DNA. Life needs both a source of randomness and a
source of order (Levin, 2000). Without the first it cannot change; without the second it cannot
survive. The concepts of randomness and order are important aspects that also translate into
the domain of socio-technical evolution.

Multidimensional interactions As already mentioned, many different individuals and many
different species interact with each other in an ecosystem. Not only is there a great diversity
among the types of organisms, but also in the way they interact with each other. Sometimes
they are direct adversaries, predating each other, competing for resources or being parasites.
Sometimes the interaction is beneficial, and species live in symbiosis, their lives depending on
each other. These interaction networks carry mass and energy in the case of predation, informa-
tion in the case of pollination, etc. A mass flow used for energy generation is different from an
information flow, even though both are based on a physical movement of DNA molecules. This
diversity of interactions needs multiple formalisms to be described and is one of the reasons for
the complexity of ecosystems. This multiformal/multidimensional nature of evolving system is
even more apparent in socio-technical systems.

3.4.2 Socio-technical evolution
Is it evolution? Traditionally, evolution has been a term reserved for a Darwinian process
that shapes living beings. Can it be applied to λ-systems? Yes, it can, as λ-systems are
constantly constructed, used, changed and deconstructed by living, evolving human actors.
Obviously, λ-systems have no DNA, so the processes of variation, reproduction and selection
must have a different mechanism. Dawkins (1990) suggests that a cultural, self-replicating
entity, analogous to a gene, called a meme is responsible for the spread, construction and
evolution of culture. In the words of Dawkins and Dennet(Dawkins, 1990; Dennet, 1996):

A meme is the basic unit of information which spreads by copying from one
site to another and obeys, according to Dawkins, the laws of natural selection quite
exactly. Meme evolution is not just analogous to genetic evolution. It is the same
phenomenon. Cultural evolution simply uses a different unit of transmission evolv-
ing in a different medium at a faster rate. Evolution by natural selection occurs
wherever conditions of variation, replication and differential ’fitness’ exist.

Examples of memes are traditions, technologies, theories, rules and habits. This thesis, for
example, can be seen as a meme that might or might not survive over time, depending on its

7Of course, the environment contains catastrophic change events. These are usually so disruptive that a
great majority of species becomes extinct. Nothing can evolve to cope with extremely rare, sudden and utterly
devastating global catastrophes.
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usefulness to the persons who are aware of its contents and find it useful enough to tell others
about it. If human culture is indeed meme-based, there are several parallels and differences
between biological and socio-technical evolution.

Similarities Ziman argues (David, 2000) that there are structural and phenomenological sim-
ilarities. Structurally, both the biological, gene-based system and the socio-technical, meme-
based system have variation, selection and reproduction. Both social and genetic evolutions
consist of a succession of generations. In living systems these are determined by the repro-
duction cycle of the organism. In social systems, generations of ideas, technologies and social
systems replace one another. Successful designs and ideas change and are passed on, and ineffec-
tive ones are disused and die out. Ziman observes (David, 2000) phenomena in socio-technical
systems that are very similar to the phenomena of biological systems, such as diversification,
speciation, convergence, stasis, evolutionary drift, satisficing fitness, developmental lock, ves-
tiges, niche competition, punctuated equilibria, emergence, extinction, co-evolutionary stable
strategies, arms races, ecological interdependence, increasing complexity, self organization, un-
predictability, path dependency, irreversibility and progress.

Differences Ziman further notes that the most obvious difference is that technical and social
artifacts are not generated randomly but are purposefully designed. This of course does not
mean that randomness has no role. If fact, randomness is so important in the design of λ-
systems that they are described as being serendipitous (Roberts, 1989). This serendipity may
involve a sudden inspiration during the design process, an accident that creates something
useful, or even the accidental choice for the designer that gets the task.

Another difference is that there is no strict technical equivalent of a gene, other than the
concept of memes. Furthermore, the speed of evolution is much faster in culture, since there
is no need for the meatspace 8. It mostly just happens in the noosphere 9, the shared human
knowledge space, and not in the biosphere. Finally, created artifacts are not alive, they do
not reproduce, and the human and biological ecosystem is relatively inefficient in recycling
them. Some of these social constructs have a relatively weak physical basis, a very large
pool, or randomness and a very high degree of connectedness. Just think about all the crazy
memes you have ever seen on the Internet 10. Yet evolution it is. Both biological and socio-
technical evolution share the two most important properties for this thesis, intractability and
co-evolution.

Relevant properties Based on the previous discussion of Darwinian evolution and the dif-
ferences between biological and socio-technical evolution, we can distill the two most relevant
properties needed for understanding λ-systems. These are the intractability of evolutionary
processes and the concept of co-evolution.

Intractability Intractability is important as it defines the impossibility of the exact
prediction of an evolutionary process. It therefore clearly presents the problem we face
when trying to understand and steer the evolution of a λ-system. It can be mathematically

8Meatspace is the opposite of cyberspace. See also http://en.wikipedia.org/wiki/Meatspace
9http://en.wikipedia.org/wiki/Noosphere

10For instance, http://www.youtube.com/watch?v=eBGIQ7ZuuiU had more than 20 million views in early
September 2008.
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proven that we will never truly know the precise effects of our actions, and we must thus
act accordingly.

Co-evolution The concept of co-evolution is important as it makes it clear that nothing
exists or evolves in isolation. Every action of every element in an evolving system will have
some effect on all other elements. The concept of the coupled fitness landscape helps to
visualize the interaction space. If we are ever to grasp the evolution of λ-systems, we must
understand the co-evolving elements within them and the co-evolution of the λ-system
with its surroundings.

Intractability and co-evolution will be discussed in greater detail in the following two subsec-
tions.

3.4.3 Intractability

Algorithmic process Evolution is an algorithmic process (Dennet, 1996) of mutation, repro-
duction and selection across the evolutionary design space. Computational theory (Hartmanis
et al., 1983) states that evolutionary problems are intractable, that is, they are not NP com-
plete. NP completeness means that the computation time of an algorithm on a deterministic
Turing machine is not greater than a given polynomial function of the problem size, n. The
evolutionary algorithm does not have this characteristic. It is NP incomplete and exists in what
is known as the EXPTIME, see equation 3.1.

EXPTIME =
⋃
k∈N

DTIME(2nk) (3.1)

In equation 3.1 DTIME is the computation time of a deterministic Turing machine. It
represents the amount of time (or number of computation steps) that a ’normal’ physical
computer would take to solve a certain computational problem using a certain algorithm. n is
the size of the problem input and can be understood as the number of parameters. k is the
number of steps needed to find the solution. In the case of open ended problems, like evolution,
it is the number of (evolutionary) steps performed.

Scale of intractability Let us provide a sense of scale for the intractability level of EXP-
TIME problems. Let us imagine an impossible scenario in which each electron in the universe
(1079) had the computational power of today’s fastest supercomputer (1012 instructions per
second), and each worked for the entire age of the universe (1017 seconds) on solving the prob-
lem. This means that such an ubercomputer would perform 10108 computations 11 in its entire
existence. Now let us imagine an evolutionary process with 100 variables, evaluated over 100
time steps. In order to examine all possibilities, and thus be able to predict the outcome in
advance would require 2100100 , or 210E199, calculations to be performed. Now imagine how many
components (bacteria, ants, animals, humans, computers etc) have interacted in an evolving
system line on planet Earth over its lifetime of 4.5x109 years...

11http://www.cs.princeton.edu/introcs/77intractability/
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Full execution Paraphrasing Equation 3.1, the intractability of an algorithm means that
there is no faster way of evaluating the outcome of the algorithm than simply to go through
all the steps and observe the outcome. The corollary of this is that the outcome, the system
structure and state of the evolutionary process, cannot be predicted in advance. Intractability
implies that the outcome of the evolutionary ’program’ can only be found by completing its
execution.

Illustration The cartoon in figure 3.2 depicts an evolving civilization that eventually causes
its own demise by accidentally hitting the ’Universal Reset Button’ somewhere in its evolution.
Due to the intractability of its evolution, there is no way the civilization could predict or
be aware of this event. To a cosmic observer the society’s evolution is stuck in an endlessly
repeating loop; the society does not have the ability to ever find out about it in advance.

Figure 3.2: Intractability of evolution (Gurewitch, 2005)

Cause of intractability So what causes the intractability of the evolutionary process? As
already discussed in Chapter 1, in a system every component interacts with every other com-
ponent. Every time something happens, a decision is made, etc.; it has an effect on all other
things that can happen in the future. The rest of the system reacts, causing something new to
happen, etc, etc. An illustration of this process is presented in Figure 3.3.

Let us imagine a system being at some arbitrary point 0 in the system’s history. As time goes
on, an event happens at time A, causing the system to subsequently move towards point A. All
other possible states toward which the system could have evolved are no longer possible. At time
B, another interaction event happens, again excluding countless possible future states. As the
system progresses in time, across points C, D, E, F, etc., more and more of the astronomically
large number of possible system states are not able to come into being. Of course, at each time
step, the same astronomical number of new possible states continuously becomes possible, as
can be see at point H.

Forest analogy Another analogy may help to grasp the concept of intractability. Imagine
that you are walking on a narrow path through a very dense and dark forest (see Figure 3.3).
After each step you try to guess where the path is leading and what your next step should be.
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Figure 3.3: Possible and actual path of a system

The forest reacts to your every step by changing the direction of the path in front of you in
some unknown way. Predicting the direction of the path is only possible if you take the reaction
of the forest to each and every one of your steps into consideration. However, you do not know
how the forest will react. To find out where the path leads, you must simply walk it.

Relevance The main consequence of the intractability of the evolutionary process is that the
exact prediction of the evolutionary outcomes of λ-systems is impossible. We need to find other
ways to predict, or at least better estimate, what the future may bring us, especially if we intend
to change it so as to make it more sustainable. Since we cannot predict in advance, we must do
things while being aware that we can never know in advance what precise effects our actions
will have. Luckily, as discussed earlier, evolution is path dependent, and future states have
a characteristic structure. Because the system’s components are acting and reacting to each
other and adapting in the process, co-evolution of systems components provides us with robust
patterns of future states that we can explore. Therefore, co-evolution needs to be understood.
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3.4.4 Co-evolution
Apart from illustrating intractability, the example and notion of the path and the forest reacting
to each other and to the person walking exemplifies the concept of co-evolution. The person,
the path and the forest co-evolve. The notion of biological co-evolution was first introduced in
Chapter 1. In this section its relevance to the thesis will be further specified.

Evolution is co-evolution A comprehensive overview of the co-evolution literature is be-
yond the scope of this work. Co-evolution in biological systems has been thoroughly described
in the literature of biology (Futuyma, 1983; Jantzen, 1980; Thompson, 1994). Using the system
perspective developed in Chapters 1 and 3, we see an ecosystem as a system consisting of many
coexisting species which constantly interact through competition, predation, parasitism, com-
mensalism, symbiosis, etc., situated in a particular environment. As the environment changes,
and as randomness drives DNA mutation, species evolve. However, they do no evolve in iso-
lation. A change in the fitness of a single species has a direct effect on all other species with
which it shares the environment. For example, a predator that becomes more effective directly
reduces the fitness of its prey, but also increases the fitness of the organisms that that the prey
eats. Basically, a change in a single species effects all species, changing their fitness and causing
a pressure to evolve further.

Co-evolution in λ-systems Rammel et al. (2007a) provides an excellent review of the his-
torical development of the term co-evolution in its application to human systems. It is clear
that the term is well established and is widely used in ecological economics (Costanza et al.,
1993; Jeffrey and Mcintosh, 2006; Kallis, 2007; Kemp et al., 2007; McIntosh and Jeffrey, 2004;
Rammel et al., 2007a; Sen, 1993; van den Bergh, 2007; Winder et al., 2005) and the transition
management literature (Kemp and Rotmans, 2005; Kemp et al., 2006). The main limitation of
the literature is that it mainly deals with the theoretical considerations and consequences of a
co-evolutionary perspective, offering limited practical advice on how to use the concept.

Definition Co-evolution in λ-systems is defined by Rammel et al. (2007b) as:

At a general level, we conceive of co-evolution as dynamic interactions between
two or more interdependent systems which account mutually for each other’s de-
velopment. In detail, co-evolution can be seen as the evolutionary process among
two or more components/sub-systems/systems driven by reciprocal selective pres-
sures and adaptations between these components/sub-systems/systems. Thus, a
co-evolutionary system can be defined by the totality of all interacting compo-
nents/subsystems. Moreover, co-evolutionary dynamics reflect different temporal,
spatial and social scales, nested hierarchies, inevitable uncertainties, multidimen-
sional interactions and contain emergent properties.

At the abstract level, all co-evolutionary interaction between components happens via a coupled
fitness landscape.

Coupled fitness landscape Hordĳk and Kauffman use the concept of coupled fitness land-
scapes to show that an evolutionary process never happens in isolation (Kauffman and Johnsen,
1991; Wilds et al., 2008). A fitness landscape is a description of the conceptual environment of
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an individual or species, where every point in this solution space implies a certain fitness for an
individual. For a graphic illustration of a changing fitness landscape, see Figure 3.4. The x and
y axes represent the possible ranges of properties of two different species. The z axis represents
the combined fitness landscape of the two species, with peaks and valleys for combinations
of different properties of the two species. As the species co-evolve, they attempt to find the
peaks, where they are both at their maximum fitness. However, as there are more than one
species evolving, it is likely that the evolution of one species changes the fitness landscape of
the other, and vice-versa. This is illustrated in Figure 3.4, where, going from left to right, the
fitness ladscape is deformed as species evolve and acquire new traits. The fitness landscape
of both species is coupled and dynamic, with each evolutionary step of one species changes
the fitness landscape of the other, and vice versa. This is the main cause of intractability of
the evolutionary process. If the gazelle learns to run faster, the lion gets less to eat, until it
develops a new strategy for dealing with fast gazelles, reducing the gazelles fitness again. The
responses and counterresponses can not be predicted in advance, as they are driven by random
mutation, and are influenced by the specific adaptation of the other species.

Figure 3.4: Deformation of a fitness landscape

Next steps As discussed in this section, λ-systems are evolving systems that experience co-
evolution and have an intractable future path. They require multiple formalisms to be fully
described and can be conceptualized to consist of three levels: agent, network and system.
Given these elements, we are now ready to describe a generativist framework that will allow
for the generation of evolutionary patterns of multiformal and complex λ-systems.

3.5 Complexity Framework
In this section, a generativist framework for understanding Complex Adaptive Sys-

tems is presented. It is constructed from the building blocks and insights presented in
the previous sections. The framework consists of three conceptual levels: agent, network
and system. Relevant properties and concepts at each level are presented. Observer and
context dependency are discussed, as is the role of the randomness and order in the
systems environment.
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Framework elements Before we embark on describing the framework, we need to shortly
recapitulate the conceptual building blocks presented earlier.

Multiple formalisms The complex nature of λ-systems requires that we use multiple
formalisms to describe the system. A multiformal description starts with an agent de-
scription based on different knowledge domains (social, technical, etc.). A multiformal
agent is capable of multiformal interactions, creating multidimensional networks (money,
mass, etc.) and thus an emergent, multiformal system.

Agent The agent is the smallest element of the system. Its state and rules are multi-
formal and adaptive. See Appendix A.1 for details of the agent level.

Network The network level of a system describes the structure and aggregation of
the interactions between agents. Evolution takes place at this level through changes
in network structure. As the agent’s description is multiformal, the network of agent
interactions must necessarily be so, too. See Appendix A.2 for details of the network
level.

Emergent System At the emergent system level, properties and behavior emerge from
the structured interactions between agents. Again, as the agent and the resulting inter-
action network are multiformal, so is the overall emergent system. See Appendix A.3 for
details of the system level.

Evolution Evolution of a system is understood as the process of change either at the
agent level, where a change in agent properties and states causes a change in the inter-
action structure or a change in the network structure through the addition and removal
of individual agents. The precise prediction of the overall system state as the result of
changes at the agent or network level is impossible because of the intractable nature of
the process. The change is never confined to a single element, as every change automat-
ically causes change in other components as well, causing different system elements to
co-evolve.

Unified framework To provide a foundation for a shared language and vocabulary, a holis-
tic and generative framework is proposed. The goal of this framework is to offer a unifying
perspective on complex systems that is domain-free and thereby usable as a shared knowl-
edge interface between different knowledge domains. The aim is to provide a coherent, unified
framework that shows that different system levels and properties are related to each other and
that they interact in a generative fashion, creating a complex system from individual element
interactions. It is only one, not the meta-model of a complex system.

Framework description Figure 3.5 presents the complexity framework. For a detailed
description of each level, please refer to Appendix A. At the lowest conceptual level, an agent
is defined as the smallest system component, converting inputs to outputs through its state
and rules. Agents can interact because of their interfaces and protocol similarities. They are
diverse in their states and rules and are adaptive.

In the middle conceptual level, the interactions between the agents create a network. This
network has a certain topology. A change in the intensity of the connections between agents
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creates network dynamics, and addition and removal of nodes and edges causes the network to
evolve.

At the highest, or system, conceptual level, the entire emergent system can be seen as an
entity with aggregate in- and outputs, that has an aggregate state and aggregate rules. At
this level emergent properties become visible as a result of lower-level interactions. The system
self-organizes, is robust and can be instable. At this level the entire system can be seen as as
Agent, or the smallest system element of a larger system if the observer chooses to do so.

The framework is holistic, as it provides a perspective on a system from the smallest indi-
vidual elements to the highest level of system aggregation. While it considers systems in its
entirety, it is also reductionistic in a sense that it reduces systems to smaller elements if they
are fully interrelated with other elements (Bar-Yam, 2003). It is generativist, as it understands
systems as a result of continuous process of emergence across multiple levels, starting at the
lowest level elements (Epstein, 1999).

Two aspects important for understanding the framework that were not discussed previously
are: observer dependency and irreversibility.

Observer dependency When applying the framework, systems decomposition is dependent
on the systems observer. The observer chooses the scale at which the system is observed, and
thereby determines what is considered the smallest/largest element. For example, depending
on the problem and system at hand a person can be considered an agent, whose interactions
through the legal and social system lead to a the system level being an entire country. A different
observer, in a different situation may choose to represent a country as an agent, and the entire
planet as the emergent system. Furthermore, each observer chooses a certain perspective when
interacting with a system. For example, a chair is a social, physical, chemical entity. Is the
observer interested in the physical strength and the manufacturing process that produces it, or
is the observer interested in the impact of uncomfortable chairs on educational performance of
students? It depends on the observer which of these perspectives will be used to construct the
conceptual model of the chair. Observer dependency is especially apparent when considering
system behavior over time. An observer studying the plate tectonics of a region will not be
able to make meaningful observations within a time scope of minutes or hours. The observer
also chooses the systems aggregation level. By aggregation we mean that many agents that
have the same or similar kind of behavior can be generalized into an aggregated, larger group.
So the observer effectively determines what the smallest component is in the decomposition of
the system. Aggregation is used to decrease the number of agents and to simplify the system.
If one wants to compare the behavior of the soccer supporters of different countries, one does
not consider all the individuals separately but aggregates them into homogeneous groups: i.e.,
the Dutch supporters and the French supporters.

Irreversibility Any change to any component or level of the system affects the whole system,
as components co-evolve over time. Whenever an agent interaction is established, all other
conceivable interactions are no longer possible. This causes an irreversibility and thus a path
dependency in the system’s overall behavior. This irreversibility can manifest itself in many
ways. Systems could lose mass or energy, as is the case with physical systems (Prigogine, 1967).
In social systems, a loss of information can often be observed. For example, groups can forget
about specific knowledge, as in the case of using old technology. There are very few people in
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Figure 3.5: Complexity framework overview

the Western world able to make an effective bow and arrow or to start a fire without modern
tools.

Conclusion This chapter presented the theoretical foundations of this thesis. It described
the importance and use of formalisms, presented a comprehensive view of Complex Adaptive
Systems and discussed aspects of evolution applicable to λ-systems. The chapter resulted in
a holistic and generative framework for understanding Complex Adaptive Systems and their
evolution. In the next chapter the framework will be used to place knowledge domains relevant
for this work in a context of creating models of λ-system evolution.
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CHAPTER 4

MODELLING FOUNDATIONS

All models are wrong, some are useful...

(Box, 1979)

4.1 Introduction
In the previous chapter, we presented a unified framework for understanding Complex Adap-
tive Systems and their evolution, for which we need multiple formalisms and thus knowledge
from many different domains. Using this framework, we can start to explore the theoretical
backgrounds needed for answering the second research question: “What are the content speci-
fications of such models in terms of relevant formalisms/knowledge domains?” The answer to
this question will dictate the way the model will be developed, and which knowledge domains
will be necessary. This chapter is a search for a modelling approach, i.e, for the tools we need
in building this model. If we dissect the main research question posed in Chapter 2: “How
can we create a model for exploring the evolutionary patterns of λ-systems evolution?”, we
can identify the knowledge domains necessary for answering it. These relevant parts and the
associated knowledge domains are:

λ-systems evolution The objects of study are industrial networks. A overview of the
thinking on industrial clusters and how they change will be presented. Evolutionary
theory was already presented in Chapter 3.

model There are many different ways to model Complex Adaptive Systems. The dif-
ferent approaches will be examined, and Agent-Based Modelling will be shown to be the
method to use. Its background will be examined.

These two knowledge domains, Industrial Clusters and Complex Adaptive Systems Modelling,
will be discussed. They are expected to yield the building blocks necessary for answering RQ1.
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4.2 Industrial Clusters
In this section an overview is given of thinking about industrial clusters. A working

definition of a cluster and a definition of a successful cluster are presented. Industrial
ecology, a field concerned with the study of industrial networks, provides useful static
metrics for possible emergent attractors. Individual firms and their processing plants are
identified as the smallest system elements that cause clusters to emerge as a result of
their interactions.

Regional industrial networks The domain focus of this work is the regional industrial
clusters dominated by chemical, energy or metallurgical process industry and related infras-
tructure. European examples of such clusters are the Rotterdam-Rĳnmond area and Groningen
Seaports in the Netherlands, the German Ruhr Area, the Antwerp region in Belgium, Le Havre
in France and Teeside in the United Kingdom. There are several ways one can characterize
industrial regions (Vila et al., 2000). See Table 4.1.

Table 4.1: Characterization of the territorial grouping of companies. Adapted from (Vila et al.,
2000)

Name Geographical
area

Type of company Relations between companies

Cluster Wide Small, medium
and large

Sectoral (vertical, horizontal and
transverse)

Filiere Diverse Small, medium
and large

Sectoral (vertical)

Industrial
City

Small Small, medium
and large

Multi-sectoral

Industrial
District

Small Small and medium Sectoral

Micro clus-
ter

Small Small, medium
and large

Sectoral (vertical and horizontal)

Milieux Small Small and medium Sectoral (innovation)

Cluster definition The most widely used definition of clusters in the literature, and the one
used in this work, is given by Porter (2000):

Clusters are geographic concentrations of interconnected companies, specialized
suppliers, service providers, firms in related industries, and associated institutions
(e.g., universities, standards agencies, trade associations) in a particular field that
compete but also cooperate.

In this work the term ’field’ will be used loosely. Processing industry will be considered as a
field, irregardless of whether it involves chemicals, energy or metals processing.
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Clusters as Complex Adaptive Systems Porter (2000) further discusses a number of
important issues for clusters. The importance of the ’quality’ of local demand is emphasized.
A high local demand gives the cluster a global competitive advantage. High local demand can
be seen as a cluster asset that augments its global competitiveness: if the cluster can cater to
strong local demand, it has a head start in catering competitively to global demand.

Another interesting point Porter raises is the ability of a cluster to develop itself when
“several parts of a cluster change simultaneously” (Porter, 2000). In other words, clusters
evolve (change their internal structure) through simultaneous changes in multiple components.
They are adaptive. Clusters can also suffer from a conservative force: cluster culture or a sort of
’group think’ may reinforce certain outdated behaviors, suppress new ideas and create rigidities
that prevent the adoption of improvements. This constraining rigidity - or path dependency -
is a further reason behind the complex nature of clusters.

Ribas et al. (2003) specifically discusses the clustering of the chemical industry. Chemical
companies operating in a cluster showed a higher average production and also a higher Return
On Sales. This better performance is explained by the availability of “a series of externalities
and positive synergies that arise precisely from the fact that they share resources and capacities
in the same geographical area”. This can be seen as an example of clusters as self-organizing
systems.

Successful cluster As already presented in Chapter 1, the goal of this thesis is to support
the RDAs in making their clusters as successful - and thus as sustainable - as possible. Dĳkema
et al. (2005) defines a successful cluster as follows:

The prosperity and sustainability of any regional cluster depends on the activities
located therein. (...) A region’s prosperity and continuity is robust when the number
of companies is sufficient and diverse, when the intensity of their activities and the
volume of their transactions is stable or growing and when aging assets are timely
replaced by new investments.

Given the definition above, and the fact that industrial clusters are λ-systems, a useful ab-
straction needs to be made in order to understand these clusters and help the involved RDAs
achieve successful cluster evolution.

Industrial Ecology The body of knowledge needed for an analysis of socio-technical λ-
systems has only recently emerged; the Industrial Ecology (IE) community had postulated
useful paradigms on the required state of λ-systems (sustainability) and their preferred struc-
ture (networked ecosystems) (Frosch and Gallopoulos, 1992). Life Cycle Assessment (LCA),
Material Flow Accounting (MFA) and Substance Flow Accounting (SFA) provide images of a
system’s physical performance. Industrial Ecology, operating from a first principles paradigm,
attempts a broad aggregated systems description of the technosphere and mainly deals with
large-scale energy and mass flows (see e.g. Allenby (1999)). A critical review of the IE body
of knowledge has been done by Verhoef et al. (2004). Using the IE paradigm and Dĳkema’s
definition, it is apparent that evolving λ-systems must have as an emergent characteristic a con-
tinuous increase in the total eco-efficiency of their energy and materials use, business continuity
and socio-economic prosperity.
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Static and system level The main drawback of traditional IE tools is that they are largely
static and suffer from a lack of content in their representations of system structure and technol-
ogy. In situations where the dynamics of systems are important, and where intervention rather
than analysis is called for, IE approaches to date have been largely inadequate (Dĳkema, 2004;
Verhoef et al., 2004). While analysis methods on the present state of the physical part of
λ-systems abound in the growing IE body of knowledge (Allenby, 1999; Graedel and Allenby,
1995), recipes for how to arrive at the preferred states of these Large-Scale Socio-Technical
Systems appear to be largely lacking.

Furthermore, IE focuses on the analysis of systems at the emergent system level. This level
is not suitable for a generativist approach, since it does not deal with the individual agents,
but rather the emergent system structure. IE currently uses a primarily static, linear and
monodisciplinary perspective in studying the technosphere. It lacks the ability to truly combine
multiple formalisms. Therefore, IE is not a suitable formalism for modelling λ-system evolution.
It does, however, offer a suitable approach for analyzing the emergent cluster structure, as will
be demonstrated in Section 8.4.

Next steps In this section we have established that the Porterian view on clusters provides a
suitable perspective, fitting in a generativist view of λ-systems. The traditional tool for studying
industrial clusters, Industrial Ecology, has been shown to be inadequate as a generativist tool.
It does provide a useful set of tools for the analysis of emergent industrial network behavior.
The next step, then, is to examine ways to model the emergence of industrial clusters.

4.3 Modelling Complex Adaptive Systems
In this section several tools for modelling Complex Adaptive Systems, as well as their

suitability for creating generativist models of λ-system evolutions, are examined. Criteria
are formulated based on Ashby’s Law of Requisite Variety, and it is demonstrated that
only an Agent Based Model can fulfill this role. A definition of ABM is presented and
typical-use cases are discussed. Firms, identified in the previous section as the relevant
agents, are seen to consist of a technology and decision-making processes. Process
engineering is used as the dominant view on technology and, together with business
economics principles, it describes the agent’s state. Rational decision theory is used as
the relevant domain for describing the agent’s decision-making process.

As discussed in Chapters 2 and 3, λ-systems are Complex Adaptive Systems. In order to re-
spect their complex nature they must be suitably represented using the generativist complexity
framework presented in Chapter 3. To help us understand λ-systems and their evolution, the
framework needs to be operationalized through multiformal and generative models. In order
to arrive at a set of requirements for a modelling tool capable of such a task, we must identify
the special properties of CAS that the modelling tool must be able to capture and represent.

4.3.1 Requirement
Requisite variety In essence, there is only one requirement for a model of a Complex Adap-
tive Systems. The model needs to represent the system as well as possible. This is formally
expressed by Ashby’s Law of Requisite Variety (Ashby, 1968), which states:
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The variety in the control system must be equal to or larger than the variety of
the perturbations in order to achieve control.

Paraphrasing the definition above, a model system or controller can only model or control
something to the extent that the model has sufficient internal variety to represent the real
system. At the first glance, it may seem odd to use a top-down, control theory concept when
describing a requirement for building models of λ-systems. However, a more commonly used
formulation of Ashby’s law states that “a model system can only model something to the extent
that it has sufficient internal variety to represent it”1. If we take this comment outside the scope
of control theory, we can see that it implies that if we are to build successful models of CAS,
these models themselves need to be CAS.

Essential properties What is the minimum set of properties of CAS that need to be mod-
elled? Which properties make a Complex Adaptive Systems a CAS? Summarizing Chapter 3,
we can identify three main properties:

Multiformal CAS must be represented through multiple formalisms.

Bottom-up and distributed CAS consist of many heterogeneous but related components in
dynamic interaction, generating emergent system behavior from the bottom up.

Adaptive CAS are by definition adaptive. In the case of λ-systems, we argued that they
evolve over time.

Given the three identified properties, the modelling tool for describing a Complex Adap-
tive Systems, as with a λ-system, therefore must be able to contain multi-domain and multi-
disciplinary knowledge, be generative and be adaptive. That is, it must exhibit adaptive,
emergent behavior through interactions of adaptive heterogeneous low-level elements.

Available tools How can we meet the above criteria, and what modelling tools or components
would be of use? Answering this question could lead to an examination of many, many fields in
which modelling is used. There are even more modelling techniques available. Reviewing them
all would be outside the scope of this thesis. The literature review was therefore limited to
Complex Adaptive Systems modelling literature (Borshchev and Filippov, 2004; Epstein, 1999;
Remondino, 2004; Shalizi, 2006) and fields dealing with λ-systems, such as Process System
Engineering (Dĳkema, 2004), Macroeconomics (Duchin, 2005; Leontief, 1998) and Operations
Research (Bankes et al., 2002). System level analysis tools, such as Statistical Thermodynamics,
were excluded, as were pattern recognition tools such as Neural Networks, as they are not
generative. The following types of modelling tools were found to be possible candidates:

Computable General Equilibrium CGEmodels are static equilibrium models (Jones,
1965; Leontief, 1998) mainly used in neoclassical economics, based on linear equations.
They are used to describe overall states of λ-systems, such as markets and industrial
regions (Duchin, 2005). Their advantage is that they have a relatively elegant and simple
mathematical formulation and allow the possibility for analytical solutions. However,
CGE models assume a static system structure and the existence of static equilibria.

1http://pespmc1.vub.ac.be/REQVAR.HTML
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Dynamic Systems DS models are used to model physical systems. They are based on
mathematical models consisting of state variables and algebraic differential equations of
various forms over these variables (Rosenberg and Karnopp, 1983). DS models are based
on first principles, rooted in laws of nature and have a continuous representation of time.
This gives them great accuracy in describing system behavior. They can display chaotic
behavior and forms of adaptation (Strogatz and Henry, 2000). Due to their differential
equation basis, DS are unable to encode multiple formalisms and thus assume a static
system structure.

System Dynamics SD models involve a top-down approach. They are tools based on
differential equations, describing the interaction between variables as stocks and flows
(Forrester, 1958; Forrester and Wright, 1961). They assume a fixed structure between
variables. SD models can display chaotic and even adaptive behavior. However, they
necessarily assume a static internal system structure.

Discrete Event Simulation DES combines a bottom-up an top-down approach. DES
conceptualizes the world as consisting of many discrete entities that change their states
in response to some external event, usually ticks of a clock. Entities in DES models
are passive objects that represent people, parts, documents, tasks, messages, etc. Give
certain system inputs or states of other objects, these entities change states, e.g. poeple
arrive and leave, documents get created, approved etc. (Boer et al., 2002; Boyson et al.,
2003; Corsi et al., 2006; Gordon, 1978).

Agent-Based Modelling ABM uses a bottom-up perspective. Individual agents act
and react to each other, following their internal rules. The overall system behavior is
emergent. Agents are software entities, described through computer algorithms (Jennings,
2000b; Shalizi, 2006). ABMs conceptualize the world as resulting from the interactions
of many different entities. The algorithmic nature of agents means that they can encode
many different formalisms. Analytical solutions to agent interactions, however, are often
impossible.

Most suitable tool Of the presented tools, ABM is the only one that can is adaptive,
generative and multiformal. Furthermore, ABMs are modular in nature, which allows for
different formalisms to be encoded (see Appendix A.1). It is the only tool presented that
satisfies Ashby’s requirement. Furthermore, in the words of Borshchev and Filippov (2004):

Agent Based approach is more general and powerful 2 because it enables cap-
turing the capture of more complex structures and dynamics. The other important
advantage is that it provides for construction of models in the absence of the knowl-
edge about the global interdependencies: you may know nothing or very little about
how things affect each other at the aggregate level, or what the global sequence of
operations is, etc., but if you have some perception of how the individual partici-
pants of the process behave, you can construct the AB model and then obtain the
global behavior.

2than System Dynamics, Dynamic Systems or Discrete Event Simulation
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4.3.2 Agent-Based Modelling
Thus, the main modelling tool used throughout this thesis shall be Agent-Based Modelling
(ABM). In this section the theoretical background of ABM will be discussed. Practical details
describing the creation of ABMs are described in Chapters 6, 7 and 8.

Definition Agent-based models take agents (components) and their interactions as central
modelling focus points. Stuart Kauffman has been quoted to say that “an agent is a thing
which does things to things” (Shalizi, 2006).

Furthermore, Shalizi (2006) states that:

An agent is a persistent thing which has some state we find worth representing,
and which interacts with other agents, mutually modifying each other’s states. The
components of an agent-based model are a collection of agents and their states, the
rules governing the interactions of the agents and the environment within which
they live.

Another perspective is provided by Tesfatsion (2007):

In the real world, all calculations have real cost consequences because they must
be carried out by some entity actually residing in the world. ACE 3 modelling forces
the modeller to respect this constraint. An ACE model is essentially a collection of
algorithms (procedures) that have been encapsulated into the methods of software
entities called ’agents’. Algorithms encapsulated into the methods of a particular
agent can only be implemented using the particular information, reasoning tools,
time and physical resources available to that agent. This encapsulation into agents
is done in an attempt to achieve a more transparent and realistic representation of
real world systems involving multiple distributed entities with limited information
and computational capabilities.

Computer program In essence, an agent is an computer program. Jennings (2000b) defines
the agent as “ an encapsulated computer system that is situated in some environment, and
that is capable of flexible, autonomous action in that environment in order to meet its design
objectives”. Agents are reactive, proactive, autonomous and social software entities. Agents
are:

1. Clearly identifiable problem-solving entities with well-defined boundaries and interfaces;

2. Situated (embedded) in a particular environment - they receive inputs related to the state
of their environment through sensors, and they act on the environment through effectors;

3. Designed to fulfill a purpose - they have particular objectives (goals);

4. Autonomous - they have control both over their internal state and over their own behavior;
and

3Agent-Based Computational Economics; essentially ABM with agents containing economic decision models
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5. Capable of exhibiting flexible problem-solving behavior in pursuit of their design objec-
tives - they need to be both reactive (able to respond in a timely fashion to changes that
occur in their environment) and proactive (able to act in anticipation of future goals).

(Adapted from Jennings (2000b))

Why are Agent not just Objects? Shalizi 4 states that :

While object-oriented programming techniques can be used to design and build
software agent systems, the technologies are fundamentally different. Software ob-
jects are encapsulated (and usually named) pieces of software code. Software agents
are software objects with, additionally, some degree of control over their own state
and their own execution. Thus, software objects are fixed, always execute when
invoked, always execute as predicted, and have static relationships with one an-
other. Software agents are dynamic, are requested (not invoked), may not necessar-
ily execute when requested, may not execute as predicted, and may not have fixed
relationships with one another.

ABM vs MAS When studying the literature dealing with agents and the models based on
them, we encounter two related but distinct types of modelsspread. In addition to Agent Based
Model, one often encounters the concept of Multi-Agent Systems (MAS). Before proceeding to
examine our agent, it is important to differentiate these two, as they are often, but incorrectly,
used interchangeably.

MAS How can I make a ...? Multi-Agent Systems are employed to engineer a certain desired
emergence from a system. MAS acknowledge that a given control problem (e.g. traffic control,
agenda synchronization, etc.) must be solved using discrete, parallel, autonomous components,
namely agents. Work needs to be done to ensure that all types of conflict resolution are
performed in order to achieve the desired outcome, (i.e., no traffic jams, and non-conflicting
appointments). The following are typical examples of MAS in the literature: Hadeli et al. (2004)
describes a MAS for process design using component collaboration and local information, Lee
(2003) presents the design of an advanced e-commerce agent, Negenborn et al. (2006) presents
a MAS predictive control system for transportation networks, and Lanzola et al. (1999) focuses
on the design of cooperative agents in a medical MAS system.

ABM What happens when ...? Agent-Based Models are constructed to discover possible
emergent properties from a bottom-up perspective. ABM acknowledges that reality consists of
many components acting in parallel. ABM describes these entities and lets them interact in
parallel, observing all possible interaction models. There is no desired state or task that needs
to be achieved, only an exploration of the system’s possible states. Some typical examples of
ABMs are: a model of farmers’ adaptations to climate change by Schneider et al. (2000), a
model of the co-evolution of autocatalytic economic production and economic firms by Padgett
et al. (2003) and the model of an abstract economy by Kauffman (2008). Models presented in
this thesis also fall squarely into the ABM category.

4http://cscs.umich.edu/~crshalizi/notebooks/agent-based-modeling.html
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Use of ABM Now that we have clearly delineated what ABMs are, we need to explore how
they are used. Janssen and Ostrom (2006) argue that modellers generally use ABM in three
situations. These are: high quality data being available, role-playing situations and laboratory
experiments. To these three situations, we add two more use cases: case study exploration and
future mapping. These use situations are elaborated below.

High quality data The first situation for using ABM is when high quality empirical
data are available. This allows the creation of stylized facts and the use of ABM to
examine which micro behavior/processes emerges from those stylized facts. Example of
such uses are: the models of market bubbles and crashes by Giardina and Bouchaud
(2003) and Challet et al. (2001).

Role playing The second situation is in role-playing games. We can examine the con-
text in which the agents/players find themselves and their potential interactions. Ex-
amples of such uses are: the models of negotiation by Barreteau (2003) and Etienne
(2003); models studying identity, by Guyot et al. (2007); land use patterns, by (Castella
et al., 2007); resource management, by Guyot and Honiden (2006); and food security and
climate change, by Bharwani et al. (2005).

Laboratory experiments The third situation for ABM use is closely related to role-
playing games. In cases where laboratory experiments are possible, human decision mak-
ing in certain situations can be examined and compared to a theoretical model. Examples
are: the work of Duffy (2001) in modelling the use of financial markets; and the power
market design by Koesrindartoto et al. (2005).

Case studies The fourth situation involves specific case study analysis. Multiple sources
of incomplete information are available. We can construct a theory of the situation using
the agents and examine which fits the incomplete data best. This will be the approach
used in this thesis. Examples are: a model of computer network security, by Gorodetski
et al. (2001); the model of CO2 trading by power generation companies, by Chappin
(2006); and a per household model of distributed power generation, by Houwing and
Bouwmans (2006).

State mapping Finally, ABM can be used as a potential future state mapping tool to
examine where a system could go, given its current state and rules, as was discussed in
Chapter 1. In this case, the model becomes an exploratory tool for examining possible
system attractors. Examples are the two different co-evolutionary models of artificial
economies by Padgett et al. (2003) and Kauffman (2008).

In this thesis, ABM will be used as a future mapping tool, based on case studies with
incomplete information. We will construct theoretical agents based on actors in the case studies
and use the agents’ interactions to play out possible future development scenarios. In order
to do that, we need to further operationalize the agent description, which is currently purely
theoretical.
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4.4 Literature Review
This section presents a review of literature on modelling λ-systems and their evo-

lution. It is aimed at identifying prior modelling efforts and, in the case that there are
none, at identifying whether the necessary components exist. The review also attempts
to find out whether the relevant knowledge domains have previously been explicitly
brought together.

In order to establish which, if any, prior work has been performed in the generative, multi-
formal and evolutionary modelling of λ-systems, a broad literature review was undertaken. The
review consisted of an ISI Web Of Science search using the terms ’agent model* soc* tech*’,
attempting to find all mentions of agent-based models of socio-technical systems. The search
query assumed a logical ’and’ between the terms, and the * matched any extension of the root
word. The search was performed across the entire ISI WOS database. At the time of writing
5, the search returned 260 publications. A first quick scan revealed a widely varying relevance
of papers. In order to increase the relevance, the following fields were excluded: all medical
applications, all robotics papers and all computer security/computation resource sharing. Such
papers were considered to be outside the relevant scope. Furthermore, publications dealing
with intelligent agents, MAS, etc., that were not simulations but designs of systems that per-
form some task, were not considered. The focus was on simulations of systems using agents.
The remaining 171 papers were considered for this review. The review used the scoring and
overview structure presented below:

Title Obviously.

Domain What is the scientific discipline/domain?

CAS Does the paper use the concepts of Complex Adaptive Systems explicitly?

ABM Does the paper implement an ABM?

LSTS Does the paper consider λ-systems?

Evolution Does the paper consider a modular and/or evolutionary approach?

Social process Does the paper present an explicit social process for collecting knowl-
edge?

The result of the review is presented in Appendix G.

Existing models The goal of this literature review was to establish whether previous gener-
ative models of λ-system evolution are available. Six papers (or 4 %) were found to deal with
topics related to λ-system evolution.

Pahl-Wostl (2005) argues that in the management of evolving λ-systems, distributed decision-
making is better than centralized. The author explicitly discusses the involvement of actors in
ABM modelling of λ-system evolution (Pahl-Wostl and Hare, 2004; Panebianco and Pahl-Wostl,
2006). The focus of models is on drinking- and waste water management, and are as such not

5October 29, 2007
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directly relevant to industrial clusters. The stakeholder involvement notions will, however, be
applied in the System Decomposition Method presented in Chapter 6.5.

Kun et al. (2007) present an agent-based model of diffusion of technological developments
in socio-economic systems. It is a cellular automata model, using stochastic models to de-
scribe the diffusion of technology. The main mechanism is described by the authors as follows:
“Agents of the model can represent individuals or firms which use different level technologies to
collaborate with each other. Costs arise due to the incompatibility of technological levels and
to different technological providers. Agents can reduce their costs by adopting the technologies
and providers of their interacting partners” (Kun et al., 2007). Path-dependent clusters of “high
technology” are observed to emerge. The statistical and abstract descriptions of the technology,
in addition to the lack of explicit economic interaction, make this approach unsuitable for our
goals.

A similar approach is used by Zhang (2003) to create a stochastic cellular automata model
of a Shumpeterian industrial districts. Authors include social effects through the role of en-
trepreneurs, in addition to to the role of spatial proximity emphasized by Schumpeter (1983).
The approach is unsuitable for our use as it is a stochastic description of agents and has an
extremely simplified model of technology.

Zhang et al. (2005) present a theoretical game model of multi-layer infrastructure networks.
The authors conceptualize λ-systems in a manner compatible with the socio-technical view
presented in this thesis. The model describes a network with a static structure, where the
flow through the network is optimized by agents playing an inverse Stackelberg game (Basar
and Olsder, 1980; von Stackelberg, 1952) with an assumed central coordination authority. The
presented approach, even though it conceptualizes the problem in a useful fashion, seeks global
optima. It does not consider evolutionary change and is not generative.

Hadeli et al. (2004) present a model for processing plant design using unit operations col-
laboration and local information. It is an interesting concept, creating self-organizing emergent
processing plants from unit operation interactions. This conceptualization chooses agents be-
low the firm/processing plant level, which are below the smallest level considered in this thesis.
This approach, while conceptually useful, focuses on the technical aspects in great detail and
is not suitable for our purposes.

Padgett et al. (2003) present an abstract model of an economy, based on an autocatalytic
co-evolution between economic production and firms. While the approach is not directly appli-
cable to modelling multiformal and network aspects of λ-system evolution, it is an interesting
alternative approach to describing system evolution.

The most relevant model found in the literature is Boero et al. (2004)’s model of micro
behavioral attitudes and macro technological adaptation in industrial districts. The model
presents an abstract supply chain with explicit agent reasoning styles. Agents are boundedly
rational, with limited access to information, limited memory and limited information processing
abilities. This conceptualization is useful and will be used in this work. The most important
limitation of Boero et al. (2004)’s model is the lack of an explicit technology description, and
with it the lack of a physical and thus multiformal reality. Furthermore, there is no focus on
network structure and its evolution, but on the ability of the cluster to change its technology
content in order to supply a certain demand.

Other relevant publications Albino et al. (2006) present a model of innovation in industrial
districts. The model deals with the social and learning aspects of innovations in firms. It
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provides a useful model for agent adaptation. The main difficulty with this approach is its
very abstract description of technology. Operationalizing the adaptation model to an explicit
technology description is a challenge.

Andrews et al. (2005) present a model of a small firm, which is interesting because it
models the emergent behavior of a firm from employees’ interactions. Based on a sociological,
psychological and management perspective, the paper examines the company’s performance
depending on different worker properties, such as making errors. While the level of aggregation
is too low for our purposes, it is an interesting generative model that could be used to examine
firm behavior.

Garcia-Flores and Wang (2003) and Aldea et al. (2004) suggest that agents need not only
a communication language and a standard interface in order to interact, but also a shared
model of the world. This is a strong call towards a systematic conceptualization of knowledge
necessary for model development. These insights will be used in the design of the System
Decomposition Method in Chapter 6.5.

Keirstead (2006) calls for an integrated, flexible ABM framework, using a shared common
language to investigate policy and behavioral effects on domestic energy consumption. The
author further argues that in order to make good models we need engineering, economics,
psychology (decision-making) and sociological knowledge. We wholeheartedly agree, and this
thesis can be seen as an attempt to answer this call.

A number of publications6 are reviews, model meta analyses and discussions on tools. They
all basically ask the same question: “Is ABM science?” and the answer is a universal “yes”.
Janssen and Ostrom (2006) discuss how to use empirical data in an ABM.

Ottens et al. (2004) find that traditional systems engineering process is problematic when
applied to the design of (socio-technical) systems, and call for a new approach, where in addition
to physical and social elements and their functional relationships, normative and intentional
relationships should be introduced. This is a clear call for multiformalism in modelling λ-
systems.

Elements present, integration missing On the basis of the literature review in Chap-
ters 3 and 4 we can conclude that the theoretical components necessary for the creation of a
multiformal, generative ABM of λ-system evolution are already present. Furthermore, we can
conclude that there are no publications that explicitly combine all of the necessary building
blocks into a single and coherent, generativist and multiformal approach. What is missing is
a systematic integration of these knowledge domains into an operational and practical system
that engages interaction between fields in order to create such models. This thesis aims to
make that connection.

4.5 Operationalizing the Agent
In this section an operational description of the agent is presented. The theoretical

backgrounds of the two main formalisms used to describe the agent’s state and rules,
process engineering and corporate finance, are presented.

6(Berger and Schreinemachers, 2006; Bryson et al., 2007; Sansores and Pavon, 2006; Tesfatsion, 2007)
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Recapitulation In Chapters 1 and 2 we argued that λ-systems are complex systems whose
evolution needs to be understood in order to steer them towards a more sustainable future
state. In this chapter, we have explored industrial clusters and established that Agent Based
Models are a useful approach to model their evolution. In a generativist perspective, we need
to define the smallest system element and the types of interactions of which that element is
capable. In this thesis, a firm will be abstracted as an agent.

Firm as an agent The smallest element in a λ-system such as an industrial cluster is a firm
and its production facilities. A firm and its technology is a multiformal beast. The employees
and management of the firm form a social network that uses economic and business reasoning
to decide on suppliers, product pricing, (dis)investments, etc. It has to deal with changing
markets and faces stiff competition to survive. The physical assets operated by the firm have
to meet performance targets, have a designed capacity and a certain environmental impact.
These aspects involve many different formalisms in their description. On top of that, the firm’s
technology changes over time, as does the social network that makes decisions. This diversity
of formalisms and their adaptive natures cause the regional industrial clusters that consist of
such firms to be complex.

Adaptive agent In order to operationalize a complex entity such as a firm, a multiformal
agent must be created. By definition, the description of such an agent is never complete. While
a certain number of formalisms and a certain level of detail may be sufficient to answer a
particular question about possible future states, it is likely that the requirement will increase
over time, as more and more sophisticated descriptions will be called for in the future. We
therefore must be prepared to conceptualize an agent that is not only adaptive in state and
behavior, but also has the ability to incorporate new formalisms, new states and new rules over
time.

Agent state and rules We will start the agent description with two basic formalisms that
will form the theoretical base for agent state and rules. The agent’s state is conceptualized to
consist of technical and economic parameters. The behavioral rules are defined by the opera-
tional aspects of technical installations and by business management logic. On this dualistic
basis, a multiformal and evolving agent can be created.

4.5.1 Agent State
The agent state is a collection of variables that we find useful to represent. These can be simple
numerical values or complex concepts. As the agent is a firm owning a production facility, the
agent’s state is conceived to consist of technical and economic state variables. This dichotomy
makes the agent multiformal. For further discussion on the agent state, please refer to Appendix
A.1. The technical domain is conceptualized using the input/output perspective from the field
of PSE. The business and economic aspects are based in the field of corporate finance.

Input/output perspective The discipline concerned with a physical description of tech-
nology in process engineering is Process Systems Engineering (PSE). PSE approaches systems
from a mass and energy flow perspective. Every entity is conceived as a thing that converts
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mass and energy from one state to another. Since mass and energy are conservative quantities,
systems behavior can be simply defined in equation 4.1:

d mass

dt
= φmassin − φmassout + φmassproduction (4.1)

φ denotes a quantity per time flow (e.g. kg/s). Obviously, this equation also holds for energy.
By specifying the mass and energy balance of a physical component, all relevant quantities are
known. This serves as a basic, first principles physical model of technical network components.
Processing plants are nodes that transform mass and energy from one state into another, and
edges are the mass/energy flows between the nodes. The agent’s state then consists of a descrip-
tion of the in and out flows of energy and mass. Any other parameter relevant for describing the
technology is also a part of the state, such as the operational scale of the technology, alternative
operational states, start up and shutdown times, etc. Due to the modular nature of agents,
other more specific technological aspects can be added when necessary.

Corporate finance In addition to technological aspects, the agent’s state consists of eco-
nomic variables. The field of Corporate Finance (Brealey et al., 2004; Damodaran, 1997) offers
us insights into the relevant state variables. Assets, debt, operational costs, investment costs,
etc. are examples of the economic state of an agent. These variables can be seen as the moving
parts of the economic machine of the agent. The economic variables, while based in a different
formalism, are none the less interdependent with the technology variables. The running cost
of a processing plant is dependent on the operation scale of the installation. Just like mass
and energy, money flows in and out of the firm and hopefully accumulates7. These multiple
formalisms are distinct yet interrelated parts of the agent’s identity.

4.5.2 Agent Rules
An agent’s rules describe the way inputs and the agent’s state are transformed into new agent
states or outputs. The second part of the agent’s multiformalism is capturd in the rules. Each
domain adds a new behavioral rule to the agent and can be related to an existing rule from
another domain. Initially, an agent has technical and economic behavioral rules.

Technical The technical behavioral rules are based on the law of conservation of mass and
engineering principles and follow a gray-box approach. For example, the total mass input must
be equal to the total mass output, and a multiplicity of flows is allowed. PSE domain knowledge
8 describes how different types of mass and energy flowing into the agent are converted into
other types of mass and energy flowing out. Furthermore, PSE deals with the design and
dynamics of processing units, for example when being scaled up or down, as most chemical
plants have a minimum operating load and cannot be freely downscaled.

Rational decision-making Decision-making rules of single individuals are notoriously dif-
ficult to encode into models. Nonetheless, when aggregated into firms, the emergent collective

7Obviously, there is no law of conservation of money.
8For example: (Coulson and Richardson, 1999; Elvers et al., 1988; Green and Maloney, 1984; Hobson and

Pohl, 1984)
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behavior can be described as rational. This rational decision-making paradigm is strongly re-
lated to economics. Its main premise is that actors have needs or preferences on the basis of
which they choose between alternatives (Frederickson and Smith, 2003; Shepsle and Bonchek,
1997). For an agent to be ’rational’, it must optimize whenever a decision is needed. For exam-
ple, when evaluating alternative contracts, the agent will select the cheapest possible contract,
and when setting a price for its products, it will ask for the highest possible price. It seems
then that agents are perfectly rational. However, this is not completely true.

Weak bounded rationality Bounded rationality is defined as follows: “Boundedly rational
agents experience limits in formulating and solving complex problems and in processing (receiv-
ing, storing, retrieving, transmitting)” (Simon, 1997, 1982; Williamson, 1981). While agents
often have the computational ability to make the optimal choice, there are several limiting
factors that make them partially bounded instead of perfectly rational. First, agents do not
have perfect information of the entire system. Agents act and react based on the local, limited
information available to them. Furthermore, agents can only optimize on a preprogrammed,
limited set of criteria. So the optimum the agents find is always a local one. They are not
limited by their computational ability, like humans are, but by the number and diversity of
concepts that can be encoded in their programming.

4.6 Next Steps
This chapter has discussed the modelling foundations needed to create models of λ-system evo-
lution. A theoretical background on industrial clusters, the Agent Based Modelling approach,
and the basic background of the agent were presented.

Yet this is not sufficient to be able create models that comply with Ashby’s requirement of
requisite variety. If we are to model an evolving system, the method for building such models,
not just the model itself, must be evolutionary. That is the topic of the next chapter: how to
apply evolutionary thinking to the design method for building models of λ-systems, and how
to decide whether we are doing it correctly.
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CHAPTER 5
MODELLING METHOD AND REQUIREMENTS

One general law, leading to the advancement of all organic beings, namely,
multiply, vary, let the strongest live and the weakest die.

(Darwin, 1985)

5.1 Introduction
This chapter argues that the method of developing models of λ-system evolution itself needs
to be evolutionary. Two core concepts of the method, collaborative research and the co-
evolutionary approach, are discussed. The co-evolutionary method is conceived as a continuous
interaction between the technical design of a simulation engine, the design of a social process
for knowledge encoding, the actual knowledge encoded and the number of facts collected. By
constantly improving one or more of these aspects, new questions and insights are created, and
a continually improving method for modeling and understanding λ-system evolution emerges.
A number of guiding principles for shaping of the co-evolutionary method are discussed, lead-
ing to a formulation of requirements for the co-evolutionary modelling method. Finally, the
practical steps of the method itself are presented, and the issues surrounding the verification
and validation of the co-evolutionary method are discussed. As a matter of clarification, when
talking about the modeling process, we mean the act of creating models. By modeling method
we understand the stepwise “recipe”, or activities that describe how the modelling process is
performed.

Method for modelling In this chapter our aim is to answer RQ3: “What are the specifica-
tions for a method that would create such models?” The goal of this thesis is to create models
that will allow us to explore what if questions about possible future states of λ-systems. These
models will help the decision makers to get a hold of the levers and steering wheels of a syn-
thetic evolving system that exhibits behavioral dynamics similar to real world systems. Using
these models, decision makers can then explore possible futures and analyze the consequences
of different possible actions. To answer these questions, nontrivial models are needed, and such
models are equally nontrivial to make. How can we build models that are sufficiently complex
to perform this task?
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From simple to complex Gall (2002) provides us with a somewhat tongue-in-cheek but
nonetheless important observation on complex systems:

A complex system that works is invariably found to have evolved from a simple
system that worked. The inverse proposition also appears to be true: A complex
system designed from scratch never works and cannot be made to work. You have
to start over, beginning with a working simple system.

We can examine the above statement in the light of Ashby’s law (see section 4.3.1) applied
not only to the models themselves, but to the method of creating those models. Paraphrasing,
if the result of a method is to be a successful evolving model of a Complex Adaptive System,
the method of creating it must also be complex and adaptive. We are not only making gener-
ative models; we also need to have a generative method for creating these generative models.
This insight leads us to the central paradigm of the modelling method: If we are to model a
Complex Adaptive System, not only must our model be a Complex Adaptive Systems, but the
method for creating the models must itself be a Complex Adaptive System. We must start with
a simple method for generating simple models, and evolve so that over time a complex method
will generate complex models.

This notion of the method for evolving models from simple to complex enough to sufficiently
describe a real world λ-system is central to the modelling method presented in this chapter.

Readers guide In the next section (5.2.1) the key concepts of collaborative research and
evolutionary modelling are addressed. Subsequently, the guiding principles are elaborated (5.3)
and requirements are developed (5.4). The chapter concludes with a description of a method
that meets the requirements. Abiding with the most important insight and requirement from
evolutionary thinking, the presented method is inevitably an initial, simple version.

5.2 Core Concepts
In this section the core concepts of the co-evolutionary method, collaborative re-

search and the co-evolutionary approach, are presented. In collaborative research the
importance of social processes, use of multiple formalisms, recorded history and open-
ness of tools is discussed. The co-evolutionary approach will identify the co-evolving
elements and the environment of the modelling process. These two core concepts will
deliver the guiding principles of the co-evolutionary method for creating models of λ-
system evolution.

5.2.1 Collaborative Modelling
This section will present several issues regarding collaborative research and group model build-
ing. The discussion on knowledge engineering in Chapter 4 made it clear that collaborative
research is unavoidable when creating multiformal models of λ-system evolution. Pahl-Wostl
(2007) furthermore argues that integrated, participatory and adaptive social processes are
needed when trying to understand changing λ-systems.
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Problems and advantages There has to date been a lack of publications on collabora-
tive modelling using Agent-Based Modelling. Collaborative modelling, however, in the form
of Group Model Building, has been been researched extensively in the System Dynamics com-
munity (Andersen and Richardson, 1997; Vennix, 1999). The main problems identified with
group modelling are that modellers have to play many different and sometimes contradictory
roles during the process (Richardson and Andersen, 1995), the modelling process is lengthy
and tedious for the stakeholders (Vennix et al., 1993) and that there is a lack of systematic
approaches to group modelling - it is more art than science (Andersen et al., 1997; Rouwette
et al., 2002).

Despite the problems identified, we argue that group modelling is worth the effort. The
main advantages of collaborative model development as identified by Berger et al. (2007) are
that it generates trust in the model, since participants can identify themselves with model
components. It also promotes ownership, since the stakeholders are involved in specifying the
model. Furthermore it improves model quality - both in terms of the quality of conceptual
knowledge encoded and in terms of quality of data used in the model and it ensures that
relevant questions and problems are addressed through constant discussion. Finally, it is useful
as it teaches the users about the model.

Upon inspection of these advantages and disadvantages, it is obvious the success of any
collaborative process not only depends on the participants but also on the design of the collab-
orative process.

Guidelines Keirstead (2006) in favor of making collaborative multidisciplinary models as
“there is a need to work within the established disciplines, since most research assessment
agencies are still monodisciplinary.” Furthermore the author argues that “Knowledge must be
modular.” and “as many different types of modelling tools as possible should be used. Such
models must, according to Keirstead (2006) be :
• theoretical and practical;

• allow aligning of disciplines in a transparent manner

• allow for both structure and process description

• be both top-down and bottom-up.
The author concludes that “an agent based vocabulary is a practical and accessible way for
integrating the various aspects“ and that ABM would be an appropriate methodology to achieve
the above.

The guidelines presented by the author, while valuable, are not specific and operational.
Westerberg et al. (1997) discuss in their seminal paper the practical issues related to the design
of a collaborative modelling process. Their insights can be summarized as:
• We need a record of the group’s history.

• We need diversity in formalisms.

• We need to control our design tools.

• Learning can be autocatalytic.
These insights are elaborated in the following paragraphs.
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Recorded history As mentioned in the introduction of this chapter, we need to build com-
plex models from successful simple ones. Chapter 3 identified path dependency as a major
aspect of evolving systems. In support of this, Westerberg et al. (1997) argue that most
companies or teams only use a small fraction of their intellectual capital when involved in a
collaborative process and fail at systematic learning. In the words of Westerberg et al. (1997):

If a company can capture its history in a useful form, it can form the basis of
learning and reuse of its design process ... Without a model of how decisions impact
the effectiveness of a proposed design process, we can only use our intuition to test
the likely impact of alternative processes on these goals.

The authors’ observation can be understood to be of the lack of understanding of path depen-
dency and the lack of recognition of its importance to learning in groups. What you know now
was determined by what you knew in the past, and it will determine what you can learn in the
future. A learning system must be aware of this.

Multiple formalisms Westerberg et al. (1997) further demonstrate that approaching a de-
sign problem from many different angles, by different teams at the same time, achieves better
results than a single search strategy.

Owning to the diversity of backgrounds typically present, Bucciarelli (1984)
states that a design team’s first activities are to negotiate the vocabulary its mem-
bers will use, how it will make decisions, what decisions it will make and has made,
etc.

The authors also call for the use of structured data and knowledge collection systems. While
not explicitly mentioning them 1, the authors clearly refer to the use of ontologies.

Open source Since we are designing an evolving method, it is clear that we must retain the
ability to modify any part of the tool chain we use. Westerberg et al. (1997) emphasize the
importance of open source software:

... [Its] design is an evolution of the artifact description, of the information being
gathered and organized, and of the design process itself; designers themselves should
be enfranchised with the power to carry out this evolution without the attendant
delays required when they can not and/or are not allowed to modify their design
support software.

Also acknowledged is the importance of recording the attempts that end in failure. These
are often them most valuable in terms of learning. Mentioned is the need for both standard
interfaces between design components and a degree of design anarchy within those components.
Just as in any evolutionary process, evolution of the model creation method requires both
randomness and order if it is to function correctly.

1The paper was written in 1997, well before the concept of ontologies was widely known outside the Artificial
Intelligence community.
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Autocatalytic evolutionary process Finally, Westerberg et al. (1997) point out that the
collaborative development of models, tools and approaches creates a recursive process of im-
provement and an increase of knowledge. We can consider this comment in the light of Complex
Adaptive Systems. Collaborative, shared learning creates a knowledge feedback loop. The pro-
cess is basically autocatalytic, which means that the increase of the group’s knowledge is its
emergent property. “We also believe in Learning By Doing as an operative principle” (West-
erberg et al., 1997). This is a clear dedication to evolutionary principles. Since evolutionary
processes are intractable, one must go through the motions in order to reach the outcome of
such a process.

Conclusion Collaborative modelling is difficult to formalize and perform, but it is worth
the effort since it increases the involvement and trust the stakeholders have in the outcomes.
Collaborative teams must have a good record of their past actions in order to be able to learn
from their mistakes. Encoding multiformal knowledge requires the collection of formalized
knowledge. Open source tools are important, as teams must have the ability to adapt the tools
they use. A collaborative modelling process is an autocatalytic co-evolutionary process. The
insights presented will form the guiding principles for the creation of the modelling method and
its requirements.

5.2.2 Evolutionary Approach
Co-evolutionary method This section will explore co-evolutionary thinking within the con-
text of evolving models of λ-system evolution, from simple to complex. Complex λ-systems are
not engineered in the traditional sense. Rather, they evolve from simple systems as a result of
series of path-dependent, multi-stakeholder decisions and initiatives (Bĳker et al., 1987; Nikolic
and Dĳkema, 2007), as already discussed in Chapters 2 and 3. Furthermore, this evolution is
shaped by changes in a system’s environment. Knowing this, and considering Ashby (1968)’s
Law of Requisite Variety, we conjecture that a model can represent an evolved complex system
only if it has itself evolved from simple to complex. Applying Ashby again, in order to evolve
such a complex model, the method leading to it must itself be complex.

Paraphrasing, only an evolutionary process can be used to describe the process of evolution.
In order to model the co-evolution of a socio-technical system, a co-evolutionary approach
between different aspects of model development will be used to build the actual models.

The approach consists of an evolving series of case studies detailing and continually im-
proving the social knowledge collection process, elaborating the simulation engine, collecting
new multiformal knowledge and collecting new facts. This method is continually generating
hypotheses for future work and conclusions in both social process and technical design de-
velopment. Allowing for the evolutionary nature means acknowledging the path dependent,
adaptive, chaotic and intractable nature of the method we are involved in.

Co-evolving aspects The process of creating ever more successful models is conceptualized
as an evolutionary process involving four aspects of the model creation process. These aspects
are interacting within a coupled fitness landscape and trying to “survive”. The concept of
coupled fitness landscapes was extensively discussed in Section 3.4.4.

Our four co-evolving aspects are:
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Technology Technical aspects of model building: which software and hardware system
to use, how to organize the modelling software components, how to store data, how to
analyze results, how to scale the model, etc.

Social process The design of the social process of involving stakeholders in identifying
and collecting relevant knowledge and providing feedback on the model’s outcomes. Rel-
evant aspects include how to select the right participants, the script of the collaborative
process, the manner in which feedback is organized, etc.

Domain Knowledge The formalized and encoded domain knowledge representation
of λ-systems. Formalized microeconomics, chemical engineering, psychology, etc. are
examples of domain knowledge.

Facts The factual information that describes components of the λ-system, their inter-
actions and overall system behavior. For example, specific processing plants, their in-
and outputs, economic performance data, etc.

As already discussed in Section 3.4.4, evolution is only possible if each aspects continually
deforms the fitness landscape (Kauffman and Johnsen, 1991). In this case this means that each
aspect contributes new questions and insights to the model development method, making itself
more visible or fit by providing insights and results and by exposing the inadequacies of other
aspects. In order to illustrate the co-evolution between four aspects that the modelling method
consists of, a simplified example is presented in Box 4.
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Box 4: Co-evolutionary method example In this example, an RDA asks a
process engineer to create a model of a local industrial network, so that better de-
cisions can be made about which type of company to invite to join the cluster. A
co-evolutionary modelling process could look like this :
Generation 1 The engineer creates a simple model consisting of agents that have

mass in- and outflows. It is built by one person and is based on process engineer-
ing knowledge. It encodes facts about the relevant mass flows and it accurately
represents the mass flow structure in the region. However, the RDA would like
to know how the cluster could react to a change in oil price.

Generation 2 An MBA is invited into the team, and the model’s technical design is
extended to encode product pricing, company assets and price setting logic. This
model now encodes both process engineering and corporate finance knowledge.
The model shows possible network structures, depending on oil price levels.
The response, however, is unrealistic, as there is no knowledge on global oil
price dynamics.

Generation 3 A macroeconomist is involved. She provides knowledge on long-term
global price movements, and observes that the capital market interest rate
changes over time as well. This prompts a change in the model design to enable
agents to borrow money in order to invest in new facilities. The model is run
and provides possible cluster development pathways, depending on different oil
price and interest rate scenarios.

Generation 4 A resident psychologist realizes that firm’s risk attitudes will be rel-
evant if they are to fit in the cluster. The model design is changed, adding the
ability to encode risk perception, and since this considerably increases the pa-
rameter dimensionality, the model scheduler is adapted to allow model execution
on the High Performance Computing cluster. As the outcomes are evaluated
against possible agent risk strategies, the RDA estimates that they need to in-
vite a bioelectricity producer with high risk tolerance to join their cluster in
order to allow it to grow. However, it is realized that there is a lack of precise
factual information on bioelectrical processes, so a data collection campaign is
started. The process is continued until the RDA is satisfied.

Fitness Evolution requires some form of selection to be present in order to function. How can
we know which improvement in the different aspects to cull? Changes between two generations
are improvements only if they are ’fit’, that is, if they provide us with added useful knowledge
or generate new questions, compared to the previous generation. If the fitness is low, the
change should not be used. Fitness, or usefulness, within this design method has two aspects.
First, the new solution must fit within the requirements (this will be defined in Section 5.4).
Second, it must increase our knowledge of λ-system evolution, or the modelling method itself.
An improvement must satisfy both.

Any knowledge that is not useful according to the fitness function defined above is not
pursued further; it is inactivated in the meme pool (see Section 3.4). It should never be fully
removed (forgotten), since the environment can change, and an old and currently useless meme
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might become useful again.

Environment Fitness is not only defined relatively between the aspects, but also relative to
their environment. In this case, the co-evolutionary process between the modeling aspects takes
place in a dynamic, socially constructed environment shared by those aspects. The environment
of this co-evolutionary process consists of the modellers and the stakeholders who determine
what is useful and what is not. This social environment contains elements that are external
to the four interacting aspects, such as the sudden availability of resources (money, data, case
studies) forcing the co-evolutionary process into an unexpected direction.

Evolving environment This environment forms an integral part of the co-evolutionary pro-
cess. Not only is the co-evolution between the four modeling aspects path dependent (the
performacne of one aspect depends on past activities of others), but its environment is also
shaped by it. The judgment of usefulness by the stakeholder is determined by current and past
performance of the modeling aspect. This means that there is no absolute, or objective mea-
sure what an improvement is. The co-evolutionary process also shapes the expectations of the
stakeholders, inspiring them to try new things or discouraging other courses of action. During
this process, the environment of the co-evolutionary process adapts, and in essence co-evolves
with the four aspects.

Variation and multiplication In this way, a constant deformation of the landscape, i.e., a
constant push to change and improve, is created. Constant hypothesis creation and falsification
becomes possible. Improve the technical part, see what that teaches you; then keep the best
technical insights and improve the social part, and see what new knowledge it provides you,
etc. Every new evolutionary move/hypothesis generates new knowledge. The method mimics
the natural processes of variation and multiplication (Darwin, 1985). Multiple new ideas are
created from older ones, effectively creating knowledge generations.

Learning as evolution This modeling method is an iterative and generative process of
hypothesis development, testing, falsification and improvement. In itself this method does not
deviate from the standard scientific method as defined by Bacon, Popper and others (Popper,
2002). However, the explicit consideration of the evolutionary nature of scientific learning allows
for implicit insights to become explicit. For example, the evolutionary perspective reinforces
the notion that we must make mistakes. The ability to learn from errors is key to the method
(see Section 5.2.1). This, in turn, implies among others that mechanisms must be in place to
record those errors and requires the ability to reverse decisions in a modular fashion.

Ownership of mistakes Science maintains that “a negative results is also a result”, and
demonstrating that something is wrong is part of the essence of the scientific method (Popper,
2002). Successful scientific progress consists of doing an endless number of things that don’t
directly work but that do help others in trying other things that might. Scientists, however,
are social entities. In that context, producing results that are demonstrated to be wrong is
often seen as making a mistake and is difficult to accept (Edmondson, 2004). For example, in
medical drug research there is strong evidence for systematic underreporting of negative results
(van Veldhuisen and Poole-Wilson, 2001).
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The co-evolutionary method, just as any scientific process, requires that mistakes be made
all the time. In order to make the method work we need to actively reformulate errors as
valuable contributions and explicitly encourage making them. After all, in biological evolution,
an overwhelmingly small fraction of mutations (� 0.01 %) is directly beneficial to the organism
(Ayala and Kiger, 1980). The goal is to retain the ability to make enough mistakes so that a
useful one will occur, without being overwhelmed by the ’failures’.

Intractable future Another important insight from the evolutionary perspective is that one
cannot plan ahead very well. The intractable nature of the evolutionary algorithm (Dennet,
1996) does not allow us to exactly plan future research steps. One typical example of such
inability to plan is this thesis. In a more traditional PhD thesis one would plan ahead the case
studies that are needed to support the argument. In a PhD thesis on an evolving method, the
case studies become obvious only gradually. Their nature depends on the type of insights gained
before, on the social setting in which the work is performed and on external environmental
factors such as an unexpected availability of new data.

Conclusion Co-evolution is conceptualized as a fitness landscape deformation between the
social process of collecting knowledge, the design of the simulation engine, the formalized knowl-
edge and the facts collected. Issues of variation, multiplication and selection were discussed,
as was the importance of the environment. The collaborative learning process is placed in the
context of intractability. Together with the previous section on collaborative modelling, this
section forms the basis for the guiding principles for modelling method development.

5.3 Guiding Principles
This section will present the guiding principles that will be used to create the re-

quirements for the co-evolutionary modelling method. The guiding principles are based
on the insights from the complexity framework (Chapter 3), the knowledge domains
(Chapter 4) and the insights obtained from the core concepts. The principles discussed
are: local optimization, the absence of a termination criterion, the importance of path
dependency and historic record, the trap of sunk cost, the need for a common interface,
the necessity of modular design and shared effort.

The previous section discussed the collaborative modelling and evolutionary background of
the methodology for modelling λ-system evolution. Based on these backgrounds, principles for
guiding the co-evolutionary processes can be deduced that will result in the creation of the
requirements for the method, thus defining the co-evolutionary fitness landscape. There is no
guarantee that the list of principles is complete. Other sets might be possible. However, we
conjecture that the presented principles are sufficient for defining a useful set of requirements
for the method.

Recognizing this evolutionary perspective explicitly, we also must recognize the fact that
the first method to be developed will be simple, incomplete and possibly partly incorrect.
Nonetheless, it will be good enough as a first start.
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Local optimization When we consider being in a evolutionary process, the notion of “good
enough” is important. There are two main reasons why good enough is so important. First,
what is perfect design anyway? It is impossible to determine, since the environment (and
thus the fitness landscape) that determines whether or not the design is perfect is constantly
changing. Perfect is thus a fluid, ever-changing and unattainable goal, not a fixed, attainable
state. Furthermore, evolutionary processes are not teleological. Evolution has no grand goal or
purpose. Instead, evolution is a local optimizer, meaning that each incremental step is valuable
in itself. Evolution, given its algorithmic nature, does not produce the ’best possible’ solution;
it is not a global optimization process. It creates solutions that are good enough for the given
situation (Darwin, 1985; Dennet, 1996).

Second, even if we could determine the perfect design, it would certainly be a waste of
resources to achieve it, since good enough is exactly that, good enough. Evolution, for example,
is not about designing the perfect predator, just a predator that predates successfully in the
here and now.

When creating the possibility for a evolutionary series of models that would model λ-system
evolution, we must make incremental, small and good enough steps. We should not design the
perfect model that one day, in the distant future when it is completed, will exactly do what
we need it to do. Instead, we should start with a small model that helps us to understand
λ-system evolution a little better and adapt or change it as new insights, knowledge, facts and
techniques become available.

No termination criterion Since we are developing a series of models that ’grow’ over time,
the question that arises is when to stop, as evolutionary processes do not have an inherent
termination criterion. Life does not just stop suddenly 2. Natural systems do not progress in
the sense of gradual improvement, but instead simply continue to evolve. If we are to take the
evolutionary nature of growing models seriously, this means that the model building method
never stops, nor should it. Obviously, this also holds true for all scientific work. Of course, there
are many practical conditions that indicate when a particular model or case study is finished,
as will be be discussed in Section 5.5, but each model should be developed with the sense that
it is just a small (but essential) step in an ongoing journey.

Path dependency Co-evolutionary development of models means that a model’s future is
dependent on its past. In biology, natural evolution is path dependent and is sometimes summa-
rized as “more and more variation on fewer and fewer themes”. Natural evolution modifies and
adapts the material it has at hand, only rarely coming up with totally new designs (Dawkins,
1990). For example, the basic axially symmetric vertebrate design has evolved into a myriad
of shapes and environmental niches. The importance of this principle is that a modelling ef-
fort will become path dependent the longer it goes on, and that therefore care must be taken
to prevent lock-in and the inability to change. In the evolution of models we observe similar
phenomena. In economics, for example, Leontief (1998) came up with his idea of input/output
models of economies in 1941. Today, General Equilibrium models have much more power but
still use the key structuring elements of Leontieff’s input/output table. In chemical engineer-
ing, the concept of unit operations was developed in 1923, and is still pervasive in all chemical
engineering models. Path dependency also implies that history is important. Where you are

2Obviously, organisms are born and die all the time, but Life seems eternal.
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today is determined in part by where you came from. If you observe errors generated by today’s
models, one source might be the data, a second could be the implementation or setup of the
model. In the latter case, only if you can inspect your history can you start to unravel the
error’s cause.

On the upside, path dependency implies that each successive model will have all the best
components of all the past models. On the downside, path dependency manifests itself in
the fact that each and every decision made regarding technical design, social process design,
knowledge collected and stored facts will have known and unknown but inevitable consequences
later, and some of these will prove to be a limitation.

No sunk cost Sunk costs are costs that have been incurred and which cannot be recovered. In
biological evolution, when the process of gradual development stops producing viable solutions,
for example when the environment drastically changes, designs that do not work anymore are
summarily abandoned and new ones are explored. This happens regardless of the time and
’evolutionary cost’ that was spent on creating the species. Nature is insensitive to sunk costs.
The fact that dinosaurs were highly evolved, diverse and dominant life forms on planet Earth
for hundreds of millions of years was irrelevant when rapid environmental change disrupted
their fitness landscape and drove them to extinction. Mammals, marginalized up to then, were
able to take over as a dominant life form.

When creating a series of models for λ-systems, inevitably the past will come to haunt us
when our model appears to be inappropriate or unusable for a priority question, despite the
effort and money spent. Psychologically and culturally determined sensitivity to sunk costs
prevents the rapid disposal of ineffective model design. Wrong or inefficient designs are kept in
place simply because there has been a large resource investment in them (Arkes and Blumer,
1985; Knox and Inkster, 1968). Unlike biological evolution, which would lead to scrapping all
and losing everything invested, our approach would be to consciously disassemble the model,
take out some unusable or faulty parts and reassemble it while adding new materials, thus
minimizing the perceived loss of sunk costs. The method of model evolution for λ-systems
must therefore be equipped to dispose of unsuitable parts when necessary. And of course, we
must be able to take out and replace parts.

Modularity Systems are made of system components that by definition require common
interfaces between them in order to interact. When interfaces are standardized, system compo-
nents can be interchanged. For example, modularity is one of the factors that enabled the Linux
software ecosystem to be so successful. Linux was designed with modularity and reuse in mind,
so it is very easy to “plug and play” components, increasing the overall functionality of the
system. It allows unexpected combinations of components to be made, emerging new products
and services. It has been argued 3 that even if the source code of Microsoft Windows was made
public, it could never emerge the same type of ecosystem, as it is not built in a modular fashion.
The main lesson is that standardized interfaces between system components are essential in any
modular, evolving system. In an ABM for λ-systems we can also see three layers of universal
interfaces that determine the interaction between agents, making them modular in the process.

Inside the agent Interfaces inside agents allow an agent’s identity to be formed. The
agent’s identity is formed when data, knowledge and rules from different formalisms in-

3http://www.oreillynet.com/pub/a/oreilly/tim/articles/architecture_of_participation.html
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teract. The technical formalism thus describes how a given good is produced as well as
which resources and how much of them are required for its production. The economic
formalism interacts through the internal interface and determines the price that needs to
be asked for that good. The decision formalism determines which supplier is preferred
for acquiring the resources.

Between the agents Interfaces between agents allow agent interactions to form the
emergent behavior of the λ-systems. An agent’s external interfaces describe all possi-
ble interactions of which it is capable; in other words, these interfaces span the agent’s
potential interaction space.

Between model, domains and users Interfaces must be socially constructed and sha-
red. Since the aim is to encode multiformal knowledge, many people will be involved in
the process. Since having an interface with which nobody can interact is not very useful,
the interfaces between domains, and thus between agents, are best constructed by the so-
cial group from which the multiformal knowledge is drawn. Again, this is an evolutionary
process, in which the interfaces become shared and accepted between participants.

In Appendix A.1 these interfaces are extensively discussed.

Shared effort Any evolutionary process is necessarily a co-evolutionary process; one does
not evolve alone (see Section 3.4). Furthermore, when we consider the notion of multiple
formalisms as discussed in Section 3.3 it becomes obvious that a shared, concerted action is
necessary to tackle multiformal, complex problems. The core concept of collaborative modelling
was extensively discussed in Section 5.2.1. Coupled to this, the newest insights in social diversity
(Page, 2007) reinforce the idea that successful understanding λ-systems must be a shared effort
involving a great diversity of people.

Science, despite the objective and value-free nature of the scientific method, is done by
people in groups. Whenever people are involved, egos matter, personalities clash and all sorts
of irrational emotional issues come into play (Calvin et al., 1957). The social interaction process
is chaotic, path dependent and adaptive. In situations where teams must collaborate the design
of the social process must be organized in such a way that it can deal with the inevitable conflict.
Collaboration rules, group habits, workflow scripts and team atmosphere must all be at least
taken into consideration Jehn and Mannix (2001) and, where possible, maybe even explicitly
engineered.

5.4 Requirements
In this section the requirements for the co-evolutionary modelling method and for

the method outcomes are defined.

Recapitulation The previous sections introduced the notion of collaborative modelling and
the co-evolutionary approach to modelling, in which technical design, social process design,
formalized knowledge and collected facts co-evolve in a coupled fitness landscape. Based on
these core concepts and on the scientific and modelling background presented in Chapters 3 and
4, a number of guiding principles were defined. In this section those guiding principles will be
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operationalized as requirements for the modelling method and its outcomes. The requirements
can be seen as the fitness function or selection mechanism for the coupled fitness landscape of
the co-evolving aspects. If a change in one of the aspects does not meet the requirements, or
if the method produces models that do not meet the criteria, these new adaptations will be
considered unfit and will not be not propagated in the next generation.

Requirements Herder (1999) defines functional requirements as specifications of functions
that the design must provide. There are two types of requirements: method requirements and
outcome (or model) requirements. Method requirements help shape the method design. They
are specific and based on the guiding principles of evolution and modelling. The outcome
requirements help establish whether the models created by the modelling method are good
enough. They are fairly generic and are based on the usual criteria for scientific output. A
summary of the requirements is presented in Table 5.1. The requirements are elaborated in
Sections 5.4.1 and 5.4.2.

Table 5.1: Overview of Method and Outcome Requirements

Method Outcomes
Open source Useful
Sufficient community diversity Testable
Organically growing
Recorded history
Enforceable authorship
Modular

5.4.1 Method Requirements

Open source Scientific work has traditionally been based on peer review. Research methods,
data and results are presented to others for inspection, repetition, confirmation and improve-
ment. However, the work is still done behind closed doors, and only when deemed ready is it
carefully released. While this has worked well, new multidisciplinary problems require more
radical forms of collaboration (Kepler et al., 2006). One should not only be able to examine
the end result but also the knowledge creation process itself, with all of its faults and dead
ends. The process of knowledge creation, especially when creating software models, can be
made visible by using an open source approach during development. Furthermore, allowing the
computer code used and developed to be open encourages standardization. This is captured in
the guiding principle of shared standards. Why reinvent the wheel when a perfectly functional
implementation is freely available? An example is the Colt pseudo-random number generator
and statistics library developed by CERN (Hoschek, 2004). Finally, a freely accessible shared
knowledge base (what an open source computer code essentially is) promotes community build-
ing, since it is possible for others to get involved. Work developed and published with open
access in mind has a greater research impact than when it is not freely available (Antelman,
2004). Therefore, this requirement can be summed up as: Is the work openly accessible?
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Sufficiently diverse community This requirement is based on the guiding principle of
shared effort. As already discussed in Section 3.3, a λ-system can never be understood by a
single formalism or a single person. In order to successfully undertake a large and complex
process of understanding λ-system evolution, a creation of a diverse social network is necessary
(Page, 2007). The diversity of people involved in the process has to be large enough to cover
all the main conceptual areas needed in the modelling effort. Therefore, this requirement can
be summarized as: Is there a sufficient diversity of people involved?

Organic growth Based on the guiding principle of local optimization, the requirement of
organic growth can be formulated.

If we consider, for example, a species that develops and adapts to its environment, we can
see that the adaptation consists of a series of local optima. Each individual of the species
’wants’ just one thing: to survive and reproduce (Darwin, 1985; Dawkins, 1990). This individ-
ually selfish behavior creates an overall better species. In social systems, mutually contingent
self-interest serves a similar purpose (Karp, 2006). All participants in a social system work
on improving their own well-being, wealth, status, etc. by collaborating on the creation of
something much bigger than they could achieve alone, without limiting the others. This causes
the system to change itself while ensuring that the changes are in the self-interest of all partic-
ipants and are internally motivated. Therefore, this requirement can be summed up as: Does
the system develop from the inside out?

Recorded history Based on the guiding principle of path dependence, and in order to fulfill
the requirement of falsifiability, the method and the work done according to it must have as
accurate a historic record as possible (Westerberg et al., 1997).

Achieving a historic record is traditionally done by archiving the created documents. In
the case of digital data and software code, this can be achieved by housing the generated
formalized knowledge in a Version Control System. For example, the project specifications
document has all previous versions available for inspection. Full versioning basically means
that we can go back to any point in time during the development of the method or model and
be able to recover the state of knowledge and factual information that was available at that time.
The main reason necessitating this capability is the chaotic nature of evolutionary processes.
During such a process, often times decisions are made that significantly affect the system’s
future development pathway. From those points onward, the system can continue in a number
of possible directions. If the development process leads the system to find itself in a dead end,
we must be able to go back to those turning points and undo/redo them. Two distinct types of
knowledge need to be recorded and placed in a Version Control System: formalized knowledge
and facts, and unformalized knowledge. The first is relatively easy to achieve with software
tools. The second is much more difficult, since a lot of unformalized knowledge is transferred
through interpersonal communication. Therefore, this requirement can be summarized as: Is
a versioned history of knowledge accessible?

Enforceable authorship This requirement is based on the principle of local optimization
and shared effort. Enforceable authorship is a requirement that allows us to know who did
what, when. In a well-designed system, this requirement is automatically achieved in concert
with the previous one. There are two reasons for this requirement. First, since we are involved
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in a social process of methodology development and model building, no matter how good our
record keeping is, there will always be aspects of design decisions and fact collection that are
not recorded. The record of authorship provides a link to the social memory of the group. The
second reason is that in an academic environment it is important to give credit where credit is
due. With a good authorship record, knowledge can always be attributed to its original creator,
making intentional and unintentional plagiarism far less likely. Therefore, this requirement can
be summarized as: Is it recorded who did what and when?

Modular The functional requirement of modularity is based on the guiding principle of sha-
red standards. The design must be such that any component can be replaced without breaking
the overall functionality (Egyedi and Verwater-Lukszo, 2005) of a system. The replacement
can either be functionally identical yet implemented differently, or it could extend the system’s
functionality. In a sense, the entire design can be seen as a System Of Systems (DeLauren-
tis and Crossley, 2005), in which the overall system consists of coupled components, and the
components have porous boundaries and have a meaningful functionality in themselves. Fur-
thermore, modularity also implies reusability. By creating a consistently modular design, we
are effectively building up a library of components that can be recombined at will to create
novel models or methods. Therefore, this requirement can be summarized as: Does the system
consist of interchangeable modular components?

5.4.2 Outcome Requirements
Useful The usefulness requirement is based on the guiding principle of local optimization.
Nature does not make things that will be useful at some point in the future, only ones that are
useful right now. This immediate usefulness of the outcomes of the modelling method can be
applied at two levels.

First, at the outcome level, the question is whether we have produced a model that is useful
to the stakeholders; can the stakeholders use the model outcomes as intended?

Second, at the method level, the question is whether the modeller designing the modelling
method has learned something useful from the outcomes; i.e., are the outcomes of the model
useful for improving the modelling method?

As long as the answer is yes on at least one of the levels, we can consider this requirement to
be met. Given this qualification, usefulness can be seen as a somewhat ambiguous requirement,
since it can always easily be made to be met. Even when a step in the methodology or a
case fails to produce the desired results, we can still learn what does not work in terms of
modelling method, and thus it is useful. Usefulness is therefore not an objective criterion.
Usefulness can only be determined in interaction between the stakeholders and the modellers.
This requirement can be summed up as: Did the model outcomes deliver useful insights to
stakeholders or modellers?

Testable The most important requirement for any knowledge generated within the scientific
endeavor is falsifiability or testability (Popper, 2002). Again, we can differentiate two levels of
testability: the method and the model produced by it.

In order to allow testability at the model level, several requirements need to be satisfied.
First, as specified by the open-source requirement, the computer code and data that the model
consists of must be known. Second, each model run must be fully repeatable. In a model that
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has stochastic components, two further requirements are necessary in order to ensure repeata-
bility. First, the archived recorded history allows for each developed model to be retrieved and
rerun. Second, by using an open source deterministic pseudo-random generator and a known
seed value, all the (pseudo-) stochastic components of the models can be exactly repeated. A
model run that meets the above specifications is fully repeatable and thus testable.

Considering testability at the method level, the fact that we are part of a co-evolutionary
process makes the issue more problematic. Repeatability in the narrow sense discussed above
is only possible in fully deterministic, non-chaptic systems. Learning is always occurs when a
social network is involved in an evolutionary process. Redoing the development process with
the same social network will necessarily yield different results.

However, the method itself is repeatable, due to the historic record of unformalized and
formalized knowledge. It is therefore possible to test whether an execution of the same method
will yield similar results if a different social network of similar qualification is used. Obviously,
the models produced by the two networks can never be identical, but they can be sufficiently
useful and similar to falsify the methodology. Thus at the method level, testability must
be defined as the ability to repeat the method with a different group of people and achieve
sufficiently similar and useful models both times. It follows that repeatability is defined as a
similarity of patterns, not exactness. We conjecture that this is as far as testability of a social
learning process can be taken. This requirement can be summarized as: Can it be tested?

Conclusion This section presented the requirements for the method and outcomes of the
co-evolutionary modelling approach. Method requirements are: the use of open source tools,
sufficient diversity within the modelling community, organic growth, a record of history with an
enforceable authorship and modularity. The models produced by the method are required to be
useful and testable. Now that we have described the method conceptually, its guiding principles
and requirements, it is time to explicitly present the practical steps involved in creating models
of λ-system evolution.

5.5 Method description

5.5.1 Method
Given the guiding principles and the requirements, the method for generating successive models
is rather straightforward.

The basic assumption of the co-evolutionary method is that it proceeds in steps or gener-
ations consisting of case studies. Each case generates insights that are used to improve the
modelling method of the following case. The method is repeatable, and the content of the cases
is determined by the social network involved.

Four aspects Each case has a social, technical, knowledge and factual aspect, as discussed
in Section 5.2.2. Knowledge describes the actual domain specific knowledge necessary for
modelling. The social aspect describes how the knowledge collection will be organized, i.e.,
which techniques and collaboration scripts will be employed in order to collect the relevant
knowledge from the stakeholders. The technical aspect describes the modelling tools used to
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encode this knowledge and to analyze the results. The factual aspect is the collection of facts
and data used to fill, calibrate and validate the models produced.

Unbalanced progress In order to ensure knowledge generation, the modelling method lead-
ing to each case is unbalanced, that is, one aspect will be extended/explored more than the
others. For example, a novel modelling tool will be tested, while keeping the social and factual
designs constant, in order to learn about its effectiveness. The goal is to keep a ceteris paribus
assumption as much as possible, as is usual in modelling work. We are of course limited by the
practical requirements of the case study, so this might not always be possible. This method of
unbalanced model development is illustrated in Figure 5.1.

Figure 5.1: Initial method steps

Hypothesis generation In Figure 5.1 each block represents a case study with a corre-
sponding model. The colored bars depict the height of the deformation of the coupled fitness
landscape in that dimension. Each case starts with a number of hypotheses. These hypotheses
are at two levels:

• Whether the planned extension of the methodology will prove to be useful; and

• Whether the specific case assumptions will hold true.

We assume that we start with the following technical feasibility hypothesis: It is possible
to technically design a model that has the necessary properties to model λ-system evolution.
If this hypothesis is not rejected, we will proceed to design a social process. The next hypoth-
esis is: The proposed social process design is able to involve stakeholders in modelling and
understanding λ-system evolution. The third step starts with the hypothesis: The collected
and formalized domain knowledge about the λ-system under study is useful in useful in under-
standing the system’s evolution. The fourth hypothesis is: The collected facts on the λ-system
under study will allow for useful model creation and novel insights into the system’s evolution
process. After these four initial steps, the modelling method is extended in whichever direction
offers greatest insights, and the direction it will take cannot be predicted in advance.

Stop criterion There is no theoretical end to this process. In a more practical sense, one
stops when the project defined with the stakeholders is completed and the stakeholders are
satisfied and/or the resources for modelling are consumed.
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5.5.2 Activities
Building models for any given case study requires a set of activities to be performed. Consec-
utive models and model improvements are developed in a coherent method with multiple case
studies zooming in on different aspects. This means that some activities may become trivial for
cases completed later in the series, as they may exhibit much similarity to activities completed
in a previous study. As a matter of course, novel aspects will always have to be elaborated in
greater detail.

Since the implementation per case study is dependent on the evolutionary method of model
development, the activities are described in generic terms. These have served as blueprints for
the modelling activities in real cases reported in Chapters 6, 7 and 8. The series of activities
to be completed for each case study is as follows:

• Create the collaboration conditions;

• Collect and formalize knowledge;

• Collect facts;

• Implement the model;

• Verify the model implementation;

• Analyze the model outcomes; and

• Validate the model.

Create the collaboration conditions The case study starts with the creation of the nec-
essary social conditions for performing the model development. This may include identification
of stakeholders and experts, agreements on the collaboration process, etc. It serves as an
initialization of the social network that will support and use the model and its outcomes.

Collect and formalize knowledge Using the social network created, a system decompo-
sition method is created. The specific aspects of such a method are discussed in Section 6.5.
During this process a relevant description of the λ-system under study is created and formalized,
and relevant domain knowledge is identified and formalized.

Collect facts This activity is focused on increasing the factual content of the case study.
During this activity relevant facts are added to the formal description created in the previous
step. This activity can be strongly tied to the previous step, but it need not be. The involved
stakeholders can sometimes have the relevant factual knowledge, but at other times it has to
be collected from other sources.

Implement the model During this activity the technical design of the model is created and
implemented. Using the software tools conforming to the requirements, a software implemen-
tation of the formalized knowledge and λ-system is created.
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Verify the model implementation Once the technical implementation is completed, the
model needs to be verified, in the sense that it must be free from programming errors and
cannot contain behavioral artifacts. We need to ensure that the model is what we intended it
to be.

Analyze the model outcomes During this activity the model’s outcomes are analyzed.
Basically, we examine the model across the parameter space and identify the model’s attractors.
This provides insights into the range of possible behaviors that the model is capable of. This
activity provides the bulk of the insights into λ-system evolution.

Validate the model Validation of Agent Based Models describing possible patterns of λ-
system evolution is exceptionally difficult and non-trivial. It will be discussed in greater detail
below.

5.5.3 Verification and Validation
As already mentioned, evolution is an intractable, generative process. This means that the
outcome can not be determined in advance. This begs the question of how to make sure that
the generative models, generated by the evolutionary method, are verifiable and validable. In
other words, is this science? In the words of Epstein (Epstein, 1999):

Does the hypothesized microspecification suffice to generate the observed phe-
nomenon?; be it a stationary firm size distribution, a pattern of alliances, or a
nonequilibrium price time series. The answer may be yes and, crucially, it may be
no. Indeed, it is precisely the latter possibility, empirical falsifiability, that qualifies
the agent-based computational model as a scientific instrument.

As long as models generated by the co-evolutionary method confirm to the requirements of
testability, the answer is a resounding yes. We can therefore continue to discuss verification
and validation in the next sections.

5.5.3.1 Verification

Types of inputs There are four classes of inputs to the method that need to be verified.
These are presented in Table 5.2.

Table 5.2: Types of inputs and ease of verification

Physical Social
Facts Easy. Objective, Measureable Medium. Subjective, Measurable
Knowledge Medium. Objective, Formalized Hard. Subjective, Unformalized

We can make a distinction between facts and knowledge and between physical and social
domains. Knowledge is defined in this case as the codified experience of its users (Stefik, 1995b).
Physical facts are easy to verify. One can objectively measure them. Physical knowledge is more
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difficult, since it represents an encoding of physical laws of nature into a knowledge structure of
the domain experts. Knowledge needs to be formalized in order to be used in the co-evolutionary
modelling method. However, since it is based on physical reality, it is relatively easy to verify
the encoding. Social facts are difficult to verify, as they are not objectively defined; they are
dependent on the social context from which they are taken. Since they are measureable, their
verifiability is medium. The most difficult aspect to verify is social knowledge. Not only does
this knowledge represent a codification inside the domain expert’s mind, but it is also dependent
on a subjective experience of social reality. It represents a codification of the social consensus on
a certain aspect of social reality, and great care must be taken to achieve stakeholder consensus
during the process.

Verification on two levels Verification needs to be performed at two levels. At the mul-
tiformal knowledge level, it is important to verify that the knowledge encoded is indeed that
what the domain experts have contributed, i.e., is the encoding correct? At the simulation
level, it needs to be verified that the simulation code corresponds with the knowledge collected,
and that the code indeed does what it was designed to do.

Knowledge level Verification of whether the knowledge encoded is in fact the knowledge that
the experts communicate is performed through the social process. It is built into the formalized
social process, which is a participative method that involves continuous interaction between the
modellers and the domain experts (see Section 6.5). The codification and formalization of the
knowledge is an integral part of the method. This means that the domain experts can check
the formal representation of their knowledge during the process, verifying the formalizations
that the simulation will use.

Simulation level The correspondence between the design (collected knowledge) and imple-
mentation in software is done using revision control, providing a historic development path
and by using unit testing. Revision control records all the changes to the computer code base
over time, providing the ability to go back to any point in time and examine what was done
when and where. Unit testing is a technique that focuses on developing tests for functional
components of computer code. Functional tests can be specified for computer code elements by
the stakeholders, and the implementation can be tested as to whether it performs that function.
Both concepts are discussed in greater detail in Appendix D.

5.5.3.2 Validation

Validation is exceptionally difficult when dealing with models that explore patterns of future
developments of systems. Epstein argues (Epstein, 1999):

From an epistemological standpoint, generative social science, while empirical,
is not inductive, at least as that term is typically used in the social sciences (e.g. as
where one assembles macroeconomic data and estimates aggregate relations econo-
metrically).

The relation of generative social science to deduction is more subtle. The con-
nection is of particular interest because there is an intellectual tradition in which
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we account an observation as explained precisely when we can deduce the proposi-
tion expressing that observation from other, more general, propositions. ... In the
present connection, we seek to explain macroscopic social phenomena. And we are
requiring that they be generated in an agent-based computational model. Surpris-
ingly, in that event, we can legitimately claim that they are strictly deducible.

This deducible nature of ABMs offers two main paths for validation: historic replays of evolution
and scenario testing through expert consultations. In the first path, we attempt to recreate
a current situation by taking a (somewhat) known starting point in the past, together with
the change of environmental conditions over time, in order to come to a λ-system state as
observed today. In the second path we explore interesting development scenarios for the λ-
system evolution and discuss these with experts/stakeholders.

Consequence of intractability Traditionally, the validation of models is done by perform-
ing experiments. If the modelled outcomes correspond with observed reality, the model is
validated. In the case that we need to make a prediction about the future state of the world
after some change has been implemented, the validating experiment would consist of making
such a change in the real world, and observing the effects. However, running such an experiment
at the scale of λ-systems is clearly impossible. That means that validation is impossible in the
traditional sense. We cannot form a hypothesis, perform a real world experiment and see if the
theoretical model outcomes correspond with reality. However, the method of creating models
that describes the evolution of λ-systems can be validated. It can be repeated with different
stakeholders and domain experts, and the resulting models can be compared.

Future states The outcomes of the social and technical design method are not quantitative
predictions about the future state of the λ-system. The outcomes are predictions about the
diversity and identity of possible future states of a system, most of which will never occur in
reality. The outcomes are in a sense a look into the potential futures of the system. Moreover,
when we have the knowledge of what the outcomes are likely to be, it is almost guaranteed that
that particular outcome will not happen, since the knowledge itself will cause the future to be
changed. It is a kind of feed-forward regulation process. The real outcome of the simulations
is increased insight and knowledge about the possible evolutionary states of the system - and
that outcome can be validated.

Social validation Since the goal of social validation is to provide insight and increased
knowledge, the approach is validated by the stakeholders themselves. The approach is therefore
validated at the moment that stakeholders believe that they have increased their knowledge
about the evolutionary processes and the possible states of the system. Traditional social
science tools, such as expert consultations and interviews, are used to judge this validity.

Conclusion This section first presented the steps of the co-evolutionary method for creating
models of λ-system evolution. The method described was a co-evolutionary development of
four modeling aspects, shaping each other as they develop. Guiding principles and the method
and outcome requirements generated from them were defined. The specific activities of the
modelling process were discussed, as were the issues of model and method verification and

81



validation. We are now theoretically and practically equipped with the tools needed to begin
modelling the evolution of λ-systems.

As is often said, the proof of the pudding is in the eating. In the next chapter, we will start
the modelling method and explore three case studies that serve as a start for the evolutionary
process.
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Part II

Practice: Co-evolutionary method in
action
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CHAPTER 6

LEARNING: CASE STUDIES AND KNOWLEDGE
ENGINEERING

Disco Ergo Suma

aI learn, therefore I am.

6.1 Introduction
Three cases and a result Three case studies are presented in this chapter1. The Flow-based
Evolution model broadens our options for the exploration of technical design. In the Combina-
tion of Infrastructures case, we investigated the social process for knowledge formalization and
fact collection. In the Chocolate Game case study, lessons learned were used to implement a
new social process design and technical design.

Case description structure Each case study is presented using the following format:

Focus point Each case study is part of the learning process; each is another step toward
developing the modelling method and generating domain-specific knowledge and content.

Hypotheses Where appropriate, hypotheses are formulated which relate to the mod-
elling method and to the case study.

Case description Here we present the subject of the case, the social and technical
networks involved and the case-specific questions to be addressed.

Model Details The description of the model details covers the knowledge encoded, the
facts collected and the details of the simulation engine implementation.

Case study results The most important model results and insights in λ-system evo-
lution are explained.

1Parts of this chapter are based on the paper “Facilitating the modelling of complex adaptive systems” by
P.J. Beers, I. Nikolic, P. Bots, G.P.J. Dĳkema, submitted to JASS.

85



Method development conclusions This is a reflection on, and summary of, the progress
in building a modelling method, along with ideas for its future development.
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6.2 Flow-based Evolution
Case abstract This case study was performed in order to explore the implemen-

tation of the conceptualization of a λ-system as an input/output-based flow network
in an ABM model. The Flow-based Evolution model describes an abstract industrial
network, with nodes being the producers and consumers of mass flows (goods), and
mass flows being the edges. The network evolves over time through additions of new
agents and through the restructuring of edges. In the simulations completed by the
agents the inputs, outputs and types of mass flows are generated randomly. The main
results are that the conceptualization can be implemented through a working simulation
model. The initial implementation is limited in scope, and the current technical design
cannot be easily extended. However, it served well as a first test. The main insights
for model development are that the modelling approach helps to determine which types
of facts need to be collected, that technology description and the economic decision-
making processes must be separated and that in addition to general network metrics,
domain-specific metrics are needed.

6.2.1 Focus Point

Figure 6.1: Case focus

Methodological focus The method focus of this case study was
on the technical modelling aspects. Domain knowledge collection was
limited, see Figure 6.1. Through the technical design of the model, a
first abstraction of a λ-system was created. This involved questions
about the knowledge and data necessary to describe the λ-system (see
Section 5.5). The idea was that these questions would later enable us
to design the social process needed to collect relevant knowledge and
facts.

In this first step in the evolutionary process of model development,
the technical design provided a tangible starting point. We expect it
to help us start the social process and fact collection around a ’real’
product, and it is in accordance with the guiding principle of local

optimization (see Section 5.3).

Case focus The case study content focused on the development of a simplified model of a
process industry. Using domain expertise in process engineering and the basic process formalism
presented in Section 4.2, a model design was developed and implemented that captures the
basic components of evolving λ-systems, the agents (production plants) and their interactions
(resource and product flows). This model makes it possible to test the applicability of network
metrics defined in Section A.2.

6.2.2 Hypothesis
Basis of the hypothesis One of the objectives of this thesis was to gain a better understand-
ing of processing industry networks (2.3.1), particularly the dynamics of network evolution. An
important property of the processing industry is that processing plants convert flows of specific
raw materials (mass or energy) into flows of products (see 4.2). The physical foundation of a
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process industry network is therefore an interconnected mass flow network. Therein, process
plants are the nodes and the flows among them are the edges. Each of these nodes is a discrete
entity with its own dynamic behavior. Over time, nodes are added or removed and edges are
formed or broken. This discrete, dynamic flow-based characteristic of the system is what needs
to be captured in a useful modelling abstraction, in order to be able to address questions such
as: “How does the making and breaking of material streams between processing plants affect
the form and function of the network?” Therefore, the hypothesis tested in this case study was:

Hypothesis It is possible to create a template for models that simulate the growth of industrial
networks which is based on agents that have a given number of certain types of in- and outflows
and connect to each other by locating the outflows of other agents that match their own inflows.

6.2.3 Case Description
Case objective and goal The case objective is to create a coherent model of network evo-
lution of networks connected by material flow exchange. Our goal is to create an agent-based
model that respects chemical and physical flow conversion principles. We do not aim for quan-
titative descriptive power, however, but rather aspire to creating a model template - a model
structure and a formalization of the basic process engineering domain concepts that is both
generic and extensible. When filling the template with facts, a network model should result
that exhibits essential behavioral network characteristics that are similar or analogous to the
behavior of real-world processing networks. While face validation thus is an option, verification
to real-world data of the model template is impossible, as discussed in Section 5.5.3.

Template and model As stated, the model template is an abstracted representation of a
process industry network with nodes as producers and consumers of mass flows, and mass
flows as edges. The network evolves over time through additions of new agents and through
the restructuring of edges. Thus the model template contains a structural description of a
system, of behavioral mechanisms and the basic processes and laws of nature. These are formal
representations of knowledge. In order to run a model, this model template needs to be filled
with the appropriate facts that would then make it into an ABM of the specific case studied
and allow its simulation.

Knowledge and facts In the Flow-based Evolution model, no real industry has been mod-
elled and no real facts have been implemented, because our purpose is to first create a model
template. The test model does not need to contain real factual information, as our first ob-
jective is to create something with a run button that is a suitable representation of a process
industry network. To this end, the random generation of agents, their inputs and outputs and
the types of mass flows allows us to test the model template and create a model that can be
run. In such a ’fact-free’ model, an agent that represents some randomly specified ’processing
plant’ still ’knows’ that the total mass of its inflows must match the total mass of its outflows.
And it may also know that its total cost of operating some machinery is a sum of operational
costs and discounted investment costs. In the fact-free model, any agent will check its mass
balance and calculate its yearly operating costs; it does not matter whether it has a realistic
value for the size of its flows and associated costs. In other words, an agent in a fact-free model
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can be fully randomly generated; a die can be thrown to determine any of the types and values
of its flows and costs, but it will still act in a coherent and realistic manner upon these values.

Would a model template filled with random facts not result in garbage in, garbage out?
Yes, at the agent level, but our hypothesis is at the network level. The first part of our
hypothesis says that we can create a (generic) network growth model, the second part says that
when running the model, network development patterns and network characteristics will emerge
that are analogous to real industry network evolution characteristics. And we expect this to
hold, even if the agents in the network are random. Turning the argument around, ’randomly
generated’ is the largest possible ’agent space and interaction space’. Filling the template with
cognate facts that are proven and domain specific would limit the possible ’network space’. That
is, with randomly generated facts, the model will create the widest possible range of network
structures, at least some of which should resemble real evolving network structure patterns.

Flow-based Evolution model Our objective was to create a model template that would
allow process industry network evolution simulation. In order to test and explore the usefulness
of the model template, the Flow-based Evolution model was created as a first implementation.
As this model is fact free, careful consideration was given to what should be included in the
model and what not. At all times, it was of prime consideration that the focus was on estab-
lishing whether we were on the right track with our modelling approach by testing whether the
model would create appropriate network evolution patterns. Using these criteria, the modelling
assumptions were:

• No conservation of mass

• No physical distances

• Output is food

• No agent death

• No economics

• Input/output technology

• Connections are forever

These assumptions are discussed in the following paragraphs.

No conservation of mass We decided not to implement conservation of mass because this
greatly simplifies the algorithms needed to model the connecting process between agents. Thus,
only the identity of the flow matters, not its magnitude. Over an edge, conservation of mass is
respected by assuming that the total production of one node equals the total consumption of
the other, and once an output of a node is connected, it cannot be connected to another node.
Therefore, it is impossible to have a situation in which a single supplier delivers a certain type
of mass flow to multiple clients.
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Distance and infrastructure We assume an unconstrained world where there is no physical
distance and there is abundant availability of infrastructure. All nodes in the simulation are
assumed to be connected either directly via pipeline or via road connections. If nodes want
to connect to each other, this is always possible. There are no delays or costs involved due to
distance.

Output is food The network growth model is an industrial analogy to the ecological notion
of food webs. This requires shared standards and the ability of biological entities to eat each
other (see Section 5.3. These principles are applied in the model. The organisms - firms -
produce outputs that can be eaten by other firm needing inputs. Who should eat what is
defined by the random proto-technology description.

No agent death Firms (agents) that are added to the network are permanent. No mechanism
for node removal has been implemented. The model detailing is too limited to enable inclusion
of a meaningful removal model.

No economics λ-systems only evolve when somebody, somewhere makes a decision. A flow-
based network evolves when companies make a selection of suppliers for their raw materials.
In order to reduce the complexity of the real world, it is assumed that the only decision made
is the decision of whether a supplying agent can provide a previously unconnected flow of the
correct type for the required input. No internal economic model and no concept of prices or
value has been included.

Input/output technology Instead of detailed technology descriptions, agents possess a
concept of technology through the input and output types defined and the set of inputs and
outputs they possess (agent 1 converts input A to output B; agent 2 converts C to D, etc.). This
proto-technology determines that the agent ’wants to eat’ and which outputs it creates that can
be ’eaten’ by others. Where the agent can get its food is determined by the decision-making
process.

Connections are forever In order to simulate the evolutionary path of a λ-system, the
model assumes that once connections between nodes are established, they will remain until the
end of simulation. This makes the model fully path-dependent. The order of appearance of
nodes determines the development path. In order to analyze the effect of path dependence,
this behavior is made optional and can be replaced by a history-free behavior, in which all
connections are broken after each step, and the system is rewired every time a node is added.

6.2.4 Model Implementation
In this subsection an overview of the model implementation is given. The Java source code of
the model is available online 2. Building upon the basic agent formalism (section 4.3), the model
consists of agents that have a state and behavior (Appendix A.1), which may interconnect and
which live in some world (Figure 6.2). The world contains the rules and algorithms for agent
creation, it determines the network growth stop condition, schedules the agents’ actions and

2http://gux.tudelft.nl/svn/FlowBasedEvolution/tags/PhDThesisVersion/
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collects the required statistics. It acts as the agents’ context. Each agent receives a label
consisting of the input flow and output flow numbers. An agent’s state consists of the in- and
outflow descriptions and its connectedness status. Each flow has a name, a color denoting its
status and a record of the nodes it connects.

Figure 6.2: Layout of the Flow-based Evolution model

Decision-making algorithm In accordance with the Flow-based Evolution model’s concep-
tual design, the agents only decide which other agent will be the source of their incoming flows
(6.2.3). Algorithm 6.2.4 gives the simplified encoding.

Random agent generation In the Flow-based Evolution model the agents are fact-free and
randomly generated (see 6.2). Each agent has between 1 and X input flows of different types,
and 1 to Y outputs of different types, drawn from a uniform distribution. There are Z types
of flows, called Flow-1 to Flow-Z. The in- and outflow sets are randomly drawn from the type
pool. The first component of the in- and outflows list is considered to be the ’main’ or reference
flow. Once agents have connected an output and input of the same type with a flow, no other
connections from that specific output or to that specific input are possible. For example, Agent
A has a 4 outflows. The third is of type Flow-12. Agent B has 2 inflows, and the first is also
of type Flow-12. A connection is formed between Agents A and B of type Flow-12. No other
agents that require Flow-12 as input can connect to Agent A, and Agent B can not connect
any other Agents that have outflows of type Flow-12.
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Algorithm 6.1 Flow connection algorithm - pseudocode
for all inFlow in InFlows do
if inFlow.connected = FALSE then
wantedFlowType ← inFlow.getFlowType

end if
otherAgents ← getAgentsWithFlows(of wantedFlowType)
for all otherAgent in otherAgents do
if inFlow.getFlowType = otherAgent.getOutFlowType then
if otherAgent.getOutFlow.connected = FALSE then
connectFlow(agent, otherAgent)

end if
end if

end for
end for

Network evolution metrics The following network statistics are collected at each time step:
degree distribution, average shortest path length, number of unconnected flow types, degree of
completeness and degree of connectivity. The first two are defined in Section A.2. The number
of unconnected flow types describes the number of flow types that are available in the network
for connection. Degree of completeness and degree of connectivity are defined below.

Degree of connectivity Dcon answers the question “How much do we deviate from a fully
connected graph?” This metric is expressed by equation 6.1 where n is the number of edges
and N the number of nodes.

Dcon = n
1
2N(N − 1) (6.1)

Degree of completeness Dcom is defined by eq. 6.2 where n is the number of edges, N the
number of nodes, and the Degtheory is the theoretical maximum degree of a given node.

Dcom = n∑N
i=1 Degtheory

(6.2)

This metric is useful for simulated and well-defined networks in which the theoretical max-
imum degree of a node is known and is a special case of the Degree of Connectivity. These
metrics give us a sense of internal coherence of the λ-system. When the metrics are low, this
indicates a λ-system that is more ’open’ to the outside world. High degrees point to a ’closed’
system that is mainly internally focused.

6.2.5 Experiments and Results
In this section the performed experiments and the most important results are presented. The
the modelling method insights are discussed in the next section. The graphs presented in this
section are meant to convey the general model behavior, not the detailed numerical values, and
are therefore compressed to save space. Full resolution images are available online3. The model

3 http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/FlowBasedEvolution/CaseResults.
html
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runs can be replicated by running the executable binary available online 4. All the results
presented are typical model outcomes that have large stochastic components, so any repeat run
will necessarily have a slightly different outcome.

Path dependence experiment The first parameter to have its effect tested was the presence
or absence of history in the run. The resulting network metrics are presented in Figure 6.3.
We can observe two interesting things. First, the overall shapes are rather similar. The degrees

(a) With history (b) Without history

Figure 6.3: Network evolution depending on presence of history. Y axis: 0 . . . 1, X : 0 . . . 45.
Degree of completeness is red, Degree of connectivity is blue.

of completeness, for example, stabilize at the same value. Second, the non-historic run is
much ’noisier’, and that the degree of connectivity widely oscillates over time. This makes
sense from the perspective that the history-free run is effectively a time series of one-shot
network structures, each sequentially created from a larger number of nodes, without any path
dependence. Given the large noise in the non-historic run, all of the following experiments were
performed with the network retaining its history.

Randomness Please note that the randomness in the model is deterministic. It is produced
by a pseudo-random number algorithm (Hoschek, 2004) and is controlled by a given seed value,
usually the current time in milliseconds. Furthermore, the order in which an agent interacts
is determined by iteration over a list. To prevent order bias, the order of agents in this list is
randomized at each time step.

Diversity ratio experiments After examining the model’s path dependence, the diversity
ratio between different agent types is examined. This is the ratio between the number of flow
types and the number of possible in- and outflows of agents. All experiments were performed
with path dependency turned on. There are three interesting situations worth examining.

The first situation has relatively few available flow types and complex processing capabilities.
This corresponds to a refining and bulk chemicals situation, where a very large diversity of

4http://gux.tudelft.nl/svn/FlowBasedEvolution/tags/PhDThesisVersion/flowBasedEvolution.
jar
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products is produced from crude. The third situation is the opposite extreme; the processing
facilities are narrowly specialized, while there is a large availability of stream types to be
processed. This corresponds to a situation in the specialties market, where there is a very large
number of compounds available, and where a processing plant uses a few of them to create even
more specialized compounds. The second situation represents a mix of the two extremes. The
corresponding parameter settings are:

Few Types and Many Flows Few types of flows (5) and many in/outflows (15)

Similar Types and Flows Similar number of flow types (7) and many in/outflows (7)

Many Types and Few Flows Many types of flows (15) and few in/outflows (5)

Linear network topology First we will examine the effect of the diversity ratio on the
network topology, see Figure 6.4. The graph is laid out using the Fruchterman-Rheingold
(Fruchterman and Reingold, 1991) force-directed algorithm. Nodes that are more connected
are plotted closer to each other than those less connected.

(a) Few Types and Many Flows (b) Similar Types and Flows (c) Many Types and Few Flows

Figure 6.4: Network structure depends on diversity ratio. See text.

Types of connections In Figure 6.4 we can discern three types of edges between nodes.
Green edges denotes a primary-primary flow connection, blue indicates a primary-secondary
connection and yellow shows a secondary-secondary connection. The primary node is considered
to be the ’main’ or reference in- and outflow analog to the main feedstock and main product
of a plant. Graph metrics do not discriminate between the flow types.

In the ’Few Types, Many Flows’ and ’Similar Types and Flows’ situations presented in
Figures 6.4(a) and 6.4(b) we can observe that the majority of links are yellow, meaning that
the network is mainly connected by secondary-secondary flows, auxiliary to auxiliary. In the
’Many Types, Few Flows’ case, presented in Figure 6.4(c), the flows are mainly primary-primary
or primary-secondary.
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Linear structure It is interesting to note that in the first situation the network structure is
linear, or chain-like. Due to the scarcity of types, all flow types are connected early on, and
network growth can only continue when new nodes appear. Newcomers can not easily connect
back to the main cluster. In the second situation the structure is much more interconnected,
and in the third case the situation is similar to the first. Scarcity limits interconnection with
the already present nodes, and a more linear structure is created. This can be demonstrated
by examining the average shortest path length.

Relatively long Dĳkstra length In Figure 6.5, the average shortest path length calculated
using Dĳkstra’s algorithm (Dĳkstra, 1959) is presented. The path length is dependent on the
diversity ratio. The Dĳkstra length confirms the observation above. In the first situation we

(a) Few Types and Many Nodes.
(Y: 0 . . . 3)

(b) Similar Types and Nodes. (Y:
0 . . . 4)

(c) Many Types and Few Nodes.
(Y: 0 . . . 5)

Figure 6.5: Average shortest path length depending on diversity ratio

can see the length monotonously rising with the number of added nodes. Addition of nodes
makes the overall network diameter larger (see Section A.2.2). The second situation value
stabilizes at around 3.5, meaning that the new nodes interconnect the existing network as they
are added, and thus the network diameter is effectively the same. The third case again displays
an increase in the relative size of the network, albeit in a different manner, since the growth is
now limited by availability of nodes with new wanted inflow types.

Not a scale-free network Furthermore, it is interesting to note that the Dĳkstra length
has relatively large values, higher than 2.5. For a graph of such small size (50 nodes) this value
is very large. Furthermore, when observing the degree distribution histograms in Figure 6.6,
we can see that they do not follow a power law distribution.

Scale-free networks have degree distributions that follow power laws (Barabasi and Albert,
1999; Barabási et al., 2001) and relatively short Dĳkstra lengths for their size. For comparison,
an e-mail exchange scale-free network reported by Ebel et al. (2002) has a Dĳkstra length of
approximately 5 for a network of around 60,000 nodes. We can conclude that these graphs
are not scale-free. The model’s designed inability of a node to connect to multiple other nodes
makes scale-free networks impossible.

6.2.6 Domain-specific Insights
The lack of mass conservation and the way flows are connected between agents precludes insights
about the functioning of real-world λ-systems. The model did, however, provide a wealth of
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(a) Few Types and Many Nodes (Y:
0 . . . 8, X: 0 . . . 30)

(b) Similar Types and Nodes (Y: 0
. . . 7, X: 0 . . . 30)

(c) Many Types and Few Nodes (Y:
0 . . . 16, X: 0 . . . 10)

Figure 6.6: Degree distribution depending on diversity ratio

model development insights, which will be presented in the following subsection.

6.2.7 Method Development Conclusions
In this subsection we will discuss the lessons learned about the co-evolutionary model building
method. We will start by revisiting the hypotheses and discussing the insights obtained from
this first generation model. Finally, the modelling method and outcomes of the case study will
be tested against the requirements defined in Chapter 5.

Hypothesis The hypothesis posed for this case study was: It is possible to create a template
for models that simulate industrial network growth, the template being based on agents that have
a given number of in- and out flows of certain types and that connect to each other by locating
outflows of agents that match their inflows.

The hypothesis can be confirmed. The created agent abstraction works and allows us to
build the model template relatively easily. It is indeed useful to view a processing industry as a
network of materials processing nodes, evolving through node addition and edge reconnection.
Using the fact-free approach, random agents can be created, exploring a wide design space
of possible network structures, without the burden of data collection. While domain-specific
insights are limited by the absence of closed mass balance, several important method insights
were obtained:

• Starting the co-evolutionary method with technical model design works.

• The modelling approach used helps to determine which types of facts need to be collected.

• A modular description of technology and the economic decision-making processes is
needed.

• Domain-specific metrics are needed in addition to generic network metrics.

Start with the technical dimension The co-evolutionary method could have been started
with a design of a social process, or by knowledge and fact collection. However, choosing to
use a starting point in the technical domain allowed us create a practical ’something with a
run button’ and allowed us to start asking practical questions, as we can examine the model
and its output.
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Knowledge and facts The modelling approach used can be seen as a formalization of the
traditional process engineering perspective. Agents are abstract multi input / multi output
mass processors. The model was developed fact-free. In other words, all the facts that are
necessary to describe the agent are specified and it is assumed that no actual values for them
are available. To run a simulation, facts have to be invented or randomly generated. This then
gives the freedom to specify which types of facts are needed without actually having them, thus
shaping the subsequent fact collection process.

Modular implementation The way agents are implemented in this model proved not to
be very practical. For example, retrofitting a closed mass balance proved to be quite unwieldy.
A better, more modular way to organize the simulation code is necessary. Modularity is also
necessary to enable inclusion of other formalisms in the future. For example, business account-
ing and basic price-based decision-making is currently not included in the model. Furthermore,
not only must different formalisms be modular, but formalisms themselves must be set up in
the same fashion. For example, there are many ways to set a price, and they must be easily
exchangeable.

Graph metrics The standard graph theoretical metrics were used to examine the evolved
network properties. While they provide some interesting insights, such as a linear network
growth and non-scale free properties, they are not adequate to describe network performance
when the identities of flows matter. When the identities of edges and nodes are important,
different metrics are called for, and those cannot be found in graph theory.

Future challenges Several future challenges were identified. A more complete and modular
description of technology is needed, where the mass balances across agents form the physical
limitation to agent behavior. Furthermore, a mechanism for encoding other (multi) formalisms,
such as economic decision-making, is needed. This suggests a clear path for future work. First,
a mechanism for fact and knowledge collection is needed that will involve stakeholders and
collect relevant domain knowledge and facts. Second, network metrics that take node and edge
identity into consideration are needed.

Requirements checked Table 6.1 presents an overview of the modelling requirements and
the performance of the model.
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Table 6.1: Performance of the case study

Requirement Score Explanation
Method

Open Source Partly A the time of writing the source code is available to peers,
but not to the general public.

Sufficient commu-
nity diversity

No The model is developed as a first learning case, with the
author as the only stakeholder.

Organically grow-
ing

No The model is built as a conceptual test. While extension
is kept in mind the current technical design does not allow
for easy extension.

Recorded history Yes Versioning is initiated using CVS system. Due to techni-
cal problems the models early history is lost. More robust
versioning needed.

Enforceable au-
thorship

Yes Personal accounts are used to track code commits.

Modular No As the model was a technology test, no modularity is
implemented at this point.

Outcome
Useful Yes The model is useful at the meta-level to the modeler.
Testable Yes During model development, model was not versioned, so

repeatable testing of intermediate states is not possible.
Experiments performed at the time of thesis writing are
properly versioned, and can be repeated and tested.
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6.3 Combination of Infrastructures

Case abstract The methodological focus of the second case study is on designing
a social process for formalizing multiformal knowledge on spatial combinability of infras-
tructures in relation to social, legal, safety and technical aspects. In the social process a
proto-ontology of infrastructures and their combinability is created. The facts collected
allow the construction of a fitness landscape of combinations, the shape of which de-
pends on scores assigned by stakeholders. The main insights for the model development
method are that a multiformal knowledge and fact collection process involving a social
network of stakeholders is operationalizable and practical. The developed ontology, while
useful for the case study, is too rudimentary to hold more complex knowledge and facts
and is impractical to extend to other knowledge domains. Technical implementation
of the ontology must be made extendable and adaptable. The social process must be
made more robust to path dependency.

6.3.1 Focus point

Figure 6.7: Case focus

Methodological focus In this case study 5 the focus is on the de-
sign of the social process for knowledge formalization and on fact and
knowledge collection. While this case study has ample technical model
design aspects, they are not the focal point of the work presented here,
as they do not directly concern an ABM.

The first learning case study concluded that there is a need for a
knowledge and fact collection mechanism. If the models developed
using the co-evolutionary modelling method are to be useful, they
must sufficiently represent reality and they must be socially accept-
able. Rather than collecting facts on a case-by-case, ad-hoc basis, we
seek to develop a social process for knowledge and fact collection that

can be employed in a wide range of case studies and that yields results in a format that can be
used directly in a computer algorithm and in social interaction processes.

Case Focus The previous case study focused on the nodes of an industrial network, the
processing plants. This case study focuses on the infrastructure that connects them. It ex-
amines the factors that determine the spatial combinability of infrastructures from multiple
disciplinary perspectives. Combinability is an aspect that plays a role in the evolution of spa-
tially constrained λ-systems. The choice for this case study was jointly determined by the need
to understand infrastructures better and by the practical opportunity offered by a project with
the Rotterdam Port Authority (RPA).

5The Combination of Infrastructures case study was developed as a part of the project entitled “Combination
of Infrastructures: A systematic exploration of (im)possibilities for space-saving infrastructures in the Rotterdam
Harbor and industrial region” (Dĳkema et al., 2007a). Parts of this section have been published as (Dĳkema
et al., 2007b).
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6.3.2 Hypothesis

Knowledge formalization Knowledge from many different disciplines can be formalized to
enable fact collection and storage in a practical data collection and processing system. Contin-
uous stakeholder involvement can be ensured by interfacing said system to models to generate
simulations and feedback to stakeholders.

6.3.3 Case Description

Space scarcity In port regions, infrastructures such as roads, rail, electricity, pipelines,
docks, tunnels, etc. take up a considerable amount of space. At the time of a port’s ini-
tial development, space may appear to be an abundant resource and the capacity requirement
may appear adequately predicted. Over time, however, port activities and the infrastructure
capacity to sustain them may evolve beyond expectations. When a region evolves under green-
field conditions, public port infrastructures compete with private enterprise for space. Under
brownfield conditions, bottlenecks may develop where infrastructure congestion occurs at times
of peak demand, while lack of space prohibits traditional infrastructure expansion.

Port authority To anticipate infrastructure congestion in the Rotterdam A15 infrastructure
corridor, among others, the Port of Rotterdam has successfully implemented combinations
of industrial pipelines in tunnels. While seemingly trivial, this approach is highly complex
due to mixed ownership of different pipelines, safety and maintenance aspects. As a result,
the question emerged as to why such spatial infrastructure combinations weren’t used more
often. In retrospect, the port organization implicitly assumed that ample potential might exist
throughout the port to reduce the space allocated to infrastructures. The way to achieve this
was assumed to be through spatial combinations, realizing more infrastructure capacity per
acre.

Systematic approach missing Because of the very large number of infrastructures present
and the myriad of factors influencing the spatial combinability of infrastructures, combining
multiple infrastructures poses a great challenge for the port authority. No method existed to
bring widely different combinability aspects together and systematically understand the design
space. By design space we mean the complex socio-technical fitness landscape of possible
combinations. In this space some combinations are safer, more feasible and more desireable
than others. In the case where very many infrastructures exist, each having many different
aspects, the design space of combinations is very large.

CoI Project In 2004, a joint TU Delft and RPA project, “Combination of Infrastructures”
was started. The task at hand was to create a method for systematic exploration and assess-
ment of the (im)possibilities of intense spatial combination of infrastructures. An ’infrastructure
combination’ was defined as a close spatial configuration of two or more infrastructures. These
infrastructures were assumed to have a mutual influence on individual infrastructures’ perfor-
mance characteristics and/or allowed utilization. These aspects must be taken in into account
in port planning, infrastructure design, management and operation.

100



Main assumption The crux of the approach followed in this case study is the assumption
that distinct, individual infrastructures have characteristics that are indicative of their com-
binability. Those characteristics are independent of the actual combination. The overall com-
patibility index for all possible infrastructure combinations with respect to safety, regulatory
issues, spatial quality and the technical characteristics is a cumulative property.

Social network As infrastructures are complex systems, their combinations are complex as
well. As discussed in Chapter 4, Complex Adaptive Systems can only be understood through
multiple formalisms - and multiple formalisms require multiple people. As mentioned in the
paragraph on methodological focus, the methodological goal of this case study is to develop a
social process for knowledge and fact collection. In order to develop such a social process, a
group of people involved - a social network - must exist. Such a social network will execute the
developed social process and hopefully produce the desired knowledge and facts.

Therefore, a social network was initiated, consisting of the people with the following asso-
ciations:

Problem owner The Rotterdam Port Authority (RPA), infrastructure planning de-
partment and business development department.

Domain expert Internal experts from the TU Delft, spanning the spatial planning,
safety, legal and technical domains. External experts from the RPA, involved in actual
planning, design and implementation of infrastructure projects.

Modeller Researchers from the TU Delft, including the author.

This social network includes a wide distribution of domain experts from both industry and
academia. It expands the social network that is needed for a successful project.

Social process As discussed above, a social process for knowledge and fact collection is
developed. It consists of 5 steps. Steps 2 to 5 are can be iterated as necessary to improve the
quality of the outcome.

1. Identify infrastructure Relevant infrastructures need to be identified in an iterative
social process.

2. Define combinability Landscapes and their aspects are defined and encoded in a data
collection tool (start of the iterative loop).

3. Collect data The infrastructure combinability data are collected in a social consensus
building process.

4. Create landscape The combination landscape (see next section) is calculated from the
combinability data.

5. Improve landscape The initial design and data are presented to external domain experts
and adapted based on their feedback (end of the iterative loop).

The following section will present the details of this process.
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6.3.4 Details
Combination fitness landscape The main assumption of the CoI study is that each infras-
tructure has additive properties that describe its combinability, independent of the combination.
So the combinability of a infrastructure can be seen as a certain combined ’height’, or fitness,
consisting of the height or fitness of individual aspects, see Figure 6.8. When combinations
are examined in terms of pairs, they form a fitness landscape of points that represent the com-
bined fitness of those two infrastructures. Figure 6.8 illustrates the combinability approach and
process.

Figure 6.8: CoI fitness landscape creation process

Species and the environment When creating a fitness ladscape, it is important to define
the species and the environment. We consider the individual infrastructures to be species, whose
interaction has a certain fitness. The fitness of a combination is determined by the environment.
This environment consists of the social valuation of each infrastructure’s combinability and the
social valuation of the relative importance of each combinability aspect. The valuation consists
partly of intrinsic physical aspects of the infrastructure and partly of the collective social
valuation of it.

Infrastructure categories First, in a series of meetings and workshops, a structured inven-
tory of port infrastructure was developed. This is depicted in Figure 6.8 as the gray infrastruc-
ture entities. Three infrastructure categories were identified:
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Traffic and transport These are fixed infrastructures, such as roads and railroads,
upon which a variety of discrete objects - vehicles - move between nodes such as container
terminals, passenger terminals, seaports, airports, etc.

Utilities This category spans fixed infrastructures that are developed to transport one
specific good over a dedicated infrastructure. Examples are electric power, drinking water,
natural gas and telecom.

Industry This category only includes pipelines. Each and every pipeline is unique for
the type of product it carries and the companies it connects.

These categories were found to span a total of 45 distinct infrastructure types. For the full list
of infrastructures, please refer to Appendix C. This categorization is not definite or clear-cut.
Industrial pipelines, for example, mostly carry chemicals but often also carry fuels, whereby
they should become categorized as utilities. Despite these minor problems, this is a simple and
usable categorization.

Combinability Second, based on the assumption that distinct combinability characteristics
of infrastructures can be identified, this concept was elaborated in a series of brainstorms
and expert meetings. This resulted in the identification of four infrastructure characteristic
landscapes that are indicative of their combinability. Each landscape is a distinct formalism.
They are:

Safety Not only distinct infrastructures, but also any combination, must be safe. For
example, the amount of electromagnetic radiation given off by the infrastructure directly
impacts its combinability.

Spatial effect Any combination can increase the use of space and be must acceptable
with respect to spatial quality. For example, a highway needs to be routed with few sharp
turns, making it easy to combine with rail.

Technical Specific technical aspects of an infrastructure may improve or reduce com-
binability. For example, wireless communication towers need relatively rare and easy
maintenance and are thus easy to combine.

Legal and organizational Each distinct infrastructure has its own legal and regula-
tory regime. For example, EU regulation on road development and the complex land
ownership structure in the Netherlands make roads somewhat difficult to combine with
other infrastructure.

These landscapes are presented as the colored layers in Figure 6.8. Each of these land-
scapes contains a number of aspects that give the landscape its final shape. This classification
essentially defines an ontology, a formal specification of a conceptualization. (See Section 6.5)

Data collection Third, once the landscapes and their aspects are identified and the structure
of the ontology defined, the factual information can be added. Collection of information requires
domain experts with a variety of backgrounds. Experts must score the aspects of each landscape
and establish the relative weights. The structure of the ontology and the data collected are a
codification of expert knowledge that can be processed to generate a fitness landscape for all
possible infrastructure combinations.
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Fitness landscape creation Fourth, a model for evaluation of the infrastructure combina-
tions’ fitness was developed. This involved two steps:

Scoring infrastructure’s characteristics A scale running from 0 to 5 was used, where
0 indicated a ’deal breaker’, meaning no possible combinability for the distinct infrastruc-
ture, and 5 indicated a ’deal maker’, a highly advantageous combinability.

Relative weight The relative weight of each characteristic was established, running
from 0 to 1.

Calculation Calculating a weighed score over all characteristics was done by inputting
the information from the two previous steps in a spreadsheet and using a suitable matrix
manipulation package to calculate the weighed scores of all 2025 infrastructure combina-
tions and map the results (see algorithm 6.3.4).

Initial social process Internal experts created and filled the initial ontology during a group
brainstorm session. Ideally, this would have been performed with both internal and external
experts. For practical reasons the internal experts were used to pre-seed the discussions with
the external experts and thus reduce the required time.

Fitness landscape calculation Even though this case is not focused on technical design,
we still need a way to model the fitness landscape. The fitness landscape calculation method
is presented in algorithm 6.3.4. The full source is available online 6. This algorithm creates
a fitness map of combined pairs of infrastructure. The algorithm can be adapted to combine
higher order pairings.

Algorithm 6.2 Simplified fitness landscape calculation
x⇐ numinfra
y ⇐ numlandscapeaspects
score⇐ ones(x, x)
environment(x, y)⇐ excelsheet
for a = 1 to x do
for b = 1 to x do
for c = 1 to y do
scorea,b = scorea,b ∗ environmenta,c ∗ environmentb,c

end for
scorea,b = 2y

√
scorea,b

end for
end for

Collaboration via wiki The initial steps of the social process were facilitated through a
collaborative wiki system 7. The main reasons for introducing the wiki system were that the
expert group was fairly large and the logistics of organizing of brainstorming sessions and

6http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/code/CVI/cvi/cvi_2d.m
7http://wiki.tudelft.nl/Project/CombinationOfInfrastructuresEvaluation
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meetings was not trivial. Furthermore, wikis offer enforceable authorship and a historic record
of the communication across it 8. The wiki proved mainly useful for the internal expert meetings.
The extremely open and free-form collaboration environment that wikis provide was found to
be unsuitable for external expert involvement.

Two main barriers to wiki adoption were identified. The first barrier was the reluctance of
the already very busy experts to learn a new tool. The second, more serious, barrier was the
necessary shift in mindset when using a wiki. Traditionally, knowledge is perceived as power,
and knowledge shared is perceived as power lost 9. A more bottom-up, collaborative and social
network-oriented mindset is required for wiki-style collaboration, where one realizes that the
more knowledge is shared or generated by a person, the more ’power’ that person has.

Group Decision Room To overcome the experts’ problems with the wiki, a Group Decision
Room (GDR) (Kolfschoten et al., 2006) environment was used for external expert feedback
meetings. GDR offers a simple, anonymous and structured feedback mechanism. Guided by
specific questions, the experts can share their knowledge quickly and safely. The perceived
safety is mainly an effect of the system’s anonymity, allowing contended topics to be discussed
without personal consequences. Figure 6.9 gives an impression of the activities during the
workshop.

Figure 6.9: Data collection and feedback workshop

Feedback process The GDR-facilitated feedback process used the following guiding ques-
tions:

1. Introduction to the Combination of Infrastructures project.
8See Section 5.4 for requirements of the modelling process)
9For wiki discussion on this very topic, please see http://wiki.tudelft.nl/Research/

WhyPeopleDislikeWiki
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2. Explanation of GDR and a test round. “How to make Rotterdam the biggest harbor in
the world again?”

3. GDR round 1a, Inventorying: “What are the relevant infrastructures?” (pre-seeded with
categories)

4. GDR round 1b, Free Brainstorm: “What determines the combinability of infrastruc-
tures?”

5. GDR round 1c, Vote (1-5): “What are the deal breakers and deal makers for combinability
of infrastructures?”

6. Consensus-building: compare generated list with project-team generated ones.

7. GDR round 2: Relative weighing of landscapes and aspects.

8. Scoring of individual infrastructures.

9. Discussion of the results and their significance for the RPA policy.

This feedback process resulted in a refined scoring of the combinability.

6.3.5 Case Study Results

Social process This was a first attempt at a design of a social process that brings multiple
formalisms together within one formal (software) system. The two-part process with internal
and external experts has both advantages and disadvantages. The advantage is mainly practical.
Pre-structuring the ontology saves time in the discussions with the external experts, whose time
is often very limited. The negative aspect is that the external experts do not feel involved in
the design and do not feel ownership over the outcomes. Furthermore, quite some time was
spent explaining the relatively complex logic behind the approach and the ontology.

Ontology Figure 6.10 presents an excerpt from the matrix-based ontology and the spread-
sheet based data input form.

The complete ontology developed by the project group can be found in Appendix B.

Fitness landscape evolution As presented in Sections 3.4 and 5.2.2, the shape of a fitness
landscape changes as interacting species adapt and evolve. We can observe this process of
co-evolution between qualitative and quantitative insights and social consensus. Figure 6.11
presents the infrastructure combination fitness landscape before the involvement of external
experts and after.

106



Figure 6.10: Excerpt of the matrix-based ontology

(a) Initial Landscape (b) Initial Contour

(c) Evolved Landscape (d) Evolved Contour

Figure 6.11: Fitness landscapes for all infrastructure combinations, scored by the project team
and by the RPA team.
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It is interesting to note that the internal experts are less discriminating than the external
experts. The second landscape is much more rugged and shows larger variation between the
worst and best combinations. This can be attributed to the external experts’ greater practical
experience with the infrastructures in question and the academics’ tendency to relativize their
own work.

6.3.6 Domain-specific Insights
The focus of this case study was not on the domain insights. For the insights in the combinability
of infrastructures, the reader is referred to the project report (Dĳkema et al., 2007a). However,
there are several domain insights that can be presented here.

Due to the social process and the knowledge collected, the RPA has for the first time
a systematic, socially constructed overview of combinability of infrastructures. Up to now,
combinability issues were examined on a case by case basis, without organization-wide input.
After the CoI project, the RPA had a clear sense of what can and cannot be combined, based
on expertise from many different parts of the organization. The list provided no surprises in
terms of new combinations. This is a very positive result for the RPA, as it shows that the
implicit, unsystematic ’gut feelings’ of the involved experts functioned relatively well. The
created fitness landscape offers a basis for future decisions and ongoing discussions when the
social, legal, safety and technical environment changes.

6.3.7 Method Development Conclusions
Fact and knowledge collection successful Referring back to the case hypothesis, it can be
concluded that the multi-formal knowledge and fact collection process is possible and functional.
The social network was able to use the social process to collect knowledge on combinability
(the infrastructure classification and the combinability aspects) and facts on combinability (the
actual infrastructures and their scores). The knowledge and facts are multiformal, covering
legal, spatial, safety and technical domains. Their knowledge and facts are at the same time
available for computer processing.

Crucial role of the social process The social process facilitating the ontology creation and
fact collection is crucial. A lot of effort has to be given to designing a robust process that is
shared by all involved parties. The conditions under which the social network is created and
operates are as important as the knowledge of the experts. The ontology pre-structuring needs
to be performed carefully in order to prevent too much steering by the external experts and to
increase the stakeholders buy-in.

The main lesson learned is that the predictability and pace of the process is important to
the stakeholders. The process as executed during the case study contained too many surprises.
First, the process progressed too slowly and in a fashion that was intransparent to the external
experts, as there were many theoretical issues that had to be solved by the internal expert
team. Later, the process progressed too quickly, as the conceptual width and depth was too
great and the technical tools employed were too novel for the external experts.

Furthermore, the transition from no shared language to the shared formal language was too
sudden. Because the internal experts developed a classification of combinability (effectively a
language) and presented it to external experts, the external experts went in one step from from
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an unshared and unformalized state to a shared, formalized state. This step was conceptually
too large for the external experts and did not create sufficient buy-in. See Section 6.5 for a
discussion on knowledge states. Depending on the goals of the project, this may or may not be
a problem.

Structure of knowledge In the current generation of the knowledge formalization process,
the employed ontology and the facts collected are ’flat’. It only encodes is a knowledge of the
x=1, y=2 structure. In this case study, this was sufficient. However, it is easy to see that
more complex situations would need to have an ontology that is able to capture the problem’s
structure as well as facts about it, to include both is a and has a types of relationshops.
While not strictly impossible with a spreadsheet implementation, it is exceedingly impractical.
Restructuring the ontology to accommodate expert feedback is equally complicated. The tool
for knowledge and fact encoding is too rigid and does not allow for easy change. Furthermore,
in this case study the knowledge base had no versioning applied. This makes future changes
very difficult to manage.

Further development Two main directions should be followed in the future. The current
technical implementation of ontology creation and fact collection is inadequate and must be
made more robust, more extensible and more adaptable. The social process must be more
carefully designed and adapted to yield information on the system structure.

Requirements checked Table 6.2 presents an overview of the modelling requirements and
the performance of the model.
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Table 6.2: Performance of the case study

Requirement Score Explanation
Method

Open Source Partly The source code of the calculation method is available to
peers, but not to the general public. Social process has
been published.

Sufficient commu-
nity diversity

Yes Expert and user diversity was sufficient. Quality of com-
munity was lacking.

Organically grow-
ing

Partly Project requires external parties to proceed.

Recorded history No Attempted and failed.
Enforceable au-
thorship

No Attempted and failed.

Modular Partly The description of infrastructures and their landscapes
and aspects is probably portable to other projects.

Outcome
Useful Yes Useful both at the process level to the modeler, as well

at the case level to the problem owner.
Testable Yes Social experiments are possible, observation of shifting

insights and knowledge directly readable from the fitness
landscapes.
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6.4 Chocolate Game Model
Case abstract The third learning case study presents a generic ABM of the pro-

cess industry. The model is based on the system decomposition of a chemical process
industry sector. The resulting system description was translated to a suitable analogy:
a production chain for chocolate bars. Using this analogy, a game was developed and
played to elucidate and explain complexities and interdependencies in the corresponding
industrial network. The concepts extracted during the system decomposition and the
development of the game were formalized in an ontology (a specification of concepts).
This ontology served as the foundation of the representation of reasoning, communi-
cations and transactions in our multi-agent system. A prototype generic multi-agent
model was implemented and developed in Repast to serve as a simulation engine for
real process industries and other applications. The main learning points from the case
study are in the technical model design dimension. The abstraction of discrete flows
will be reimplented as continuous flows, and a more flexible ontology encoding tool will
be sought. The social process was found to be useful and will be further refined in the
next generation.

6.4.1 Focus Point

Figure 6.12: Case fo-
cus

Methodological focus The Chocolate Game case study focus is on
social process development and technical implementation 10. We im-
plemented the lessons learned from the previous two case studies in this
case. First, the technical model design needed to be made complete
with closed mass balances and a modular setup sparating the technol-
ogy description and economic aspects. Agents needed to be able to
process discrete flows (streams of pieces), make purchasing contracts
and make pricing decisions. Second, the social process for knowledge
and fact collection needed to be redesigned in the light of experience
from the previous case study.

Case focus The practical aspects of the case study involved devel-
oping a chocolate production network as an analogy of a processing

industrial network. The analogy was examined and decomposed in a formal ontology. The
ontology was used to create a conceptual description of the system that was used to create a
serious game. This chocolate game is a paper-based business game designed to examine ac-
tor system dynamics. To this end, playing the game requires human players. Their actions,
negotiations and strategic behavior are recorded to allow ex-post interpretation so that these
can be formalized into a model of the actors involved in real world industry. Completing this
formalization also serves as a process wherein the aptness and completeness of the ontology is
verified. The players’ behavior is observed and translated into agent rules. Together with the
ontology, this makes it possible to create an ABM with which to formally examine behavior of
the game.

10Parts of this section have been published as “Towards a Generic Approach for Analyzing the Efficiency of
Complex Networks” by K.H. van Dam, I. Nikolic, Z. Lukszo and G.P.J. Dĳkema (K.H. van Dam and Dĳkema,
2006).
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6.4.2 Hypotheses

System decomposition It is possible to develop a social process script that will extract and
structure domain experts’ knowledge in a manner suitable for creating an agent-based model of
network evolution.

Game as a template It is possible to use a serious game as a template of an industrial
network and use it to test the decomposition created by the SDM.

Discrete flow processing It is possible to construct an ABM that describes a industrial
network processing discrete flows.

6.4.3 Case description

Games and models The basic idea of this case study is that a combination of a system
decomposition method, a serious game and an ABM is a useful tool for analyzing the emergent
properties of industrial networks. As discussed in Chapter 4, Agent Based Models are Complex
Adaptive Systems that display emergent properties. Serious Games (SGs) (Mayer and Veen-
eman, 2002) can be understood as Agent Based Models that employ human players instead
of agents to generate emergent behavior. Applying both ABMs and SGs to the same system
provides us with insights into system behavior that would not be possible with just one tool
alone. While SGs are not not strictly formalized and deterministic as computer models, they
are able to display a broader range of possible behaviors, as humans are rather inventive when
dealing with game rules. ABMs are more constrained in behavior but can be rerun thousands
of times with different parameter settings, providing a broad view of possible system states.

Approach The case study was approached as follows: a system decomposition of a chemical
process industry was performed, and an analogy was created in a different domain - a process
chain that produces chocolate bars. With this analogy in mind, a Serious Game was developed
that can be used to explore and explain the complexities and interdependencies of an industrial
network to players/stakeholders. Using insights from the game and the system decomposition
results, an ABM can be constructed to explore the systems behavior under a wide range of
conditions. The different elements of the approach will be discussed in the following paragraphs.

System Decomposition Method Before we can start modelling a system, we need to
describe it. We need to create a system description consistent with the systems perspective
and allows for a generativist system description (see Section 2.1.3). The method of creating
this description is the System Decomposition Method (SDM). It is a collaborative method in
which system components are identified and formalized (Dĳkema, 2004; Dĳkema et al., 2005;
K.H. van Dam and Dĳkema, 2006). All important concepts (as chosen by the experts and the
modellers), properties and interactions of the chemical process industry are formalized during
the method in a formal ontology. Before they are used to create a model, the identified system
elements are translated into the domain of chocolate production.
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Technical Analogy The goal of the case was to study system behavior without being bogged
down with details. In order to help domain expert abstract away from the details and to ease the
understanding of the overall system behavior, we decided to use an analogy of the petrochemical
processing industry. An analogy captures the essence of the petrochemical supply network and
chemical conversion processes while reducing detail. Instead of using oil and other chemical
foods as a main input of the petrochemical production chain, we chose to use raw chocolate
beans. Instead of ethylene, processed raisins are used; and instead of plastics and other end
products, raisin and peanut chocolate bars are produced by the processes. The abstract supply
chain of chocolate bar production is the analogy used for petrochemical production.

Serious Game The system description resulting from the SDM, after being translated into
the analogy, is used to create the concepts of the game. These concepts are used for reasoning
and communication in the game. Before a formal computer model is created, all game rules,
agent identities, interaction types, etc. are tested in a Serious Game. By creating and play-
ing the game first, the flexibility of human players is used to ’debug’ the game by spotting
inconsistencies in the system description and game rules.

Agent Based Model Once the game has been played and debugged, the game concepts are
formalized in an Agent Based Model. Observed player reasoning processes are simplified where
necessary and encoded as decision-making rules for the agents. The simulation is examined
across different parameter settings to explore possible system states. Based on the insights
from the game and simulation, conclusions about the behavior of the petrochemical supply
network can be made.

6.4.4 Details
6.4.4.1 System Decomposition Method

Main steps This section describes the practical steps of the System Decomposition Method
for evolutionary analysis of complex systems. The theoretical base of the SDM is elaborated
in Section 6.5. It is based on an extended, improved and generalized version of the method
reported earlier (Nikolic and Dĳkema, 2005). The goal is to arrive at a representation of a
problem space that enables the analysis of the system’s evolutionary patterns.

This means that the system is not only considered as a collection of actors and interactions
that exist in the current system configuration, but that the system representation must also
allow us to take into account which components might change over time, with system level evo-
lution as a result. The SDM consists of three phases: inventory, structuring and formalization
into an ontology. These three phases will be discussed in the following paragraphs.

Inventory The aim of the inventory phase is to determine the system boundary and identify
the system components relevant for the problem at hand. Given the complexity and scope of
problems addressed (see 1), such an inventory cannot be expected to be immediately complete
or consistent. In the method, inventory will be readdressed and improved during the iteration
step of the structuring phase (see below). The following steps are taken to obtain the inventory:

1. Choose a system to be observed.
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2. Define the problem owner and its problems, and determine the questions that the problem
owner has.

3. Choose a time frame relevant to the system and problem owner.

4. System and problem space exploration. Domain experts are interviewed, and a structured
brainstorm challenges them to explore the system structure and the problem owner’s ques-
tions. The experts talk about the system in relation to the problem and make an inventory
of all concepts, actors, objects, interactions, states, properties, flows, etc. relevant for the
problem analysis.

Structuring The aim of the structuring phase is to create structure of the identified compo-
nents, thereby creating a map of the real-world system under consideration. The structuring
phase is the core of the system decomposition. The components identified in the inventory
phase are first grouped into agents or objects, and the connections betwen those agents and
objects are grouped by interactions. After identification, the objects and agents are linked using
the identified interactions.

1. Structuring of agents and interactions: Agents are the units upon which evolution acts.
They are recognized by their boundaries. Agents are active, proactive, reactive and able
to interact. Objects are entities that have clear boundaries and can interact but are not
active or reactive. Interactions are system components that connect agents to objects.
The structuring steps are as follows:

(a) Look for useful boundaries: physical, organizational and/or functional. Identities
identified in this manner are the agents or objects.

(b) Within the agents/objects thus identified, search for properties or behaviors that
interact with components outside of those boundaries. Within the same boundaries,
search for behavior or properties that propagate from these entities and interact with
the world around them. These can be codified as interactions.

(c) Add hierarchy to the agent components by ordering them in a hierarchical, nested
way, as a box within a box.

(d) Add hierarchy to the interaction components by classifying them from abstract to
concrete.

2. Linking agents and interactions: In this step a connection is made between the agents
and interactions so far identified.

(a) First only consider the highest level agents.
(b) Draw the agents as a box.
(c) Add the most abstract interactions as arrows going in and/or out of these boxes.
(d) Do not yet connect incoming and outgoing interactions between boxes; this will

happen in the simulation of the system. Network structure will follow from behavior.
(e) Repeat these steps for lower levels of the agents and interactions hierarchy.
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3. Iteration: In the iteration step, one may choose what to include or delete from the initial
inventory and what subsequent modifications to structuring this may lead to. Careful
review of the results achieved and the original information and knowledge may reveal
missing components, agents, interactions or characteristics thereof.

(a) Carefully check whether all concepts identified in the inventory phase have been
included. If not, complete a new iteration of structuring as follows:
i. Decide if any of these should be in the system description.
ii. Simplify as much as possible, but record the simplifications made. During the

use of the SDM outcomes, users may notice that some essential concepts are
missing. In that case, the simplification needs to be reverted.

(b) If an agent has no ingoing and/or outgoing interactions, consider whether interac-
tions are missing. Not all agents necessarily need to have both in and out flows, but
if an agent has no interactions at all linked to it, it must be considered whether this
agent really plays a role.

(c) If an interaction is not connected to any agent, decide whether the interaction is
relevant, meaning that the agent affected by it is missing, or whether the interactions
is superfluous.

4. External world: In this step the world outside the agents is determined by grouping all
the system components that cannot be influenced by the other subcomponents. They
form the External World.

(a) Things that are not influenced by components within the system are part of the
External World.

(b) Extremely slow processes (relative to the chosen time frame) should be considered
to be a part of the External World.

Formalization into a ontology The goal of the formalization step is to encode all of the
output of the previous two steps. After the inventory and structuring phases of the System
Decomposition have been completed, a formal ontology can be created in order to formalize
the domain and to enable the system description to be implemented as a model. A body of
formally represented knowledge is based on a conceptualization that “the objects, concepts,
and other entities that are assumed to exist in some area of interest and the relationships that
hold among them” (Genesereth and Nilsson, 1987). An ontology consists of one or more classes
and their properties. Each class has a number of properties - characteristics that are specific for
this class. Each property is of a certain type that defines how the data for this property should
be stored. The formal representation serves as a semantic and functional design description for
the development of a simulation model. Software agents use the ontology to exchange messages
about certain subjects, and they understand how the concepts in the content of the messages
are to be used.

6.4.4.2 Chocolate Game

Overview of the Chocolate Game One of the powers of serious games lies in analyzing,
experiencing and creating awareness about complex problems (Duke and Geurts, 2004). To
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make the game players experience the complexity of the system and to create awareness that
system-level thinking increases sustainability, they will be acting as individuals, representing an
industrial plant or company. The game leader manages the evolution of infrastructural systems
in the External World, in cases where there is a requirement to do so. The actors represented
by the players may be hierarchically organized, with explicit cooperation or competition goals.

Roles In the Chocolate Game, different player roles are identified: producers of half products,
producers of end products, transporters and a world market. The world market is controlled
by the game leader and can be used to steer the behavior of the players by changing the prices
of products. These roles will be discussed below.

Producers Producers can, of course, produce goods from raw materials, be it final products
from half products, or half products from unrefined goods. They have a certain technology
that allows them to turn products into another type of product (e.g., making a bar of Raisin
Dream out of Processed Dark Chocolate and Processed Raisins). All producers can buy any
product from the world market and also sell anything to the world market. Producers can also
trade products with other producers. This is where part of the fun starts, because in this case
contracts and conditions must be negotiated as well as the price. Conditions may concern the
duration of the contract and what happens if one of the players does not stick to his or her
part of the deal. In the game, players were free to come up with their own conditions as long
as they were described using the terminology expressed in and formalized in the game rules.

Transporters Transport players are responsible for transporting goods from one player to
another and for transporting from and to the world market. In the game, contracts have to be
negotiated, as well as a necessary condition to ensure delivery. An important game rule is that
no product can leave the tables except in the transport unit of a transport player. That said,
transporters are also free to create their own contract conditions as long as they describe them
clearly and formally.

Fun One of the most important concepts of the game was the fun factor; this was another -
if not the main - reason for using chocolate production as an analogy for chemicals production.
Players have to enjoy themselves to feel involved in the game (Mayer and Veeneman, 2002).
In the Chocolate Game, real ingredients are used that have to be processed by the players. A
player buying a batch of ’raw peanuts’, for example, receives peanuts that still have to be peeled
in the production step, resulting in a number of ’processed peanuts’. The waste resulting from
the processing is also a good that must be transported to the garbage bin by the Transporter.

Game details The details of the rules and concepts of the Chocolate Game are beyond the
scope of this section. The entire set of rules, the game plan and the description of the game
materials, as well as impressions of the game sessions are available online 11.

11http://wiki.tudelft.nl/Project/ChocolateGame
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6.4.4.3 Agent-based Model

Chocolate Game Model The Chocolate Game serves as an informal model of the processing
network system. Once the SDM is performed and the game is developed and played, a formal
model can be developed. With a clear definition of the mechanics of the game established and
a formalized description captured in the ontology, we have a good foundation for implementing
the chocolate production network in an ABM.

Model assumptions The model was developed under three main assumptions.

No transport agent The first assumption was that transport agents are absent. This
greatly simplified the modelling of contracts, as only bilateral contract needed to be
created, and not a tripartite one. The focus was on the negotiations between the producers
and the network that results from the decision-making process between them.

Random prices The second assumption was made in the modelling of the decision
making: each time an agent was asked to sell a certain good, it would simply ask a
random price for it from a predetermined range. The model, however, is set up in such a
way that we can later easily add more realistic price setting behavior.

Discrete flows The final assumption was that the flows between agents are discrete.
That is, a flow consists of x pieces per time steps. This means that the agents need to
have a working and limited storage system that stores the correct types of goods.

Agent reasoning Agents not only use the ontology in the communication, but the meaning
that is defined in the ontology is used to deduce which goods are needed to produce a certain
good. An agent starts each turn by examining its technology object, which determines the
product that is made. From the formal description of this class, the agent can find out what
product is needed in the production step. After that it will look in its own warehouse to see if
a product of this class is already in stock or if it needs to do market research to find the best
offer. From the one or more offers that the agent receives, it will pick the cheapest one and
sign a contract with this party.

Implementation With this model, implemented in Repast (N. Collier and North, 2003), a
number of experiments were run, varying the number of agents equipped with the technology
to produce a certain good. In the initial loading the World Market had a batch of raw products,
while the other agents had nothing in stock yet. We kept track of the average price paid for a
certain product class (i.e., raw products, half products and end products).

6.4.5 Case Study Results
In this section the results from the three parts of the approach - the SDM, serious game and
the ABM - will be presented.

6.4.5.1 SDM Ontology

The main outcome of the SDM is a system description formalized into a ontology.
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Created ontology The ontology created during this case study is presented in Figure 6.13.12

It consists of a general ontology describing the things that agents act upon and an agent ontology
defining the agents and their actions. The ontology is implemented as a Java class hierarchy.13

(a) General Ontology (b) Agent Ontology

Figure 6.13: Structure of the Chocolate Game Model Ontology

Verification of the ontology After the system decomposition has been completed and the
concepts have been formalized in an ontology, the next step is to verify its completeness and
usefulness. Ontologies, being languages, are meant to enable communication. Therefore, the
ontology is used to specify the player roles in the game and formalized their interaction. It
also describes the different product classes and their properties as well as concepts such as
storage and transport capacities, etc. Because trading goods is a key action in the game, we
closely defined contracts used for buying and transporting those goods. The ontology structure
provides enough information for the players to be able to understand the relationship between

12Ideally, this figure should represent the has a relationships as well, not just those of is a. Unfortunately,
the software system used to formalize the ontology does not have that graphing capability.

13see http://gux.tudelft.nl/svn/ChocolateGameModel/tags/PhdThesisVersion/src/
chocolateGameOntology/
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the different goods used in the game. For example, player contract forms 14 are constructed
only using the words from the ontology. Any concepts that are found to be missing are added
to the ontology.

6.4.6 Serious Game
Gameplay Before the start of the game, each player received a manual with the specific
game rules for his or her role. After a short introduction and the initial loading (chocolate,
raisin and peanut distribution), the game was played for 90 minutes with a group of about 15
players. During the game, one scenario was played: after a certain amount of time the prices
on the world market of the Raisin Dream bar doubled because of the increase in demand after
a new marketing campaign. After the hype was over, the prices dropped again. The goal was
to see the change in behavior of the players in this scenario and to make the players realize
that they are dependent on each other. Figure 6.14 gives an impression of negotiation about
trading goods between actors in the chocolate production during the game.

Figure 6.14: Negotiations during the game

Game results After an initial round in which the players were getting used to the concepts
and game rules, all players started working on their own strategy for the future, engaging in
longer-term contracts. When the world market announced that it would from now on pay a

14see http://wiki.tudelft.nl/Project/GameDesignTradeContract
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much higher price for chocolate bars with raisins, many players immediately tried to adjust their
plans to this new situation. The result was that the price of processed raisins on the market
between the players also rose, as suddenly all end producers wanted to make Raisin Dream.
The producers of half products placed orders on the world market to cope with the increase in
demand. As described in the scenario (which was unknown to the players), the world market
announced the next turn that the price had dropped back to the old level. The players again
tried to adjust their strategies to the new situation, but since they were bound by longer-term
engagements they were not able to do this right away. In the debriefing we discussed the game
mechanisms with the players who were enthusiastic about the concept and the realization of
the game. As predicted, the network of chocolate producers was not capable of reacting in
a flexible way to the changes of the world market. Because of this, the players became more
aware of the interdependencies between the different actors in the domain, including the link
between production and transportation. The players acknowledged this.

6.4.6.1 Agent Based Model

Model Results Based on the ontology and the game played, an ABM was developed. The
full source code is available online. 15 Figure 6.15 presents the general trading network structure
of the model. The ovals represent the agents, and the arrows represent a signed contract. On
top is the World Market(s), on the left three Half Product Producers and on the right three
End Producers.

Figure 6.15: Trading structure of the agents

The network structure is emergent and fully determined by agent’s roles. A half product
processor must buy raw products that are only sold by the world market agent, and the end
producers can only purchase half products produced by the half product processors.

Price level experiment It was observed that average price levels varied with the number
of agents in each role. In order to examine this effect, the number of agents in each role was

15http://gux.tudelft.nl/svn/ChocolateGameModel/trunk/
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varied and the result on the prices observed. The following experiments were performed:

Table 6.3: Overview of the experiment parameters

Experiment # End producers # Raw Producers # World Market
1 30 30 30
2 3 30 30
3 30 3 30
4 30 30 3

The results are presented in Figure 6.16. Large-scale images are available online.16

In the first round, the agents that needed the half products asked all other agents if they
could buy it from them, but no other agent had any half products in stock yet. However, the
producers of half products were able to find somebody (the world market) who sold the raw
product needed. They bought a raw product and processed this into a half product. Afterwards,
also half products were available for trading. This trading continued until the world market
ran out of raw products and the last end products were sold by the end producers. Figure 6.16
plots the results of a run after 100 trading rounds with a certain configuration. Here we can
see that different average prices were paid for all three product classes. After a few rounds the
averages became more stable. With other configurations we see different values for the prices,
but the overall trend of stable price differentiation remains the same.

Supply and Demand The stable price levels can be explained by the most basic economics
principle: supply and demand. Even though we did not add any market rules directly, a market
situation still emerged from the very basic buying strategies we implemented for the agents in
this system. Because all agents tried to buy from the cheapest supplier, those who had more
choice had a higher chance of finding a supplier with a lower price. Indeed, when we changed
the number of agents producing a certain good (thereby indirectly changing supply and demand
in the system) we could see that different average prices were paid for each type of good. The
position in the network (which is again a result of the negotiation process) determined how rich
or poor a certain agent became over time. The results show that commonly observed system
level behavior, such as markets prices, can emerge in a model that only includes rules for local
decision-making.

Proof of concept This model was designed as a proof of concept that can be easily extended.
The modular domain, decision-making and technological components make it possible to extend
the model in various directions, making the system more realistic and more complex. It is
important to point out that the ABM is based on an analogy of the process industry, which
makes this model applicable to this domain without any changes in the behavior of the agents.
Using a simple ontology translation, a description of another domain (such as the petrochemical
process industry) will allow the agents in this model to reason about this network using the
same decision-making objects defined for the chocolate model. This is possible because of the

16http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ChocolateGameModel/
ChocolateGameResults.html
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(a) End 30, Raw 30, World 30 (Y: 0 . . . 52) (b) End 3, Raw 30, World 30 (Y: 0 . . . 66)

(c) End 30, Raw 3, World 30 (Y: 0 . . . 80) (d) End 30, Raw 30, World 3 (Y: 0 . . . 54)

Figure 6.16: Historic chocolate price as a function of trading structure. X axis is time, 0 . . . 110
steps. The red line is the price of the end product. The dark blue line is the half product price,
and the light blue line is the raw material price.

strong analogy used, which formalizes the knowledge structure and not facts. It is (at this
stage) more important to encode the knowledge about flow transformation processes than the
identity of the actual flow that is being processed.

6.4.7 Domain-specific Insights
Discrete flow model The use of the chocolate analogy created one important misinter-
pretation in the system description. It obscured the fact that most large-scale petrochemical
processing networks deal with continuous streams. The analogy caused the model to be built
using discrete component streams. While the discrete representation is useful in itself, a con-
tinuous representation of streams is also necessary for consistent application of the ontology
and the model in different domains. In a future model, this will need to be rectified.

Emergent prices Even though all agents in the system are exactly the same except from
their technology, the model demonstrated emergent prices for processed and raw materials. The
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agents all use the same decision-making component for market research (i.e., asking a random
price every time somebody wants to buy one of your goods and when buying yourself always
sign a contract with cheapest supplier). Yet from Figure 6.16 we can conclude that there is
a difference in average price agents pay for their products. The results of the experiment are
presented in Table 6.4:

Table 6.4: Overview of the experimental results. (Agents are E: End product producer, R: Raw
material producer, W: World market)

Experiment Agents Price raw Price processed raw Price final product
1 E 30, R 30, W 30 3.8 10.5 50.8
2 E 3, R 30, W 30 3.7 3.7 49.4
3 E 30, R 3, W 30 3.9 36.8 51.4
4 E 30, R 30, W 3 10.7 24.9 50.1

In experiment 1, when there is an equal number of each type of agent present, the price of
processed goods is higher than the price of the raw material, and the price of the final product is
the highest. This can be explained by the fact that the world market has no negotiation power,
since it accepts all and any products offered to it, at the asking price. Both a raw material
processor and the final producer have the ability to choose the cheapest contract. This ability
to choose the cheapest price causes a lower average price received by the world market and raw
producers, respectively.

Experiment 2 show the same downward price pressure for the raw and processed goods.
The number of final product producers is lower, and the average processed raw chocolate price
is lower, since the end producers will pick only the 3 cheapest products on the market, lowering
the average price. Experiment 3 demonstrates the same price-lowering effect. The average
price of the processed raw product is much higher here, since many end producers want the
product, and all prices offered by the raw processors are accepted, increasing the average price.
Experiment 4 demonstrates the same behavior, since a limited supply of a raw material increases
its price.

Analytical validation of prices As discussed above, there are three interesting prices in
the model: those of the raw, processed and final products. The price of the final product is
the expected value of a normal distribution between 1 and 100, 50.5. This expected value is
reached since the end producers set the price by drawing a number from a uniform distribution
between 1 and 100, and the world market accepts all prices set by the sellers without any
selection. Both raw and processed have the price which corresponds to a expected minimum
value of an informal distribution with 30 draws, namely 3.8. This theoretical value is derived
by the following calculation: 17

Let X1, X2, ..., XN be independent random variables, all from the same discrete uniform distri-
bution over the set {a, a+ 1, ..., b}. Let W = min {X1, X2, ..., XN}. If X is a random variable
with discrete uniform distribution over {a, a+ 1, ..., b+ 1}, then

17The author gratefully acknowledges the help of Dr. P. Heĳnen in deriving the theoretical predictions for
price levels.
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f (x) =
{ 1
b−a+1 a ≤ x ≤ b

0 elsewhere
and F (x) =


0 x < a

x−a+1
b−a+1 a ≤ x ≤ b

1 x > b
, x integer.

P (W ≤ x) = P (min (X1, X2, ..., XN) ≤ x)
= 1− P (min (X1, X2, ..., XN) > x)
= 1− P (X1 > x)P (X2 > x) ...P (XN > x)
= 1−

(
1− x−a+1

b−a+1

)N , for a ≤ x ≤ b.

fW (x) = FW (x)− FW (x− 1)
=

(
b−x+1
b−a+1

)N
−
(
b−x
b−a+1

)N
The expected value E(W):

E (W ) = ∑b
x=a xfW (x)

Substituting the values used in the simulation gives a theoretical value of 3.8, which very
closely corresponds with the first 3 experiments.

The third interesting price is the price of the processed raw product. This price is dependent
on the ratio between the number of raw materials processors (M) and end product producers
(N). It is analytically described by the following equation:
For i, i ∈ {1, 2, ...,min (M,N)}, let Xi,1, Xi,2, ..., Xi,N−i+1 be independent random variables, all
from the same discrete uniform distribution over the set {a, a+ 1, ..., b}.
Let Wi = min {Xi,1, Xi,2, ..., Xi,N−i+1}. The expected value of W is given by

E (Wi) = 1
(b− a+ 1)N−i+1

b∑
x=a

x
(
(b− x+ 1)N−i+1 − (b− x)N−i+1

)
The expected average value of Wi equals

E
(

1
min(N,M)

∑min(N,M)
i=1 Wi

)
= 1

min(N,M)
∑min(N,M)
i=1 E (Wi)

If M>N then the answer does not depend on M. The prediction of experiment 3 is 36.3,
which is exactly what the experiment yields. It is interesting to note that with this very simple
ABM it is possible to validate the outcomes analytically. As a matter of fact, this validation
actually identified an initial logical error in the simulation code that was affecting the price
levels. Trying to understand the erroneous outcomes led to development of the analytical
solution that pointed to the code error. While this approach is elegant and useful with a simple
model, it quickly becomes impossible as the complexity of the agents and their interaction
increases.

6.4.8 Method Development Conclusions
By using the systems decomposition method and formalizing the domain description in an on-
tology, a foundation for building a modular ABM is created. The cornerstones of this approach
are:

1. System decomposition that allows evolutionary analysis;
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2. Formalization of the domain in ontologies;

3. Generalizing the domain descriptions, for example using an analogy; and

4. Implementing the model as an ABM with pluggable domains as well as pluggable decision-
making and technological components.

SDM, Knowledge and fact acquisition The System Decomposition Method is a knowl-
edge acquisition and social collaboration script. By executing it with a group of experts,
relevant knowledge is identified and encoded. It aids groups by preformatting the knowledge
gathered, necessary for formalization as an Agent Based Model.

Ontology use Ontologies are clearly the way to collect, store and share the collected knowl-
edge. However, the current implementation as a Java class tree built through Eclipse IDE is
not easily accessible to non-programmers. Modifications are also relatively time consuming and
impractical.

Game creation There are two main insights achieved through the use of games. First, a
game is relatively quick way to ’model’ system behavior, especially when the required agent
behavior is very complex. Unfortunately, it is also a very unreliable model, since it is not fully
deterministic and repeatable. The second insight is that games are mainly useful as an education
tool. Ideally, a complex system would be modelled as an ABM, and the stakeholders should be
asked to play a game based on the system to fully understand the interactions involved. The
model results can than be communicated to the stakeholder/s with much greater effect.

Modular model setup The modular setup of the model promises the be very useful. It
requires more initial design and effort to set the model code structure. The approach also
requires a more indirect style of programming that makes the code less succinct. On the
upside, the payoffs of this approach are expected to be in knowledge and fact reuse in subsequent
models, and especially in increased speed of model development in the future.

Technology and strategy The initial ontology defined the concept of ’strategy’ as something
prescribing what the agent will produce. It became clear during the modelling process that
this is a misnomer, since what determines the production is the technology, not the strategy.
The concept of strategy, however, is a useful concept and will be kept for the future and used
as something that modifies the way technology is used.

Discrete flows Discrete flow-based simulation is viable. However, using the analogy of choco-
lates an important misconception crept into the model. All bulk petrochemicals are produced
in large quantities, in continuous processes. The concept of a discrete piece is very unwieldy
when dealing with streams. In the following cases the description of technology will have to be
re-conceptualized for continuous streams. Discrete flows, however, are very relevant for other
domains, such as transport.
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World market The model assumed that the world market consists of many individuals, and
was modelled as such. This is incorrect, as the world market is assumed to be an aggregate of
many unknown entities. It should be modelled as such. This furthermore greatly simplifies the
implementation of the model and its performance, since it dramatically reduces the number of
agents.

Requirements checked Table 6.5 presents an overview of the modelling requirements and
the performance of the model.

Table 6.5: Performance of the case study

Requirement Score Explanation
Method

Open Source Yes All computercode, game design delibrations and materi-
als and the ontology are available to the involved social
network

Sufficient commu-
nity diversity

No Only students and staff from TU Delft involved in ontol-
ogy, game and model creation.

Organically grow-
ing

Yes Ontology, game and the model are direct conceptual de-
scendents of the first case study, with generic modelling
insights from the second case applied.

Recorded history Yes The entire modelling process, both formal interaction via
code and ontology and informal interaction via wiki are
versioned.

Enforceable au-
thorship

Yes Via authentication in subversion and wiki.

Modular Yes Ontology, agents and decision algorithms are designed
with modularity and reuse in mind.

Outcome
Useful Yes Provided plenty insights into ontology development and

modelling process. Developed a usable system decompo-
sition method.

Testable Yes The SDM can be repeated and results compared. Model
is repeatable due to versioning and random seed record.

6.5 System Decomposition Method
This section presents the theoretical background of the System Decomposition

Method (SDM), a social process developed to encode multiple formalisms/domains into
the Agent Based Model used to model the evolution of λ-systems. First, the concepts
of formalisms, knowledge interfaces and knowledge states are introduced. The System
Decomposition Method is presented, consisting of a group modelling exercise where
different knowledge domains and formalisms interact and transform knowledge through

126



interfaces into different states, finally allowing multiple formalisms to be encoded into
the states and rules of an Agent Based Model.

6.5.1 Background
This section will present the theoretical background of the formalized knowledge collection
process that enables the creation of multi-formal and multidisciplinary models and their inte-
gration with ABM. Large parts of this section are essentially part of the results of the thesis.
The System Decomposition Method (SDM) co-evolved with the technical aspects of the model
creation, the knowledge encoded and the facts collected. 18 Even though it is a result of the
evolutionary method, it is necessary for the backgrounds to be introduced here, so that the
reader can understand the development path of the work with the advantage of hindsight and
can follow the vocabulary used.

The starting point for discussing the theoretical backgrounds of the SDM is Mikulecky’s
definition of complexity, and the insight that one can not study complexity alone but must do
it in groups. 19

Definition Knowledge engineering is defined as (Feigenbaum and McCorduck, 1983):

an engineering discipline that involves integrating knowledge into computer sys-
tems in order to solve complex problems normally requiring a high level of human
expertise.

Knowledge engineering is a large field, the full review of which would be outside the scope of
this thesis. This section presents our (mainstream) perspective on the field.

Formalisms As discussed in Chapters 1 and 3, understanding complex systems is not only
hindered by systems’ intractable evolution, but by the requirement that multiple distinct for-
malisms be used in describing them. This means that the knowledge required for understanding
and modelling λ-systems is based on knowledge and facts from many different knowledge do-
mains and many different people, each with their own formalism. In the section 3.2, formalisms
will be discussed and their use explained.

Knowledge transitions and states in modelling In Section 6.5.3 the knowledge states are
presented. These states are encountered when the modelling method moves from unstructured,
unshared and often unexpected knowledge of stakeholders to a formalized, shared and machine-
encoded knowledge that can be implemented in an ABM.

Collaborative research As already discussed, we are interested not only in understanding,
but also shaping, the evolution of λ-systems. In order to do so, one must engage the social
networks that shape it and provide them with new insights. This means that the knowledge
collected is shared and accepted by all involved stakeholders. This in turn then means that the
work must be collaborative. Section 5.2.1 will discuss the main practices, problems and issues
of collaborative research.

18Please refer to Chapter 5 for a description of the modelling method.
19This section is developed jointly with dr. P.J. Beers, and resulted in publication (Nikolic et al., 2007).
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6.5.2 Modelling in Groups
Why model in groups? There are two main reasons. First, combining knowledge of multi-
ple people satisfies the multi-domain and multi-disciplinary knowledge requirement of CAS
modelling. Second, if correctly black-boxed, group modelling lowers the transaction cost on
knowledge exchange (Beers and Bots, 2007). The concept of black-boxing will be discussed
below.

Black-boxing The modelling group needs to be able to effectively share knowledge with each
other and understand each other. They need a shared cognitive frame of reference (Bromme,
2000), whereas they generally have little knowledge in common to begin with (Alpay et al.,
1998). We aim for exactly the amount of shared knowledge needed to create interfaces between
disciplines and domains, and no more. We call this process black-boxing each other. We aim
for the smallest sufficient level of shared understanding, that is, enough to edge disciplines and
sub-models, but not so much that we would become experts in our mutual disciplinary fields.
To give an example from real life, an engineer does not need to know how a micro-economist
models an individuals decision process about a buying a car. For her it is enough to know that
she needs to provide the economist with the parameter values associated with the car, e.g. its
maintenance cost and its mileage. Likewise, the economist does not need to know how exactly
the design of the car determines maintenance cost and mileage. The only thing the economist
and the engineer need is a shared interface between their individual knowledge domains. This
means that people cannot know everything, but they can know enough to make collaboration
possible. By sharing a common interface, each modeller can stay within the relative comfort of
her field, and contribute domain knowledge to the agent-based model without needing to know
the details of other fields. The interaction across field thus becomes ’cheaper’. The knowledge
transfer transaction costs go down.

Knowledge transformations Having explained the importance of of modelling in groups,
we will proceed by exploring the knowledge processes involved. Let us imagine the process
that takes this disciplinary knowledge from a group of individuals and transforms it into an
agent-based model.

6.5.3 Knowledge Transitions
Teamwork This method attempts to bring Complex Adaptive Systems modelling and multi-
disciplinary teamwork together. It does so by focusing on the various stages that take knowledge
from being unshared and unformalized to becoming formalized in the form of computer mod-
els. The route from unshared and unformalized knowledge in persons’ heads to formalized
and shared knowledge in a model (see Figure 6.17) goes through two intermediate knowledge
states (shared unformalized knowledge and formalized shared knowledge). We distinguish three
interfaces between these states: soft-to-soft, soft-to-hard and hard-to-hard.

Interface An excellent definition of interface is provided by Wikipedia20:

20http://en.wikipedia.org/wiki/Interface_(computer_science), Accessed 22 February 2007
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Figure 6.17: Knowledge transitions from unshared & unformalized to shared & formalized

An interface defines the communication boundary between two entities, such as a
piece of software, a hardware device or a user. It generally refers to an abstraction
that an entity provides of itself to the outside. This separates the methods of exter-
nal communication from internal operation and allows it to be internally modified
without affecting the way outside entities interact with it, as well as provide multiple
abstractions of itself. It may also provide a means of translation between entities
which do not speak the same language, such as between a human and a computer.

Although this definition is primarily aimed at computer science, it can be easily adapted
to our purposes. For instance, the soft-to-soft interface is one between (the minds of) different
’users’ or people, the interface itself consisting of represented knowledge. Similarly, the soft-
to-hard interface is one between people and ontology, the interface itself consisting of tangible
rules for using the ontology itself. The transformation of knowledge from each form to another,
passing these interfaces, is accompanied by specific challenges.

Soft-to-soft The soft-to-soft interface resides between people, or, more specifically, between
the minds of people. It can be seen as a soft communication interface between two or more
cognitive networks. Both the way people store their knowledge and the way people communicate
influence the nature of this interface. Different people have different distinct ways of storing
their knowledge, based on their unique personal (prior) knowledge. Their personal knowledge
is cognitively organized in ways specific to their domain and/or disciplinary expertise.

When people collaborate in groups, they try to communicate their knowledge to their collab-
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oration partners. A number of conditions needs to be satisfied for their message to successfully
reach its intended audience. The audience must have enough prior knowledge to be able to
understand the message. However, that is not as easy as it sounds. First, conceptual am-
biguities abound when people with different disciplinary backgrounds collaborate (Beers and
Bots, 2007). Secondly, experts generally overestimate the availability of their knowledge to the
general public and are therefore prone to convey insufficient information for the audience to
come to understand their contributions (Bromme et al., 2001). In other words, just telling the
other what you know will not be sufficient to achieve a common understanding of each other’s
knowledge (Bromme, 2000) and (Clark and Schaefer, 1989), because apart from having different
knowledge, people also have their own, idiosyncratic ways in which they store, process and com-
municate their knowledge (Boshuizen and Tabachneck-Schĳf, 1998). The associated challenge
is how to overcome these representational differences. Effective communication then demands
that discussion partners negotiate ways to deal with these representational differences. One
of those ways is to use pre-defined representational formats (formalisms) to guide knowledge
exchange (Van Bruggen et al., 2002).

Soft-to-hard The soft-to-hard interface lies between unformalized and formalized knowledge.
It is an interface between people and models. This interface is characterized by conceptualiza-
tion and formalization. It means that the shared body of knowledge of a group of people is
analyzed and defined in terms of the individual concepts that constitute it. On the one hand,
this produces a very explicit account of the shared body of knowledge, and on the other hand
the yields can be seen as fully formalized, in the sense of being an ontology of that body of
knowledge (Gruber, 1993). It should be noted that the word ’ontology’ is meant here in the
software engineering sense, not in the philosophical sense.

Challenge The challenge associated with this interface resides in the difference between cog-
nitive and formal knowledge representations. The human cognitive architecture uses concept
networks that operate with stereotypes. This representation is reminiscent of fuzzy logic, where
things can to some extent belong to multiple categories. People, especially the non-modelling
community (a non-negligible part of our current-day society), are apt to formalize their knowl-
edge up to a level below what is required by computers. Traditionally, modellers step in to fill
this gap, but in the case of complex adaptive systems they often lack the necessary domain
knowledge. To enhance the interface between people and models, one may use representational
formalisms that require a large extent of formalization of content.

The System Decomposition Method facilitates crossing the soft-hard interface by starting
with a very small conceptual model that is in line with the modelling technique to be used
later on. In our case, we chose to use agent-based modelling and thus used an ontology of
an agent as a basis for further conceptualization and formalization. Starting from the agent,
the modellers can define instances of agents and build new agent characteristics and behaviors,
but all still in connection to the early agent ontology. In that sense, the soft-to-hard interface
becomes characterized by a dynamic process of adding, defining, and adding more, without an
explicit stopping rule.

Hard-to-hard The hard-to-hard interface exists between coherent parts of formalized knowl-
edge, which in this case are agents. This knowledge, by definition, is fully formalized and
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computer-readable and -processable. In that sense, the following holds true irrespective of
whether it refers to a pen-and-paper ontology or pieces of computer code. Thus, insights from
computer science about interfaces between computer programs are fully applicable to the case
at hand. In the case where agents constitute the coherent parts of formalized knowledge, com-
puter science teaches us that such agents each have an Application Programming Interface
(API). When the interface is specified, communication between components becomes fully ex-
plicit and formal. In practice this means that when an agent implements an interface (API),
one knows exactly how to communicate with that agent. So the communication between agents
becomes fully specified and unambiguous.

Hard-to-soft The final interface in the method, which is not presented in Figure 6.17, is the
hard-to-soft interface. This interface enables the use of the model and transforms the model
outcomes and data to useful, applied knowledge. Is is a very complex matter, involving fields
like psychology, perception, social science (reasons for why people believe one source and not
another), etc., and its exploration is considered to be outside the scope of this thesis.

Challenge The main challenge with this interface is bound to its strength. This interface,
in order to be functional, needs to be very strict and formal. This severely limits the usability
of the interface by modellers, since they need to be able to ’speak’ such a formal interface.
Computer programming is an abstract skill relatively difficult to master.

Pitfalls The interface between agents actually is one between parts of a model, or between
sub-models. Our position is that a set of formal models that can communicate and are used
in interaction can be regarded as a single model. However, two types of pitfalls can undermine
the interoperability of model parts or, in other words, confound the hard-to-hard interface.

The first, less severe type, is the implementation pitfall, in which case conceptualizations
are compatible but implemented differently. For example, the concept of temperature can be
expressed both in degrees Centigrade and degrees Fahrenheit. They mean the same thing,
but their different expressions make them non-interpretable. These errors, although practically
difficult to solve, are conceptually trivial; solving them is a matter of translation.

The second, more severe type arises from conceptual mismatch. This refers to cases where,
even with correct individual model parts, modelers are of the impression that they use the
same terms for the same concepts in the same way, whereas in practice the formalization is
not. It amounts to reading a number to assess temperature, but using a hygrometer to do so.
To enhance the interface between sub-models and model parts, one can use ontologies.

6.5.4 Knowledge States
The system decomposition method (SDM) is effectively a collaboration script for agent-based
model building using a group of experts/stakeholders. While executing the script, each of the
interface problems identified earlier are addressed. Earlier versions of the SDM have previously
been reported in (Nikolic et al., 2006, 2007, 2009). A schematic representation of the method
is presented in Figure 6.18. A full-scale version is available online 21. The method consists of
two parallel paths, the Facilitators’ and Modellers’ Path, and the Stakeholders’ and Domain

21http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/Process_Scheme_SDM.png
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Experts’ Path. These will be presented below. It is important to notice that in this case study,
the Modellers and Facilitators are the author and researchers from the TU Delft, the Groningen
Seaports are considered to be the stakeholders, and that diverse domain experts are involved
when necessary.

Figure 6.18: System Decomposition Method

In this section, I will present each knowledge state and the activities belonging to both the
modeller’s and the stakeholder’s path. In the Results section the actual results of the SDM
application will be presented.

6.5.4.1 Facilitators’ and Modellers’ Path

The Facilitators’ and Modellers’ path, from now on referred to as the Facilitators’ path, is
the ’backstage’ process of the SDM. It is the method that allows the stakeholders and do-
main experts to efficiently formalize and share their knowledge and to eventually increase their
understanding of λ-systems.

6.5.4.2 FS 0: Objective and Setting

As can be seen from Figure 6.18, the SDM method starts in the Facilitators’ Path, at the
Facilitators’ State(FS) 0. In order to be able to place the whole SDM in a context, the setting
and goals need to be made clear to both the facilitators and stakeholders.

Objective As discussed previously, we are about to begin a process of increasing our knowl-
edge about the state and behavior of a λ-system. In order to do so, we are creating a complex
Agent-based Model. We have postulated that we must do this by gathering data from stakehold-
ers and domain experts in a structured and systematic manner. We must share and formalize
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the knowledge present in many different heads and create a socially accepted, formal computer
model. While going through this method, the stakeholders and domain experts will go from
Stakeholder Knowledge State 1 to 5, see Figure 6.18, creating an increasingly formal knowledge
base. At the same time, the facilitators and modellers will follow a parallel path, supporting
the process and creating the computer simulation based on the formalized knowledge.

Setting The process setting is as follows. There is a small group of facilitators and modellers
(Facilitators), and a group consisting of stakeholders and domain experts (Stakeholders). The
facilitators, together with the stakeholder/client involved in a project, determine which specific
domain experts need be involved. The such formed Stakeholders group will enter the Stake-
holders’ / Domain Experts’ path. The facilitators create the conditions and prerequisites that
the stakeholder group needs in order to move from state to state. It is important to realize that
while the stakeholder participants remain the same throughout the process, different domain
experts can be involved at different times. On the facilitation side, it is advantageous if the
facilitators and the modellers are the same group of people, but it is not strictly necessary. Once
enough formalized knowledge has been gathered from the stakeholders group, after Facilitators
step 2, modellers can take over the process.

6.5.4.3 FS 1: Structuring the Interface

At the Facilitators State 1, the group of facilitators explicitly defines their knowledge of Agent-
based Modelling. This state makes sure that all the facilitators and modellers are ’on the
same page’ concerning the very basic concepts that are needed in order to structure the soft-
soft interface. It is the facilitators’ role to introduce the stakeholders group to ABM concepts
without explicitly mentioning them. The method involves creating a structured, unshared
formalism based on the Agent-based Modelling paradigm and using it to structure the soft-soft
interface between Stakeholders Knowledge States 1 and 2.

A schema of the basic agent formalism used in the SDM is presented in Figure 6.19. The
agent formalism determines the transition between the Knowledge State 1 to 2, across the
soft-soft interface.

Interacting nodes Given the basic ABM formalism, agents are considered to be nodes in
an interaction network. Nodes are connected by edges, which are abstracted interactions. An
agent consists of a number of incoming interactions (In Edges) and a number of outgoing
interactions (Out Edges) (Jennings, 2000a; Newman, 2003). Furthermore, an agent consists of
a State and Decision-making. The interactions between the State and Decision-Making result
in the agent’s behavior, manifested as outgoing interactions. Both State and Decision-making
consists of Data that are considered to be objective facts in a sense that they are not observer-
dependent. For example, a weight or length of something is an objective form of knowledge.
Knowledge is defined as data or algorithms that are observer-dependent. It is the codified
experience of agents (Stefik, 1995a).

Four concepts form the basic formal ontology:

• Node

• Edge
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Figure 6.19: Basic agent formalism

• Property (Objective Knowledge)

• Knowledge (Subjective knowledge)

Node and edge Their relationships are presented in Figure 6.20. We can see that the Node
and the Edge are interdependent. These two form the basic concepts of graph theory (Gross
and Yellen, 2004; Newman, 2003). Everything is abstracted to be either a node or an edge.
The choice of which an object is abstracted and how is purely a matter of convenience. Data
and Knowledge are considered to be two distinct, independent concepts.

Prestructuring concepts These concepts are used to pre-structure the Knowledge Sharing
process, by setting the implicit vocabulary for the social process. Everything is namely to
be expressed in terms of objects or entities (Agents), their interactions (Edges), properties of
these two (Data), and their mechanisms/behaviors (Knowledge). To show how the basic agent
formalism and the corresponding basic ontology are used, we will present an example agent, a
baker.
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Figure 6.20: The four basic concepts of the formalism. Arrows denote a has a relationship with
an instance of a class. A star denotes a possibility for multiple instances. So a Node has out
Edges that are multiple instances of an Edge.

Baker as an example The bakery and its owner are represented as the Agent (Node). The
baker has flour and yeast suppliers (In Edges), and has customers (Out Edges). These are
the Other Agents (Nodes). The supplying and buying are interactions between agents that
are abstracted as Edges. The bakery (Agent) has a State that consists of the amount of flour
and yeast in stock (Data) and a number of bread recipes (Knowledge). The Decision-making
consists of the amount of bread sold (Data) and the rules the baker follows when setting the
price of bread (Knowledge).

Conceptual bridge The agent formalism serves as an unambiguous conceptual bridge that
structures communication across the soft-soft interface. Its explicitness alleviates problems
with conceptual ambiguities in individual knowledge by acting as a shared vocabulary focus
point. Given this vocabulary, we can can start the SDM method at the first knowledge state
SDM1. The facilitators invite the stakeholders to a guided brainstorming session.

6.5.4.4 FS 2: Conceptualization

Structure and abstract The next step in the Facilitators’ path is to structure and ab-
stract the knowledge, forming an ontology. Initially informal, this knowledge is abstracted and
converted into a computer-readable and -processable formal ontology. This ontology contains
explicit formal specifications of the terms in the domain and the relations among them (Gru-
ber, 1993). It is effectively a vocabulary of words used and the relationships between those
words. The problem with this step is that generally, the domain experts do not understand the
requirements for creating computer-readable and -processable knowledge, while the computer
modellers have no understanding of the domain knowledge involved.

Frame-based ontology In practice this means a group effort to create a formal ontology,
using ontology editing software, such as Protegé (Gennari et al., 2003). Ontology creation is
not an exact science but more of an art. (Noy and McGuinness, 2001) It is a social, iterative
method in which the concepts identified in Stakeholders’ State 2 are formally described, assigned
a hierarchical structure and properties. A Frame-based ontology (Chaudhri et al., 1998), as
used by Protegé, is a knowledge representation model that recognizes two types of relationships:
Is a and Has a. It is therefore ideally suited for representing concepts that are object-oriented
in nature, such as Agent-based Models.
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Soft-hard interface problem This step addresses the soft-hard interface problem identified
in Section 6.5, by using as a starting point the combination of frame-based and agent-based
ontologies that are already computer processable. If pre-structured this way, the soft-hard
interface guides the knowledge structuring process in a way that is computer compatible from
the start. It is both sufficiently simple and complete for the domain experts to understand and
programmable enough for the modellers to use. This is another example of black-boxing each
other.

Edge example In order to illustrate the resulting ontology, we will present the subclasses
(the is a descendants) of the Edge concept in Figure 6.21. The entire ontology (more than 170
classes and 100 slots) is available online.22

Figure 6.21: Example ontology structure for the concept of Edge

Is a relationships denote subclass links. That is, a Physical Flow is a Flow, and Flow
is a Edge. The has a relationships describes properties of objects. In Figure 6.21 the has a
relationships are represented by the name of the property. So a Physical Flow has a carrier
that is of type Physical Connection, and a Physical Connection has a content, which is of type
Flow.

Only what, not how It is important to note that a frame-based ontology is not able to
store behavior (algorithms). It only stores facts. It, as it were, answers the ’what is’ question,
and not the ’how to’ question. Behavior of components is thus not stored in the ontology but
in the actual model code, in Facilitators’ State 4. Once the ontology is created, it is used as
the soft-hard interface that collects and formalizes the stakeholders’ knowledge transition from
Stakeholders’ State 2 to 3.

22http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/AgentOntologyExpanded.gif
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6.5.4.5 FS 3: Object and Algorithm Specification

Java objects This state further formalizes the knowledge from Stakeholders’ States 3 and
4. During this state the modellers in the facilitator group become more active. In this step
the ontology created in state 3 is analyzed, and corresponding Java object classes are created.
This is necessary because the facts are encoded in Protegés internal data structure, frames and
slots, which is not practical for use in the ABM. The structure of the factual knowledge in
the ontology is mirrored in the structure of POJOS (Plain Old Java Objects) 23. The POJOS
conform to Java object interaction and communication standards, and are thus usable in any
Java program. Using custom software, the GenericKnowledgeBaseReader 24, instances of these
POJOS are created and made available for processing by the decision-making algorithms.

Behavior extraction From Stakeholders’ State 4, we extract the specification of the Agents’
and the environment’s behavior. The state 4 tells us exactly which decision-making processes
need to be encoded into the agents to give them their behavior, and which specific dynamics
behavior should the agents’ environment have. The behavior is very tightly tied to the fact-
s/object, since the decision-making algorithms reason over the facts, that is, instances of the
POJOS described above. The environment’s set of dynamics is also tightly tied to the agents’
decision-making, since its role is to affect the agents and their decision processes. These algo-
rithms are formalized either as plain Java methods (functions) operating on the POJOS, or as
rules defined in the inference engine.

Formalized and shared At this point, the modellers have access to formalized and shared
knowledge, stored in a digitally readable and inferable format. By inferable we mean that a
computer, given a suitable inference engine, can generate conclusions (inferences) about facts
given, their structure and relationships. As mentioned in Section 6.5.3, knowledge structured
this way forms an API. As mentioned above, the knowledge is now contained in a Protegé
database, which can automatically be translated into Java (Corporation, 2000) code and made
available to the programmer.

Model description With these classes and instances, the programmer can start describing
the system in terms of an agent-based model that automatically conforms to the created ontol-
ogy. For example, if agent representing a certain form needs to be described, the programmer
will retrieve that agent from the knowledge base, add some explicit behavioral rules, and let the
agent interact with others. Of course this implies the presence of suitable ontology database
and translation/instantiation software, e.g. the GenericKnowledgeBaseReader class.

Behavior storage As mentioned in Section 6.5.4.4, the actual mechanisms of behavior can
not be stored in the ontology. They are stored as behavioral rules using a declarative language
called JBoss Rules (Forgy, 1982; Proctor et al., 2007), which is processed using a forward
chaining inference engine. Since the rules are also based on the ontology, we can create a
modular and extensible behavior library.

23http://en.wikipedia.org/wiki/Plain_Old_Java_Object
24http://gux.tudelft.nl/svn/SimulationGenerics/trunk/src/simulationGenerics/

GenericKnowledgeBaseReader.Java
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6.5.4.6 FS 4: Simulation Implementation

Code writing Once we have the algorithms in place using the previous step, the simulation
is created, building the necessary support computer code, like the scheduler, graph plotting,
statistics collection, experiment setups, etc. While this is all standard computer programming,
and theoretically trivial, it is not easy. A large amount of time is involved here, since this
is a very complicated and error-prone problem. Continuous testing (unit testing, debugging
procedures) need to be performed in order to be able to create a verifiable model.

Computer simulation An output of this state is a usable computer simulation that can be
given to the stakeholder group (see Stakeholders’ State 5). From this state we also support and
consult the stakeholder group by giving advice and support about the use of the model and
adding refinements when necessary.

6.5.4.7 Stakeholders’ and Domain Experts’ Path

When discussing the Facilitators’ path, we examined the ’behind the scenes’ processes of the
SDM. The stakeholders’ and domain experts’ path is the front stage of the method, as expe-
rienced by the participants. By now, we understanding the ’backstage’ processes,and many
activities done by the participants will become self-obvious. For brevity, we will refer to this
path as the Stakeholders’ path, and the states in it as Stakeholder States (SS).

6.5.4.8 SS 1: Unstructured and Unshared Knowledge

The first state of the Stakeholders’ path is the unstructured and unshared knowledge state.
For the participants in the process, this is perceived as the starting point of the SDM. In
this state a group of experts and stakeholders is brought together in a working group. They
collectively have a lot of knowledge about the system. At this point, neither the facilitators
nor the stakeholders are able to integrate this knowledge so as to increase their understanding
of their λ-system for their benefit. The goal is to transform this loose working group into a
tightly knit learning social system.

6.5.4.9 SS 1→SS 2: Knowledge Sharing

Knowledge sharing By using the Facilitators’ State 1 (see 6.18) as an background, a social
process of sharing the available knowledge is started across the soft-soft interface. Practically,
this guided group brainstorming session can for example be implemented as a Group Decision
Room and thinkLet-facilitated collaboration process (Kolfschoten et al., 2006) or as a wiki-
mediated knowledge collection process. All of these methods have in common that they require
extensive preparation by the facilitators. A generally applicable format that has been applied
in a variety of situations will be presented below.

SDM script Using the concepts and vocabulary from the Facilitators’ State 1, the group is
guided to present and exchange knowledge. The group is asked to think about the objects and
entities that are relevant and part of the system/problem. They are also asked to think about
properties of those objects/entities and the interactions that they have with others. Also, the
group is asked to name mechanisms/behaviors of entities. Emphasis is on breadth, not depth.
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Through social interaction the group encourages each other to identify more and more entities,
properties, interactions and mechanisms. The exact script used to facilitate this process is
presented in Section 6.4.4.1.

Making knowledge explicit The objective of this method is that the participants share and
make their domain knowledge explicit. It is important that when this process is completed the
facilitators have sufficient output in order to continue to the Facilitators’ State 2, and that the
participants experience a degree of satisfaction and achievement. During the session wrap-up,
the facilitator should reflect on the large amount of knowledge that was shared and offer a
glimpse of the next steps.

Iteration This method, if necessary, can be reiterated to make the knowledge pool as com-
plete as possible. Reiteration will further reinforce the soft-soft interface by reducing the prob-
lems presented in Section 6.5. The conceptual ambiguity is reduced, since the group discussed
many shared concepts at length and sufficient information will have been exchanged.

6.5.4.10 SS 2: Structured and Shared Knowledge

In this state the knowledge shared in the previous step will be structured and shared through
a formal ontology. The formal ontology is presented in Facilitators’ State 2, Section 6.5.4.4.

Once a shared, unstructured pool of knowledge is assembled at Knowledge State 2, it needs
to be structured and formalized. From this state, two activities need to be performed. First is
the transition to Facilitators’ State 2, the creation of the ontology. This is a process performed
by the facilitators, described in Section 6.5.4.4. Second, the created ontology is used to create
the soft-hard interface enabling the Knowledge Structuring and transition to Knowledge State
3, a structured and shared state.

6.5.4.11 SS 2→SS 3: Knowledge Structuring

Knowledge storing In this method the ontology is used as a repository/database to struc-
ture and share the available knowledge. This is facilitated by the ontology editor and its
back-end database. Users enter their knowledge about the state of the world through the user
interface. This knowledge then becomes available for all users. Because the ontology is created
in a participative manner, all users should be able to express all their knowledge in it. In case
concepts are still missing, or are ill defined, the conceptualization process can be reiterated.

Because the soft-hard interface, the ontology, is used, we avoid the discrepancy between
cognitive and formal representation, see Section 6.5. The cognitive knowledge must be expressed
by literally filling out a form in the ontology. The form and the concepts in it are a direct result
of the social process and are negotiated. The user wishing to represent her knowledge must use
the pre-agreed concepts, therefore removing any ambiguity from the representation.

6.5.4.12 SS 3

Hierarchy of concepts The knowledge in the ontology is of two types. First, the ontology
contains the relationships between concepts, the class hierarchy. As mentioned in Section
6.5.4.4, class in this context should be understood in an object-oriented sense, as a generic data
type. A class is a generic description of a concept that follows simple inheritance rules. For
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example, all fruit can be represented by a class Fruit. subclass of Fruit is Apple. If Fruit has
certain properties such as color and taste, Apple will inherit those, too. An apple can not be
a Vegetable, since a class can only have one parent, one super-class.

Instances In addition to class description, the knowledge base contains instances of those
classes. That is, we cannot only talk about Apple class things, but also about one specific
apple, that has a green color, a sour taste and is in my pocket right now. This apple in
my pocket is an instance of a generic class Apple. The result of this state is that we have a
repository of relationships between concepts and and a database of actual things that modellers
of λ-systems should consider.

Process end This process ends in the Knowledge State 3, the structured and shared knowl-
edge. We now have a socially constructed and accepted ontology, and a knowledge base of facts
about the system/problem being modelled. Given this shared and formalized knowledge, two
different processes are started.

6.5.4.13 SS 3→SS 4: Model Specification

Ontology parsing The first step is the parsing of the ontology, through a hard-hard interface.
This process is described in Section 6.5.4.5. The instance descriptions are now available to the
modeller. However, in order to create a model, a description of the agents’ decision-making
and the dynamics of the environment must be created.

Behavioral model The domain experts are asked to create formal descriptions of these
decision-making processes. This can be done using state transition diagrams, causal dia-
grams, flowcharts or if-then reasoning structures. Such formal descriptions are effectively
programmable algorithms for operating on the instances defined in the ontology. Algorithms
collected from domain experts are then ready to be formally implemented in Facilitators’ State
3.

6.5.4.14 SS 3→FS 4: Ontology Parsing

This process takes place over the hard-hard interface. Is is the process of translating the
concepts formally defined in the shared ontology into Java objects. This was presented in
Section 6.5.4.5.

6.5.4.15 SS 4: Functional Model Specification

Model description At the Stakeholders’ State 4, the mode is fully specified. All the knowl-
edge is recorded in the formal ontology, and all the behavior is specified in a formal model. The
model is fully specified, in term of what is in it and what it does. Scenarios and other dynamic
components are also specified here, as well as the exact metrics that will be used to measure
the model. At this moment, there is no actual computer model yet. The knowledge collected
at this state is used by facilitators to start the computer model implementation.
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Model implementation At this moment, the Stakeholder and Domain Experts group’s
activities are halted for the duration of the computer model implementation. This may take
several days to a few months, depending on the size and complexity of the model.

6.5.4.16 SS 5: Applied Knowledge

Model use In this state the model is used to increase the insights and knowledge about
λ-systems. It consists of feedback workshop(s) between the modellers and the stakeholders.
These workshops are ideally an iterative process.

Iterative process The iterations are performed over the hard-soft interface. Model outcomes
are presented, and the stakeholders react. Stakeholder comments are processed/reimplemented,
and the feedback process is repeated.

Data presentation Great care must be taken by the modeller when presenting data. Ad-
vances in computer graphics and data presentation allow for very visually impressive images.
Non-computer experts tend to be overwhelmed by the amount of information presented and
tend assume that the model outcomes are ’the truth’. The modellers have a great responsibility
to correctly explain the results, their validity and limitations.

Two types of stakeholder feedback When discussing the model outcomes with the mod-
ellers, stakeholders will have two main types of feedback, illogical model behavior and surprising
behavior.

Illogical model behavior Stakeholders observe model outcomes that do not seem to make
sense. The behavior cannot be explained by following through on the model logic. This can
point toward model artifacts or logic implementation errors. These outcomes lead to a model
debugging action by the modellers.

Surprising behavior Surprising behavior can be both positive (desired by the stakeholder)
and negative (undesired by the stakeholder). Such observations can be explained by examining
the model’s logic. It leads to questioning of the modelling assumptions. Special care must
be taken when the model yields desirable results. Stakeholders tend to be far less critical of
’pretty’ model outcomes than ’ugly’ ones. Observations of this type lead to a refining of the
behavioral model of the agents to changes to the modelling assumptions by the entire team.

6.6 Conclusion
Overview of the co-evolutionary method This chapter presented the first three genera-
tions of the modelling method. The first generation was a deformation of the fitness landscape
in the technical dimension. A functioning ’proof of principle’ model template was constructed to
demonstrate that the necessary abstractions needed to model an evolving λ-system can indeed
be implemented as an ABM. The second generation focused on designing a social process to
collect relevant domain knowledge. Relevant facts and knowledge were collected. In the third
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generation, design problems identified in the social process in the second case were rectified,
and an alternative technical implementation was attempted.

Each of these cases represents a learning step for the modelling method - the method
progresses via three generations. The intermediate outcome of this evolutionary modelling
method is the System Decomposition Method for collecting and formalizing knowledge from
multiple stakeholders into an Agent Based Model. The theoretical foundation of the SDM
developed in the Chocolate Game case study were discussed in Section 6.5 and provide the
reader with a deeper understanding of the case studies to come.

(a) Flow Based Evolution (b) Combination of Infras-
tructures

(c) Chocolate Game Model

Figure 6.22: Learning case study method development overview

Next steps The next step is the Costa Due case study. It is the fourth generation in the
co-evolutionary process and a full-scale study, combining all of the insights from model design,
social process design, knowledge and fact collection.
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CHAPTER 7
FULL-SCALE CASE STUDY: COSTADUE

You are an organism.

You need to eat to survive.
If you don’t find food, you will die.
You live in an environment.
If the environment changes and you cannot adapt or resist, you will die.

Somebody will try to eat you.
The environment will change.

Welcome To Evolution.

But this is not what you think. This is not Discovery Channel.
This is an Industrial System.

You breathe money, oil, electricity and water.
You eat steel, concrete, plastics and information.
And when you flush CO2, dioxins, old car tires and landfills appear...

Welcome To Industrial Network Evolution.
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Case abstract This chapter presents the first full-scale case study. It implements
the complete SDM, presents a full-scale simulation engine and encodes a lot of knowl-
edge and facts on chemical and bioprocesses. The study examines the evolutionary
patters of the transition of the Groningen Seaports region from a chlorine to a biobased
cluster. The agents have modular and mass balanced descriptions of technology and
realistic economic properties. Basic economic reasoning on contract selection and price
determination is implemented. The transition is simulated by adding new biobased tech-
nological options, identified by stakeholders, to the simulation. The cluster evolution is
studied under different economic selection pressures. The main conclusion is that the
transition to a mainly biobased cluster is unlikely, given the current agent behavioral
assumptions and gathered data. The evolutionary pattern is very path-dependant, and
transition to biobased technologies is only likely for bioelectricity processes, assuming
the continuing survival of incumbent industries. The main direction for future model
improvement is to examine the model’s behavior over much larger parameter settings,
including a range of prices on the world market. This poses a technical challenge due
to the number of simulation runs needed. Furthermore, more sophistication is needed
in the description of agent decision-making, including, for example, the decisions for
the agent about when not to join the cluster. A refinement in the cluster management
strategies available to the RDA is also needed. At the modelling method level, the quest
for encoding new formalisms and new facts continues.

7.1 Focus Point

Figure 7.1: Case focus

Methodological focus This case study1, will focus on implementing
all four aspects of the fitness landscape to the maximum. The social
process design is implemented in full, an elaborate technical design
of the simulation engine is tested, a large quantity of knowledge is
formalized and many facts collected. It is the first comprehensive case
study combining all the insights so far, and it creates a solid basis for
future development.

Case focus The case is focused on modelling and understanding
the evolution of a regional industrial cluster in the Dutch province of
Groningen. It examines the possible evolutionary pathways for a tran-
sition from a petrochemicals and chlorine based cluster to a bio-based

cluster.

7.2 Hypothesis
First hypothesis A the method level, it is possible to combine the lessons learned in the
learning cases and create a social process and simulation engine that provides an understanding

1 Part of this chapter’s results, produced in the context of a MSc thesis study by Blokker (Blokker, 2006),
supervised by the author. Parts have been published as (Nikolic and Dĳkema, 2007). Parts have been adapted
from a working paper “From many minds to modular models: Facilitating the modelling of complex adaptive
systems” by I. Nikolic, P.J. Beers, G.P.J. Dĳkema and P.Bots
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of the evolutionary patterns of λ-systems.

Second hypothesis Modelling the patterns of λ-system evolution using multiple formalisms
will help the RDA examine possible evolutionary patterns when introducing different technolog-
ical options in the region.

7.3 Case Description
Seaport regions Around the world, seaport regions are hosts to λ-systems. Apart from
transport hubs and container terminals comprising harbor infrastructures, these systems also
comprise of energy infrastructure and industrial clusters. In many of these regions, Regional
Development Agencies (RDAs) have been assigned the responsibility of sustaining the socio-
economic and ecological prosperity of their respective regions (Dĳkema et al., 2005).

Effective Management As discussed in Chapter 4.2, there are several properties of indus-
trial regions, such as seaports and their infrastructures, that make them difficult to manage.
Components and subsystems of an industrial network, such as production plant infrastructures,
have average lifetimes measured in decades. They are also very capital intensive: the invest-
ment for a typical world scale chemical plant ranges from 100 to 1500 M euros. This makes any
change to a subsystem very slow and very costly. Furthermore, there are multiple actors/a-
gents that shape a system’s evolution. Within companies, private decision-making processes
determine which system will be installed where, when and how. Companies experience huge
sunk costs because of past investments and are entrenched in a particular system. In addition,
the social network may evolve over time when owners and operators enter or leave the scene.

RDAs’ challenge As already mentioned above and in Chapter 1, managing λ-system evolu-
tion represents a formidable task for a Regional Development Agency (RDA). Not only must
RDAs timely adapt their policies in a changing world, but also the very economic structure of
their regions are shaped by decisions over which the RDAs have no direct control. For exam-
ple, the EU setting new Directives or a national government completing major infrastructure
in competing regions are all outside the scope of control of an RDA but crucial for a region’s
development. Companies are attracted to a region for the facilities it offers, and the RDA may
influence these.

Objective and setting Referring to the definition of complexity given in Section 3.3, it is
clear that regional industrial networks can be seen as Complex Adaptive Systems. We adopted
this view in the RDA’s problem definition for the case study: “How can we understand and
manage a complex, adaptive, multidimensional network of agent interaction which lacks central
control and that by definition requires multiple description formalisms?”.

CostaDue project The author and the TU Delft research network have been involved with
Groningen Seaports, the local RDA, the Groningen provincial government and other partners
to explore the possibilities for accelerating the transformation of the harbor and industrial
cluster into a bio-materials and bio-energy based cluster (Dĳkema and Stikkelman, 2006). The
stakeholder and problem owner in the study is clearly the Groningen Seaports, and more
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specifically the strategic development managers of the Port Authority. The involved domain
experts were from a variety of relevant disciplines.

Approach In order to aid the RDA, the approach based on the learning cases was used.
Using the SDM led to an ontology of processing industry and to a joint problem formulation
between the RDA and the researchers. Furthermore, the RDA and the social network involved
in the development of the Groningen Seaports region (Dĳkema and Stikkelman, 2006) defined
a number of bio-based technological options that in their view are crucial for the future devel-
opment of the cluster. These technological options were formalized in the ontology, and based
on it an Agent Based Model was created. The model examines the patterns of the cluster’s
evolution, given the appearance of the different conditions of the identified bio-based options.

7.4 Model Details
In this section the details of the constructed model are presented. The forms are modelled to
have a mass balanced technology description and basic realistic economic parameters. Decision-
making involves contract selection to feed the technology owned by the agents, and pricing
mechanism is used to sell the products. The model also involves a World Market agent that
acts as a sink/source for all economic flow, and an Environment Agent that acts as a source/sink
for environmental flows. The section closes with a discussion of the scenario space available for
examination.

This section will only discuss the details of the simulation, its main assumptions and the
details of technology and behavior representation within the agents. The social process, in the
form of the SDM, was extensively discussed in Section 6.5. The design of the simulation engine
is presented in Appendix D.

7.4.1 Model Assumptions
There are a number of assumptions underpinning the model. These are:

No harbor Harbor activities are not modelled in the simulation, even though the har-
bor is a part of the Groningen Seaports region. As we are focusing on industrial network
evolution, the harbor is only important in its ability to import and export goods.

Firm as a plant Agents in the simulation represent processing plants and are assumed
to be a owned by a firm. The model does not consider forms that own multiple processing
plants. The external economic world is aggregated as a World Market agent, and the
physical environment is modelled as the Environment agent.

Scenario Scenarios are used to describe World Market behavior and the RDA’s strate-
gies. In the base case, we modelled firms appearing in the region at random, since the
RDA suggested that it has a rather limited effect on who comes to the region.

Static prices The world market prices are assumed to be static.
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Components There are six main components that build up the model. These are:

• Technology Agent;

• Decision-making;

• Model schedule;

• World Market;

• Environment; and

• Scenario.

These components will be described in more detail below.

7.4.2 Technology Agent
As can be seen in Figure 7.2, the Technology Agent consists of its State and its Behavior. These
components will be discussed below.

Agent As already mentioned, firms are represented as agents. All agents use the ontology to
reason about the world and communicate with other agents using the concepts from it. The
agents are modelled to have only one goal, namely to survive. In order to survive, agents must
have a positive cash flow. Agents are allowed a negative cash flow for a limited period of time,
settable by the user. In order to maintain their cash flow, agents must purchase resources
needed to feed the technology they own and they must sell the products of their technology.
It is assumed that all processes are of such large scale that no stockpiling of products or raw
materials is possible.

Two exceptions to the above description of an agent are the Environment and the World
Market agents. These are discussed in Sections 7.4.5 and 7.4.4, respectively.

Figure 7.2 presents the layout of the Technology Agent.
As already mentioned in Section 6.5.4.3, an agent consists of a State and Behavior and

interacts with others via mass & energy flows and contracts. Agents also ensure that all mass
balances are conserved and all money is accounted for. First, the agent’s state is discussed,
consisting of two parts, Technology and Economics.

Technology Technology follows the basic engineering input/output paradigm as discussed in
Section 4.3.1. The detailed description of the Technology ontology and the corresponding Java
code is available online. 2

Each technology, in addition to having physical and economic properties, has an Operational
Configuration. Operational configuration is a normalized input/output table which, multiplied
by the operational scale, gives a mass balanced description of the technology. Operational
configuration consists of a set of Component Tuples3 defining the inputs and outputs. A

2http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/_THING/Node/
PhysicalNode/Technology.html and http://gux.tudelft.nl/svn/SimulationGenerics/trunk/src/
simulationOntology/Technology.java

3http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/_THING/Data/DataTuple/
ComponentTuple.html
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Figure 7.2: Structure of the TechnologyAgent

component tuple is a collection of data fully describing the flow. It is a vector consisting of a
Good Name, a Relative Amount, a Unit and a Function Label. An example of an Operational
Configuration describing a biomass gasifier is presented in Figure 7.3.

All operational configurations are normalized to the Reference Product. Stream labeling
categories are classified using the Functional Label. 4 defined by Dĳkema (Dĳkema, 2004)

Economics The second part of a Technology Agent’s state is the Economics. The agent’s
economic properties are defined as a list of Economic Property5 objects. These are, for example,
capital assets, debt, etc. Together with the economic properties of the Technology object, the
entire economic state of an agent is described. These states are used as facts in decision-making,
for example for setting prices of goods.

4http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/_THING/Data/Property/
Label/FunctionLabel.html

5http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/_THING/Data/Property/
EconomicProperty.html
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Figure 7.3: Structure of an Operational Configuration, defining a Technology as used by the
Agent

Behavior An agent’s state is insufficient to fully describe it, as it lacks decision-making
processes. We have defined its body and limbs as it were, but not its mind. An agent’s
behavior, discussed previously in Section 4.3.1, is the overall emergent behavior resulting from
interactions between the agent’s s internal decision-making processes. The ’mind’ of the agent
is modelled as a forward chaining inference engine using the Rete algorithm (Forgy, 1982). It
is implemented as JBoss Rules (Proctor et al., 2007) objects. A forward chaining inference
engine consists of a set of if-then rules that are applied to a set of facts. The engine infers
which rules ’fire’, i.e., are evaluated to be true. Rules can create new facts, which in turn might
fire new rules, etc. An inference engine can be compared to a logic net, filtering through a
sea of facts, catching those that apply and inferring consequences of those ’caught’ facts. The
decision processes that agents have are proactive and reactive. First, agents make proactive
decisions about purchasing resources, and secondly, agents make active pricing decisions when
asked to offer their products for sale.

Purchasing Purchasing decisions consist of reasoning by the agent about the technology they
owned the type and quantity of the resource needed. Once this is done, an agent places a call
for offers in the virtual market and receives potential contracts. Once contracts are received,
they are treated as Facts, entering the inference engine. Using these facts and the contract
selection rules, the agent will select an appropriate contract. The most basic contract selection
algorithm chooses the cheapest contract, up to the available amount of what is needed. If the
amount of the cheapest contract is insufficient, it will also accept the second cheapest offer,
until its mass requirement is met. The purchasing rule set is available online. 6

Sales On the reactive, pricing end, an agent receives a request for a contract from the market,
it reasons about the technology it owns to determine whether the type and amount can be
supplied and determines the price for the resources. A technology object itself and its economic
properties are considered as facts by the reasoning engine. Several mechanisms for price setting
are implemented. The most simple one is a cost price plus method, where an agent reasons
about its technology, determines the cost price and adds a fixed margin. 7 A more advanced
model is the perfect market, a perfect information model in which an agent reasons about the

6http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/trunk/src/simulation/
ContractSelectionCheapest.drl

7http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/trunk/src/simulation/
CostPricePlus2.drl
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availability of a certain resource from competition and either offers a price just below the World
Market price or attempts to recover operational costs by setting the price just above the cost
price. This algorithm is presented in Figure 7.4. The rules used by the inference engine are
available online. 8 Finally, an adaptive algorithm was implemented, whereby the agents learn
from their past profits and adjust their margins accordingly. 9

Figure 7.4: Agent’s algorithm for setting a price of a good, agent assuming a perfect competition
situation. For meanings of abbreviations, see the paragraph below.

In Figure 7.4, the following abbreviations are used: QL: local production capacity = sum
of all local production capacities; DL: local demand = sum of demand of all local agents
(considered a scalar, for now; should be a demand function); MC: local marginal costs of
production; PW: world price; PT: price of transport from local area to world market; PL: local
price.

7.4.2.1 Multidimensional Interaction

The basic agent formalisms described in Section 6.5.4.3 presented Edges as the only interaction
between Agents. The Technology Agent presented in Figure 7.2 shows two subclasses of Edges
10 used in interaction. The first is the Physical Edge and its own subclass Physical Connection.
11 This type of edge connects technologies and represents mass or energy flows. Interaction
between agents themselves is of the type Social Edge and its subclass Contract. As a result
of decision-making, a Contract is created between agents, which in turn causes a Physical
Connection to be established, across which a Physical Flow is established. So the network

8http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/trunk/src/simulation/
PerfectCompetition3.drl

9http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/trunk/src/simulation/
ChangingMarkup3.drl

10http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/_THING/Edge.html
11http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/_THING/Edge/

PhysicalEdge/PhysicalConnection.html
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created by Technology Agents has three dimensions which, while closely correlated, are fully
distinct. Just as in the Chocolate Game model, presented in Chapter 6.4, all edges are valid
for only one turn. Expansion for long-term contracts and connections is trivial. These physical
connections can only be established if a social connection, a Contract, has been established
between the agents owning the technologies. The network created by interacting agents is thus
multidimensional, with each dimension affecting the others.

7.4.3 Model Schedule
Agent Based Models are discrete simulations that attempt to model the inherent parallelism
of the real world. This parallelism is achieved by having discrete time steps, between which
no time is thought to pass. Everything between two ticks of the clock is assumed to happen
at the same time. The Scheduler, an integral part of Repast, is responsible for initiating those
activities. Figure 7.5 presents a schematic representation of the schedule used.

Figure 7.5: Agent activities scheduled by the simulation
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Active and passive At each time step the scheduler will iterate over the list of agents, making
them active and performing their actions. All other agents are passive and only respond to
queries by the active agents. The order of iteration is randomized each turn to prevent first-
mover advantage artifacts.

Housekeeping In the second part of the scheduled actions, the scheduler will cause the
necessary housekeeping activities to be performed. These actions check the mass balances,
perform economic accounting and, when necessary, remove bankrupt agents.

7.4.4 World Market
As already mentioned, the World Market is a special case of an agent. It is an abstracted
aggregate of all other firms in the world that produce and sell goods needed by the cluster. The
World Market may have its own internal price dynamics and is not influenced by the agents in
the cluster. Depending on the conditions in the cluster, there might be a significant difference
in prices. The World Market serves as the infinite economic source and sink for goods that are
produced or needed in the cluster.

7.4.5 Environment
The Environment agent is another special case of the Agent. The Environments ’buys’ all
streams that are labeled as ’waste’ in the ontology and that nobody else wants to buy, such as
CO2 . Furthermore, the Environment offers for ’sale’ all goods that are labeled as ubiquitous,
such as air and water. These environmental emissions and extractions are modelled as physical
flows with associated contracts having a price of 0. In this way an accurate mass balance of
extractions and emissions to the physical environment is possible. This approach allows complex
ecological impact modes to be simply modelled inside the Environment, being dependent on
the emissions and extractions of the cluster.

7.4.6 Scenario
Scenario The final part of the model is the Scenario, which describes the environment that
the agents ’live’ in. These scenarios describe the economic environment in the form of world
market prices of different goods and their behavior over time. Furthermore, the scenarios
describe the type and order of agents added to the growing cluster.

Scenario components The Scenario12 consits of a number of methods (functions) specifying
the behavior of the environment the agents live in. Scenario elements are:

addAgents Which agents are to be added before each time step?

agentsToKill Which agents are to be killed after the step has finished? Economic
selection criteria are defined here.

12http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/trunk/src/simulation/
Scenario.java
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assertObjectsDecidingOperationalConfiguration Determines which decision algo-
rithm is to be used by the agents when making decisions about changing technologies or
operational configurations (operational decisions)

assertObjectsForInvestmentDecisionMakingByExistingAgents Idem for decisi-
ons about investments.

doThisEachTickAfterAllAgentsAct What should be done after all the Agents have
performed their main actions, defined in the act() method (function).

doThisEachTickBeforeAllAgentsAct What should be done before Agents will start
doing their main actions, defined in the act() method?

extraAgentAccounting All the accounting/post behavior maintenance actions that
need to be performed on an agent.

generateStartingAgents The agents that should be used to start the simulation.

getIntialWorldMarketPrices Setting the world market prices of the goods that exist
in the simulation.

setLocalDemandProfileForGoods This allows a local demand profile for goods to
be set up in the scenario.

setLocalSupplyProfileForGoods Idem for supply.

Scenario space Because of the way the scenarios have been set up, it is possible to generate a
vast scenario space consisting of ranges of model parameters and agent decision-making models.
Instead of generating and testing several predetermined scenarios (fixed parameter values), we
can explore wide ranges of parameters and observe models responses across this space.

7.5 Experiment Details
This section outlines the experiments performed with the model. At the method level, the
experiment involves using the SDM created earlier and learning from the method. The simu-
lation engine, developed based on the experiences from the learning cases, is implemented and
tested. At the case level the basic scenario of adding bio-based agents to an existing chlorine
cluster under different economic selection pressures is tested. The metrics used to measure the
multidimensional emergent network are discussed.

Two levels Based on the hypotheses presented in Section 7.2, two types of experiments will be
performed. The first experiment is at the level of the co-evolutionary modelling method, testing
the social process and simulation engine designs, and the second is a case-level experiment.
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Metamodel The modelling method-level experiment is performed by the development and
execution of the SDM and by the design and creation of the simulation engine. This is an
experiment that tests the social and technical aspects of the methodology (see Chapter 5.
This case presents the first execution of the refined SDM, and where possible learning points
for further development will be presented. The case also tests the simulation engine design
elaborated in Appendix D.

Case content level The second level experiment is a more traditional type. We collect
knowledge and facts about the world, create a model and examine the model’s behavior. It
consists of a series of experiments to test the model’s behavior and answer the RDA’s questions.

In this section I will focus on the case content level experiments, since the description of
the outcomes at the modelling method level are presented in the previous sections.

7.5.1 Types of Experiments
Exploration of futures We consider an agent’s profile and behavior to be fixed and an
agent’s environment to be variable. This allows us to explore patterns of possible futures by
examining an agent’s responses when subjected to different scenarios of environmental dynam-
ics. By sweeping the environmental parameters across the full scenario and parameter space
and by mapping the system’s attractors (Lorenz, 1963), we can get a sense of the range of
possible agent cluster behaviors. This give the RDA a ’what if’ scenario testing tool and a map
of potential future states of the cluster.

Base scenario The scenario run is the basic experiment performed with an Agent Based
Model. One sets up the dynamics of the environment and observes the reaction of the agents.
Part of the scenario definition is the way agents are added to the simulation. RDA experts
suggested (Hotsma, 2006) that they have very little control over the order and nature of firms
that wish to enter the region. Therefore, the order of agent addition is assumed to be random.
We have tested scenarios where 1) a mix of existing technologies and bio-based technologies
is allowed to join the cluster, and 2) a purely bio-based mix is allowed to join. In the case of
world market prices, we assumed that they either remain stable or rise in a cyclical fashion over
time. This reflects the cyclic nature of the prices of base chemicals. In the base case the novel
bio-based technologies are added randomly to the cluster over time. Each agent experiences
selection pressure, that is, it will die if has negative cash flow for 20 turns. The prices on the
world market are assumed to be static.

Parameter sweeps The most basic parameter analysis is the one-dimensional parameter
sweep, where model outcomes (either individual agent behavior or system level properties) are
calculated over time for each parameter value. This gives a time trajectory of the system,
depending on the parameter values. It shows the system’s dynamic response to parameter
changes.

7.5.2 Metrics
Basic network metrics The limitations of graph theoretical network metrics was discussed
previously. However, it is still important to characterize the evolved networks. The most basic
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metrics are the absolute size of the network in number of nodes, the number of unconnected
nodes and the shortest average path length. Since we are evolving regional clusters, the number
of independent clusters within the network is also of interest. The shortest average path length
is also measured.

Agent’s population metrics This group of metrics gives insight into the population of an
agent and its demographics. NumberOfAgentsAdded measures how many technology agents
have been added throughout the whole simulation up till now. The NumberOfAgentsTotal
tracks how many of those added agents still exist. NumberOfUnconnectedAgents measures how
many agents do not have any connections to other agents but are only connected to the world
market and the environment. NumberOfAgentsInLargestCluster counts the number of agents
are in the largest cluster.

Cluster Focus metrics The aim of the model is to examine the growth of a cluster. That
means, among others, understanding how the cluster is focused. Is the cluster focused internally,
mainly trading with each other, or is it externally focused? We measure three aspects: mass
fraction, money fraction and contract fraction. Mass is expressed as the percentage of the mass
that is flowing internally with respect to the total mass flow, money fraction expresses the
percentage of money that is transacted internally, and the contract fraction is the number of
contracts between cluster members divided by the total number of contracts in the simulation.

Cluster performance metrics The model is fully mass balanced, so we can use mass flow
proxies as environmental performance indicators. CO2 production is the most interesting, since
it says a lot about energy intensity and the renewable nature of the network. The CO2 metrics
measure the cluster’s total CO2 emissions. The Cluster Capital metric monitors the economic
performance by looking at the cumulative net amount of money that is made by the cluster.
By monitoring these two metrics the tension between environmental and economic goals can
be studied.

Individual agent metrics In addition to cluster metrics, individual agent metrics are col-
lected. The first metric that can be followed is the margin or marginal costs per unit of
production. It gives a sense of whether the agent is running a profitable business. The second
individual metric is the profit the agent makes per simulation step per Euro of invested capital.
The last one is the cumulative capital of the agent. At the start of the simulation, each agent
has to invest the construction cost in order to establish a production facility. Thus the agent’s
starting capital is negative due to the construction costs.

7.6 Case Study Results
This section presents the results of the experiment at two levels. At the method level, the results
are on the application of the SDM and on the implementation of the designed simulation engine.
In short, both work ’good enough’. Several improvements are possible. At the case level the
dynamic of the evolving cluster is examined. This dynamic is tested across varying levels of
economic selection pressure. It is found that a purely bio-based cluster is unlikely, and that

155



high economic selection pressure, while disadvantageous in the short run, pays off in the long
run.

7.6.1 Results of the SDM

The SDM has been described in detail in Section 6.5. The results of its application are presented
in this section. Only the outcomes of Facilitators’ States 1 and 2 and the Stakeholders’ State
3 will be presented, as they have have interesting, non-trivial outcomes.

7.6.1.1 Facilitators’ State 1

Section 6.5.4.3 discusses the method and the result of creating the facilitators’ shared formalism.
It is important to realize that this is a very iterative method. It has been repeated several times
with smaller projects, in order to reduce the number of basic concepts to the bare minimum
while retaining the maximum expressive power. An example of such an earlier iterative step is
presented in Chapter 6. The fact that the modellers have extensive previous experience with
ABMs greatly increased the speed of development of the basic formalism.

SDM script Below we present the results of the script that is executed to in order to facilitate
the transition between Knowledge States 1 and 2 and the Facilitator’s State 2 (see Figure 6.18).
These will be presented per step of the script.

Inventory The result of the inventory step is presented in Figures 7.6.
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(a) Example output of the inventory step (b) Example output of the structuring step, Node
and Edge identification

Figure 7.6: Example of the inventory and structuring steps

Structuring The components identified in the Inventory phase are first grouped in classes:
Nodes, Edges, Data and Knowledge. Afterwards they are linked to each other. An example of
the structuring output in presented in Figure 7.6.

Linking Agents and Interactions Given the created structuring, in this step a connection
is made between the Agents and Interactions identified to date. From here the basic structure
of the knowledge becomes visible.

Iteration In the Iteration step one has to decide if things from the inventory are not important
after all. Things that were missing from the initial brainstorming list that resulted from the
Inventory phase are discovered here too.

External world In this step the world outside of the agents is determined by grouping all
the system components that cannot be influenced by the other sub-components. They form
the External World. At this moment in the SDM, the stakeholders and domain experts have
shared their knowledge in an unformalized way. It is now the facilitator’s turn to formalize this
knowledge in an ontology and create a soft-hard interface to begin collecting and formalizing
this knowledge.
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7.6.1.2 Facilitators’ State 2: Conceptualization and Ontology Creation

Given the shared, unformalized knowledge collected in the previous step, it was possible to
start creating the formal ontology. The theoretical background to this method was discussed
in Section 6.5.4.4. Here we will present the practical, case-specific issues.

Domain knowledge In this step a number of process engineering experts were consulted
and their knowledge used to extend the ontology and give it the ability to express concepts
related to any technology that can be defined in the input-output fashion. Extensive process
stream classification was added from (Dĳkema, 2004). Labeling streams as Primary Inputs or
Unwanted Waste became possible. Furthermore, economists were interviewed. Based on these
interviews, basic economic concepts like price, development, maintenance costs, etc. were added
to the ontology. Furthermore, abstract concepts such as decision-making were introduced.

Outcomes The outcome of the method, the formalized ontology, is available online in HTML
format.13 As an example of the output of this state, we present the Agents and Technology
description through the Protegés user interface in Figure 7.7.

(a) Agent (b) Technology

Figure 7.7: Protegé Representation of Agent and Technology

These two object types are fundamental to the CostaDue case, as the most important
components of the model - Firms - and their technologies are represented by these two classes.

Size and complexity While Figure 7.7 shows the structure of the relationship between the
Agent and Technology concepts, it gives us no information about the structure of the subclasses,
nor does it give a sense of the overall size and complexity of the ontology. In order to provide
a sense of scale, Figure 7.6.1.2 presents the ontology of Technology and its place within the
overall structure. Note that the red circle marks the Technology class description to give a
sense of scale. A full-scale image is available online. 14

At this stage, the ontology was fairly complete, but did not yet contain any instances. In
the following steps, the necessary instance of Agent and Technology classes are identified and
encoded.

13http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/ontology/index.html
14http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/AgentOntologyExpanded.png
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(a) Ontology of Technology

(b) Entire ontology

7.6.1.3 Stakeholders’ State 3

Scenario space Facilitating the transition to a bio-energy and bio-materials based cluster
is the goal of the CostaDue project. In order to visualize the transition paths and identify
concrete steps that must be taken, a “Crosslinking conference” was organized by the RDA
and the Groningen provincial government (Dĳkema and Stikkelman, 2006). The conference
was meant to increase stakeholders’ interaction and create a list of technologies that the group
believes would form a successful bio-based cluster. It was the stakeholders’ belief that a mix
of these technologies would form a stable bio-based cluster. This mix creates a part of the
scenario space, namely the types of agents that are to be added during the simulation. The
identified technological options are presented in Figure 7.8.

Future technology options These technology options are encoded as instances in the on-
tology and will be subsequently used in the simulation to explore the cluster growth. It is
important to note that the group focused on what technologies would be good to have and not
necessarily on what is realistic. We have taken these technologies, and using public data we cre-
ated corresponding agents in the ontology. Sources were mainly process engineering literature
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Figure 7.8: Options for cluster development, as identified by the stakeholders at the “Crosslink-
ing conference”. (Dĳkema and Stikkelman, 2006)

and environmental permits of the Groningen province.

Limitations There are two important limitations to this approach. First, a number of tech-
nologies does not exist yet, and their operating parameters, in and out flows had to be estimated.
While these estimates are rough, engineering domain experts are able to estimate the figures
within an order of magnitude. The second major problem is with the economic parameters.
These are either proprietary information, and thus unavailable, or simply unknown. The lack of
economic sanity checks, analogous to mass and energy balances, makes it very hard to estimate
economic parameters. We estimated them either through using published values on similar
technologies or by consulting experts.

7.6.2 Simulation Engine
The engine used evolved from a one-off simulation presented in Section 6.2, via a modular but
conceptually inadequate model in Section 6.4 to a full-scale engine, designed from reusable,
open source components from the hardware through knowledge creation. The design and the
associated requirements are presented in Appendix D.
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7.6.3 Simulation Results
In this section an example of a typical simulation run will be presented. The experiment setup
was presented in Section 7.5. Additional results, not discussed in the thesis, are available online.
15

7.6.3.1 Single Run

In order to help the RDA, a number of different scenario runs were performed. The most
important one is the need to understand the viability of a bio-based cluster. In this scenario, the
simulation is initialized with the agents already present in the cluster, and agents representing
the identified bio-based options are randomly added. The modelled world market prices rise
cyclically. If an agent is unable to keep positive margins for 20 turns (each turn corresponding
to a quarter) it will die. The total model run is 200 steps, or some 50 years.

Cluster self-organization In order to verify whether the model is able to represent the
structure of the industrial cluster reliably, agents that exist in the current cluster are added
and allowed to self-organize. This is presented in Figure 7.9. If we compare the emergent
structure with the linkages in Delfzĳl, we can see that they are the same. This indicates that
both the technology is accurately modelled and the economic conditions are accurate described,
since the agents choose to connect in the same structure.

(a) Initial agent self-organization (b) Typical evolved network structure for bio-based
options

Figure 7.9: Initial and typical network structure

Emergent structure After the cluster is initialized, the bio-based options are randomly and
repeatedly added to the cluster. Over time, this yields a cluster structure laid out using the

15http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/data/CostaDueData/index.html
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Fruchterman-Rheingold algorithm (Fruchterman and Reingold, 1991) as presented in Figure
7.9. We observed that the bio-based options alone are not able to form a stable cluster, not
even upon repeated addition of agents of the same type. Only very few agents are able to
survive. The ones that do are all bio-energy producers from biomass, or suppliers of biomass
to bio-energy plants. It is important to note that the MACC and Soda Process die very early
on in the simulation, which greatly affects the network structure.

Example statistics During cluster evolution a large number of statistics is collected. Below,
the cluster’s total CO2 emissions and its mass and money balances as well as the network
diameter are presented in Figure 7.10 16.

CO2 increase In Figure 7.10 a, we observe a sharp increase in total CO2 production, followed
by a rapid decrease and finally a leveling out. This is caused by the addition of several large
energy producers and their subsequent removal. The leveling of the CO2 emission is caused by
the addition of mainly CO2 neutral, bio-based energy sources.

Flow fractions In Figure 7.10 the evolution of the interconnectedness of the cluster has
been visualized. To this end, the fractions of money, mass and contracts, respectively, that flow
internally have been tracked. Internal flow is defined as not flowing to or from the World Market
or the Environment. The most interesting result is that even while the number of agents is
steadily increasing, the fraction of internal flows remains roughly constant. This demonstrates
that agents must find local suppliers and clients in order to survive in the cluster.

Network size Furthermore, we have tracked the shortest average path length for the cluster
using Dĳkstra’s algorithm (Dĳkstra, 1959). The metric is stable between 1.5 and 1.8, which is
relatively large for a network of such small size.

7.6.3.2 Economic Selection Pressure

The main question the RDA has is to understand whether subsidies can support the devel-
opment of a bio-based cluster by allowing the new entrants to the cluster to be nonprofitable
in their initial years? This experiment examines the role of economic selection pressure on
the network’s evolution. The selection pressure is expressed by the parameter “HowManyTick-
sOfLossesBeforeDie”. If an agent has negative margins for a period of time longer than specified
by the parameter, it will be removed from the simulation and “die”. The model has been run
for 200 steps, with “HowManyTicksOfLossesBeforeDie” varying from 1 to 100 time steps. The
results are presented in Figures 7.11 and 7.6.3.2.

16For typographical reasons the figure is located at the end of the chapter.
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(a) Fraction of surviving agents (b) CO2 emissions

(c) Total cluster capital (d) Largest cluster size

Figure 7.11: Metrics as a function of the economic selection pressure. Part I

Survival fraction There are several interesting results to observe. Figure 7.11 a shows a clear
correlation between the initial length of agent survival and the economic selection pressure.
After the initial removal of unprofitable agents, that selection pressure is far less pronounced,
since most of the agents that survived the initial selection are profitable and remain in the
cluster. Since the metric is a fraction of the total, it will stabilize at a limit value.

CO2 The CO2 graph shows an interesting attractor change. At severe economic selection (low
number of loss ticks before death) the CO2 emissions remain low over time. As the economic
conditions are relaxed, the CO2 emissions rise stepwise, although not very strongly. This is
caused by the increased survival chances of bio-based agents that form a larger portion of the
cluster but contribute disproportionally little to overall CO2 emissions.

Cluster capital Cluster capital presents an interesting outcome. It seems that the overall
cluster performance is only weakly related to the economic selection pressure. At low selection
pressures many bio-based agents survive, but their economic added value is relatively low. The
cluster capital rises steadily with time. This can be explained by the fact that weak agents
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that are unable to make a profit contribute very little to the overall cluster, and their removal
is hardly noticed.

Largest cluster Increasing economic selection pressure clearly causes damage to cluster size.
We can see that as the selection pressure reduces, the largest cluster is free to grow to ever
increasing size, until the economic ’grim reaper’ removes all the weak firms. However, the
overall trend is still rising over time, suggesting that even under strong selection pressure the
cluster will rise, albeit remaining poorer in diversity. We can also observe that the largest
clusters are formed under the least stringent economic selection pressures.

(a) Fraction of internal contracts 17 (b) Fraction of internal money

(c) Fraction of internal mass 18 (d) Shortest average path length

Figure 7.12: Metrics as a function of the economic selection pressure. Part II

Contracts Please note a rotation of axes of Figure 7.6.3.2 a in order to improve its legibility.
We can see that at the higher selection pressures, fewer and fewer external contracts are

formed over time and the cluster becomes more internally focused. At low selection pressures,
the cluster is more externally oriented, as all the ’weak’ agents that cannot be well integrated
with the cluster trade mainly with the world market. Looking at the money fraction graph in
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Figure 7.6.3.2 b, we can see that at high selection pressures the internal money fraction rises,
meaning that the external contracts lost are low value ones.

Money We can observe a phase change when the selection mechanism is activated. When
the selection is first applied, agents that trade mainly with the external world are removed,
increasing the internal orientation of the cluster. The apparent contradiction with the previous
graph is explained that most contracts with the external world are of low value, so even if
the cluster trades more with the World Market, the total amount of money within the cluster
slowly rises.

Mass The mass flow correlates with previous findings. High value, low volume mass goods
remain within the cluster. This is mainly caused by the electricity producers clustering around
large incumbent consumers. The low value, high mass bio-fuels are sourced from outside the
cluster, and the high-value product without mass - electricity - stays inside.

Network diameter The network diameter remains relatively unaffected over all values of
economic selection pressure, since the cluster develops preferential attachment of bio-energy
production to electricity users, not increasing the overall diameter of the network. This is
confirmed by Figure 7.9 b, where we see the salt electrolysis plant being directly supplied by a
large number of (small) bio-electricity firms.

7.7 Domain-Specific Insights
In this section the insights specific to this case study will be discussed. In summary, the
emergence of a pure bio-based cluster is unlikely. A bio-energy cluster can develop only if the
incumbent energy users remain in the cluster. As the RDAs have very little control over the
decision of what firms settle in the region, a proactive, bottom-up approach to region “garden-
ing” is proposed. Finally, the notion of an optimal cluster design is dismissed as impossible,
due to the intractable nature of evolving λ-systems.

Main conclusions Current bio-based technological options, as identified by the stakeholders,
do not appear to lead to a diverse bio-materials based cluster in Groningen, even under very low
economic selection conditions. An enrichment of the existing cluster with bio-energy options is
possible. This outcome is dependent on the assumption of the survival of the energy-intensive
incumbent industry in the region. The importance of path dependency in cluster development is
demonstrated, as is the very limited power that the RDAs have in controlling this evolutionary
process due to the lack of control of which company appears when in the region.

General guidelines The following general guidelines and advice can be given regarding the
RDAs’ problem of managing the evolution of a regional industrial network:

Beware of path dependency The order of appearance of firms matters strongly. The
RDA must be very careful to build up a portfolio of firms that can incrementally feed off
each other. The RDA must be aware of the fact that it is “gardening” the region, not
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running a campsite. Planting many different flowers at the right time will attract many
beautiful butterflies.

Have faith in Chaotic Attractors The once established network structure is rela-
tively robust. Once a solid seed of a cluster is started, the chaotic nature of the evolu-
tionary process will tend to keep stable by amplifying the initial success. On the other
hand, the RDA must be very aware of large-scale external world changes that can disrupt
that stable situation and cause system collapse.

Context Dependency is king Equally important to the firms in a cluster is its en-
vironment. The social, legal, institutional, regulatory environment can make or break
a cluster, even if the right firm and technology mix is present. Again, the RDA must
garden the cluster’s environment as much as making sure the right mix of plants are in
the garden.

Always retain ability to control Given the importance of past decisions and the
chaotic nature of the evolutionary process, it is inevitable that mistakes will be made.
Incompatible forms will be attracted. It is therefore very important to retain control of
the land that is given out. Selling land is a one-way street to losing control of the cluster.

Evolution is both Top-Down and Bottom-Up In order to evolve a successful clus-
ter, balance is needed between having not too much top-down control and sufficient
bottom-up diversity.

Ghost of optimality An important final conclusion is that the inherent need to managers
and designers to create the ’perfect’ or ’optimal’ situation is dangerous. In a complex, multi-
formal evolving λ-system the ’best / optimal’ situation cannot be objectively determined. It
is a context-dependent societal decision that evolves over time. One must focus on evolving a
good enough condition of a λ-system. This means allowing the system the freedom to adapt
to the given situation without striving to overcontrol it. Overcontrolled or overdetermined
systems become very unpredictable, as they ’seek’ to relieve the constraint, often resulting
in very unexpected and mostly unwanted side effects. One must be freed from the ’ghost of
optimality’ and stop desiring the perfect. ’Good enough’ is just that. Good enough.

7.8 Method Development Conclusions

7.8.1 General
Main advantage The main advantage of the presented approach are that it provides a sense
of the development potential of the λ-system relatively easily and quickly. It requires little
data, all of which is publicly available. Furthermore, the developed ABM has its conceptual
layout based in a social process, the SDM. This means that the generated insights will less
likely be perceived as ’wisdom descending from the academic ivory tower’. Through structured
interaction with the stakeholders, a shared understanding of the outcomes and their limitation
is achieved.
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Main limitation The main limitation is that it is very difficult to achieve a quantitative
prediction. Since the approach is not based on a ’first principles’ model, it is extremely sensitive
to the quality of the data. It follows the so-called GIGO (Garbage In - Garbage Out) principle.
High quality, detailed data are mostly non-existent, and when present tend to be proprietary.
Verification and validation present additional problems. These will be presented below in
Sections 7.8.3 and 7.8.4.

7.8.2 Ontology Development
Correctness vs ease A major effort was dedicated to ontology creation. One important
aspect is the balancing of correctness and implementation ease. A more correct ontology cor-
responds more to the language used. On the other hand, language is often very ambiguous
and makes implementation rather cumbersome. For example, a correct way to represent the
concept of Physical Property is to define it as having a Value and a Unit. When implementing
the Value, one assumes that it will be a number. This makes implementation straightforward.
On the other hand, there are number of properties that one cannot express numerically, such
as a Physical Sate. Implementation exceptions must be made to accommodate the possibility
to classify a Physical State as Gas, Liquid or Solid. This greatly complicates implementation.
In this particular case, the modellers chose for a more complex implementation, due to the
obvious advantage of being able to describe the Physical State of something.

Overspecifications Another pitfall during Conceptualization step is the danger of overspec-
ifying the ontology. On the one hand, one wishes to have a very complete and very specific
ontology, since this allows computers to reason about it to a great extent. However, the more
specific the ontology becomes, the more narrow its expressiveness becomes. In a very specific
ontology, many extra concepts must be added in order to accommodate concepts that do not
quite fall within the definition of the already present one. An example of this is the Design
Property called Building Time. Right now, we assume that a Technology, or any other Node,
can have a Physical Property called Building Time that denotes the time from the initial de-
cision to create that Technology to the moment it is operational. During discussions with the
stakeholders, the wish was expressed to add the concept of Planning Time as an extra Design
Property. This would make expressiveness more complete and formal, but at the same time
overspecifies the ontology and makes data collection more cumbersome.

7.8.3 Verification
Verification is an essential part of modelling. The verification process should demonstrate that
the computer model indeed does what the modellers wanted. In other words, since a computer
does exactly what one tells it to do, versification is about checking whether we told it to do
what we wanted. There are two types of verification: code based and knowledge based. Code
based verification consists of Compile, Run and Debug cycles and of Unit Testing. Knowledge
based verification consists of Business as Usual scenarios and Extreme Parameter Setups.

Compile, Run and Debug The most obvious verification of the program’s correctness is
the compiler itself. If we made syntax and programming errors, such as using non-existing
variable, the compiler will not be able to create an executable file. Some errors cannot be
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caught by the compiler and will be detected during run time as program crashes. This process of
coding, compiling, running and debugging is the traditional approach to software development.
The repetitive process can somewhat be alleviated by using debuggers, which most IDEs are
equipped with. Advanced debuggers, such as the one incorporated with Eclipse IDE, allow
data and code modifications while the program is running.

Unit testing The next step in verification of the code is unit testing. A unit test is a formal
’contract’ that the piece of computer code must satisfy. In computer programming, unit testing
is a procedure used to validate that individual units of source code are working properly (Board,
1999; Wikipedia, 2007). A unit is the smallest testable part of an application. In the case of
object-oriented programming, that is a class and its methods. Each component (class) of the
computer program ideally has an associated unit test that specifies the desired outcome of that
code, given specific parameters. For unit testing, Java JUnit 19 is the best known Open Source
framework available.

Baseline run In a Baseline run, we simply run the model with parameters deemed to be
most likely and common. This establishes the normal mode of operation for the model. Each
outcome of such a run should be a logical consequence of agent interactions. Basically, we
should be able to explain each outcome. In other words, this serves as a sanity check, to
identify any behavioral artifacts caused by logic errors.

Extreme parameter settings To further validate the programmed logic, one can perform
extreme parameter setups. Model behavior are extreme parameters and should be predictable
from agent and environment logic. For example, setting prices at infinity or 0 should have
predictable consequences. By systematically examining the edges of the parameter space, one
can be confident that the model is consistent.

7.8.4 Validation

Contrary to verification, validation is very problematic. This is especially true when one models
socio-technical systems. Problems occur because of:

• Inability to perform real world experiments;

• Limited historical data records; and/or

• Confidentiality or lack of current data.

Real world experiments In large-scale socio-technical systems, real world experimentation
is impossible. One cannot say, “let’s disturb the global air transport network just to see if new
policy works out”. This fundamentally limits model outcome validation.

19http://www.junit.org/
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Historic data Historic replays are often suggested as a way to validate the models. If a
model can replay a part of the history of the system, the assumptions is that it is valid and
can possibly be used in prediction. 20 The main problem with historic replays is that data
on decisions that agents made is very incomplete. History prefers winners, and the ’stupid’
decisions are not recorded, even though they may be key in modelling the system’s evolution.

Current data unavailability Even if we can have the historic data, current data can be
problematic as well. When dealing with social actors, their behavioral statistics are often
unavailable. Companies are mostly very confidential with performance data and the decision
processes inside the company. Often, the data needed to validate the model are simply not
collected.

Future challenges There are several important future challenges. So far, the model was used
under the assumption that a current economic situation or a future development scenario is
given, and the agents/clusters response to it is observed. However, in some cases it is interesting
to examine the opposite. Given a desired cluster, what would the economic situation need to
look like in order to make it viable? This gives a sense of how realistic the desired cluster is.
The second challenge is to directly aid the RDA in cluster evolution. If we assume a rational
RDA, what would be the best strategy to evolve a viable cluster? This requires that a model
of the RDA be created, so that the stakeholder can reflect her own behavior in the model.
Finally, an agent’s decision-making needs a longer-term perspective than just direct survival.
Currently, the agent’s decision-making is at the operational level. It is important to add longer-
term, tactical and strategic decision-making processes. Soft issues arise here, trust, regulatory
stability (Vries, 2004), long-term strategic goals of companies. These challenges will be tackled
in the next chapter, in the next evolutionary step.

7.8.5 Requirements Checked

Table 7.1 presents an overview of the modelling requirements and the performance of the model.
It is clear that all the conditions are met within this case study.

20From a more traditional perspective this is already inadvisable. Never extrapolate outside the measured
points.
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Table 7.1: Performance of the case study

Requirement Score Explanation
Method

Open Source Yes All unformalized and formal knowledge is accessible to
all involved parties.

Sufficient commu-
nity diversity

Yes A wide range of domain experts and stakeholders were in-
volved. While this is good a even greater diversity would
contributed to better insights.

Organically grow-
ing

Yes The SDM is based on the previously developed approach.
The simulation engine was designed with insights ob-
tained from the learning cases but did not include any
computer code. It will serve as a basis for future organic
growth.

Unchangeable his-
tory

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable au-
thorship

Yes All formalized and unformalized contributions have full
authorship records.

Modular Yes The Simulation engine is designed to be modular, and
Simulation Generic are extensively used to encourage
reuse of computer code.

Outcome
Useful Yes The model has yielded both useful case level insights as

well as provided a good bases for further method devel-
opment. It can be considered a resounding success.

Testable Yes More than any other model so far, every component can
be examined and tested because of the use of versioning.

7.9 Conclusion
This section presented the first full-scale case study, in which all four dimensions of the co-
evolutionary modelling method were extended. In the technical design dimension, a full-scale
software stack design was implemented. In the social dimension, the SDM was performed,
formalizing a lot of domain knowledge and encoding many facts on process industry. Such a
full-scale study effectively resets the fitness landscape. In the next chapter this landscape will
be deformed in different directions again, as new case studies are performed, technical elements
are added to the design and new knowledge domains and facts are collected.
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(a) Clusters CO2 production over time (b) Fraction internal mass, contracts and money
cluster. Blue: money, Red: mass, Light blue: con-
tracts.

(c) Average shortest Path Length in the largest clus-
ter

(d) Number of agents. Red: total agents in the sim-
ulation. Blue: size of the largest cluster. Light blue:
number of unconnected agents. Black: total number
of agents added

Figure 7.10: Cluster metrics of a single base case run
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CHAPTER 8

METHOD VERIFICATION: EVOLUTION OF THREE CASE
STUDIES

8.1 Introduction

In this chapter three case studies are presented that further evolve the model design created in
Chapter 7. They are meant as a verification of the evolutionary method, demonstrating that
the process of modeling aspect co-evolution can continue even after a full-scale case study has
been performed and all aspects of the fitness landscape have been maximized. The direction of
the model development evolution lies mainly in the technical design, knowledge formalization
and fact collection dimensions.

Over the course of three case studies, we expand the types of knowledge formalized. The
Bulk Biochemicals study adds Multi Criteria Analysis as a decision model for the Regional
Development Agency (RDA) to guide the creation of the cluster. The Metals network case
study encodes longer-term economic reasoning using Net Present Value and Internal Rate of
Return into the agent’s decision-making processes on whether to join a cluster or not. The
case study also introduces a much improved dynamic of the World Market agent. Finally, the
Bioelectricity case study adds environmental consciousness to the agents through the integration
of Life Cycle Assessment into Agent-Based Modelling.

These new formalisms increase the size of the model’s parameter space considerably. As
a part of the technical evolution, a new parameter sweep technique using Latin Hypercube
Sampling will allow us to deal with this problem.

The main outcome of the co-evolutionary method is the ability to ask and answer types of
questions that we could not before. Our modelling ability and domain knowledge on λ-systems
evolution is growing.

The precise direction of the future work is not precisely known, as evolution is a random,
intractable process. The path dependency on past developments, however, hints at a number
of issues that will be discussed in Chapter 11.
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8.2 Bulk Biochemicals
Case abstract This case study examines the performance and evolution of a

biorefinery cluster. A biorefinery is envisioned as a distributed production facility con-
sisting of many processes, tightly integrating and acting as a single unit. As its technical
configuration requires a large diversity of resources and products, sourced and sold in a
diversity of markets, the economic conditions under which a biorefinery cluster can be
profitable will be examined. As it consists of a number of processes, possibly owned by
different firms, a rational strategy for evolving a biorefinery will be examined.

Latin hypercube sampling is examined as a technique for examining a very large
parameter space of the economic environment in order to examine the cluster’s fitness
under different conditions. Multi Criteria Assessment (MCA) is examined as a method
to rationalize the RDA’s decision-making process when selecting which firms to invite
to join the cluster. The main result from the economic environment exploration is that
the cluster, if developed at all at one time, is likely to be successful in the majority of
economic conditions examined. In the case of rational decision-making, it is found that
increased rationality of the RDA through an MCA does not improve the performance
of the cluster. This is mainly cause by the limited number of technological options
available to the RDA is this case study. Next steps will examine a dynamic economic
environment, attempt a greater diversity of agents and a more sophisticated economic
reasoning by the agents.

8.2.1 Focus Point

Figure 8.1: Case focus

Methodological focus At the metal level the case study 1 focuses on
technical design development and on new fact and knowledge collection.
Technical design evolved to answer the future challenges defined in
Chapter 7. Studying the agent’s economic environment in a systematic
manner and visualizing the highly multidimensional outcomes expand
the technical dimensions. The knowledge dimension is extended by
creating a model of a rational RDA that attempts to steer the clusters
evolution using the Multi Criteria Analysis formalism. Finally, the case
study collects a large number of facts on bio-based processes.

Case focus At the case level, this study has two parts. The first
part examines the economic environment of biomaterials based cluster,

asking the question “if we want this cluster to exist and be successful, what would the economic
situation need to be?” It explores the “distance to reality” of different economic situations that
the cluster could be in. The second part answers the question of whether a more rational
approach is possible other than the “campsite owner” method identified in Chapter 7. This
part examines the suitability of Multi Criteria decision approach for RDAs in evolving a bio-
based cluster. The two parts form the case study hypotheses.

1The practical case content presented in this section is performed as a part of the MSc thesis by Roos van
Krevelen (van Krevelen, 2007) 2 supervised by the author.
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8.2.2 Hypothesis
Environment mapping It is possible to map the relevant economic environment of a cluster,
finding regions where the performance is ’optimal’. The distance between the ’optimal’ and
current economic situations gives insight into the degree of likelihood of the creation of such a
cluster. Statistical design of experiments is a viable approach for such environmental mapping.

Rational RDA The RDA can be modelled as a rational agent using factual information to
determine which firm is best suited for sustainable cluster growth. Multi Criteria optimization
can be used as a practical and simple tool for the task.

8.2.3 Case description
8.2.3.1 Industrial network as a refinery

Cluster as a biorefinery According to the Dutch Biorefinery Network 3 a biorefinery consists
of several processes that are clustered, making products such as chemicals, fuels, power, heat,
materials, food and feed, with the highest possible added value and at lowest possible cost
because they should be self-supporting with regard to heat and preferably also electricity (van
Ree and Annevelink, 2007). It is important to realize that biorefineries are envisioned as clusters
of many companies and not as a single economic entity.

Competition with fossil fuels The proposed biorefinery clusters are based on the idea
that biofuel production in itself cannot compete with fossil fuel because of the feedstock costs.
However, by combining biofuel production with production of valuable specialty biochemical
(by)products, the overall economic performance of the cluster can improve dramatically.

Two main questions By definition, a biorefinery is an industrial network. There are two
main questions that concern such a network. The first is whether a biorefinery cluster is
a viable economic entity, given that its structure is dictated by technology. Under which
economic condition will such a fixed structure perform well? The second question asks whether
a rational approach by the RDA to evolving the cluster will be more successful than the random
growth,“campsite owner” strategy. The proposed rational approach is Multi Criteria Analysis.

8.2.3.2 Mapping the Economic Environment

ABM upside-down ABMs are traditionally designed with a relatively fixed environment
that contains a collection of adaptive agents. The goal is to observe the emergent properties of
agents within that environment. In a sense, environment mapping is an upside-down use of an
ABM. A fixed network of agents is taken, and the environment around them changes in order
to meet some criterion. This can be done in a single simulation, letting the environment evolve
and adapt itself so that it accommodates the agent network as well as possible. Such system
would effectively try explore the fitness landscape and find its global maximum.

3http://www.biorefinery.nl/
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Attractor map While the global maximum is interesting, it is also rather limited. A more
thorough approach would be to consider environmental variables as simulation parameter set-
tings and sweep across a parameter space with a fixed agent configuration. The cluster is in
essence a probe that maps the topology of a highly multidimensional space. This probe, while
having a fixed composition, does not have a fixed structure. The internal contract and mass
flow structure responds to the given environment and adapts to it. So we are examining the
attractor space of the economic fitness of the cluster by taking it across the environmental
parameters.

Smallest cluster Van Krevelen (van Krevelen, 2007) identified three distinct types of bio-
refinery clusters possible in the Netherlands. The smallest cluster, consisting of 6 agents and
14 goods, will be used in this case study. Since the goal is to explore the method, the small
cluster size reduces the dimensionality of the parameter space of the economic environment and
increases the speed of simulation.

Wheat straw Bio-ethanol The cluster under examination mainly produces bio-ethanol,
along with various other chemicals. It is based on the processing of lignocellulosic biomass
such as wheat straw. This cluster produces many different products, starting with ethanol, but
also including organic acids and solvents, methyl tetrahydrofuran (MTHF) and other aliphatic
chemicals (van Krevelen, 2007).

8.2.3.3 Rational Gardener

The previous chapter identified “campsite owner” as an important strategy for an RDA when
developing a cluster. In effect the RDA promotes the region and attempts to make it more
attractive, but ultimately accepts anybody who has interest in settling in it. In effect, clusters
grow randomly. As λ-systems are heavily path dependant, it is important to be careful about
the choices one makes. In order to improve this random strategy, we have introduced a model
of a rational RDA that uses a multicriteria analysis when selecting which firms to accept into
the regional cluster. The expectation is that by choosing better fitting companies, a better
cluster will emerge.

Criteria A Multi Criteria Assessment is based on the existence of criteria on which a firm
can be scored and on relative weights that the RDA agent gives to each criterion. The criteria
and the used weights are presented in Table 8.1. Since we are concerned with the suitability of
the method and not the specifics, the details will not be presented here. The exact definitions
of the criteria and the rationale for choosing the weights is given by Krevelen (van Krevelen,
2007). Three types of RDA agent strategies have been identified: the economic, environmental
and neutral agent. These are presented below.

Economic Agent The Economic Agent is an RDA that cares more than average about
economic issues. In addition to firms’ economic performance, this agent values CO2 emissions
highly as they are an important political aspect. Firms’ technical properties are relevant, and
the agent has a preference for large capacity processes and high product diversity. A positive
and safe products image is produced and the policy supporting the products and raw materials
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is also valued quite highly since the Economic Agent feels responsible for the wellbeing of its
population. The agent has a preference is for labor intensive processes.

Green Agent The Green Agent RDA highly values the environmental impact and accepts
lower economic performance. This agent also highly values public acceptance. Technical aspects
are valued neutrally. The production efficiency, on the other hand, is highly valued as is lower
energy use and low waste production. A large number of possible raw materials is highly valued
since this eliminates the food competition problem of biofuels.

Neutral Agent This is a control RDA strategy that gives each criterion the same weight.

8.2.4 Details
In this section the implementation details and the experimental setup will be presented for
both experiments.

8.2.4.1 Economic Environment Mapping

Parameter space The goal of this experiment is to examine the economic environment of
the cluster. This means examining the cluster’s behavior across a large space of possible world
market prices. The test cluster consists of 6 agents, trading in 14 goods (Water, Enzyme,
Sulfuric acid, Corn steep liquor, Lime, Wheat straw, Levulinic acid, Cellulose, Hemicellulose,
Lignin, Ethanol, Furfural, MTHF and Pyrolysis oil). Assuming that each price can vary by
a factor of 10 up or down, we can create a 14-dimensional logarithmic parameter space that
represents all the possible economic environments that the cluster could be in. Ideally, one
would perform an experiment at every point in this space and observe the clusters response,
effectively “mapping the environment”.

Computational infeasibility If we assume that we test each price at pseudo-logarithmic
intervals of 0.1, 0.2,..., 0.8, 0.9, 1.0, 2.0, 3.0,..., 8.0, 9.0 and 10.0 across all 14 prices, generating
a list of all possible combinations would mean making 2014 combinations. Assuming an (unre-
alistically short) simulation time of 1 second, this means that simulating all these possibilities
would take 2014 seconds (5.2*1010 years) which is more than 10 times longer than the estimated
age of planet Earth (4.6*109 years). A full factorial experiment is clearly infeasible.

Latin Hypercube Sampling In order to examine a parameter space of this size we must
revert to taking samples from it. The technique of Latin Hypercube Sampling (LHS) was
initially developed to generate a distribution of plausible collections of parameter values from a
multidimensional distribution (Iman et al., 1981; Mckay et al., 2000; Santner et al., 2003). The
sampling method is often applied in the design of experiments, were the main question is: “I
can afford X experiment to test the behavior of the system. At which parameter values should I
measure in order to make sure that I looked everywhere?” Given X, LHS will generate parameter
sets that are guaranteed to be evenly distributed across the parameter space. While the LHS
technique is very computationally expensive for large experiment numbers, it is preferable to
the random sampling method alternative. See Appendix E for details.
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Experiment setup Using Matlab, 10000 samples over 14 dimensions are created. 4 Taking
the average current prices, the samples are taken from a range of [0.1 × AveragePrice −
10 × AveragePrice] for each price. The simulation scenario 5 has been adapted to accept
a LHSSampleNumber parameter, which loads the sample price vectors 6, sets the prices and
performs the simulation. The cluster is constructed from the agent data stored in the ontology,
labeled as BiobasedBulkChemicals and Cluster2. The output data is collected and processed
using Matlab. 7 Since the cluster composition is static, the simulation rapidly stabilizes. Each
simulation is therefore run for 5 time steps. This allows a larger number of experiments to be
performed.

8.2.4.2 Rational Gardener

Experiment goal The experiments attempt to examine the effect a rational, MCA based,
Regional Development Agent has on the evolution of a clusters. The assumption is that different
RDA rationalities will effect which firms are chosen and thus affect the development path of a
cluster.

Experimental setup In order to give the RDA something to choose from, firms/technologies
identified in all three clusters are used (van Krevelen, 2007). Each style of RDA agent is allowed
to evolve 10 clusters, all starting with a different random seed. Environmental selection is set
at 10 time steps. The values of cluster metrics are averaged. The total simulation time is set at
100 time steps each so that there is enough time for the cluster to develop and all technologies
of the three clusters are initiated at the start-up. When the RDA agent fails to make a decision,
a random agent will be added to the cluster.

RDAs actions It is assumed that the RDA’s goal is to maximize internal use of goods
produced in the cluster. After each time step, the RDA observes the goods flowing out of the
cluster. Whenever a good leaves the cluster that is not labeled a Product, the RDA agent will
look for a technology that can process this good into a final product. It will use the MCA to
choose between all processes that could use this intermediate as a raw material. As control,
a ’campsite owner’ RDA strategy as defined in Chapter 7. That is, under this RDA’s regime,
agents are added randomly from the pool of available technologies. The weights used to define
the three different RDA styles are presented in Table 8.1.

4http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/tags/
BulkBiochemicalsCase/LHSExperimentPrices/LHSdesign.m

5http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/
tags/BulkBiochemicalsCase/LHSExperimentPrices/src/simulationScenarios/
ScenarioBiobasedBulkChemicalsLHSExperimentSmallestCluster.java

6http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/branches/Experiments/
Roos/LHSExperimentPrices/LHSPricesRoosExperiment.txt

7http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/tags/
BulkBiochemicalsCase/LHSExperimentPrices/
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Table 8.1: Weights for the criteria for various styles of RDA (scale 1-5). For definition of criteria
see (van Krevelen, 2007)

Code Criterion name Economic Agent Green Agent Neutral Agent
EC1 Investment costs 5 1 1
EC2 Gross profit 5 1 1
EC3 % Profit from by-products 5 1 1
EC4 Added value of products 5 1 1
EC5 Pay-back time 5 1 1
EC6 Average impact on global market 5 1 1
EN1 Materials used 1 5 1
EN2 % Recycled materials used 1 5 1
EN3 Direct energy use 1 5 1
EN4 Indirect energy use 1 5 1
EN5 Water use 1 5 1
CO2 from production 3 5 1
TE1 Production efficiency 5 2.5 1
TE2 Total capacity 5 1 1
TE3 By-product to total product ratio 5 1 1
TE4 # of different products 5 1 1
TE5 # of possible raw materials 5 2.5 1
TE6 Process complexity 5 1 1
SO1 Labour provided 3 5 1
SO2 Awareness of product 2 5 1
SO3 Policy stimulation 2 5 1
SO4 Process risk 4 5 1
SO5 Image of products 2 5 1
SO6 Transport impact 2 5 1

8.2.5 Case study results
8.2.5.1 Environmental Mapping

The case study data and code is available online. 8

14-dimensional space There are 10,000 samples taken from a 14-dimensional, logarithmic
space. At each sample point in this space the usual cluster metrics are measured. Since it is
very difficult to visualize data from such a high-dimensional parameter space, the result plots
need to be clarified.

Plot explanation Figures 8.2 and 8.3 present two types of plots per cluster metric. Left
hand figures plot the value of the cluster metric at a given LHS sample. The data are sorted in
ascending order. So the blue line in Figure 8.2 (a) shows the 10,000 measured cluster capital
values, sorted from the lowest value of cluster capital to the highest. The green points are
the Root Mean Square (RMS) distance from the sample’s price coordinate to the current price
coordinate. It is the absolute value of the length of the straight line through 14-dimensional
space from the current LHS sample point to the current price point. The smaller the value, the
closer is the given LHS sample to the current situation. This metric can be viewed as a sample’s
distance from reality. The right hand image presents the same data, but now the cluster metric
is plotted against the corresponding RMS distance.

Cluster capital Figure 8.2 (a) shows the sorted cluster capital and the RMS distances. The
dashed red line denotes the 0 cluster capital. We observe a negative region, a long, slowly rising
plateau and a steeply rising tail. Roughly half of the samples are in the mildly positive region,

8http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/tags/
BulkBiochemicalsCase
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(a) Distance to average price and Cluster capital (b) Distance vs Cluster Capital

(c) Distance to average price and Internal contract
fraction

(d) Distance vs Internal contract fraction

Figure 8.2: Distance from current situation plots for cluster capital and fraction internal con-
tracts

and a very small fraction is below 0. This tells us that most of the price space is favorable for
the cluster’s existence. The corresponding RMS distances show a region between samples 4,000
and 6,000 where the distance from reality is minimal. This shows that the cluster is likely to be
profitable under the current economic conditions and nearby variations of it. It is interesting
to note that as the cluster capital increases, so does the distance from reality. The maximal
cluster capital values also have the maximal distance from reality. This behavior is confirmed
by Figure 8.2 (b) where we see that only a small part of the samples leads to negative cluster
capital values, and that there is a lot of opportunity for positive cluster capital close to the
current situation. The extreme increase in cluster capital and distance from reality can be
explained by variation in the price of a single product, MTHF, whose price per ton is several
orders of magnitude higher than other goods (see Table 8.2). A sample that picks a very high
(10 times average) MTHF price is both very successful and in absolute terms very far from the
real situation. A 10-fold increase in water price has a much smaller effect on the RMS distance
than a 10-fold increase in MTHF price.
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Fraction of internal contracts Figure 8.2 (c) reveals the existence of 8 attractors in the
cluster structure. We see that many diverse price settings lead to only 8 discrete contract
fractions. This is especially visible in Figure 8.2 (d). This has two causes. First, the physical
nature of the technology limits who can trade with whom, meaning that this metric can not
assume a continuous value. There are only so many contracts that can be made inside the
cluster. Second, buying from the world market always commands a higher price of transport
costs. The two extreme fractions are easily explained. The high internal fraction (above 0.7)
represents the situation where the cluster makes maximal use of all goods that are internally
produced, and nothing that does not need to be imported is imported. Because of the capacity
differences and the unavailability of producers inside the cluster for some goods, there is always
some export and import activity. The other extreme is the situation where the world market
prices are very low, causing most products produced internally to be sold externally. Since the
transport premium and the cost structure of agents’ economic model, there are products that
can be produced cheaper internally, cheaper than the world market at its lowest point in the
parameter space. This causes the internal fraction to be very low, but not zero. It is likely that
an even broader parameter space will produce a zero fraction.

Fraction of internal mass The mass metric, Figures 8.3 (a) and (b), show a similar pattern
to the contract metrics, since all contracts are tied to mass flows. The location of the attractors
is different, since there is no fixed contract-mass ratio, i.e., a single contract can be for many
tons, or just for a few kilograms. We also observe that the distance increases as we approach
the edge of the attractor, see 8.3 (a). This demonstrates that the certain cluster mass fraction
is retained even at an economic situation far from the current one.

Fraction of internal money Unlike the discrete attractor structure displayed by the con-
tract and money metrics, the money fraction is continuous across the economic environment.
This is caused by the fact that prices of goods are a continuous function, giving rise to a
smooth metric distribution. We observe the effect of a single, very expensive good, observed
in the cluster capital metric in an exaggerated fashion in the money fraction plots (Figure 8.3
(a) and (b). The metric value varies between 0 and 1 asymptotically. We observe an almost
stepwise increase in money fraction: as the distance from reality increases, the money fraction
nears 1. So the more economically unrealistic a cluster gets, the more it is internally oriented.
At the same time, a large number of samples have very low distance from reality at the same
high fraction. It seems that the cluster structure and the economic environment do not favor
extremely outwardly oriented clusters, where the majority of the money flow is toward the
outside of the cluster.

Minimum and maximum cluster capital As a final verification of the outcomes, the price
coordinate of samples with the highest and lowest cluster capitals are presented in Table 8.2.
We can observe that the highest capital indeed occurs when all the products are very high and
the inputs are very low, near 10 times and 0.1 times the average price, and the cluster capital is
the lowest at the exact opposite side of the price space. Obviously the cluster is most successful
when the most expensive product is sold at the highest possible price and the inputs are at
their lowest.
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(a) Distance to average price and Internal mass frac-
tion

(b) Distance vs Internal mass fraction

(c) Distance to average price and Internal money
fraction

(d) Distance vs Internal money fraction
-

Figure 8.3: Distance from current situation plots for fraction internal mass and fraction internal
money

8.2.5.2 Rational Gardener

RDAs impact Figure 8.4 presents the evolutionary patterns of the biorefinery cluster as a
function of the RDA style. The usual metrics are presented. The values plotted are averages
of 10 runs with different random seeds.

Little difference The main observation is that there seems to be very little difference between
different RDA styles on the overall cluster capital. All RDAs perform equally poorly, considering
that the cluster consistsing of all identified technologies does not manage to create positive
cluster capital. Examining the other metrics, the same pattern is repeated. No metric shows
a clear differentiation between different styles of cluster development. We do observe large
variations over time, caused by the cluster’s path-dependent growth, showing that different
styles do choose different firms at different times, creating a different historical development
path. It is, however, impossible to say which style of decision-making has a better long-term
performance, even when compared to random form addition.
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Table 8.2: Prices used and prices set for the run with maximum Cluster Capital

Good Name Type of Good Price at max
capital (e)

Ratio to
average
real price

Price at min
capital

Ratio to
average
real price

Water Input 0.62 0.62 0.13 0.13
Enzyme Input 13.68 0.15 346.05 3.84
Sulphuric acid Input 262.04 4.37 323.84 5.40
Corn steep liquor Input 127.34 0.98 21.11 0.16
Lime Input 52.65 0.88 15.91 0.27
Wheat straw Input 13.65 0.23 589.98 9.83
Levulinic acid Intermediate 49,461.14 7.61 4,412.93 0.68
Cellulose Intermediate 576.88 4.81 975.97 8.13
Hemicellulose Intermediate 509.86 4.25 26.43 0.22
Lignin Intermediate 92.84 1.33 20.06 0.29
Ethanol Product 3,991.20 9.98 1,447.49 3.62
Furfural Product 87.95 0.12 196.35 0.27
MTHF Product 1,898,916.20 9.99 24,764.90 0.13
Pyrolysis oil Product 1,140.19 1.19 198.41 0.21

Limited diversity The most likely reason for the lack of difference between different RDA
styles is the limited diversity of technologies that the RDA can chose from. The RDA agent
attempts to find different technological options for reducing the number of intermediate prod-
ucts leaving the cluster. As there are very few options to do so, the agent can often not make
that decision and so defaults to adding a random technology.

8.2.6 Domain-specific Insights
This case study mainly aimed to explore the methodological possibilities, and thus did not
concern itself with domain specific aspects. Yet it is still possible to draw a few domain-specific
insights.

Environmental mapping The main insight from the environmental mapping experiment is
that the examined cluster is likely to be economically successful. At the current prices, and
in the immediate surrounding in the price space, the cluster makes a net profit. Whether this
positive capital is enough to recuperate investment costs and provide an acceptable rate of
return is impossible to say, since the agent’s economic model is too simple.

Rational gardener The experiments suggest that there is little difference between the pro-
posed styles for evolving clusters. There are two main reason for this. First, the pool of
potential technologies is small. The RDA agent often has very little or nothing to choose from.
Second, by using a MCA to choose which firm and technology to add, the RDA only looks a
single step forward. In reality, a RDA that is interested in evolving a successful cluster will
take a much more long-term view.
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(a) Cluster capital (b) Contract fraction

(c) Mass fraction (d) Money fraction

Figure 8.4: Cluster metrics as a function of different RDA strategies

8.2.7 Method Development Conclusions

LHS works The main methodological conclusion is that the first hypothesis is confirmed.
Not only is it possible to map the clusters economic environment, it also provides insights in
the cluster’s internal dynamics. LHS is a very viable method for exploring extremely large
parameter spaces, even if data interpretation is difficult. The concept of distance from reality is
a useful abstraction for understanding the cluster’s behavior across the economic environment.

MCA does work MCA has been formalized within the ontology and implemented as an
agent decision model. It is a relatively straightforward way of formalizing complex decisions, and
has the advantage that is it relatively widely known and used. Furthermore, its implementation
is rather simple.

MCA only does not work MCA does not work on RDA level unless there is a substantial
number of options to choose from. Using MCA with a limited choice of technologies does not
add much advantage, since the cluster’s technical design space is very limited to start with.
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Too short term Furthermore, MCA in its current implementation is too limited as the
only mechanism for making cluster evolution choices, since its focus is very short term. The
RDA agent using MCA only looks at the next time step. While this is better than nothing,
evolution of a clusters is a long-term, path-dependant process that sometimes goes through local
minima. Short-term rational optimization during such intractable processes is very difficult,
if not impossible. It is important to add that this conclusion only holds true for the current
implementation of MCA inside the agents. If MCA criteria would include future expectations
and predictions, it might be useful.

Future questions Given the results and insights, several questions for further investigation
can be formulated. A better agent investment economics model is needed. Currently, agents
cannot decide to join a cluster, they are just added. There is no consideration of the future
prospects. Return On Investment (ROI) and Net Present Value(NPV) models would improve
this. Furthermore, the economic landscape, mainly the world market, is static. A more dynamic
landscape would be much more realistic in evolving robust and adaptive clusters. Finally,
besides NPV and ROI, agents are currently oblivious to any and all risks. Additional realism
may be achieved with introduction of some sort of risk calculations.

Requirements checked Table 8.3 presents an overview of the modelling requirements and
the performance of the model.

Table 8.3: Performance of the case study

Requirement Score Explanation
Method

Open Source Yes All unformalized and formal knowledge is accessible to
all involved parties.

Sufficient commu-
nity diversity

No The case study is performed as a technological develop-
ment step and no stakeholder was involved.

Organically grow-
ing

Yes The case study is entirely based on the previous one.

Unchangeable his-
tory

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable au-
thorship

Yes All formalized and unformalized contributions have full
authorship records.

Modular Yes Built on existing models. Additions created as modules.
Outcome

Useful Yes Useful as a proof of principle for both LHS environmental
mapping and in implementing MCA.

Testable Yes All outcomes are fully testable.
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8.3 Metals Production Network
Case abstract This case study examines the evolution of a global aluminum

and copper production network. It attempts to examine the effect that the agent’s
investment policies will have on the emergent network structure and its properties. The
case extends the existing case studies by formalizing knowledge in the metals processing
domain. At the modelling method level, the case extends the agent’s reasoning with
Net Present Value and Internal Rate of Return calculations, and adds a dynamic world
market with global interest rate developments.

The main outcome is that the agent’s investment policies have very little effect on
the developmet of the cluster, as the economic reasoning and limited diversity of agents
severely constrain the network’s ability to evolve. Future work will include the refinement
of the economic reasoning and a refinement in the environmental performance metrics.

8.3.1 Focus point

Figure 8.5: Case focus

Methodological focus The case study9 10, will focus on fact and
knowledge collection. It addresses the future questions defined in the
previous case study. In terms of knowledge, the agent’s economic rea-
soning and the world market dynamics will be made more realistic.
Agents’ strategic decision-making is expanded, allowing them to de-
cide whether or not to join a cluster. The agents also acquire the
ability to temporarily stop production when economic conditions are
unfavorable. The interest rate and dynamic price developments are
modelled, making the World Market agent more realistic. Dynamics
is modelled using the System Dynamics modelling formalism, creat-
ing the initial steps towards a hybrid modelling approach, combining

System Dynamics and ABM aspects. The fact aspect of the case study focuses on collecting
metallurgical process descriptions.

Case focus The model describes the evolution of a global network of copper and aluminum
production over a 50-year period under different global development scenarios. The focal point
of the model is the evolution of production network under different agent decision styles, dif-
ferent global economic conditions and different metals use cases. The main evaluation criterion
for the evolved production networks is their environmental profile, mainly energy use, virgin
materials use and total generated waste.

8.3.2 Hypothesis
MCA with future expectations Multi Criteria Assessment, combined with estimates of
future economic performance of technologies is a useful mechanism for agents to use when
deciding whether to join the cluster.

9 The practical case content described in this section is performed as a part of an MSc thesis by Kridtaya
Sakamornsnguan (Sakamornsnguan, 2007), supervised by the author

10http://wiki.tudelft.nl/Research/NuksNotes
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8.3.3 Case Description
Metals are important Metals are one of the basic types of materials that human civilization
is built upon. From the first bronze axe used to fell a deer to the rare-earth superconducting
magnets used in a particle accelerator, metals are an essential part of human society. Their
production network, being a λ-system, warrants a closer examination.

Metals networks Metals networks generally consist of 4 stages, including extraction, pro-
duction, manufacture, and recovery (Verhoef et al., 2004). During the extraction stage, virgin
resources such as metal-bearing ores are mined from the environment. These ores are refined,
producing pure metals and metal alloys. Materials produced in this way are used in various
applications and are often recovered at the end of the life cycle.

Interesting characteristics The metals production network has several interesting char-
acteristics. As with any λ-system, the metals production network consists of a many social
and technical components. These components are very widely distributed geographically. The
metals production network is very resource-intensive and has a large environmental impact.
Many metals are functional substitutes for each other, making the already complex production
network even more interdependent. These aspects are discussed in greater detail below.

Global network The metals production is a global business. Ores are extracted all over
the globe, refining and manufacture often taking place at very different locations. Because
of the size of investments necessary, companies involved are very large multinationals,
operating across many economic and political environments.

Resource intensive Metals production is very resource intensive. Mining often hap-
pens in extremely large open pit mines, covering tens of square kilometers, involving
shifting enormous amount of overburden and large amounts of toxic chemicals. Refining
involves large amounts of water and energy.

Co-production Most metals are not produced in single product processes, but are
co-produced with other metals. This means that any change in production volume of a
certain metal will affect other, co produced metals, so demand decrease for a carrier metal
such as copper has a direct effect on the availability of the co-produced metals such as
gold.

Functional substitution Metals often have functional substitutes. Electricity, for ex-
ample, can be transmitted through copper or aluminum cables. These production and
use linkages further increase the complexity of the metals network.

Copper and aluminum In the case study the production networks of copper and aluminum
will be examined. These two metals are each other’s functional substitutes in a number of
applications, mainly electrical, and both have large resource costs involved in their production.
Both metals are recycled to a high degree, mainly due to their cost. In order to keep the case
study manageable, no other metals will be considered.
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Model setup The model setup is very similar to previous models. Starting agents are added
to the simulation, where they must survive by producing products and by trading with each
other and the world market. The main difference is that there is a pool of alive but inactive
agents that observe the world market conditions and the cluster. When sufficient demand
is present, the inactive agents can decide to invest with a suitable technology. When the
conditions worsen, they can decide to stop production. All other behavior is identical to the
previous models. The agents’ extended economic decision-making power and the world market
dynamics are discussed in greater detail in the following section.

8.3.4 Details
Main assumption The main simplifying assumption used in the model is to include only
the extraction and production stages of copper and aluminum life cycles. The remaining pro-
duction stages (i.e., manufacture & consumption as well as disposal & recovery), international
and national institutions, and the dynamics of the physical environment are not taken into
consideration. The model detail will be discussed in two sections: the investment decisions and
world market dynamics.

8.3.4.1 Investment Decisions

Sufficient demand The agents that want to invest search for potential products by calcu-
lating the ratio between total supply (S) and the total demand (D) of each reference product
of every existing technology. The potential demand of products is defined by the S/D value of
less than 0.7. In the case that multiple technologies are possible, an agent performs an MCA
analysis to decide which technology to choose.

MCA The technologies that are deemed profitable because of a good S/D ratio are compared
using six criteria: net present value (NPV), internal rate of return (IRR), use of secondary
material, generated wastes, generated emissions and energy use. The technology with the
highest score is selected to be invested in by the new agent. A simplified investment decision
algorithm is presented in Algorithm 8.1.

Underlying assumptions There are three main assumptions affecting the agents’ invest-
ment decision-making. These are:

Constant scale First, the scale of each technology is constant and set at its maximum.
The operational scale is not adjusted during operation.

No lead time Second, the model does not consider the long lead time associated with
building the production plants. As a result, agents are not able to delay or cancel an
investment once a decision has been made.

Capital availability Third, capital funding is assumed to be readily available. Agents
do not experience any financial constraint when deciding to invest.
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Algorithm 8.1 Simplified investment decision algorithm
for all technology do
for all reference product do
if S/D ratio < 0.7 then
add good name into needed product list

end if
end for

end for
for all needed products in needed product list do
Calculate: S/D ratio
if S/D ratio < 0.7 then
for all technology do
if reference product = needed product then
put technology name to alternative list
Calculate: NPV of the technology
if NPV > 0, using interest rate set in the world market agent then
put technology name to NPV-screened alternative list

end if
use MCA with the NPV-screened alternative list {choose the best score using the
weight factor in scenario}
calculate: S = S - operational scale

end if
end for

end if
end for
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NPV and IRR calculation As presented above, an agent needs to calculate the Net Present
Value (NPV) and Internal Rate of Return (IRR) of the technology it operates in order to make
an investment decision. NPV and IRR are calculated using the technology’s lifetime, expected
cost and expected revenue of a certain technology, as well as interest rate, which is changed
by the world economic growth rate. The expected cost of a technology includes construction
and operational costs. Algorithm 8.2 presents the NPV calculation and algorithm 8.3 the IRR
calculation.

Algorithm 8.2 Simplified Net Present Value calculation
for all year within the life time do
Calculate: expected metal payment
Calculate: expected revenue
Calculate: expected profityear n = expected revenue - operational cost
Calculate: discounted expected profit = expected profityear n

(1+interest rateyear n)n

Calculate: NPV = ∑
discounted expected profit− ConstructionCost

end for

Algorithm 8.3 Simplified Internal Rate of Return calculation
for interest rate = 0 to interest rate making NPV > 0 do
Calculate: NPV
if NPV > 0 then
IRR = interest rate {IRR is the first value that makes NPV > 0}

end if
end for

Suspended animation In previous models the agents had no choice but to go on losing
money with unprofitable technology until they went bankrupt. In this model the firms can
decide to suspend their operation in order to prevent losing too much money when the eco-
nomic conditions are unfavorable. They are also able to restart operations when the conditions
improve. Typically, a firm starts the production of an good when profitable and suspends
production when profits are low. Values used in the algorithm are defined as: Current profit
= margin - operational cost; Accumulated profit = ∑ (current profit) - construction cost; and
Expected profit = expected revenue - operational cost. The simplified logic of suspending and
resuming production is presented in Algorithms 8.4 and 8.5.

Algorithm 8.4 Production suspension algorithm
isTemporarilyStopped = false
if accumulated profit > 0 AND current profit < 0 AND expected profit < 0 then
isTemporarilyStopped = true

end if

When an agents production is suspended, no contract will be made and the operational cost
is assumed to be only 10% of general operational cost.
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Algorithm 8.5 Production resumption algorithm
if expected profit > 0 AND isTemporarilyStopped = true then
isTemporarilyStopped = false

end if

8.3.4.2 World Market Scenarios

In previous models, the world market was no more than a static infinite source and sink for
goods. In this case study, the world market has evolved into a dynamic actor with its own
logic. It is a hybrid entity, both being an agent and having system dynamics based behavior.
Its behavioral components are presented below.

Raw materials The model does not describe ore extraction from the environment. The
mining process is too diverse and complex to be included without stretching the model scope
too far. The world market agent supplies ores to the metals production agents.

Metals recycling The waste management firms which collect and recover metal-bearing
products are abstracted as metal scrap goods. The main assumption is that the scraps are
always available and can be supplied to the system when required. Furthermore, it is assumed
that the quality of these scraps is uniform.

Consumers The world market agent represents an aggregate of the global metal consumption
as well as performs the role of exchange firms such as the London Metal Exchange (LME).
The world market sets the demand and market price of goods in the simulation. The demand
function (D) of metals is a function of time, economic growth and resource efficiency. Equations
8.4 and 8.5 describe the behavior.

Global economic growth The growth of metal demands strongly correlates with world
economic growth. It is assumed that the demand of every good grows at the same rate and the
rate is proportional to the global GDP growth.

Interest rate The interest rate used in both calculations is defined as a function of both
time and the global economic growth rate (Ge), since economic growth has an influence on the
fluidity of the monetary system. That is, when economic growth is high, the interest rate will
be raised to avoid inflation; and when the growth is low, the interest will be lowered to allow
more circulation in the system. Interest rate calculation is presented in Algorithm 8.6.

Efficiency factor The efficiency factor represents the progress towards less resource con-
sumption per unit of product. The increase in efficiency is driven by technological and design
developments and by legislation. These aspects are considered to be external to the model. The
efficiency factor is assumed to be constant within the demand function, and its value drives
a reduction in metal demand. For example, an efficiency factor equal to 3% means the metal
demand decrease by 3% per year.
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Algorithm 8.6 Simplified interest rate calculation
i = f(t, Ge)
if Ge ≤ 2 then
i = 12 (%)

end if
if Ge > 10 then
i = 24 +Ge/2

else
i = 12 + 2(Ge − 2)

end if

Substitution rate For the case of copper and aluminum, substitution is an important factor
to their similar functional properties. The substitution factor applied to the demand function
of copper and aluminum represents net replacement between both metals over time, and it
is assumed that the substitution between copper (or aluminum) and other materials (such as
paper and plastic) is negligible. The factor is set in the form of a sinusoidal graph. The
positive value represents the substitution of aluminum over copper while the negative one is
the reverse of this. One period of substitution is assumed to cover 15 years. The maximum
and minimum values are proportional, based on total amounts of copper and aluminum. The
demand functions of copper and aluminum (DCu and DAl) are shown below:

DCu and DAl = f(t, Gm(Ge), S, E) (8.1)
Ge = a ∗Gm (8.2)
a = constant (8.3)

DCu,yeart = DCu,yeart−1 ∗ (1− 0.01Et) ∗ (1− 0.01St) ∗ (1 + (0.01Gm,t)) (8.4)
DAl,yeart = DAl,yeart−1 ∗ (1− 0.01Et) ∗ (1 + 0.01St) ∗ (1 + (0.01Gm,t)) (8.5)

where :

DCu = demand of copper
DAl = demand of aluminum
t = time
Gm = metal demand growth rate
Ge = world economic growth rate
S = substitution factor between copper and aluminum
E = resource efficiency stages of the supply chains

World market price Metals prices are set by exchange firms and are driven by their inven-
tories and demands (Joseph and Kundig, 1999). Therefore, the price functions of copper and
aluminum (PCu, PAl) are set to respond to overall demand and overall supply of the system
by using a multiplier. The multiplier (M) is a ratio of demand and supply which increases the
price when demand exceeds supply and decreases the price when supply exceeds demand. The
price functions (and multipliers) of copper and aluminum are shown in Algorithm 8.7.
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Algorithm 8.7 World market price calculation
PCu = f(t, SCu, DCu)
PCu,t = PCu,t−1 ∗multiplier(MCu)
RatioCu = DCu,cluster,t−1+DCu,worldmarket,t−1

SCu,cluster,t−1

if RatioCu ≤ 0 then
RatioCu = 1

end if
if RatioCu > 1 then
MCu = 1 + (0.01 ∗RatioCu)

else if RatioCu ≤ 1 then
MCu = 1− (0.01 ∗RatioCu)

end if

8.3.4.3 Agent Policies

Overview of policies In order to test the hypothesis that an MCA is a useful tool for agents
in deciding when to join a cluster, four investment policies have been defined. See Table 8.4.

Policy 1: Towards sustainability Strong environmental regulation, high promotion of re-
cycling and energy-saving. In this scenario, global scale environmental problems are high on
the agenda. Thus, the national governments implement stricter environmental regulations,
especially regarding emissions controls. Furthermore, public awareness on hazardous and con-
taminated wastes results in stricter control of production processes and resources and energy
conservation. Reuse and recycling markets and technologies are stimulated by subsidies. As
a result, the use of secondary materials is preferred by firms. The use of renewable energy is
preferred, as are efficiency improvement measures. Consequently, weight factors of generated
wastes and emissions have to be higher. In addition, subsidies for high energy efficiency and
recycling technologies attract the interest of the investor. At the same time, these subsidies
can compensate money losses. Therefore, the use of secondary materials and energy criteria
are more important than the economic issues.

Table 8.4: Overview of agent investment policies and their associated MCA weights

Criteria Weight factors
Policy 1 Policy 2 Policy 3 Policy 4

NPV 1 10 10 1
IRR 1 10 10 1
Use of secondary materials 10 1 10 5
Generated emissions 10 1 10 1
Generated wastes 10 1 10 1
Energy use 10 1 10 10
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Policy 2: Laissez faire Weak environmental regulation, low promotion of recycling and
energy savings. In this case, environmental problems appear periodically, but there is no
leader group to drive the policies and regulations towards a certain issue. The firms have to
push themselves towards less energy consumption, more use of secondary materials or fewer
emissions and wastes without any support. As a result, the main parameter in deciding if
they should invest in any technologies is the potential profit from the investment. Since the
environmental regulations are weak and there is no promotion regarding resource and energy
consumption, the investors pursue their main goal: maximizing profit. As a consequence, they
concentrate only on economic factors and pay less attention on the environmental criteria.

Policy 3: Cleaner is better Strong environmental regulation, low promotion of recycling
and energy savings. In this scenario, the effects of global environmental problems, like global
warming, become more apparent over time, raising social awareness on emissions issues. As a
result, stricter environmental regulations are put in place to control the emissions. Waste man-
agement becomes a topic of concern, tightening waste regulation. Subsidies are provided to the
cleaner technologies and treatment system. Unlike environmental regulations, the promotion
of recycling and energy saving is low. Since there is no subsidy, the investor has to be more
concerned regarding her investment and profit. At the same time, she is automatically forced
to become cleaner by increasing social awareness and stricter regulations.

Policy 4: Towards less extraction Weak environmental regulation, high promotion of
recycling and energy savings. In this scenario, the rapid economic growth of past years has
driven metal supplies to the very limit of production capacity, resulting in high concerns about
future resource supplies. Therefore, development is directed towards the reduction of virgin
material extractions. This becomes a good opportunity for waste and by-product materials,
and governmental and private sectors try to promote this due to environmental and economic
benefits. Besides the resources, energy is another significant issue, since its consumption relates
directly to resource production. The drastic increase of resource demand results in substan-
tial energy consumption and thus social awareness on energy sources and supplies. Subsidies
are given to the energy-saving project as well as the one that reuses or recycles. However,
environmental regulations are kept steady at a low standard, making the use of wastes and
by-product less interesting. As a result, all the criteria are weighted equally at 1, except for the
use of secondary materials and energy. However, the weight for the energy criterion is higher
because the environmental regulations are weak, resulting in lower costs of waste management.
Therefore, the investors are less interested in using scrap, due to its low availability.

8.3.4.4 Experimental Setup

Compared to the previous case study, the main difference is the absence of an RDA. There is
no central agency attempting to organize the cluster.

Experiment Multi Criteria analysis is used as a decision mechanism for Agents in deciding
when to join the simulation. Agents can use the four different policies defined above. Policies
are tested across the world market parameter space. The world market demand is reduced
100 fold from its actual value, in order to keep the number of agents and thus simulation time
manageable. The economic selection pressure is set at 5 time steps.
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Parameter space Each policy is tested against the parameter space spanned by the economic
growth rate, efficiency factor and aluminum substitution factor. All three parameters are varied
from 0 to 10 %. This range of values is estimated to be realistic. 100 LHS samples are taken
from this 3-dimensional parameter space.

Metrics Unlike the previous cases where we were interested in studying the network structure,
the focus is on the cluster’s overall performance. The metrics used in the previous cases are
relatively uninformative, as the supply chain is relatively fixed and they do not offer insights
into environmental effects specific to metals processing. Therefore, the following metrics will
be used in this case study:

Cluster capital The same metric as used in previous models.

Total energy used This metric tracks the total energy used. It is the combined energy
in different types of liquid fuels used by the agents plus the total electricity used.

Virgin material use It is the total sum of bauxite, copper oxide and copper sulfide
used by the cluster.

Total waste generated The sum of Overburden, Bauxite Residue, RedMud, Copper
Tailing and Copper Gangue.

8.3.5 Case Study Results
The raw data and data processing scripts are available online 11.

Reading the graphs The figure 8.6 presents an example of the results. It presents the time
trajectories of 100 LHS experiments, summarized in a ’box and whiskers’ plot. The box and
whiskers are calculated at each time step. The blue box bounds the upper and lower quartile
of the data at each given time step, with the red dash in the middle denoting the median. The
whiskers span the extremes of data. The red crosses outside the whiskers represent the outliers.
The graphs represent the average values and the spread of trajectories of all simulations over
time.

Cluster capital Figure 8.6 presents the cluster capital development over time and across
the parameter space, under different policies. We observe that all simulations start in a very
similar fashion, with almost no spread in the trajectories up to timestep 20. From there on, the
spread across parameter space increases somewhat. The main result is that the agent policies
no significant effect on the cluster development. In all 4 policy cases the averages of endstates
and their spread are similar.

Total virgin material use and total waste generated Figure 8.7(a) presents the total
virgin materials used. The figure 8.7(b) shows the total generated waste. We see that these
metrics demonstrate the same lack of differentiation between the policies, and that the general
trend follows cluster capital.

11http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/tags/MetalsNetwork/
resultAndGraph/
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Figure 8.6: Cluster capital per Agent policy, all scenarios, time series

Total energy and scrap metal used Figure 8.8(a) plots the networks total energy used,
over time, per policy, across the parameter space. Figure 8.8(b) presents the total scrap metal
used by the network. Again, the main observation is that there is very little difference between
different policies. The average of the scrap metal metrics has a relatively flat profile, except for
a number of outliers, occurring at certain parameter settings, in which a large amount of scrap
is used. This variability across the parameter space will be examined in more detail below.

Parameter space The agent policies show very little difference in the results. However,
the spread of the results within a policy is relatively large, especially for scrap metals used.
In order to examine the cause of spread, we examined the outcome space of policy 3 (equal
weights for all aspects) across the parameter space, looking for patterns. Figure 8.9(a) presents
the simulation end state at the 50th tick of the simulation runs, across all LHS samples. The
size of the circle represents the relative size of the cluster capital. Figure 8.9(b) presents the
scrap metal used, again with the circle size corresponding to the value of the metric.

As already observed, the spread of values is not very large for the cluster capital metric. Ex-
amination of the parameter space reveals no obvious patterns. There is no correlation between
the samples position in the parameter space and the value of the cluster capital. The scrap
metal use shows a limited number of runs that have much higher metric values than average.
No clear pattern is observeable in the location of the large value samples.
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(a) Total virgin material used (b) Total waste generated

Figure 8.7: Waste generated and virgin materials use per Agent policy, all scenarios, time series

(a) Total Energy use (b) Scrap metal used

Figure 8.8: Total energy and total scrap metal used, per Agent policy, all scenarios, time series

8.3.6 Domain-Specific Insights

The goal of this case study was to expand the modelling method with new types of knowledge
and facts on metals networks. The goal was not to explore the model domain in detail. However,
several case-specific insights can be presented.

Robust system The future trends are very robust across the tested world market scenarios.
We do not observe radical changes over time, only outcome drift caused by the randomness
of the model. There are two main issues constraining the evolutionary patterns of the model.
First is the economic shortsightedness of the agents, and the second is the limited diversity of
technologies available.

197



(a) Cluster capital (b) Scrap metal use

Figure 8.9: Overview of the parameter space

Economic shortsightedness The cluster’s capital metric demonstrates the cluster’s collapse
most tellingly. After an rapid increase in the cluster’s ’biomass’, the system starts to shrink,
almost returning to its starting point. As the market prices increase over time (see Section
8.3.4.2 for a description of world dynamics), and because of the policy bias towards using
recycled metal, the cluster starts evolving away from primary production. Expensive primary
producers go extinct. This affects the total cluster capital negatively. The relatively strict
and short-term NPV/IRR driven decision-making does not allow the agents to reinvest in
expensive primary production, but instead they keep on investing in recyclers. This causes the
overall collapse of the network. In order to avid this lock in, the agents would need to have
decision-making processes that are able to examine much longer time scales and are able avoid
local minima. Using NPV/IRR is already an improvement over previous models, in terms of
longer time planning, but it is not enough in a world where the market prices are volatile and
investments are very large.

Limited diversity This case highlights the same problem we faced in the previous case. The
diversity of technologies to invest in is rather limited, so no major shift in network structure is
possible. Such a shift would allow the cluster to adapt to new environmental conditions and
survive. Give the current diversity, that is not possible, and the cluster collapses.

8.3.7 Method Development Conclusions

The hypothesis of this chapter was stated as: “MCA combined with estimates of future is a
useful mechanism for Agents to use as a for decisions whether to join the cluster”. We can
conclude that at the method level the extension is useful, as it enriches the economic reasoning
of the agents in a significant manner and sets the stage for the next case study. We can
furthermore conclude that the extension of the ontology with metals related domain knowledge
was a success, as is the elaboration of the dynamics of the world market.
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Future questions The issues surrounding the limited diversity and shortsightedness of the
economic reasoning have been discussed in the previous section. These issues will be addressed
in the future cases. Furthermore, the model also allowed us to enrich our understanding of the
cluster’s environmental impact. It is, however, not finely grained in comparison to traditional
environmental impact metrics such as Life Cycle Analysis (LCA), and it is limited to bulk
metrics such as scrap metals use, total waste generated and energy used. In the future a more
life cycle oriented approach would provide a better sense of the cluster’s impact.

Requirements checked Table 8.5 presents an overview of the modelling requirements and
the performance of the model.

Table 8.5: Performance of the case study

Requirement Score Explanation
Method

Open Source Yes All unformalized and formal knowledge is accessible to
all involved parties.

Sufficient commu-
nity diversity

No The case study is performed as a technological develop-
ment step and no stakeholder was involved.

Organically grow-
ing

Yes The case study is entirely based on the previous one.

Unchangeable his-
tory

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable au-
thorship

Yes All formalized and unformalized contributions have full
authorship records.

Modular Yes Built on existing models. Additions created as modules.
Outcome

Useful Useful as a proof of principle for both encoding metal
processing knowledge refinemen t of economic reasoning.

Testable Yes All outcomes are fully testable.
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8.4 Bioelectricity
Case abstract
The final case study in this thesis adds the formalism of life cycle environmental

assessment to the simulation engine. The case study examines the evolution of the Dutch
bioelectricity production network under different CO2 tax levels and under different agent
reasoning strategies.

The incorporation of Life Cycle Assessment (LCA) enables agents to reason about
their environmental impact across their supply chain. Incorporation of the EcoInvent
LCA database enables the World Market to provide goods and environmental impacts
from over 3,000 different production processes. The case solves a number of very
complex algorithmic and computational challenges in combining a static analysis tool
(LCA) with a dynamic pattern generation tool (ABM).

The main methodological outcome is a practical way to combine LCA with ABM.
Furthermore, that case study shows that decision-making (pro profit vs pro environment)
has very little effect on the overall emissions of the bioelectricity cluster. It also shows
that the high levels of CO2 taxation allow for structural change in the way bioelectricity
production is organized.

The case study opens up the avenue to extending the model with other types of
static metrics and tools, like economic Input-Output tables and economic Computable
General Equilibria models.

8.4.1 Focus point

Figure 8.10: Case fo-
cus

Methodological focus The Bioelectricity case study 12 is a compre-
hensive study extending the model in the technical, factual and knowl-
edge domain. In the technical dimension, an entirely new network
metric examining the environmental impact of a cluster over its entire
lifetime is introduced through the integration of Life Cycle Assessment
(LCA). The knowledge dimension is extended by introducing the static
LCA formalism to the dynamic simulation. Finally, the fact dimension
is greatly extended by integrating the EcoInvent LCA database 14 into
the simulation.

Case focus The Bioelectricity case will focus on studying the changes
in the Dutch electricity production from fossil fuels to bio-based fuels.

The environmental impact of the biofuel is of special interest, since not all biofuels are created
equal. The impact of CO2 tax on the total CO2 emissions of evolved bioelectricity clusters will
be examined. The case study is performed as a extension of the existing Dutch government
project project (Cramer, 2006).

12This section is based on the MSc thesis by Chris Davis (Davis, 2007) 13 supervised by the author and on
the paper “Integrating Life Cycle Analysis with Agent Based Modelling: Deciding on Bio-Electricity” by C.B.
Davis, I. Nikolic and G.P.J. Dĳkema (Davis et al., 2008).

14It holds environmental profiles of almost 3,000 production processes
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8.4.2 Hypothesis

Combine LCA and ABM It is possible to combine a static LCA tool with the dynamic ABM
approach to create a model providing comprehensive insights into the network’s environmental
impact.

Environmentally conscious Agents Making agents environmentally conscious through in-
tegration of LCA will affect the evolution of a bioelectricty production network.

8.4.3 Case description

Climate change Concerns about climate change and the security of future energy supplies
have led to an increased focus on utilizing biomass as a feedstock for energy production. While
many want to see biomass succeed for all the right reasons, it has become clear that not all
biomass is suitable, and we have to be conscious about not creating new problems as we work to
solve old ones. This has become evident in the recent controversy over the co-firing of palm oil
in Dutch coal plants (Junginger and Faaĳ, 2005). Increased food scarcity is affecting developing
countries worldwide. The destruction of Southeast Asian tropical virgin forests into palm oil
plantations (Fargione et al., 2008) is just one other example of a new problem arising. Even
without these complications, there are already questions about how effectively we can reduce
greenhouse gas emissions when the biomass being used is shipped from the other side of the
world. With interest now growing in using wood byproducts from Canada (Damen and Faaĳ,
2006), answering this question becomes even more critical. Next to the type of fuel used, the
technology used to produce bioelectricity is important.

Bioelectricity technologies investigated The feedstocks and technologies investigated are
shown in Table 8.6. What is interesting is that each feedstock and production method has
different strengths and weaknesses. Each of them has a defined lifetime and may also only be
viable at certain scales. Based on these characteristics, we may find the electricity production
system resembling an ecosystem with different types of organisms that thrive in certain niches
but may face stiff competition in others.

Table 8.6: Biomass Feedstocks and Bio-electricity Production Methods Investigated

Biomass feedstocks Bio-electricity production methods
Demolition wood Co-firing with coal
Wood Pellets Gasification
Wood Chips Combined Heat and Power

Refuse Derived Fuel Anaerobic Digestion
Manure
Palm Oil

Rapeseed Oil
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Systems perspective Analyzing this from a large-scale systems perspective is important
due to the global impact of increasing greenhouse gas emissions. For a country to achieve a
meaningful reduction in greenhouse gas emissions, it cannot reduce emissions inside its bor-
ders while its economic activity leads to increasing emissions outside its borders. Addressing
this means that at every step in the energy supply chain, there needs to be a record of the
environmental and economic flows taking the form of materials, energy, emissions, and other
environmental impacts. Using the Life Cycle Assessment (LCA) method, these results can then
be aggregated to show the total flows and impacts resulting from the production of a functional
unit such as 1 kilowatt-hour of electricity.

LCA LCA is a tool used to analyze “the environmental burden of products at all stages in
their life cycle - from the extraction of resources, through the production of materials, product
parts and the product itself, and the use of the product to the management after it is discarded,
either by reuse, recycling or final disposal.”(Guinee, 2002) This comes from a recognition that
environmental problems are systematic in nature and that by choosing one particular product
or service, we are indirectly supporting environmental impacts that may occur several stages
away from us in the supply chain.

Attributing responsibility From another perspective, LCA can be seen as a means of
attributing responsibility for environmental impacts among actors in a supply chain. The
owner of a coal-fired power plant may complain because his output is only in response to the
demand from consumers and other industries (Heĳungs, 2001). While such a perspective can
easily lead to actors trying to blame others for environmental impacts, this underlying problem
is very important for understanding sustainability. We need to remember that our technical
systems have grown through the push and pull of supply and demand. These networks have
emerged through the accumulation of choices made by a multitude of actors.

Network tool While it may not be immediately apparent, LCA is at its heart a type of
network metric, or a means of calculating characteristics of a network. Specifically, it is a way
of understanding a network’s structure from the viewpoint of one node within a network that
represents the functional flow or reference product. Instead of trying to find the shortest path
like Dĳkstra’s algorithm (Dĳkstra, 1959), it is trying to find all the upstream environmental
interventions that can be attributed to the process represented by the root node. It keeps
exploring the network until it can’t find any more emissions.

Decision making aid At a high level, LCA can be seen at a tool capable of either framing
questions or directly answering questions already raised. For instance, framing may be needed
when the nature of environmental problems are not be known. Once the questions are known,
more detailed analysis can be conducted to locate the source of the problems of interest. On a
practical level an LCA can be used for product and process development, by showing how to
improve existing products or create new ones. It may also be used for labeling as a means to
provide information to aid purchasing or design decisions(Ehrenfeld, 1997a).

Limitations The idea behind LCA is very powerful, although as we try to tackle larger and
more complex problems, its limitations become more apparent. In its current implementation, it
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views the world as being composed of static connections between technologies. It is also a linear
model in that if production of one good is increased, the flows of the upstream technologies
are scaled proportionally as well. LCA is commendable in that it addresses a very nontrivial
problem. As will be argued further below, its current limitations can be overcome to an extent
by using it within a new framework.

Combining with ABM From these examples, the main point to remember is that sustain-
ability is the emergent property of a network, which LCA to an extent inherently recognizes.
Sustainability cannot be measured at the level of individuals, it can only be measured at the
level of the total system itself. However, LCA only examines environmental interventions in
systems. The often cited economic and social concerns are left out of this analysis. On the
other hand, an ABM is capable of capturing components of all of these aspects. By combining
these two tools, a much richer analysis tool could be created.

8.4.4 Details

LCA data structure The issues involving the combination of these tools can be better
understood by comparing the data structures used by LCA and ABM. A typical data structure
for LCA is illustrated in Figure 8.11. Most of the data is stored in two matrices. The technology
matrix has information about economic flows between technologies, and the emissions matrix
has information about the amount of pollution produced by each technology.

ABM data structure Figure 8.12 shows an example portion of the ontology (data structure)
used in the ABM. The Technology Agent represents the entity (i.e., the ’company’) that operates
the technology. As seen, there are different design, economic, and physical properties that can
be assigned to the technology. The Operational Configuration is the equivalent of an input-
output table, showing the amount of goods needed for manufacturing, and the amount of
goods produced. For a detailed description of the ontology please see Chapter 7. The flexible
network structure between agents is facilitated by the In Edges and Out Edges that represent
the contracts that an agent makes when it buys and sells goods. Since the other agents have the
same type of data structure, we can see the contracts as facilitating the creation of a network of
knowledge networks. This network is able to grow from bottom-up interactions, and algorithms
can be applied to examine the structure that results.

Hybrid approach While an LCA could technically be done just on the agents in an ABM
with limited system boundaries, the challenge is to create a hybrid approach, where the network
is represented by both simulated agents and technologies defined in an LCA database. In
short, an agent representing the “World Market” also has a connection to the LCA database.
Whenever an agent buys goods from the World Market agent, it is actually obtaining those
goods from the static supply chain defined in the database. This approach creates a simulation
where there are dynamic supply chains in the foreground, with static supply chains in the
background. In other words, we have a ’lens’ of dynamic agent behavior in an otherwise static
world defined by a database. This approach is illustrated in Figure 8.13.
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Figure 8.11: Illustration of LCA data structure, squares represent non-zero matrix components

Figure 8.12: Partial illustration of ontology used for ABM data structure

Combination Figure 8.14 illustrates the data structure used to combine LCA within ABM.
The simulation is paused at every time step, and all the information about inputs and out-
puts (i.e., traded flows and emissions) is retrieved from the simulation’s data structure. This
information is then processed and placed into a technology and an emissions matrix where
calculations can begin. At this stage, economic allocation will occur for technologies with mul-
tiple outputs (multifunctional processes). In both of the matrices, there is one section that is
composed of information from the LCA database. This portion stays constant throughout the
simulation. Additional rows and columns are added to represent the agents themselves. Since
part of the matrix is composed of a dynamic system, the matrix will grow and shrink over time
in accordance with the number of active agents present at each time step.

Linking processes Figure 8.14 also illustrates how the links are made between different
processes within the technology matrix. The diagonal represents the total output of each
process. By reading down a column, we can see the different amounts of inputs used for a
single process. By reading across a row, we can see how one process supplies several different
processes. The top left quadrant is composed solely of the LCA database, while the top right
quadrant contains information where an agent buys goods from the World Market, which is
connected to the LCA database. The bottom right quadrant shows trading between individual
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Figure 8.13: Integration of LCA into ABM

agents. The bottom left quadrant is not filled in, since the processes in the LCA database do
not buy goods from the agents, and only use pre-defined supply chains. An emissions matrix
is set up that is similar, except that the columns represent individual processes, while rows
represent types of emissions.

Calculation intensity While a matrix makes these types of calculations computationally
feasible, there are still issues with the amount of time needed, especially if one desires to
perform a dynamic LCA as demonstrated in this paper. A major bottleneck lies in calculating
the inverse of the technology matrix. In the worst case, most matrix inversion algorithms are
said to run in O(n3) time, meaning that as the size of the matrix increases by n, the maximum
calculation time needed increases at a rate of n3. In other words, a fraction of a second may
be needed to solve a technology matrix of 100 processes, while two minutes may be needed for
one involving 1,000 processes(Epstein, 1999).

New algorithm To overcome this problem, an iterative matrix inversion algorithm proposed
by Peters (Peters, 2006) will be used. This particular algorithm runs in Cn time, where C is
generally a very large constant. This means that algorithms running in O(n3) time have an
advantage when used for small matrices, but this iterative algorithm has a significant advantage
in dealing with large matrices 15. In practice, this algorithm has been invaluable in the creation
of the model, considering that the number of LCA calculations increases with both the number
of agents. The increase is nonlinear because the matrix increases as the number of agents
increase and each agent needs to do a LCA at each time step.

15http://gux.tudelft.nl/svn/IndustryInfrastructureCoEvolutionModel/trunk/src/simulation/
CalculateLCA.java
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Figure 8.14: Merging technology matrices for LCA calculations

8.4.4.1 Experimental Setup

The general experimental setup will now be detailed. The initial settings will be described,
followed by the methods of agent additional and removal, and concluding with several of the
parameters that will be varied. These parameters included varying a CO2 tax and the decision-
making strategy used by the agents.

Initial Settings Each simulation starts with three large fossil-based power plants. These
technologies are coal co-fired with biomass, coal co-fired with syngas, and natural gas and
heavy oil co-fired with bio-oil. Each of these large technologies is able to co-fire biomass at a
fixed ratio, in addition to being able to use only fossil fuels. The agents used in the simulation
all have different capacities for electricity production. In order to keep the number of agents in
the simulation reasonable, some of the smaller technologies were scaled up to represent several
instances of one type of technology.

Electricity demand The system is driven by the demand for electricity, which has a di-
rect effect on the number of agents added. The actual initial demand for electricity is set
slightly above the production capabilities for the three main fossil electricity plants, allowing
for additional smaller producers to join in to fill the gap.

Agent investment decision Based on the decision algorithms developed in the past case
studies, at the beginning of each simulation step, new Technology Agents have the opportunity
to join the simulation. During this period, candidate types of Technology Agents are picked
at random and asked whether they want to invest or not. Once ten in a row have declined,
the simulation continues, since it is unlikely that any others may want to invest. A candidate
Technology Agent’s investment decision is based on several items. First, the demand to supply
ratio for its reference product must be higher than a specified value to avoid oversaturating the
market. If this condition is met, then the candidate will evaluate if it can be profitable based on
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current market conditions by calculating its expected revenue from the sale of its products and
then subtracting its fixed operating costs and variable costs of inputs. If this profit is positive,
then the Technology Agent will decide to invest and join the simulation at that tick. Agents
will be removed if they are consistently unprofitable for a specified length of time. They will
also be removed if the lifetime of their technology has ended.

CO2 Tax The CO2 tax is directly related to the fossil CO2 output for each of a technology’s
operational configurations. This CO2 output refers to local emissions, not the ones indicated
based on its LCA score. For the simulations run, the values of the CO2 tax was swept in order
to find transition points where system changes could be observed. The tax values range from
0 to 500 e/ton in increments of 25.

Operational Decisions Many of the agents have multiple operational configurations. Each
of these configurations represents the use of a different feedstock. During each tick, an agent
has to pick a single operational configuration to use. Each agent keeps a record of profit and
LCA scores associated with each of its operational configurations. When the agent is initialized,
it first collects this data by iterating through all its operational configurations on consecutive
time steps. Essentially, the agent wakes up and assesses the economic and environmental state
of the world from its own point of view. Once the agent has completed this stage, it will then
select future operational configurations based on the decision behavior that has been specified
for it. Agents are able to pick feedstocks based on those resulting in the most profit or the
greatest reduction in CO2 emissions. Additionally, they can apply weighting factors to these
criteria and pick the feedstocks that best represent these preferences.

Static and dynamic agents Each of the Technology Agents had their material inputs and
outputs based on data gathered during the creation of an LCA database. During the simulation,
some technologies may be represented actively in the form of a Technology Agent, or passively
as an instance in the LCA database. The Technology Agents are able to create their own
dynamic supply chains, while the LCA database represents a collection of fixed ’pre-compiled’
supply chains. A Technology Agent in a sense gives ’life’ to this data, allowing interesting
analysis.

Learning via LCA For the scenarios, LCA calculations are used as a basis for a decision
which feedstock a technology to choose. LCA calculations are done for the each of the electricity
producers in the simulation, with a chosen functional unit of 1 kWh of electricity production.
These calculations are performed by using a mix of real-time simulation data and data from
an aggregated pre-compiled LCA database (Frischknecht and Rebitzer, 2005). This database
contains a list of goods and the upstream emissions resulting from their production. As the
simulation starts, the agents have not yet begun to explore the mix of possible supply chains.
In order to pick an operational configuration based on an LCA score, they consult the LCA
database at this time. As the simulation continues, the agent makes its own connections and
generates calculations of LCA scores based on the real-time data that it encounters, while using
less information from the LCA database.

207



MCA An agent’s decision behavior is constant throughout the simulation and is based on
an MCA-type algorithm. Both LCA scores and profitability are evaluated for all available
Operational Configurations, with weighting factors applied to indicate the importance an agent
places on each aspect. In the batch run of simulations, these weighting factors were swept in a
linear fashion. In other words, in one run, agents will only try to maximize profit. In another
run, they will place 80 % importance on profit, and 20% on LCA. This would continue until
agents only try to maximize their LCA score.

8.4.5 Case study results

CO2 tax Figure 8.15 represents the change in the fossilCO2 / total CO2 ratio after 20 steps of
the simulation for a single CO2 tax rate. Each value at the x-axis is a single experiment with a
randomized lifetime of the technology. Data are sorted from the lowest to the highest value, and
represent the maximum spread found. The red line represents the ration with pure economic
decision making, blue the pure environmental decision making. Values below 0 represent an
improvement. The figure clearly shows a consistent decrease in fossil CO2 when environmentally
based decision-making is dominant, but in order to achieve real systematic change, a CO2 tax
is needed. A transition is clearly seen between 225 and 250 e/ton. The high values come the
situation where the three initial technologies (coal, natural gas, oil co-fired with biomass) start
the simulation relatively young, meaning that the cleaner technologies don’t have a chance to
take over.

(a) CO2 tax 100 e/ton (b) CO2 tax 200 e/ton (c) CO2 tax 225 e/ton

(d) CO2 tax 250 e/ton (e) CO2 tax 275 e/ton (f) CO2 tax 300 e/ton

Figure 8.15: CO2 emission levels at different tax rates
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8.4.6 Domain-Specific Insights
System change mechanisms There are two primary means for the system to change. First,
the overall portfolio of electricity producing technologies changes based on the CO2 tax that
was chosen. All agents would have to pay a tax based on their fossil CO2 emissions. Secondly,
agents could choose particular feedstocks in order to maximize profits or environmental benefit.
In the simulation runs, all agents were specified to have the same behavior as a means to test
the boundaries of these decision-making types.

CO2 reduction From the simulation runs, it was found that the most effective way to reduce
CO2 emissions was to impose a high CO2 tax rate, rather than only having the agents pick the
feedstock that leads to the lowest emissions. This result was due to the fossil-based electricity
agents defined as not being able to co-fire biomass above a certain ratio. This means that for
drastic CO2 reductions to occur, this limitation will be a barrier unless it can be overcome.
Otherwise, given the assumptions and framework used for this case study, changing the portfolio
of technologies is necessary to achieve these reductions.

General value In viewing these results, one should also remember that these outcomes were
case study specific and thus tied to the definitions of technologies used. This hints that other
case studies involving different industries with more complex networks of supply chains could
lead to a much different interpretation of results. What has been shown is a proof of concept,
and the future applications of the integration of LCA within ABM could lead to an analysis of
systems in ways that have yet to be anticipated here.

Tax is effective From the simulations that were conducted, we were able to see that above a
certain CO2 tax rate, fossil-based electricity producers could no longer compete with bio-based
electricity producers. When a high CO2 tax rate exists, then the mix of electricity producing
technologies shifts towards those that primarily use biomass. The effect of decision-making was
rather minor compared with the reductions in CO2 that could be achieved by changing the
portfolio of technologies used by electricity producing technologies. It was also found that the
best way to reduce overall CO2 emissions of the system was through a change in the portfolio
of electricity producing technologies. In other words, some electricity producers were physically
limited in the amount of biomass they could co-fire.

Future uncertainty is good Comparing the probability of final outcomes under different
tax rates and decision-making, Figure 8.4.6 was created by 400 simulation runs, showing 4
distinct sets of parameters (100 runs per set). The data used for the graph examines the %
Fossil/Total CO2 for the system. The x axis represents the %Fossil/Total CO2 . 120 = 20%
increase in Fossil CO2 ratio, 100 = 0% increase, 80 means 20% decrease, 0 = no more Fossil
CO2 . The y y axis represents time steps (beginning of simulation = back, end of simulation=
front). For each step, a probability distribution function (assuming normal distribution) is
constructed for each of the 4 sets of parameters. By combining these PDFs into a surface, we
can see the probability that the system will have a particular value of %Fossil/Total CO2 for
each tick. The z axis represents the probability. Since the graph shows a PDF for each tick,
the area under the curve (along the x axis) for each tick is 1. Each set of parameters is shown
as a surface. From left to right, these are:
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• CO2 tax 0 e/ton, Agents maximize Profits

• CO2 tax 0 e/ton, Agents maximize LCA score

• CO2 tax 500 e/ton, Agents maximize Profits

• CO2 tax 500 e/ton, Agents maximize LCA score

These show that the type of decision-making does have an effect on the overall performance.
At higher tax rates, there is actually more uncertainty about where the system will end up. This
is caused by the system undergoing transition and that the mix of technologies will be much
more uncertain. Since this is a PDF, uncertainty isn’t necessarily bad; what matters is the area
under the curve in the regions we want to be in. Additionally, this graph shows the learning
period that agents undertake when they first start (looking at the back of the graph). They
switch through each of their Operational Configurations to gather data on profitability and
LCA scores. Once this stage is complete, they begin applying their decision-making criteria.

Figure 8.16: Probability density function. See text
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8.4.7 Method Development Conclusions
Combining LCA and ABM works The most important methodological conclusion of this
case study is that an LCA can be used within an ABM in a practical fashion. One of the
major issues that had to be overcome involved keeping the computation time reasonable. As
described more fully in the MSc thesis (Davis, 2007), this was achieved by using a much more
efficient matrix inversion algorithm and using pre-calculated entries in the LCA database to
avoid redundant computation.

Learning from each other Developers of ABM and LCA may find this merger of tools
interesting from their own perspectives. From the LCA point of view, this means an ability
to perform a dynamic LCA with the potential to overcome many of the obstacles they have
identified. For those in the ABM community, this work shows a means to gain access to realistic
abstraction of the outside world through the inclusion of an LCA database.

Dynamic LCA To understand why the work presented here is novel, one must understand
the previous difficulties encountered in creating a dynamic LCA. While many people have
worked on this problem, we argue that the limiting factor has been the set of tools they used to
approach the problem. Heĳungs and Suh(Heĳungs, 2002) describe the difficulties in creating
a true dynamic LCA, especially with regard to issues in the inventory collection, inventory
analysis, and impact assessment stages. In the past, the task of creating a dynamic LCA
appears to have been approached from a pure mathematical perspective based on frameworks
that previously have been developed. While striving for mathematical elegance, we believe that
these approaches miss a hybrid approach, where complex behavior is continuously generated by
agents, and an LCA is performed at discrete time intervals. The key is the use of an ontology
that allows for a flexible network structure to emerge. A matrix is extraordinarily useful when
used as a tool for complex calculations like an LCA, but it is simply too constraining to use it
as the primary data sotrage structure for the simulation.

Limitations A dynamic LCA only makes sense in certain circumstances. It also represents
a level of complexity above a normal static LCA due to additional data requirements. The
combination of ABM and LCA can be very valuable when there are many possible permutations
of supply chains components that can lead to non-linear effects. The same is true if decision-
making can lead to a wide variety of outcomes. If these conditions do not exist, then performing
a dynamic LCA may not be very valuable. This is similar to LCA itself, where studies may
involve different levels of detail based on the needs of the research.

What does ABM gain from LCA? Developers of agent-based models can benefit from
concepts of LCA in several ways. Two such benefits will be explored below. First, LCA is a
methodology that allows for a type of structural analysis to be performed. Secondly, the use
of the LCA database in this paper demonstrates how this information can be used to abstract
the world outside the simulation.

Structural Analysis The value of ABM lies in its ability to generate complex emergent
behavior. While this is a benefit compared to other types of modelling techniques, it can
also present a challenge, as one needs a means to analyze the systems that emerge. LCA is
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one such method for achieving this. It important to realize that LCA is really a particular
implementation of a class of algorithms meant to analyze network structure. LCA builds on
the achievements of the fields of ecology and economics, which have long been concerned with
studying money, material, and energy flows within systems(Suh, 2005).

Limited diversity In this case study, many of the supply chains had the electricity produc-
tion step as the most CO2 intensive. Also, the larger technologies were limited in the amount of
biomass that they could co-fire. So even though they had LCA knowledge available, their sys-
tem was constrained in its ability to change unless the larger polluting technologies were killed
off my a high CO2 tax. This recurring problem of limited agent diversity is so far unsolved.

8.4.7.1 Future work

The realization that LCA is a network metric opens the door for implementation of other types
of analysis. Applying this method to other to other types of databases, such as those based on
macro-economic data, could provide a more realistic context of empirical data for the agents
to operate in. At a higher level, this merger is the result of trends in the development of
information technologies, which are changing the ways in which we handle massive amounts of
complex data. This is coupled with advances in understanding of Complexity Science and a
shift towards what some would call the Generative Sciences(Epstein, 1999). The combination
of these trends is worth following, as it may provide us a means to get closer to the originally
stated goals of finding solutions that benefit people, the planet, and profit.

The technique implemented in this case study also allows the combination of Agent Based
Models with CGE economic Computable General Equilibrium (CGE) models, such as the one
presented by Duchin (Duchin, 2005).

8.4.7.2 Requirements Checked

Table 8.7 presents an overview of the modelling requirements and the performance of the model.
There is obviously a long way to go before all the requirement are fully met.
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Table 8.7: Performance of the case study

Requirement Score Explanation
Method

Open Source Yes All unformalized and formal knowledge is accessible to
all involved parties.

Sufficient commu-
nity diversity

Partial The case study is performed as an extension the work for
the government commitee. Only the scientiffic staff was
involved in the case study.

Organically grow-
ing

Yes The case study is based on the previous one and extends
it organically.

Unchangeable his-
tory

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable au-
thorship

Yes All formalized and unformalized contributions have full
authorship records.

Modular Yes Built on existing models. Additions created as modules.
Outcome

Useful Yes Greatly increases the insight into environmental impacts
of a simulated network and provides domain specific in-
sights into bioelectricity production.

Testable Yes All outcomes are fully testable.
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Part III

Insights
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CHAPTER 9

RESULTS AND DISCUSSION

Facts are meaningless. You could use facts to prove anything that’s even re-
motely true!

Homer J. Simpson

9.1 Results and Discussion

Having presented the work in the previous 8 chapters, we will now present and discuss the
results of this work. First, the overall outcomes of the co-evolutionary modelling method will
be presented and discussed, followed by the domain-specific insights. Next, the design method
itself and the associated requirements will be examined, and the section will conclude with the
outcomes and discussions on each of the four elements of the co-evolutionary modelling method.

9.1.1 Co-evolutionary Method Outcome

Main result The main result of this thesis is the design and implementation of a co- evo-
lutionary method for creating continually improving models of λ-system evolution. It consists
of a practical modelling method and a modular, expandable simulation engine for modelling
λ-system evolution. The modelling method creates subsequently richer and more useful mod-
els. ’Useful’ should be understood here as being able to answer a question that the involved
stakeholder has, or to provide new insights into the modelling method itself. The evolutionary
method was played out over 7 generations, each resulting in a case study depicted in Figure
9.1.

217



(a) Flow Based
Evolution

(b) Combination
of Infrastructures

(c) Chocolate
Game Model

(d) CostaDue

(e) Bulk Biochem-
icals

(f) Metals Net-
work

(g) Bioelectricity

Figure 9.1: Evolution of models

Co-evolution in a fitness landscape The co-evolutionary modelling method, presented in
chapter 5, is envisioned as a four dimensional coupled fitness landscape (see Section 5.2.2).
In this landscape, four aspects of the modelling method interact: the technical design of the
model, the social process for knowledge formalization and modelling, the knowledge formalized
and facts collected. Whenever a aspect changes, the fitness of the other aspects is reduced. For
example, when the technical design is extended to incorporate a new formalism, social process
design aspect becomes less fit, as they are unable to encode this new type of knowledge until
it is improved. The method progresses in generations, which consist of case studies, improving
different aspects as it goes on. In each generation, changes in different dimensions create new
possibilities and challenges for other dimensions, driving the overall process forward. The
summary of the changes between generations is presented in Table 9.1.
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Table 9.1: Cumulative overview of the evolutionary improvements over case studies

Dimensions
Case Technical Social Knowledge Facts Formalisms

(new/total)
Flow-Based
Evolution

Agents with non-
conserving mass flows

None Rudimentary PSE None 1/1

CoI Combinability fitness
landscape

Initial design Legal, Spatial, Techni-
cal and Safety aspects
of infrastructures

Combinability
scores for 46
infrastructures

4/5

Chocolate
Game

Agents with discrete
mass flows and initial
formal ontology

Initial SDM
development

Basic economic None 1/6

CostaDue Simulation engine de-
sign, Agents with infer-
ence reasoning, Contin-
uous mass and energy
flows

Full applica-
tion of SDM

Basic corporate finance,
PSE, RDA strategy

27 technologies 0/6

Bulk bio-
chemicals

Agents with MCA rea-
soning, LHS for param-
eter exploration

No additions MCA concepts, RDA
strategy

19 technologies 1/7

Metals net-
work

IRR,NPV, temporary
production shutdowns

No additions Economic and RDA
reasoning

29 technologies 0/7

Bioelectricity Agents can perform
LCA

No Additions Environmental impacts 26 technolo-
gies, emissions
data on 3000
processes

1/8
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First generation: Flow-Based Evolution Using the notion of co-evolutionary across a
coupled fitness landscape, we can examine the evolution of the case studies in this thesis. The
first case study, the Flow-Based Evolution (see Figure 9.1(a)) started the evolutionary method
by testing a technical design for an agent-based model of a simplified industrial network. The
heights of the colored bars in Figure 9.1(a) denote the extent to which the case study deformed
the fitness landscape. Flow-Based Evolution created the initial peak in the technical design
and encoded a moderate amount of chemical process engineering domain knowledge. As it used
a fact-free approach to model development, it did not encode any facts. It did, however, offer
insights into which types of facts would need to be collected if one were to build a realistic
model of industrial network evolution.

Second generation: Combination of Infrastructures The second generation (see Figure
9.1(b)) was the Combination of Infrastructures (CoI) case study, presented in section 6.3. This
case study explored the social process of knowledge formalization and collected a moderate
number of facts about the spatial combinability of different infrastructures. The case study laid
bare the shortcomings of an ad-hoc approach to expert consultations and posed the challenge
to create a structured and deliberate method of knowledge formalization. This generation did
not improve the technical design, as it did not involve an ABM.

Third generation: Chocolate Game The third and final learning case study was the
Chocolate Game (see Figure 9.1(c)). This study greatly improved the initial technical design
of the model developed in the first case. It also developed the System Decomposition Method,
based on insights from the second generation. The SDM is used to extract formalized knowledge
from a group of stakeholders and domain experts and shape it so that it is usable in an ABM.
The SDM was presented in section 6.4. It set a new and improved standard for knowledge
formalization and solved the problem posed in the first case study of having a closed mass
balance across agents. The case study did not encode any new domain knowledge, as it was
based on conceptualizations developed in the first case study. Nor did it encode any new facts,
as it was based on chocolate production, an analogy of the process industry.

Fourth generation: CostaDue The fourth evolutionary generation was the Costa Due
case study (see Figure 9.1(d)), presented in chapter 7. This case study improved the technical
model design by providing a mechanism for modular agents’ economic reasoning and a modular
description of technology. It performed a full-scale SDM with different domain experts, thus
testing the method. It formalized concepts from the economic and technical domain necessary
for formal description of industrial network evolution and encoded a large number of facts
on chlorine, biobased chemicals and energy production processes. It maximized the fitness
landscape across all dimensions, effectively resetting it. It provided a solid and practical base
to continue the co-evolutionary method.

Fifth generation: Bulk biochemicals The fifth generation evolved further with the Bulk
Biochemicals case, presented in section 8.2 (see Figure 9.1(e)). This case study improved
the technical design by adding a Multi Criteria reasoning and introducing Latin Hypercube
Sampling as a novel technique for model analysis. It made no changes to the social process
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design. New knowledge encoded consisted of formalizing the Multi Criteria Analysis concepts,
and the study collected a fair number of new facts on biorefineries.

Sixth generation: Metals network The sixth generation, the Metals Network case study
presented in section 8.3 (see Figure 9.1(f)), modelled the evolution of a metals production net-
work. The technical and knowledge improvements gained from the fifth generation allowed this
case study to explore more sophisticated economic decision-making by introducing considera-
tions of Net Present Value and Internal Rate of Return to agents and enabled agents to decide
whether or not to join a cluster based on market conditions. It furthermore formalized con-
cepts describing a dynamic world market. The case study encoded many new facts on metals
extraction, processing and recycling.

Seventh generation: Bioelectricity Using these advances, the last generation consisted
of the case study on Bioelectricity (see Figure 9.1(g)), presented in section 8.4. The case study
created a model of bioelectricity production that incorporated the sophisticated economics of
the previous generation and added environmental impact and reasoning to the agents. The main
technical design contribution was the addition of Life Cycle Assessment to the model, allowing
agents to consider environmental issues when making their decisions. The case study did not
change the social process design and encoded a very large number of facts on environmental
emissions of technologies. This case study is a base that will be used for future work as outlined
in chapter 11.

9.1.2 Domain-specific Results

Flow-Based Evolution The first case study was a proof of principle model, and due to the
simplifications made it was unable to produce interesting insights into the functioning of real
world λ-systems. Yet the model did provide a wealth of model development insights.

Combination of Infrastructures The main domain-specific insight of the CoI case study
was the robustness of social knowledge. Before the start of the case study, there was a lack of a
systematic understanding of the issues within the Rotterdam Port Authority (RPA). Knowledge
was fragmented and unshared, and departments rarely consulted each other for insights which,
when shared, were nonetheless often mistrusted. The CoI project provided the RPA with a
clear sense of what can and cannot be combined, based on expertise from many different parts
of the organization. The interesting result was that while the study did not deliver surprises
in terms of new combinations, it showed that the implicit, unsystematic ’gut feelings’ of the
involved experts functioned relatively well. This gut feeling might serve the RPA for some time
to come before it eventually fails due to the organization’s growing complexity.

Chocolate Game model The Chocolate Game case study used an analogy of an industrial
network to create a serious game. While the game provided a wealth of modelling method
insights, the analogy used was simplified to such a degree that no domain-specific insights were
gleaned.
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CostaDue The main finding of the CostaDue case was that the transition from a chlorine
to a bio-based cluster, envisioned by the stakeholder, is unlikely under the current economic
conditions. It does not appear that bio-based technological options will lead to a diverse bio-
materials based cluster in Groningen, even under very low economic selection conditions. This
outcome is dependent on the assumed survival of the energy-intensive incumbent industry in
the region.

The importance of path dependency in cluster development was demonstrated, as was the
very limited power that the RDAs have in controlling this evolutionary process due to their
lack of control over which companies appears when in their regions.

Bulk biochemicals There are three main insights obtained from the Bulk biochemicals case
study. First, the examined biorefinery cluster is likely to be economically successful over a
wide range of economic conditions. Whether that positive cash flow is enough to recuperate
investment costs and provide an acceptable rate of return is impossible to say, since the agent’s
economic model is too simple.

The second insight is that agent diversity matters. Experiments examining the difference in
cluster behavior under different RDA styles show very little variation. The RDAs simply have
very little or nothing to choose from, even when they strongly prefer certain types of technology
over others.

The third insight is the importance of the long-term view. When using an MCA to choose
which firm and technology to add to the cluster, the RDA only looks forward by a single time
increment. This short-term view creates clusters that are ’stuck’ in local maxima. In reality,
an RDA has a somewhat longer time horizon than one year, which is shorter than the lifetimes
of most technical installations.

Metals network The main insight gained from the Metals network case study is that the
structure of large-scale industrial networks with limited technical diversity is robust across a
wide range of world market scenarios. We do not observe radical changes in structure over
time, only outcome spread caused by the randomness of the model. As there are very few
technical options available for metals refining, the system cannot easily adapt to changing
global economic conditions. This case study confirmed the previously obtained insights on the
importance of diversity and long-term vision for both agents and the RDAs.

Bioelectricity The main insight from the Bioelectricity case study is that the most effective
way to reduce CO2 emissions of an energy production network is to impose high CO2 taxes,
rather than having the agents choose the feedstock that leads to the lowest emissions. This
is caused by the fact that the technical design of fossil fuel burning plants limits the amount
of biomass co-firing, and such firms cannot limit their emissions voluntarily. If a drastic CO2
reduction is to occur, the technology mix of the electricity production system has to change,
meaning that the incumbent co-firing plants will have to shut down, which will only happen
under severe economic pressure.

Overall insights Based on the model runs, insights from Complex Adaptive Systems and
evolution theory, seven general guidelines for managing an evolving regional industrial cluster
can be given:
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• Cluster development is strongly path dependent. The order of appearance of firms mat-
ters, and the RDA must be very careful to develop an understanding of future evolution
patterns. RDAs must be aware of the fact that they are ’gardening’ the region, meaning
that newcomers feed off of the existing residents.

• Once established, a cluster’s structure is robust. From a Complex Adaptive Systems
perspective, once a stable attractor has evolved around a particular cluster structure, the
chaotic and path dependent nature of the evolutionary process will tend to keep it stable
by amplifying the initial success. Changing a winning team is not only a bad idea but is
also very difficult.

• The environment, or context, of the cluster is very important. The RDA must be aware
of the fact the cluster they manage, regardless of its size, is just a small component of
a much larger global system. Changes in the external world can disrupt even the most
successful and stable cluster and possibly even cause its complete collapse. Furthermore,
the social, legal, institutional and regulatory environments can make or break a cluster,
even if the right firm and technology mix is present.

• Even as clusters evolve under the watchful eye of the RDA, mistakes are inevitable.
Incompatible firms will be attracted and good firms will turn bad. It is therefore very
important the retain control of the land that is allocated. Selling land is a fast way to
lose control of the cluster.

• Diversity of firm types and diversity in the technical options available to firms are essential
for maintaining a cluster’s ability to adapt. When conditions in the external world change,
clusters with high diversity will be able to respond more quickly to them. Low diversity
can potentially lead clusters into an evolutionary dead end.

• The importance of the long-term view must be emphasized. In order to be able to plan the
evolution of clusters, RDAs must be able to look ahead by several generations of firms or
technical installations. Given the average installation lifetime of 15 years or more, RDAs
need to use a multi-decade perspective instead of the current multi-quarter one.

• Finally, RDAs must realize that cluster evolution is a matter of balance. On the one
hand, too much top-down control will stifle change, and too many bottom-up initiatives
will destroy the cluster’s coherence. A mix, good enough for a given cluster, should be
striven for.

9.1.3 Co-evolutionary Method Design
Requirements The previous section discussed the outcomes of the co-evolutionary method
for creating models of λ-system evolution. We now need to turn to the method itself and
examine it against the requirements defined in chapter 5. These requirements, together with
the stakeholders and the modellers, form the environment that guides and shapes the co-
evolutionary method. Throughout this thesis, after each case study, the state of the method was
measured by applying the requirements and evaluating the performance of the four dimensions
of the design at that moment in time. Appendix F presents the scoring of all case studies per
requirement. We can see that from the CostaDue case study onwards all requirements but
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the community diversity were satisfied. The individual requirements and the way the method
satisfies them will be discussed below.

Open source The requirement of open source calls for the availability of all knowledge and
data needed to perform the modelling exercise. The reason is that if one cannot open the
hoodand tinker with the engine, one cannot verify the engine and be certain that it is doing
what it is supposed to be doing, and one is unable to change or improve anything. The model
source code, formalized and unformalized knowledge and data are accessible to all involved
parties. It is not yet open source in the sense of being available to the general public. The
proposed opening of the code with a suitable public license will coincide with the defense of
this thesis.

Sufficient community diversity The community diversity requirement ensures that a suf-
ficient number of formalisms, in the form of different domain experts and modellers, is present
in order to deal with the multiformal nature of the λ-systems we are attempting to understand.
At this moment, the community of modellers and users is strong and expanding. As can be
seen from the case performances in Appendix F, several cases are not considered to have a
sufficiently diverse social network, as some disciplines and types of users are not represented.
For example, risk perception and user interface design were not included in the models so far
(for future work, please refer to chapter 11). We would also ideally like to see broader stake-
holder participation, as this was lacking in some case studies for practical reasons. However,
the modelling method is designed in such a way that it can accommodate a growing diversity
of stakeholders and modellers, and the fact that some cases do not have this diversity is not a
measure of the failure of the method, but a practical case setup issue.

Organic growth The requirement of organic growth is based on the concept of local op-
timization, that is, every change to the design should be directly useful and should improve
a direct problem. Furthermore, organic growth is bottom-up, ensuring the involvement of all
stakeholders, as the design is not laid upon them. Through the iterative application of the
modelling method across 7 generations, the technical design, social process design, knowledge
formalization and fact collection have grown and improved organically. The code base has un-
dergone many expansions and several major restructuring steps. The social process has been
created by improving the existing approaches. It continues to be developed from the inside out,
with more and more formalisms being added and new facts being collected. We can conclude
that the requirement of organic growth has been met.

Recorded history As the modelling method is co-evolutionary, it is path dependent and
error-prone. The requirement of recorded history ensures that all changes to the software,
formalized knowledge and collected facts are recorded and can be undone if necessary. A
record of the history is fully available in the various Subversion repositories 1, as demonstrated
throughout this thesis. The repositories track all changes to source code, knowledge and data.
Wiki2 tracks all tacit knowledge and its development. We can conclude that this method
requirement has been fully met.

1http://gux.tudelft.nl/svn/
2http://wiki.tudelft.nl
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Enforceable authorship The co-evolutionary modelling method is performed by people.
Based on the previous requirement of recorded history, we also need to know who did what
and when, both for credit and blame. The social network that emerged during this project
numbers several hundred individuals with different degrees of activity. Every contributor is
authenticated to the system and their contributions recorded. This requirement has been met
by the co-evolutionary method.

Modular The requirement of modularity ensures maximum flexibility in the design, as it
jointly enforces a standard interface between components and allows for the piecemeal replace-
ment of components that become inadequate. Given the modular technical design described
in appendix D, the state-based SDM discussed in section 6.5 and the discrete entities that
compose the ontology, we can conclude that this requirement has been met.

This modularity will become more important as the method continues in the future and
as the models increase in complexity. It poses a challenge, as the interfaces across which the
modules interact need to continually evolve in order to accommodate new and unforeseen types
of knowledge. Path dependency is a threat, and a redesign of the model interaction may be
necessary in the near future (see chapter 11).

Useful The usefulness requirement has been defined at two levels: that of the method and
that of the model’s outcomes. A co-evolutionary step in the method must either be useful
in further improving the co-evolutionary method itself or by providing new insights into the
modelling method. For example, the addition of IRR and NPV in the metals case (section 8.3)
allows for increased sophistication of the models. In terms of useful insights, the CostaDue
case demonstrated that the future bio-based cluster envisioned by the stakeholders is unlikely
to emerge under the current conditions.

Usefulness, as a requirement, cannot be measured absolutely. It is a relatively soft criterium,
and it is up to the involved stakeholders and modellers to determine when something is useful.

Despite its relative softness, this is possibly the most important requirement of the method.
It has been the major driver of the locally optimal development, as it called for immediate
usefulness of every and any change in the different dimensions. It continues to drive the
evolution forward, but ensures that no overengineering occurs, specially when the goals are set
too high, i.e., “it will be great one day when we implement it...”. Based on the developed models
and domain insights, we can conclude that this outcome requirement has been met.

Testable The requirement of testability ensures the scientific nature of the entire exercise.
If a developed model or method cannot be tested, it cannot be verified, and thus it cannot
be called science. All models produced by the method are fully repeatable (based on a fixed
random seed) and can be falsified. The modelling method itself can be repeated. As it involves
a social network, the current accumulated knowledge cannot be unknown, so the new models
will always be created with the advantage of hindsight. In addition, the involved stakeholders
might be different, so the precise outcome will be different. But the method can be tested to
produce useful results again. The evolutionary nature of the method furthermore means that it
is tested at each co-evolutionary step, as the mechanism is reapplied. This continuous testing
ensures its long-term viability. This final requirement has also been met.

225



Co-evolution with the environment As mentioned above, the requirements together with
the users form the environment of the co-evolutionary method. It is the stakeholders, the
modellers and the computers used to run the simulation that form a socio-technical environment
that applies the requirements and performs the deformation of the fintess landscape. It is
interesting to note that this socio-technical environment is also affected by the method, learning
from the method (as this is the main goal of the exercise) and adapting to it. The method
of co-evolution happens not only within the dimensions of the method, but also between the
method and its environment.

Main scientific contribution The main scientific contribution of this thesis is the creation
of the co-evolutionary modelling method, along with the associated method requirements. This
allows the decision makers to operationalize their thinking on evolution on λ-system and com-
plex adaptive systems, and aid them in the decision making process

This thesis is about the method and practice of creating new combinations of existing
elements, and making those elements interact in a explicit, testable, repeatable and practically
useful manner. By accepting the complex and evolutionary nature of both the object of study
and the scientific process needed to understand it, new ways of organizing and operationalizing
the thinking on λ-system evolution become possible.

Previous to this work there was no established body of knowledge on the modelling design
method for developing Agent-Based Models in general. The focus has traditionally been on the
descriptions of models and their results (see Appendix G for an extensive literature review).
The most cited methodological literature (Barreteau et al., 2001; Bonabeau, 2002; Kendall
et al., 1996; Wooldridge et al., 2000) is either very general for the purpose of introducing ABM
to non-modellers, or deals with the design of multi-agent systems, which has distinctly different
goals (see section 4.3.1). There is no literature realted to methodologies for modelling evolving
λ-systems. Methodology issues in general have been discussed in design literature (Dĳkema,
2004; Herder, 1999; Westerberg et al., 1997), but the focus has usually been on conceptual
process design, not modelling design.

Four dimensions The main result of the thesis was presented above, and we will now discuss
the four dimensions that make up the co-evolutionary method. We will start with the technical
design, followed by the social process design and the knowledge formalization, ending with the
fact collection dimension.

9.1.4 Technical Design

Main result The main result in the technical dimension is the design and implementation
of the simulation engine, presented in Figure 9.2. For an extensive discussion on the diverse
elements, please refer to Appendix D.
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Figure 9.2: The structure of the simulation engine. Green areas are the Hardware and Operating
System. Red areas are the knowledge management components. The simulation software
components are in blue, and data and knowledge processing & analysis components are shown
in yellow.

Estimated effort The iterative application of the requirements during the co-evolutionary
method discussed earlier provides us with a sense of quality and usefulness of the simulation
engine that evolved. A more quantitative estimate of the simulation engine code base can be
achieved by analyzing the code using D. A. Wheeler’s ’SLOCCount’ program3. The SLOCCount
program, often applied in open source projects (Deshpande and Riehle, 2008), estimates the
time, effort and cost involved in creating a particular set of source codes. The results are
presented in Table 9.2.

3http://www.dwheeler.com/sloccount/
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Table 9.2: Costs and effort estimates for the model code
Aspect Model Sim.Gen. Total
Total Physical Source Lines of Code
(SLOC)

10674 14159 24833

Development Effort Estimate, Person-
Years (Person-Months)

2.40 (28.84) 3.23 (38.80) 5.63 (67.65)

Schedule Estimate, Years (Months) 0.75 (8.97) 0.84 (10.04) 1.59 (19.01)
Estimated Average Number of Developers
(Effort/Schedule)

3.22 3.86 7.08

Total Estimated Cost to Develop $ 324,627 $ 436,743 $ 761,370

Considering that the code was produced over the duration of a Ph.D. thesis (almost 5 years
including writing) and that on average at any given time one person was writing code, the
development effort estimates are a fair representation of the actual effort, as is the estimated
number of developers.

No energy balance The main aspect of the description of the physical reality missing from
ABM simulation software is the absence of the closed energy balance. Implementing a closed
energy balance in a network describing processing industries is a daunting task, requiring a
massive data collection effort, orders of magnitude larger than closing the mass balance. The
main reason for this is the fact that energy use and transformations are pervasive in the pro-
cessing industry, as well as the fact that energy can have many different forms. For example,
in order to have a closed energy balance, one would have to consider all the temperatures and
pressures, the energy content of all in- and outflows and also the electric energy entering the
production plant. Furthermore, efficiencies of all equipment would need to be known, in order
to estimate the losses to the environment. Different equipment for processing identical mate-
rials flows can have energy efficiencies differing by orders of magnitude. Finally, parts of the
mass inflows are often used for energy generation as well as for processing, as is the case in
refineries, for example, further complicating the mass/energy link.

While the energy balance is not implemented, this does not pose a significant problem at
the level of abstraction used in the models. Mass balances in the form of fuel and CO2 flows,
and the energy flows in the form of electricity, add sufficient realism to describe the networks
without burdening the modelling method with unnecessary data requirements.

Main scientific contribution The scientific contribution of this dimension lies in the actual
design of the entire software stack, from the silicon up. Traditionally, software tools offered for
ABM are either very generic or very specific and focus only on the agent description. There is
no literature on the design of scalable, high performance agent-based modelling systems that
simultaneously encompass agent description, formal ontologies, supporting knowledge infras-
tructure and choices of hardware and operating system. The design presented in this thesis
can be seen as a set of interconnected and interactive tools, effectively forming a scientific Lego
that enables multiformal modelling of λ-system evolution.
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9.1.5 Social Process
Main results The are two main main results of the evolution of the social process design.
First is the System Decomposition Method (SDM), discussed in detail in sections 6.5 and 7.6.1.
The second result is the actual social network established around the co-evolutionary modelling
method and the developed models.

SDM The SDM is a practical and structured collaboration script that extracts unformalized
knowledge residing in the heads of domain experts and stakeholders and converts it into an
agent-based model. It is presented in Figure 9.3 below.

Figure 9.3: System Decomposition Method

The SDM method consists of a number of knowledge states and knowledge interfaces (see
section 6.5). Starting with a stakeholder’s question, knowledge about a λ-system’s state and
behavior moves from the unshared and unstructured knowledge held in different minds, across
the soft-soft interface to a shared unstructured state. From there, the knowledge moves across
the soft-hard interface, where it is structured into an ontology, becoming shared and structured.
This knowledge then crosses the hard-hard interface, becoming a model specification. The final
transition is across the hard-soft interface, where the model is used by the stakeholder to answer
the initial question.

Issues with the SDM There are several aspects of the SDM that deserve further attention.
These are the absence of a hard to soft interface, the absence of a proper social science analysis
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of the social process and the pragmatic approach to network growth. These will be discussed
below.

Hard to soft The SDM as presented in this thesis has one missing link, namely across
the hard to soft interface. This is the step in which the formal outcomes of the models are
transferred to the stakeholders’ minds. This step is important for the optimal support of
stakeholders in their decision-making. It has not been explored in this thesis in detail, as
it requires a thorough social science and psychological treatment. In order to study it, one
would need to examine the parameters governing the stakeholders’ acceptance of models in
general, their ability to deal with complex information, etc., which would be beyond the scope
of this work. This thesis assumes that the modellers will engage the stakeholders in an ongoing
discussion about the meaning and relevance of model outcomes without formally specifying the
interaction.

No model use analysis This thesis did not perform a comprehensive social science study on
the use of models by the stakeholders. The feedback from the stakeholders has been informal in
nature. Again, a thorough analysis of the actual impact that the model outcomes would have
on the behavior of decision makers is outside the scope of this work. One important observation
is that being involved in the SDM method was seen by stakeholders as a valuable contribution
to their understanding of λ-system evolution.

Pragmatic approach As a consequence of the previous issues, we should point out the
pragmatic approach used to design the ABM and the pragmatic choice for evolution of the
social network. These were not ideal, but were practical and useful. They do, however, suffer
from traditional ’engineers meddling with social science’ problems. One consequence of this
pragmatic approach was that involvement was limited to that by the domain experts who were
directly available. A more thorough and systematic social analysis could have possibly suggested
a more diverse set of domain experts to be included, which would have further enriched the
social network and allowed for formalizations of more diverse knowledge domains. Again, such
an analysis was beyond the scope of the work.

Social network In addition to the SDM, the second result of the social process is the social
network that has self-organized around the co-evolutionary modelling method and case-specific
models. This was not a designed outcome, but emerged as a byproduct of the modelling method.
This social network was organized around wiki.tudelft.nl and collaboratively created the model
code and collected the facts. The wiki has been organized, maintained and administered by
the author. The collaboration structure of this social network has been visualized as a force-
directed graph in Figure 9.4 4. The closer a user is to the center of the graph, the more intense
her collaboration is with the others.

4Figure was developed together with Chris Davis, see http://wiki.tudelft.nl/Research/
WikiCollaborationNetworkVisualizationBot, and the source code is available at http://gux.tudelft.nl/
svn/IgorNikolic/tools/WikiAnalysis
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Figure 9.4: Collaboration structure of the social network on wiki.tudelft.nl

Figure 9.4 provides interesting insights into the social network. It is clearly a preferentially
attached graph, with an active core of collaborators and a less active periphery. This corrob-
orates the practical experience of wiki collaboration. Furthermore, if we examine the activity
of individual users, presented in Figure 9.5, we can observe that the activity has a power law
distribution which is common in Complex Adaptive Systems. Thus, not only does the social
network study Complex Adaptive Systems, but it is one itself.
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Figure 9.5: Wiki activity in number of edits per user

Other models In addition to the models presented in this thesis, the social network has
produced a number of other models, all based on the Simulation Generics model core. A series
of power sector models were constructed by Chappin (Chappin, 2006; Chappin and Dĳkema,
2009). In these models, investment in electricity generation technology is central. Also modelled
are power and fuel trade, and different carbon policies such as emission-trading and carbon tax-
ation have been implemented to assess their potential impact on the system. Power-producing
agents strategically invest or dis-invest in power plants with unique sets of criteria. In ad-
dition, electricity-producing agents exhibit operational behavior by negotiating and engaging
in contracts. The modelled system also contains other agents, e.g. government, markets for
CO2 rights, power and fuels, power consumers and the underlying technology (power plants,
consumer technology, physical networks and flows) (Chappin and Dĳkema, 2009). Scenario
analysis was used to operationalize the parameter space and outplay system developments
under different exogenous conditions and trends.

An entirely different direction toward which the base model has evolved is a micro model of
combined heat and power generation in households that has been constructed in order to study
the dynamics of distributed power generation (van Dam et al., 2008). Similarly, a detailed
model of an oil refinery was developed, modelling both the social and technical aspects of an
oil firm’s operations. A more infrastructure-oriented model is the description of a container
transport hub, examining the ideal location of a large-scale transport hub, given distance and
cost as well as noise and pollution disturbance for the surrounding population (Sirikĳpanichkul
et al., 2007).

Finally, an Internet-based electricity market game 5 was designed in order to help players
better understand the short- and long-term dynamics of electricity markets. In the game,
several players work together as a power company and compete against other companies by
generating and selling electricity. Players compete in a power exchange, where they try to sell
their electricity. The game, while obviously requiring very different software than the agent-
based models developed, is based on the Simulation Generics and on the ontology that describes
the necessary concepts and game setup.

5http://emg.tudelft.nl
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Main scientific contributions The scientific contributions of the outcomes from the social
process design evolution are twofold. The first contribution concerns the formalization of the
method and the context in which it is performed. The explication of the interfaces and knowl-
edge state of a system decomposition method, presented in section 6.5, is novel. A publication
dealing with the interfaces and states is currently under review (Beers et al., 2009). The second
contribution is the application of the SDM. Application of a systematic, socially inclusive sys-
tem decomposition is new in the context of agent-based modelling of evolving λ-systems and
ABM in general.

9.1.6 Knowledge collection

The third dimension of the co-evolutionary method is the knowledge collection and formaliza-
tion. There are two types of knowledge collected: the formalized and the tacit. The first type
is collected in the ontology and was the primary focus of this thesis. The unformalized, tacit
knowledge was used to support and organize the social network around the knowledge formal-
ization efforts and has mainly taken place on the Wiki. Obviously, the knowledge stored in the
Wiki is not real tacit knowledge, since by definition tacit knowledge is not stored. Yet because
of the free form collaborative nature of the Wiki, its concepts are as close as one can come to
written tacit knowledge. Both types of knowledge stored are evolving, growing structures.

Unformalized knowledge The Wiki has evolved to be an on-line clearing house of infor-
mation, a free-form workspace and a repository of near tacit knowledge. It is used daily to
communicate project progress, make notes on idea development, collaborate on papers, etc. Its
structure has emerged one page (topic) at a time. Each page roughly represents one coherent
unit of content or idea. Figure 9.6 presents the growth of the Wiki structure over time 6, which
shows the development from its beginning up to the moment of this writing. The graph is force
directed, edges represent pages referring to each other. This means that portal type pages,
collecting information on certain topics, are in the middle. At the time of writing7, the Wiki
contains 3151 pages.

6Graph is created by C.B. Davis, see the Wiki page at http://wiki.tudelft.nl/Research/
WikiGrowthOverTimeBot. The source code of the generation algorithm is available at http://gux.tudelft.
nl/svn/IgorNikolic/tools/WikiAnalysis/src/VisualizeWikiEvolution.java

725th November 2008
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(a) Day 18 (b) Day 186 (c) Day 373

(d) Day 568 (e) Day 751 (f) Day 1126

Figure 9.6: Structure of knowledge on the Wiki at any given day since its start. Size of the
circle denotes relative activity on that page at that moment.

Figure 9.6 demonstrates the organic growth of the wiki and the preferential attachment
growth pattern. Coupled with the social collaboration network presented in Figure 9.4 and the
user activity histogram presented in Figure 9.5, the idea that the social network is a Complex
Adaptive Systems is reinforced.

Formalized knowledge The difficulty in going from unformalized to formalized knowledge
is reflected in the difference in number of formalized concepts. The Wiki contains around 3500
concepts, of which the formalized ontology defines 250 classes and some 160 properties (see
Table 9.3). However, the Wiki is not computer readable, other than its structure, whereas a
computer can use the ontology to reason about the knowledge encoded in it. The structure of
the ontology is presented in Figure 9.7. A full-resolution image is available on-line 8.

8http://gux.tudelft.nl/svn/IgorNikolic/phd/thesis/trunk/EnergyAndIndustryKnowledgeBase_
clean.png
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Figure 9.7: Structure of the ontology

Ontology of actions The ontology formalizes knowledge of what the system components are
in a λ-system. What it is unable to encode is how these components act and interact. What
is missing is an ontology of agent actions. There is a significant difference between creating an
ontology of objects (the what or declarative level) and an ontology of the action (the how or
procedural level). Objects can be defined as having a limited number of useful properties, and
the list of properties can easily be expanded as the need arises. Actions, however, demand a
more thorough treatment. The trouble with actions is that one must not only consider a very
broad set of things acted upon (that is, the objects), but also what the action is, (that is, what
happens), and what its effects are, worded in terms of objects, their properties, and possibly
even other actions. In words probably more familiar to programmers, one must consider all
possible operators and associated data structures. This amounts to writing a specification of a
programming language, which was beyond the scope of the system decomposition method. One
(partial) way around this problem is the specification of the Scenario class, as defined in chapter
7. The scenario defines a template of the actions of which the agent is capable. Although this
does not fully specify how an action is to be performed, it does offer a unified interface between
agents. A new approach using Aspect Oriented Programming is currently under development
to alleviate this problem (see chapter 11).

Overscripting Finally, there one important danger in using formal ontologies. A traditional
pitfall of using formalisms lies in the so-called over-scripting of a collaborative activity (Dil-
lenbourg, 2002). This means that the structure imposed on the collaborators is so strict that
instead of improving productivity, it stifles creativity and innovation. If we hold the SDM
against this light, it would seem that its large degree of genericness and its small number of
initial concepts would keep it from stifling creativity. Balancing flexibility with exactness is
more of a black art than a science, and the right mix should evolve over time if the ontology is
set up in a flexible fashion.
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Main scientific contribution Knowledge collection was not intended as a field of study
per se, but has evolved as a practical result supporting the co-evolutionary modelling method
and the models created. However, it can be argued that the main novelty in this dimension
is the practical implementation of ontologies and Wikis in a modelling process. While neither
technology is new and they have seen wide use, their combined application in an ABM is in its
infancy.

9.1.7 Fact Collection
Main result The final dimension of the co-evolutionary method is fact collection. Its main
result is the number of encoded instances in the ontology that can directly be used by the
simulation engine. Statistics of the ontology, collected at the time of writing, are presented
in Table 9.3. In total, the social network has collected 68 instances of different agents, 203
instances of technologies with 278 different operational configurations. The rest of the instance
count is accounted for by the data tuples that create the Operational Configurations.

Issues Fact collection, while conceptually straightforward, has proven to be a challenging
practical issue. Three main issues make fact collection difficult, namely the general unavail-
ability of data, the proprietary nature of existing data and the lack of ’glory’ in collecting
data.

Unavailability The main problem with fact collection is the general unavailability of
data. Often, the necessary facts on λ-system agents are simply not collected. In cases
where such data is collected, it tends to be highly aggregated and therefore of relatively
little use for a generativist, bottom-up approach.

Proprietary When data is available on the agents, firms, institutions and technologies,
it is regarded as proprietary and a trade secret by actors. It is therefore not accessi-
ble to open scientific research, and when it is, one must abide by strict non-disclosure
agreements.

No glory Finally, an important issue with data collection is that researchers are less
likely to work on this level than on the knowledge level. Collecting data is tedious, hard
work that brings little recognition.

Diversity These problems with data collection lead to a more serious problem, namely the
relatively limited diversity of facts, see chapter 8. When the diversity of agents, technologies,
Operational Configurations, etc. is low, evolving systems get ’stuck’. The system cannot evolve

Table 9.3: Statistics of the ontology classes, slots and instances

Item Number
Classes 247
Slots 166
Instances 4312
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towards a new state when it lacks the internal diversity needed for the adaptation, until new
diversity is created. Generating diversity in the model is not trivial. One can generate artificial
diversity by using synthetic agents, but then the model’s relevance and realism suffer greatly.
Real diversity requires a lot of effort in finding and encoding facts.

Main scientific contribution As was the case with knowledge formalization, fact collection
was not the focus of this thesis, but rather a result of the modelling method. It has not
been scientifically examined. The ontology generated during the method can be seen as a
contribution that can be used by others to make different models of the same systems.

On to conclusions After having presented and discussed the results of this thesis, the next
chapter will draw conclusions about it.
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CHAPTER 10

CONCLUSIONS

My ideas have undergone a process of emergence by emergency. When they are
needed badly enough, they are accepted.

R. Buckminster Fuller

Recapitulation This thesis openend1 with a holistic portrait of the Large-Scale Socio - Tech-
nical systems (λ-systems) that humans have created within the biological and geological bound-
aries of planet Earth. The planet is an interconnected, complex adaptive system of geological,
biological, social and technical systems. The combined perspectives of multiple formalisms are
required if we are to be able to fully understand it. Over the past two hundred years, human
activities, being part of the larger λ-systems that have evolved, have begun to influence system
Earth to such a degree that a global sustainability crisis is imminent. In order to ensure sustain-
able human prosperity, we must have a longer time horizon when considering the consequences
of our collective actions on the future of these globally interconnected systems, and we must
improve our understanding of the evolutionary paths of such λ-systems in order to be better
able to choose actions that may bring sustainable development within reach.

Predicting the global effects of our actions is very difficult because of the deeply interlinked
nature of the system we are part of and because of the inherent intractability of future develop-
ments, i.e., the fundamental inability to exactly predict the effects of an action on an evolving
system. One possible solution - the subject of this research - is to collectively create models of
the evolution of the complex world around us and to use them in examining possible futures
resulting from possible actions. This will provide us with a deeper understanding of system
behavior, even if it does not provide us with exact prediction.

This thesis focused on a subsystem of the global socio-technical system, namely regional
industrial networks and their evolution. The goal was to create a collaborative, co-evolutionary
method for creating models of λ-system evolution. Models created by this method can support
decision makers in steering the evolution of such complex systems towards a more sustainable
state.

1A casual reader of this thesis who started reading at this chapter may wish to read chapter 9 as well for
context of the conclusions presented here.
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Hypothesis The main hypothesis of this thesis was that the use of models of simulated λ-
system evolution can improve decision-making about industrial cluster development. By exam-
ining patterns of evolution across different simulation scenarios, we can reduce decision makers’
uncertainty by answering ’what if’ questions about λ-system evolution.

The hypothesis has not been falsified. The models developed in this thesis are adequate
for the problem posed. The models can aid decision makers because they make it possible to
examine evolutionary patterns across large parameter spaces and different scenarios.

Objectives The objective of the work was to increase our knowledge of λ-system evolution
patterns through simulation of the co-evolution of physical and social networks. The ultimate
goal is to provide decision-making support for those involved in shaping the development of
industrial clusters. The objectives were detailed as:

Gaining insight Gain insight in to the social, economic and technological aspects of the
co-evolution of λ-systems, and more specifically, of regional industrial systems This goal has
been achieved. The reader interested in domain-specific insights from the case studies should
refer to chapter 7.7 for the Costa Due case study results, sections 8.2.6 for the Bulk Biochemicals
study, 8.3.6 for the Metals Network study and 8.4.6 for the Bioelectricity study. The overall
domain-specific insights are presented in section 9.1.2.

Creating a method To compile models that suitably represent the social and technical
realities of industrial networks. These must comply with the laws of conservation of energy
and mass and must enable the exploration of the design space of sustainable industrial network
evolution. This goal was achieved with the CostaDue model, presented in chapter 7, and sub-
sequent models. All models are mass balanced and represent agents’ decision-making processes
in ever-increasing levels of detail and realism. Implementing a closed energy balance has been
found to be theoretically possible yet impractical, as will be discussed in Section 9.1.4.

Supporting decision-makers Support decision makers by creating a scientifically sound
tool that could be used to support critical actors, notably the RDAs, in decision-making processes
regarding regional industrial development. The generated models, while not formally tested in
RDA settings, have generated much interest from the RDAs and have been used to examine
the effectiveness of RDAs’ strategies (see section 8.2) and to examine alternative policy options
(see section 8.4).

Research questions The central research question was formulated as: How can we create a
model for exploring the evolutionary patterns of λ-systems?. Three subquestions were derived
from the central research question:

RQ 1 How can a generativist Complex Adaptive Systems perspective be operationalized in
models that capture λ-system evolution? This question was addressed in chapter 3. Genera-
tive science means answering the question “can you grow it?”. In order to grow, or generate,
emergent phenomena in complex, multiformal λ-systems from interactions between simple, low-
level components, the notion of different formalisms was introduced and their use in ontologies
presented. Theoretical concepts from the fields of Complex Adaptive Systems and Evolution
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Theory were presented as building blocks for a generative approach for creating and under-
standing emergent properties of λ-systems. This resulted in a unified framework for simulating
evolutionary development pathways of λ-systems.

RQ 2 What are the content specifications of such models in terms of the relevant formalisms
(knowledge domains)? This question was addressed in chapter 4. The relevant knowledge
domains identified, in addition to Complex Adaptive Systems and evolution theory, are theories
on industrial clusters and agent-based modelling. Industrial clusters were conceptualized as
networks of firms that own technologies, their reasoning behavior described by basic business
economic rules and their technical state described with basic process systems engineering input-
output mass flow models. Agent-based models are seen as collections of agents, which are
defined by their rules and states and create emergent system behavior through their interactions.
An extensive literature review demonstrates that all building blocks needed to proceed to RQ
3 were present, and that there is no literature describing previous attempts to synthesize a
simulation model of λ-systems evolution from this diverse collection of building blocks.

RQ 3 What are the specifications for a method that would create such models? This ques-
tion was addressed in chapter 5. This thesis has presented a method for creating models of
λ-systems evolution that itself evolves. The method involves the co-evolution between four
aspects, namely the technical model design, the social process used to encode knowledge, the
knowledge formalization process itself and fact collection. Progress in each dimension deforms
the coupled fitness landscape that describes how well the modelling method and the models
produced by it perform. Several guiding principles and requirements for this method were de-
fined. Part II of this thesis demonstrated the implementation and outcomes of this evolutionary
modelling method.

Reflection and future work This ends the conclusions of the thesis. Readers interested in
the more informal reflections and future work plans should please see chapter 11.
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CHAPTER 11
REFLECTIONS AND FUTURE WORK

Now, for the first time in its billions of years of history, our planet is protected
by far-seeing sentinels, able to anticipate danger from the distant future - a comet
on a collision course, or global warming - and devise schemes for doing something
about it. The planet has finally grown its own nervous system: us.

(Dennett, 2003)

11.1 Reflections
The words of Daniel C. Dennet are particularly fitting for this final chapter of the thesis. The
human species has achieved a level of socio-technical organization unparalleled by any other
species on this planet. Science and technology, coupled with the social systems that use them,
can indeed be seen as the planet’s nervous system. We can gaze far out into space and time
and can observe the approach of (self-inflicted) danger. For the first time in human history,
we indeed may have the power and means to act in order to avoid approaching doom. How
we will use this power is up to us. Are we going to act as deranged and self-destructive mind,
too absorbed in our own petty profit and war making, letting the global bio-geo-chemo-socio-
technical systems collapse, or are we as a human race going to rise to the challenge and become
a conscientious and responsible caretaker of our spaceship Earth?

As a tiny part of the global collective nervous system, this thesis can be seen as striving
to increase our understanding and provide practical tools for achieving a more secure and
sustainable future. Reflecting back on the thesis, the following line of argumentation was
presented:

• Work started with a realization that human society is an evolving, complex λ-system
embedded in a global biogeochemical system, and that its evolution needs to be steered
if we are to avoid a global sustainability crisis.

• We examined the scientific and modelling foundations of Complex Adaptive Systems and
realized that in using traditional modelling approaches we miss vital social and adaptive
components. These limitations hamper our ability to understand and shape the evolution
of λ-systems.
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• We broadened the traditional scientific and modelling basis with a socially constructed
knowledge perspective and proposed a new approach for creating models of λ-system
evolution that share the dynamics and structure with real-world systems.

• By concentrating on the multiformal nature of models that to be created, we developed
a social interface (the SDM). This social interface facilitates the integration of the social
process of knowledge formalization with the scientific modelling process.

• We observed that if the outcomes of such integration are to be complex models of Complex
Adaptive Systems, they must be created through a evolutionary process. This observation
led to the insight that the modelling method, and science itself, is an evolutionary process.

In the remainder of this chapter we will first reflect on the scientific aspects of this work,
then on the models created in this thesis, and finally on the co-evolutionary modelling method
that made them. We will close this work with thoughts and plans for future work.

11.1.1 Scientific Contribution
Starting the reflection, we will consider the place of this work in the grander scheme of science.
This work fits within the notions of exploratory modelling of multi-scale problems and may
potentially lead to the founding of Complex Adaptive Systems Engineering. But first, we need
to position this work within that which has already been done on post-normal science.

Post-normal science Traditionally, through modelling one attempts to answer a particular
domain-based question. The process starts with the collection of relevant data, proceeds with
model construction and ends with the interpretation of the model’s outcomes and conclusions
about the problem. The modelling method presented in this thesis changes this by starting with
the identification of the stakeholders’ knowledge problem and proceeds with a social knowledge
collection process and the formalization of this knowledge. Then the actual question is identified
by the stakeholder, given the formalized domain, and the model for answering it is constructed.
Model analysis and feedback are again explicitly social processes. This modelling method
facilitates the creation of a knowledge community, rather than simply answering the question
posed.

Organizing the modelling process in this way means creating a coherent, focused and inte-
grative research path with explicit, socially constructed multiformal knowledge. It also means
acknowledging that there is no single correct way to understand the world. It is in fact post-
normal science, as defined by Funtowicz and Ravetz (1993), where gaps exist in knowledge
and understanding that cannot be resolved using the traditional scientific paradigm but which
require the incorporation of multiple - and sometimes contradictory - viewpoints into the same
problem-solving process (Kay et al., 1999).

Exploratory modelling The traditional Baconian approach to modelling poses the question
of whether a sufficiently correct model can be created to describe the evolution of the system
under scrutiny. In a post-normal world view, this question cannot be answered, as ’correct’
is ill defined, especially when social aspects are involved. Being aware of this limitation, our
approach examines whether we can gather a large enough diversity of perspectives on the
system elements behavior and, when this is accomplished, sets out to explore possible futures.
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Is this useful, then, if it cannot generate the ’correct’ model? Indeed it is, as it reflects back to
stakeholders the consequences of their beliefs, while exploring vast model outcome spaces. It is
up to them to recognize patterns in the multitude of evolutionary paths and potential futures
- and to learn from them.

Multi-scale problems This exploratory modelling approach is naturally extended to the
notion of multi-scale problems. One of the major sources of complexity in systems is the
intertwining of different levels of scale in the problem. The generativist perspective clearly
points toward understanding systems from the bottom up, across many scales of aggregation
and interaction. Theoretically, there are no limitations to the multi-scale models. Practical
limitations concern the availability of knowledge, model mechanisms and data as well as the
computational resources.

11.1.2 Models Created
This thesis presented seven different models, each model emerging from the previous one. They
have provided a wealth of insights on λ-system evolution and were shown to useful. But what
are the strengths and weaknesses, the limitations and the possibilities of those models?

What the models can do The main thing that Agent Based Models of λ-system evolution
can do is to help us explore and provide a sense of the range of possible system futures. By
examining the models across a wide range of parameter values, a map or pattern of possible
future development can be seen, depending on, for example, market changes, the introduction
of new technologies, new policy interventions or changes in management styles.

As discussed in Chapter 1, humans are relatively weak at systematic reasoning across a
myriad of interactions between system elements, but excel at pattern recognition. Computers,
and computer models are, as Steve Jobs has observed, bicycles of the mind 1, systematically
exercising the relations between system elements, creating complex behavioral patterns. It is
up to us to interpret those patterns.

The created models are built on objective physical and behavioral characteristics of physical
networks and on the beliefs and assumptions of stakeholders about the properties and mecha-
nisms of the social network. Using the created ABMs of λ-system evolution provides us with
a formal mechanism for testing the understanding and the intuition of the stakeholders. The
ABMs often surprise us by showing emergent properties - logical but nonetheless surprising -
caused by unpredicted interactions between agents.

What the models cannot do Compared to what the models can do, there are of course
infinitely more things they cannot do. There are two main limitations relevant to understanding
evolving λ-system evolution.

Because of the thesis focus, all models produced in this work are unable to answer questions
at the tactical or operational level. The models are not meant to aid the decision-making
process on selecting suppliers, shutting down or starting a production of a single plant, etc.
The models are meant to support strategic thinking only. This limitation, however, applies to

1http://www.youtube.com/watch?v=PUagMQZ_WFQ
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the models developed. It is relatively straightforward to create the next generation of models
that will be able to support answering operational and tactical questions.

On a more fundamental level, there is a theoretical limit to what any generative model of an
evolving system can do. As extensively discussed in this thesis, evolution is intractable. That
means that there can never be a model that exactly predicts the future state of an evolving
system. We might find models that provide good enough predictions, for varying levels of that
qualification, given certain resources.

Model advantages There are a number of advantages to using ABMs in the manner pre-
sented in this thesis. ABMs’ main strengths lie in the fact that they form a very straightforward
representation of the system they are describing. ABMs consists of discrete entities that in-
teract in parallel and contain multiple formalisms embedded in them. This strong structural
correspondence leads to an intuitive understanding of models by their users. Our experience
in interacting with stakeholders, the users and modelers taught us that the behavior of agents
and their interaction is very easily understood, as we humans tend to think about entities hav-
ing goals and ’wanting’ things. ABMs offer a new modelling paradigm. They are in general
seen as something new and exciting. Modelers and users alike are drawn to “shiny new toys”.
ABMs allow for relatively easy collective modelling. Compared to more top-down models, the
distributed nature of collective modelling makes it relatively easy to split up the creation of a
bottom-up model among different people.

Models’ disadvantages There are two main disadvantages that lie within the technique of
ABM itself, and three social disadvantages, stemming from models (mis)use. Given the inherent
structure of ABMs, they are have a rather high data requirement. As the degree of realism
of models increases, the data requirement rises, quickly becoming impractical. This is mainly
caused by the large increase in the number and detail of individual entities that need to be
described. Furthermore, implementation of a ABM is still not straightforward. Even though
there are many efforts in making ABM more user friendly, the fact that actual behavioral
algorithms need to be encoded requires computer programming skills for all but the simplest
of agent descriptions.

Social aspects of model use lead to three main disadvantages of ABM. First, modelling has
in general been oversold to policy makers. System Dynamics, Operations Research, etc. have
been actively promoted by modelers to policy makers with the promise of a rational prediction
of future system states. Often, these predictions have turned out to be erroneous, raising doubts
about the usefulness of modelling in general. Users have to be educated about the scope and
relevance of Agent Based Model, and the modelers need to be more careful about their claims
of prediction. Somewhat contradictory to the first point, in cases where policy makers have
accepted a model and are comfortable with its use, they tend to use it in ways not meant by
modelers, leading to erroneous conclusions. This overuse of and overdependency on models is
harmful both to policy and model use. Finally, because of the relative novelty of Agent Based
Model and the prevalence of the traditional top-down, command and control paradigm, users
seem to not fully understand the bottom-up, distributed approach to modelling, and tend to
be distrustful of notions of emergence and self-organization that drive ABMs.
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11.1.3 Modelling Method
The main insight gained from the modelling method is that scientific research is a highly chaotic
evolutionary process during which we must make errors. This process is never completed,
achieving at best ’good enough’ results. This insight will be elaborated below.

Path dependency and making errors The modelling method is explicitly co-evolutionary.
Evolution is a process of making mistakes. When actively evolving a socio-technical system,
either at the scale of models or at the scale of λ-systems, mistakes will inevitably be made.
For example, the relatively elaborate technical model design created in the Chocolate Game
case study (see 6.4) used an inappropriate conceptualization; it modelled the flows between
processes as discrete entities, whereas in reality they are continuous. Such mistakes are useful,
either as lessons in how not to do things or as unexpected improvements. In this example, the
next model created during the CostaDue case rectified the error discovered in the Chocolate
Game. The discrete flow model proved to be useful much later when constructing a model of a
multi-modal freight hub (Sirikĳpanichkul et al., 2007). Success or failure is arguably determined
by a system’s ability to gracefully deal with mistakes, whether through the ability to learn from
them or through the ability to undo them. The modelling method requirements of modularity,
versioning and authorship (see section 5.4 directly contribute to this aspect.

From a co-evolutionary perspective, recording all generated data/knowledge becomes im-
perative. We are bound to repeat previous mistakes, and without a good historic record we
would not be able to recognize them and rectify them in time.

Chaotic progress Scientific progress is strongly influenced by serendipity and chance. Chance
encounters at a conference, mixed up bottles and subtle errors in computer code can lead to
unexpected but novel insights. The future direction of scientific progress cannot be predicted
in detail, as one does not know how some chance effect in the future will influence other events.
It is chaotic and intractable, just like any evolutionary process. As long as it remains testable,
falsifiable and reproducible, such chaotic processes can be usefully harnessed, as demonstrated
in this thesis. Thus, as already discussed, the presented co-evolutionary modelling method is
not about reinventing the scientific wheel. It is about making visible the spokes, sprockets and
chain that drive it, and allowing us to explicitly observe the intractable, evolutionary nature of
science and engineering design.

Never finished Science, just as evolution, is never finished. Scientific results are never
perfect, as the coupled fitness landscape of human understanding of the world we live in changes
and deforms continually, raising the bar continuously. Instead of aiming for a grand goal
by saying “it will be great once it is done”, evolution teaches us that gradual progress and
continuous improvement through local optimization is the way to go. Speaking in software
terms, evolving processes are in a “perpetual beta” state, always incomplete but useful as is.

Good enough The notion of chaotic and never finished progress leads us to rethink the
general approach to λ-system “design”. Instead of aiming for a perfect solution, we must realize
that the most we can achieve is an adequate, or good enough state, as both the problem
formulation and the problem solution change all the time. The notion of good enough requires
that we consider what would be an acceptable minimum threshold of a system’s performance

247



and allow the system to settle into any state that is above that. This way we allow the system’s
internal dynamics to run its course, and the unwanted side effects that occur when a system is
far removed from its attractor are reduced.

What the method can and cannot do Summarizing the above discussion, the co- evolu-
tionary modelling method as presented in this thesis can integrate many different formalisms
into a single coherent vision on λ-system evolution. It can involve many different participants
in collaborating on a greater whole, greatly increasing the overall output of the method. The
method, being a Complex Adaptive System itself, can display emergent, surprising outcomes.
If the method requirements are followed carefully, these emergent outcomes will be useful and
insightful.

On the other side, the method cannot be used as a top-down steering mechanism, as it
is by design bottom-up and distributed. Also, the co-evolutionary method can not guarantee
any particular outcome, due to its chaotic nature, and finally, the co-evolutionary modelling
method is not something one can perform alone.

When should the method be or not be used? When should the method be used? The
method is suitable in supporting long-term multidisciplinary research with a coherent theme.
It is useful when the modelers wish to build strong relationships with stakeholders, and the
problem addressed is complex, multi-actor, multi-perspective and multi-scale.

The presented model should not be used to create ’quick and dirty’, one off models, nor
should it be used when it is important to urgently answer a new, burning question. The
method is a long-term, multi-person effort that does not downscale well. It is also not suitable
for rapid model prototyping and testing of ideas, unless they are evolutionary off-shoots of a
larger modelling method.

Advantages of the method As was done with the model outcomes, we will discuss the
main advantages of using the co-evolutionary modeling method to create models of λ-systems
evolution. The main advantages are that through soliciting a lot of stakeholder interaction
in the model creation process, the method and its outcomes are likely to be accepted by the
stakeholders. The method is adaptive. Since it is co-evolutionary, the method can adapt to
changes in stakeholder preferences, new insights, etc. Furthermore, by focusing on a continuous
improvement of the existing models, the method is suitable to capacity building and deepening
of existing insights by research groups. Added to that, once the method has been established
as a standard working protocol of a research group, it becomes a proverbial model machine,
producing new outcomes very quickly and effectively. Finally, the modelling method is explicitly
meant to integrate different types of knowledge from different people into one multiformal, n-
dimensional whole.

Disadvantages of the method The main practical disadvantage is that the method is rela-
tively expensive. Performing the method requires many different people and lots of their time.
Furthermore, the method has a relatively slow takeoff in its first step. It requires a lot of
up-front time and effort investment before yielding results. Creating the social network, under-
standing the real problem the stakeholder has, creating ontologies, setting up the simulation
engine, etc. are time consuming. The social network needed to operate the method is also a
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possible disadvantage, as the method is highly dependent on the quality of the social network
and individual contributions by its members. This makes it relatively fragile to changes in the
composition and performance of the social network. If key individuals leave, or if the coopera-
tive atmosphere is disturbed, the method can fail. Furthermore, the method is relatively new
and is often seen by stakeholders as being far removed from their daily work practice. It can
be seen as experimental and too complicated. It takes time for them to become accustomed
to the required way of working. Finally, inherent to the co-evolutionary nature of the method,
it suffers from path dependency or lock-in. The method development is heavily dependent on
its history. If the requirements of the stakeholders change, a new investment must be made to
restart the method.

11.2 Outlook and Future Work
Just as any other evolutionary process, the modelling method presented in this thesis does not
just stop. In this last section of the thesis, we will first reflect on the short-term practical
future work ahead of us and then reflect on the more general outlook for the work that has
been started.

Short-term future work The simulation engine presented in this thesis has served its pur-
pose well. Yet ongoing demand for more complex, multiformal and larger models has identified
several areas in which the current design is lacking. There are four issues we need to deal with
in the near future, namely scalability, conceptual complexity, ease of model use and community
diversity.

Scalability Due to the design of Repast, the agent framework, a single simulation cannot scale
across multiple processor machines. The fact that the length of a simulation run increases
exponentially with the number of agents simulated will limit the maximum size of clusters
that can be examined. A redesign of the software stack is therefore needed in order to
create a distributed simulation engine.

Conceptual Complexity In addition to the limitations in computation capacity, we also
face challenges in organizing the conceptual complexity of agents. As more and more
formalisms are added to an agent’s description, cross cutting concerns begin to limit our
ability to create algorithms that are understandable and maintainable. An example of
a cross cutting concern is risk assessment, since there is the need to be able to modify
the behavior of agents at multiple places: during purchasing, during price determination,
during decisions on temporary shutdown, etc. A very promising development in software
programming called Aspect Oriented Programming will allow us much greater diversity
in agent formalisms.

Ease of use As we move towards solving the distributed computation and conceptual com-
plexity problem, the ease of using the simulation engine is likely to deteriorate. We need
to make an effort to increase the ease of creating agent behaviors, as this will allow for
greater stakeholder participation, reducing the need for skilled programmers.

Community diversity The learning cases, while providing useful modelling insights, high-
lighted the problem of too little community diversity. The main question is how to engage
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a much larger and diverse stakeholder pool, so that both acceptability and diversity of
formalisms can be increased. This is not necessarily a scientific problem, but a social one.

Long-term future work In addition to the short-term activities, we have identified several
longer-term directions for future work. These are a thorough analysis of the modelling method
in all four dimensions, a link with serious gaming and the addition of several new formalisms.

Modelling method analysis There is a wealth of information buried in the wiki/svn collab-
oration data, the structure of the ontology, etc. We believe a social scientist can extract
valuable information on the functioning of the social network and provide further insights
into refining the aspects of the co-evolutionary method that were not explored in this
thesis. Some work on this has already begun 2.

Serious gaming Linking Agent Based Model with serious gaming is a promising direction for
increasing the ease of model use and increasing the diversity of agents’ behavioral models.
The idea is to use real life players that play a serious game as ’programmers’ of ABM.
Human players are very sophisticated and rich in behavior. However, they can only play a
very limited number of games, making parameter sweeps across model/game parameters
impossible. ABMs can replay the game/simulation essentially infinitely (millions of times
if necessary), and a parameter sweep is then very simple. However, the behavior of agents
in ABMs is much more limited than that of humans. Ideally, in combining the power of
both we will be able to develop a model of a human player, and then examine its response
over a wide parameter space.

Other formalisms There are several formalisms not encoded so far in which stakeholders
have expressed an interest and which pose an interesting scientific challenge.

Risk perception The formalism most in demand by stakeholders is risk perception by
agents. Risk is a basic element of all decision-making processes in firms. The for-
malization of risk has begun with the writing of this thesis 3.

Strategic agent behavior The second most requested formalism is that of strategic
agent behavior, in the form of management strategies, cheating and deception. In
the current situation, for example, an agent always delivers a contract, while in some
cases it might be beneficial for it not do so. This is a complex formalism that will
require nontrivial conceptualizations and software programming.

Hybrid modelling As the case studies become more realistic, the need arises for a high
quality and flexible description of agents’ environments. Most scenarios are defined
in terms of oil price, global interest rate, etc. Well-tested methods for modelling
top-down, large-scale system behavior are tools like system dynamics and general
equilibrium models. The challenge is to combine these standard tools with ABM
and not just to use them in parallel, but to actually integrate the static structure of
the top-down aggregate model with individual agent behavior. This poses a wealth
of scientific challenges. Initial work as already been started 4 on integrating CGE
models of industrial regions and ABMs.

2http://wiki.tudelft.nl/Project/SimulationOntologyEvolution
3http://wiki.tudelft.nl/Research/TheosNotes
4http://wiki.tudelft.nl/Research/IntegratingTheWorldTradeModelWithAgentBasedModel
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Design Processes Finally, the product or process design process itself can be examined
with the use of an ABM. Work has already started 5 on describing the design process
and its interaction with the products failure modes.

Complex Adaptive Systems Engineering A socially constructed, exploratory and multi-
scale understanding of the process of the coming into being of system structures naturally leads
to the notion of Complex Adaptive Systems Engineering (CASE). This is the deliberate act of
creating an evolving complex adaptive system in order to reach a certain goal. The idea has
already generated some interest in the literature (Clymer, 1999; Kroes, 2009; Sage, 2001).

Since the basic nature of CASE is that it is complex, many traditional design and engineering
approaches are not valid. We face the following challenges:

• Complex Adaptive Systems cannot be designed at once, but have to evolve. Traditional
planning becomes impossible.

• We cannot fully specify the exact outcome requirements of a system under CASE; we
can only limit its outcome space, hoping to reach a ’good enough’ state. In essence, it
amounts to engineering emergence.

• Complex Adaptive Systems are inefficient but robust; CASE requires a totally new mind-
set among designers.

Engineering systems in this manner can only be done by a generative, bottom-up, socially
inclusive and complex process, and this thesis is a first step towards exactly that.

5http://wiki.tudelft.nl/Project/FailureModeAvoidance
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APPENDIX A

SYSTEM LEVELS DETAILED

A.1 Agent
In this section the agent level is introduced. Agents are the smallest system elements

that generate all emergent behavior. Artificial Intelligence is introduced as a dominant
field. Agents are defined as software entities with a state and rules, having inputs
and outputs. Agent interaction is structured through interfaces, protocols and message
concepts. Adaptiveness, diversity, and interface and protocol similarity are presented as
key agent-level properties.

Artificial Intelligence Artificial Intelligence (AI) is the dominant field for the discussion
of the agent level, as this community has spent a lot of effort to formally describe agents.
Indeed, their definitions appear to be the most usable. An agent in the AI field is a self-
contained problem solving system capable of autonomous, reactive, pro-active social behavior
(Jennings, 2000b; Wooldridge, 1997; Wooldridge and Jennings, 1995). Agents are computer
algorithms; they have behavioral rules, and because they are computer entities they are strictly
deterministic and follow logical rules. They can have the possibility to learn according to the
given rules.

Actors and agents In the social and management sciences, “actors” are used to describe
agents (Koppenjan and Klĳn, 2004; Wasserman and Faust, 1994, reprint edition 2005). Actors
are mostly individuals, coalitions or organizations that have to follow social rules but that have
the freedom to deviate from these rules in a not necessarily rational or logical way. From these
definitions and descriptions, it is clear there are slight differences between the concepts/terms
agent and actor. In this thesis, when using the word actor we refer to the real-world entity, and
when using the word agent we refer to its computer-simulated abstraction. Examples of actors
in systems are cars on the road network, government agencies in the political system, species
or individual animals in the ecosystem, firms in the industry system. Figure A.1 presents the
visualization of a single agent. The agent is considered to consist of: input, state and rules, and
output. The properties associated with agents are adaptiveness, internal diversity and interface
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and protocol similarity of this level. While the whole agent level consists out of numerous agents
please note that only a single agent is visualized on the right side of Figure A.1.

Figure A.1: Agent level

A.1.1 Agent Interaction
The inputs of an agent are the outputs of other agents and inputs from the environment. The
agent’s actions are its outputs; these outputs can effect the environment and other agents.
Jennings refers to these outputs as effectors (Jennings, 2000b). An input for a human agent
is, for example, a message transmitted through speech from another agent that conveys an
approaching vehicle on a road. The output of the human agent is a hasty retreat back to the
sidewalk and maybe a message of thanks. This interaction can be further formalized. In this
thesis, all interaction is explicitly defined to consist of three components: interface, protocol and
message. The horizontal arrows in Figure A.1 represents the directionality of the interaction.

Interface In order for agents to interact, they must have a common type of interface. Agents
quite literally need to be able to speak the same language. Language in this case must be
understood in an abstract sense; that is, information or effects must be exchanged in a way
that all interacting parties can make sense of the messages (Wooldridge and Jennings, 1995).
For example, in an English speaking debating group a person speaking only Chinese will not be
able to interact. In a more physical sense, flowers interact with butterflies through scents and
colors butterflies can perceive. The flower’s color and scent is compatible with the butterfly’s
vision and scent organs. In chemistry, a boundary surface between phases - solid, liquid,
and gas - across which interaction is possible can be seen as an interface. Network cables in
a computer, the computer screen and the graphical user interface (GUI) are all examples of
interfaces. Ontologies (see Section 6.5, formal conceptual schemes for describing domain-specific
knowledge, are also examples of interfaces (Gruber, 1993).

Protocol A protocol is the set of rules that describes the format of the message. It can be
seen as the grammar of the message. In order for interaction to take place, agents must also
have some degree of protocol similarity. An example of a protocol is the Hypertext Transfer
Protocol (HTTP). “Het groene boekje”, the book describing the rules of the Dutch language, is
another example of a protocol. The Foundation for Intelligent Physical Agents (FIPA) develops
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standards for agents 1. The FIPA standard is an agent communication language, which consists
of an interface and a protocol.

Message The message is the content of the arrows depicted as input and output in Figure
A.1. A message is everything that flows through the interface - such as the warning of an
approaching car or the scent of a flower. Depending on the protocol, messages can consist of
words, light, energy, etc. An integrated example of the components that make up interaction
is the connection of an electrical appliance. The socket in which a plug is placed forms an
interface, the 220 V running through the interface is the protocol, and the electrical energy is
the message.

A.1.2 Agent Structure
State The state of an agent is a specification of the particular collection of parameters that
defines an agent (Wooldridge and Jennings, 1995). The state is all of the relevant information
that gives it its identity. Based on the current state, the inputs and the available behavior, the
agent will perform some action, causing an output to happen. It is the set of information about
what this agent is at this moment. A light switch, for example, has only two states: on and off.
There are observable and unobservable states. The states of a shy flirting couple, for example,
may be that of excitement and wishful thinking. These states are private and not observable
by the other. A sudden redness in the face is a publicly visible part of that state.

Rules Rules describe how the different inputs and internal states are translated to outputs and
new states. Holland (Holland, 1996) calls rules the “internal models” of agents. For example,
when observing our courting couple, their internal behavioral rules tell them to observe the
publicly visible state and outputs of the other and react accordingly. When one of the couple
starts displaying behavior that can be interpreted as positive, the other partner can positively
react. Rules of computer agents in models of complex systems are usually rational, based on the
maximization of utility of some sort. However, there is no requirement of rationality for agents.
Agents can act irrationally, if given such rules. However, they cannot act illogically, given that
they are computer entities. Actors (humans) can act rationally, irrationally or even illogically.
Further, actors can have different behavioral rules in different societal contexts (Scharpf, 1997).
Since these rules are usually private and unobservable, abstraction and modelling of their
behavior is difficult.

A.1.3 Important Properties
Three main properties (among others) that are relevant at this level are: adaptiveness, internal
diversity and interface similarity. The first is a property of the agents themselves, and the latter
two are properties of the agents relative to each other. Below, these properties are elaborated
upon and it is shown how they are described in different fields.

Adaptiveness As an influence of the surroundings or internal states, an agent can change its
rules; this is called adaptiveness (Holland, 1996; Kauffman, 1993; Levin, 2000). It is the ability

1http://fipa.org/
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of an agent to change towards a more “optimal” or “fit” state. For example, the bodies immune
system becomes stronger after it has been exposed to pathogens frequently. If one considers a
biological species as an agent, the evolution of species over time is an example of adaptiveness.
Learning (Argyris and Schon, 1996) is a specific form of adaptiveness. A manager in a business
learns through the feedback it receives on the work done. Learning requires an agent to have a
memory. If the agents posses a memory mechanism, their actions will be partly determined by
their past actions. The state and dynamics of an agent, therefore, also depend on its previous
states and dynamics. The manager in our example has a memory and DNA of a species can
store inactive genes to be reactivated later.

Agent diversity Complex systems exhibit large internal diversity of agents. Internal diver-
sity means that agents have their own state and rules that may differ from agent to agent. The
agent diversity is responsible for complex emergent behavior on higher levels (Kauffman, 2000;
Kaufman, 1995; Page, 2007; Waldorp, 1992). The molecules in a room, for example, all have
a different velocity. Most people have differing opinions about the US president. All parties
in the electricity market determine the prices of their electricity on their own and in different
ways. The field of Public Administration and Management Science refers to “pluriformity”.
Diversity in this sense are the different perspectives of actors (human agents) (de Bruĳn and
ten Heuvelhof, 2000). However, there is much diversity between the agents, so that they would
fail to interact at all, one could not speak about a complex system.

Interface and protocol similarity All agents of a system share a common interface and
protocol. Agents must be similar enough in interface and protocol to be able to interact.
All organisms in ecosystems metabolize and grow. People respond to financial incentives like
environmental subsidies and taxes. Ottens (Ottens et al., 2006), for example, refers to regulation
and rules as being the common interface humans have agreed upon. In the field of management,
people need to have a common language in order to understand each other; as a result they use
the same codes or jargon. Mobile phones share the same data protocol, and all over the world
ships use the same containers in which to transport different goods. Ecosystems, too, consist of
many different species but ecosystems maintain a common interface. In nature almost anything
can eat something else. The interface is the body structure of organisms, composed of fats,
sugars, and proteins that most living organisms can process.

A.2 Network
Networks are introduced as medium-level systems. They describe the structure of

interactions between agents. The concepts of nodes and edges are introduced. Average
shortest path length and degree distribution are introduced as two traditional metrics,
as well as the limitation of graph theory to measure multidimensional graphs. Net-
work growth, function and evolution, together with network topology, are presented as
important properties of this level.

All the definitions of complex systems presented above contain the notion of structured
interactions in networks. The field that studies networks is graph theory. It defines a network
as (Newman, 2003):
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a set of items, which we will call vertices or sometimes nodes, with connections
between them called edges.

Paraphrasing the definition, a network is an abstraction of reality, where all system compo-
nents are either nodes or edges, things or connections. In our case, agents are vertices or nodes,
edges are interactions between the agents and are created at the moment of interaction. The
concepts and system properties used at the network level are presented in Figure A.2.

Figure A.2: Network level

A.2.1 Nodes and Edges
Node In Complex Adaptive Systems, examples of nodes are Internet routers that are con-
nected with fiber-optic connections, people in a social network, organisms in a food web, facto-
ries in a production network, etc. (Ahuja et al., 1993; Newman, 2003). From these examples,
it is clear that nodes can have more than one edge. When considering networks in a strictly
graph-theoretical perspective, the only difference between nodes is the number and weight of
their edges and the identity of the nodes connected to them.

Edge Edges are created the moment agents (nodes) interact. Edges can be abstract and non-
material, such as information exchange or political influence. They can also be very concrete
and physical, such as electricity or water flows. In a physical network the edges are the cables,
roads or pipelines for the transportation of goods and information. On the other hand, in a
social network these edges are based on the relationships and actual contacts individuals have
with other individuals. The edges in the social networks can be social rules, informal power
and norms. In Management Science, for example, organizational networks develop and exist
because of the interdependencies and repetitiveness of interactions that lead to stable patterns
in social networks (Koppenjan and Klĳn, 2004). In economics, relations are represented as the
exchange of goods, services and money.

Edges can be undirected, directed or bidirectional. Edges can have weights associated with
them. Water in pipes, for example, always flows from the area of high pressure to an area of
low pressure.

Multidimensional networks Complex adaptive systems, as discussed earlier, are multifor-
mal. This means that the interaction networks that give rise to system structure are multidi-
mensional. With traditional graph theory we cannot handle these types of networks, since one
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can only describe networks with edges of a single type, i.e., where the edges represent exactly
one type of interaction. One can, for example, only model the intensity of car traffic on road
networks. The intensity of bicycles on bicycle paths cannot be added to the road traffic model.
The different weights that can be attributed to the different edges are insufficient, as a weight
does not imply a different type of edge. The same problem concerns the nodes. This limitation
severely restricts the use of graph theory in understanding λ-systems. Reducing the compo-
nents and their interaction into just two types of items greatly oversimplifies the description
of the system. However, knowing this limitation, it is still interesting to use graph theory as a
perspective when examining system structures.

A.2.2 Network Metrics
The structure of interactions can be quantified by using network metrics. The metrics presented
here mainly serve to increase the understanding of basic network structure, while there are a
great many different metrics available in graph theory (Jamaković, 2008). Since the types of
networks we are dealing with are multidimensional, most traditional metrics are not sufficient.
Multidimensional metrics are developed in Chapters 6,7 and 8. Two basic networks that can
be used, irregardless of a network’s multidimensionality, are the Average Shortest Path Length
and the Degree Distribution.

Average Shortest Path Length This is an important metric because it provides a fairly
robust way to measure the networks diameter. Diameter should be understood fairly literally.
A network with many nodes that is highly connected is literally very small, that is, it is easy to
traverse from a node to any other very quickly. A network with few sparsely connected nodes
is large, since it takes many steps to traverse it.

Average Shortest Path Length l is expressed by eq. A.1 and is valid for an undirected or
bidirectional graph.

l = 1
N(N − 1)

∑
i 6=j

dij (A.1)

N is the number of nodes, while d is the distance (hop count) between two nodes. In a case
of a directed graph, the best procedure to calculate l is by using Dĳkstra’s algorithm (Dĳkstra,
1959). This is a highly efficient algorithm to find the shortest paths from a single point to the
rest of the points in a network. In other words, this is a methodology you could use to examine
a map and find the shortest routes to all the surrounding cities from your house.

Degree distribution Degree of the node denotes the number of in- and outgoing edges a
node has. Degree distribution characterizes a network by describing the histogram of the nodes
with a specific degree. This metric is especially useful when comparing real-world networks
to theoretical models. It provides an insight in the connection ’equity’ between the system’s
subcomponents and offers structural insight. A particularly interesting distribution is the so-
called power law (or scale-free) distribution. This type of distribution, also known as 20-80
distribution, is very common in natural and man-made systems (Clauset et al., 2007). In a
network with power law distribution, a small number of nodes have very many edges, and a
large number of nodes have very few edges. See Figure A.3 for an illustration of an observed
power law distribution.
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Figure A.3: Example of a power law distribution. The Y axis represents the number of saves
per user at wiki.tudelft.nl.

A.2.3 Important Properties
Network growth One of the dominant approaches to studying network evolution is through
stochastic models of network growth (Kauffman and Weinberger, 1991; Kaufman, 1995). In
such models, the model’s nodes have a stochastic function that determines when and to which
other node they connect to. The work in this thesis is based on Kauffman’s basic idea of
nodes searching for other nodes to connect to. However, most work done in the network
growth field (Barabasi and Albert, 1999) does not contain any domain-specific notions. In
order to understand the evolution of λ-systems, models based in relevant knowledge domains
are needed. Multiformal aspects and realistic observed knowledge of decision-making processes,
as well as technology descriptions of industrial clusters are used to describe how nodes search
and connect to other nodes. This approach, embedded in the relevant domains, provides a
much more realistic base for understanding network evolution.

Network function One of the main issues in studying industrial λ-system networks is the
relation between network structure and network function. This is especially evident in the
case of petrochemical clusters and their sustainability performance. Is it possible to maintain
the industry’s societal function, the production of chemicals and energy, while reorganizing
its structure to deal with a resource problem and at the same time increase its sustainability
performance? (Dĳkema, 2004) This poses the problem of understanding network evolution.

Network evolution The relevant discipline studying industrial networks is Process Systems
Engineering (PSE). In PSE it is well recognized that networks are not static. The flows through
the network (of mass, energy, information, etc.) can vary in type and size. This is often referred
to as network dynamics. Examples of network dynamics from other fields are are: variable
energy flows through the power grid, signals traveling through nerve cells during motion and
the intensity changes in friendships during a lifetime. In PSE the network dynamics view is
common. However, the evolution of the network structure has not been addressed adequately
(Dĳkema, 2004). Also the network structure is subject to change: new nodes are added to or
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removed from the network and/or new edges emerge or disappear between existing nodes. This
is referred to as network evolution. Example of network evolution from other fields are the
addition of more cell phones to the network (nodes) that lead to more and different calls being
made (edges). Another example is the broadening of a person’s social network by introducing
friends to other friends.

Topology Topology describes the structure of the network. It can be understood as the
structure of interaction between agents. In terms of network topology, two extreme types are
possible (Barabási et al., 2001; Jamaković, 2008; Newman, 2003). They are differentiated by
the type of process that generates them. Random attachment networks are created when a
new node is connected to a randomly chosen other node in a network (see Figure A.4 a).
Preferential attachment networks develop when a new node preferentially connects to highly
connected nodes (Figure A.4 b). Topologies of most real-world networks are in between these
two types.

(a) Preferential attachment (b) Random attachment

Figure A.4: Network topologies

A.3 System
The system is introduced as the highest level, where emergent properties are ob-

served. This level is conceptualized as an entity similar to the agent, with aggregate
in- and outputs, and aggregate states and rules. Relevant properties identified at this
level are emergent behavior, self-organization, path dependency, chaos, robustness and
instability.

In this section we will examine system properties and behavior at the highest level, the
overarching system level. All the considered definitions of complex systems contain the notion
of emergent overall system behavior. This level describes the whole system: a human, the
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world, a species, etc. The system level conceptualization has a structure similar to that of
the agent level: input, rules and output. The properties we define at this level are: path
dependency, robustness and instability (see Figure A.5. Non-linear dynamics (Prigogine and
Stengers, 1984) has established a tradition of formally describing overall system behavior. Thus
their vocabulary is most appropriate for our purpose of precisely defining the vocabulary useful
in λ-system modelling.

Figure A.5: System Level

A.3.1 Aggregation
System inputs and outputs A system’s aggregate inputs are a combination of all inputs
coming from the environment. Even though the system consists of many agent level compo-
nents, we can aggregate those inputs and treat them as a single input at the system level. The
same is true for system output. For example, the brain sends electric pulses to the arm to raise
it. The actual system input is a myriad of electrical signals to the individual muscle cells that
all individually react to their own electrical signals. However, at the system level, the brain’s
command to raise the arm causes a single system output: a coordinated movement.

Aggregate state and rules The overall state of the system necessarily consists of the ag-
gregates states of its consistent components at the agent level. The overall system’s rules are
the aggregate rules of the components. For example, a country’s GDP is built up from the
individual incomes of all individuals and firms within it. A flock of birds’ response to flee from
a predator is an aggregate rule based on individual fleeing behavior.

System and agent similarity The systems view introduced earlier does not prescribe the
level of aggregation when describing a system and its components. The aggregation is dependent
on the observer and the task at hand. Often, what is seen as the system level description in
one formalization can be seen as the agent level in another. For example, a country can be
seen as an agent if one observes international politics. If, however, one studies the interaction
between municipalities, the country is viewed at the system level.

Aggregate states and rules, inputs and outputs are essentially the same concepts at the agent
and system level. The part is a whole, and the whole can in turn be a part. This property is
particularly important when developing models that are expected to change in scale as they are
developed. For example, starting at the level of individual persons, one can construct a system
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that represents a firm. By shifting scales and using firms as agents, their interactions will create
a system level that is defined as a region. Shifting scales again, many regions will form a global
industrial network. By each time treating the aggregate inputs/outputs and agent inputs, this
scaling can be easily performed.

A.3.2 Important Properties
In this section several important properties observable at the system level will be presented.
These are emergent behavior, self-organization, path dependency, robustness and instability.

Emergent behavior The behavior that a complex adaptive system shows as a whole, the
system’s output - is called emergent behavior. Emergence is the process by which new char-
acteristics arise once the system is constituted (Crutchfield, 1994; Morin, 1999). Newman
(Newman, 2003) understands emergent behavior as processes on networks. Or as Jennings
(Jennings, 2000b) puts it: emergent behavior is the behavioral phenomena that cannot be
deconstructed solely in terms of the behavior of the individual agents. It is important to re-
alize that emergence is no magic. That is, emergent behavior is the logical consequence of
the interactions in the system and the organizational structure of the system which gives the
parts qualities that they could not have if they were isolated from the organizing whole (Morin,
1999). Emergent behavior is simpler to understand - and more insightful - than the collection
of processes that cause it. The emergent behavior itself, however, is not always predictable
or obvious. Examples of emergent behavior are traffic jams, power blackouts and bankruptcy.
Policy processes can also be viewed as the system output of the policy system. Policy processes
are unpredictable due to incomplete information and unclear values (of the agents in the policy
network). According to (Lindblom et al., 1980), an outcome emerges from the interactions
among decision makers. As Cohen (Cohen et al., 1972) states, “a decision is an outcome or
an interpretation of several relatively interdependent streams within an organization.” Others
argue that human consciousness is emergent behavior of the brain (Dennet, 1996). Emergent
behavior has also been observed in the economic literature. Externalities are considered to be
undesired emergent properties. These externalities can be positive: the lovely garden of the
neighbors that adds value to your own house, or negative: sitting next to a person who is
smoking.

Emergent properties are what we look for when studying λ-system evolution. Shaping
evolution is all about causing desired emergent properties like sustainability to appear, while
preventing the undesired ones such as pollution.

Self-organization Self-organization is specific form of emergent behavior (system output).
Self-organization is a process by which a system achieves a different output through internal
processes, without any external input (Kay, 2002; Prigogine and Stengers, 1984). For example,
the morphogenesis (construction of shape) of embryos, a fully functional organism self-assembles
from a single fertilized cell (Campbell, 2002). Bose-Einstein condensate, for example, (Anderson
et al., 1995) is a unique state of matter that appears under very low temperatures and pressures,
at which all atoms collapse to a single quantum state. With autopoiesis (self-steering), for
example, society self-organizes in a way that limits the amount of individual choice, thereby
providing a self-steering and a more predictable system (Luhmann, 1995). Please note that
self-organization is different from adaptiveness, as self-organization originates from the system
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itself and adaptiveness is a reaction of the agents to the changing environment. It is our goal
when shaping λ-system evolution to gain as much self-organization as possible, since it is “for
free”. Through relatively small modification of system components and their interaction, we
can achieve a great degree of organization and regularity in the system.

Path dependency The informal conception of path dependency is that history matters
(Buchanan, 2000): an accidental choice in the past determines the future path. A more formal
conception is that there is a reinforcing effect; institutions, for example, are self-reinforcing.
In economics the term path dependency is also known (Economides, 1996). Production and
consumption decisions are based on the size of installed bases and on expectations of their
increases over time. Path dependency in economics lasts because of the high switching costs
involved. This is the case, for example, with our current infrastructures and industrial systems.
We cannot change to an all-hydrogen economy overnight. Path dependency can also be found
in politics. Once a political party chooses a statement, it is difficult to change; only when
a new leader comes or elections are held can the statements be changed. Another form of
path dependency, this time from management science, is group think (Janis, 1982). This is
a situation in which the perspectives within a group are so aligned that deviation from the
chain of thought is not possible. Teisman (Teisman, 2005) speaks of path dependency and
bifurcation. Teisman assumes that human agents walk down a fixed path. Path dependency
then means that a human agent’s behavior is based on the position of the agent and that this
position is based on the path taken earlier. This could result in a lock-in situation when there
is no switching point. However, when the environment changes, new opportunities appear
and old goals become less important; this is called bifurcation. Human agents do then have
the possibility to change their direction. Dependent on the internal mechanisms, the human
agent will indeed choose a new direction. Both notions of path dependency will be used in this
work. In λ-systems history matters, and it reinforces and limits the possible future states of
the system.

Chaos and robustness A characteristic of the system output is that there are areas to which
the system output ’wants’ to go. These are called attractors. The system output has structure
(Holland, 1997). Usually the system output contains multiple attractors and the system itself
is sensitive to initial parameter values (system inputs). Slight changes in parameter value may
lead it to another attractor. This extreme sensitivity to initial parameter conditions is also
called chaotic behavior.

A system is robust (Callaway et al., 2000) when it is close to or at an attractor. Changes
in certain parameters can not cause a deviation from the path to the attractor. Robustness
is a relative concept, as some (large) parameter change cannot make the system deviate from
its path to an attractor, whereas other slight changes might. The system is therefore robust
against changes in specific parameters. It is a measure of how the system performs under stress
when it is confronted with extreme inputs or with shocks from the environment for particular
variables. Crash zones in cars enhance a car’s robustness and help save lives. The Internet
is another example of a robust system. It is designed to function even if large parts of it are
destroyed. Body temperature is relatively insensitive for large changes in the temperature of
the environment. The economic situation of lock-in, in which a customer is so dependent on
a supplier for products and services that he or she cannot move to another supplier without
substantial switching costs, real and/or perceived, is another, albeit less positive, example.
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Robustness can also be found in policy networks: if a conflict between parties escalates, the
network structure (the ruling parties) should not immediately break down, and these networks
should be able to recover from damage caused by conflicts (Kickert et al., 1997). This combina-
tion of chaos and robustness are important when attempting to shape the direction of λ-system
evolution. Large intentional changes can have little or no effect, while small, accidental and
unintended ones can dramatically affect the system.

Instability Instability is the capability to suddenly change over to another attractor with
minimal parameter changes. Instability can be seen as the opposite of robustness. Note that
robustness is not the same as stability, as systems can be simultaneously robust and instable.
The terms stability and instability, however, make the properties sound mutually exclusive.
The extreme sensitivity of a complex system to parameter values can be illustrated with the
example of the exploded space shuttle Challenger. A difference of 13 ◦ Celsius at takeoff
caused the Challenger to explode. The rubber sealing rings of the fuel tank cracked at this
temperature. The management authorized the launch, even through NASA had the technical
knowledge to be able to predict that this would happen. The human heartbeat is instable; for
instance, the heartbeat can rapidly increase after hearing a sudden noise. Large crowds can
also be instable, as they might suddenly erupt in riots under certain conditions. In structural
engineering, a structure can become instable when excessive load is applied. Beyond a certain
threshold, structural deflections magnify stresses, which in turn increase deflections. Examples
of robust systems that become instable are: the human body, in which a tumor can become
life threatening when it grows and presses into other organs; or the mobile phone network that
periodically overloads on New Year’s Eve. Just as is the case with robustness, instability of the
system must be thoroughly understood before any change is effected in a λ-system.
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APPENDIX B
CVI ONTOLOGY

Table B.1 presents the entire CVI ontology structure and its scoring guide. ’Lobbyability’ is
a measure of how effective government lobbying is. ’Phaseability’ is the ability to develop a
technology in phases instead of at once.
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Table B.1: CVI Ontology.

Aspect Low score (1) High score (5)
Safety landscape

Kinetic energy Much None
Heat, smoke and/or heat radiation Much None
Hazardous materials Much None
Water (flooding, drowning, etc.) Much None
Electricity and/or electromagnetic signals Much None
Evacuability Very difficult Not an issue
Sense of safety Very negative Unaffected

Legal and Organizational
Ownership of infra Fragmented Single owner
Sector regulation Very specific Absent
Competition on infra Complete None
Permit requirements Many None
Procedure duration Very long Very short
’Lobbyability’ of regulator Impossible Easy

Spatial
Barrier forming / Fractioning Very large None
Space requirement Very large None
Downward stackability Only ground level Deep tunnel
Upward stackability Only ground level Freely stackable
Trajectory constraint Straight line only Free form

Technical
’Phaseability’ Very limited Very high
Function specificity High Low
Modifiability Very low Very high
Maintainability Frequent & com-

plicated
Rare & easy
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APPENDIX C
CVI INFRASTRUCTURES

Infrastructures identified by the Combination Of Infrastructures social process.

Type Number Name
Verkeer en Vervoer 1 Lokale Weg

2 Ontsluitingsweg
3 Snelweg
4 Wegtunnel
5 Weg op brug
6 Parkeerterrein
7 Bushalte
8 Bewegwĳzering
9 Spoor
10 Geëlektrificeerd spoor
11 Spoortunnel
12 Spoorbrug
13 Spoorwegsemplacement
14 Waterweg
15 Waterkering
16 Havenbekken
17 "’Parkeren"’ binnenvaart
18 Luchthaven
19 Helicopterbasis
20 Voetpad
21 Voetgangersbrug
22 Fietspad
23 Fietsbrug
24 Tramspoor
25 Tramhalte
26 Metrospoor
Continued on next page
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Type Number Name
27 Metrohalte

Utilities 28 E-trace hoogspanning 50-380 kV
29 E-trace sleuven 50-380 kV
30 E-trace distributie 10-25 kV
31 E-trace 380V 3-fasen
32 E-trace Gelĳkstroom
33 Aardgas hoofdnet
34 Aardgas distributienet
35 Warmtenet
36 ICT-kabels
37 ICT-draadloos
38 Drinkwater
39 Rioolsysteem
40 Regenwaterafvoer
41 Industriewaterafvoer
42 Kabels&Leidingentunnel
43 Groenvoorziening

Industrie 44 Buisleidingtrace
45 Leidingentunnel
46 Industrieel parkeerterrein
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APPENDIX D

SIMULATION ENGINE

This appendix will describe the simulation engine setup used in the thesis from the CostaDue
project onwards. The design consists of several modular components. These are the hardware
and operating system, knowledge management, simulation software, and data and knowledge
processing & analysis. We view the simulation engine as an integrated physical-logical exper-
imental device, allowing us to explore the synthetic universe contained within it. The engine
design is guided by the guiding principles and requirements defined in Chapter 5.

The structure of the simulation engine is presented in Figure D.1.

D.1 Hardware and Operating System
The relevant requirements at this level are open source, organic growth and modularity.

D.1.1 Hardware Requirements
There are three main requirements for the hardware. It should:

• be as powerful as possible;

• be stable under load; and

• be interchangeable.

Powerful Currently, the main way to increase the performance of a computer is to increase
the number of processing units (CPU). Therefore, multiprocessor hardware is used as much as
possible, in order to allow model runs and analyses to be made parallel. Currently, the AMD
Opteron CPU family is the preferred choice due to its ccNUMA1 architecture. This architecture
allows for very rapid memory-CPU interaction as compared to non-NUMA architectures present
in Intel CPUs.

1Cache-Coherent Non-Uniform Memory Access
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Figure D.1: The structure of the simulation engine. Green areas are the hardware and oper-
ating system. Red areas are the knowledge management components. Blue are the simulation
software components, and yellow are the data and knowledge processing & analysis components.

Stable Hardware components of the simulation engine must be reliable under the severe
system load experienced during computation. Therefore, commodity production grade servers
are used. Such machines are designed to perform under high loads and have many redundant
hardware features, such as hot-swap hard drives, hot-swap power supply units, etc.

Interchangeable The hardware platform should be interchangeable, since hardware is very
quickly obsolete and the entire system must thus be designed with the idea that it will not
run on the current hardware in the future. Designing a system based on industry standard,
commodity hardware ensures this.

D.1.2 Operating System Requirements
There are four main retirements that apply to the operating system. It should be as:
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• stable as possible;

• secure as possible;

• scalable and flexible as possible; and

• interchangeable as possible.

Stable and secure This is an obvious requirement. No simulation is possible if the operating
system constantly crashes or if it spends most of its time sending spam. Currently only UNIX-
based systems offer these properties reliably.

Scalable The operating system needs to be able to deal with changing/expanding hardware
without disrupting the simulation workflow after updates. It also must enable clustering of
many physical machines into a single logical entity. The natural choice for scalable, flexible
clusters is the GNU/Linux 2 operating system. An added advantage is that this is a modular,
open source operating system that has excellent hardware support for the hardware needed for
the task.

Replaceable Finally, the operating system should be replaceable. The simulation engine
must be able to swap operating systems without too much effort. Using open standards and
open source ensures that many alternatives exist for the same function.

D.2 Knowledge Management
Based on the discussions on the SDM, it is clear that large amounts of knowledge are generated.
This knowledge needs to be stored and managed. The knowledge management component of
the simulation engine consists of several modular components (see the red areas in Figure D.1).

The knowledge management system needs to satisfy the following requirements (see Chapter
5). It must:

• provide enforceable authorship;

• provide an unchangeable historic record;

• be modular; and

• be open source.

D.2.1 Apache
Content provider Apache3 is the most widely used web (HTTP) server on the Internet
today. It is a reliable, stable and modular system that provides content over the Internet and
allows for easy extension. Apache provides the central entry point to to both reading and
writing of the knowledge repository over the Internet. In its default configuration, access to

2http://www.linux.org/
3http://apache.org/
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content served by the Apache server is accessible to anyone on the Internet. The knowledge
repository, however, needs to have enforceable authorship.

Authentication Enforceable authorship starts with enforceable identity. The web server
maintains an identity database of all users allowed to access the knowledge repository. Au-
thentication is based on Apache’s “Basic authentication” 4 method, based on a username and
password combination. While this is a relatively weak authentification system, it is sufficient
for our needs.

Authorization The system does not allow anonymous access. Once a user is authenticated,
she is authorized to access all of the knowledge shared on the system that she has rights to.
There are two types of user authorizations: permissive (everything except what is forbidden)
and restrictive (nothing except what is permitted).

Permissive Users under permissive authorization are academic researchers. The permissive
system allows access to everything except restricted areas where commercial projects knowledge
is stored and for which non-disclosure agreements are required. This also means that any and
all knowledge contributed by those who are willing to share is visible to everybody who is also
willing to share.

Restricted Commercial users often require restricted access for their knowledge stored in
the repository. Their access is restricted, meaning that they can access only their knowledge
stored on the system and are thus excluded from the general knowledge pool. On the other
hand, permissive users are not allowed to access their knowledge pool.

Tit for tat Users are treated with a tit for tat strategy (Axelrod, 1984). This strategy allows
the users to feel comfortable about sharing their ideas, so that they do so at the maximum
level. It ensures that users will receive the same treatment for their actions depending on
which level of involvement they choose. Users who require secrecy receive that in exchange for
reduced access of their own. Users who openly share are rewarded by others’ sharing. This
way the knowledge repository keeps users aware of their rights and, because of authentification,
responsible for their actions. Apache knows who did what when.

D.2.2 Wiki
What is a wiki While Apache serves the content in the knowledge repository to users over
the Internet, a system is needed to create, organize and manage that content. A description of
what a wiki is is best left to Ward Cunningham, the creator of the first ever wiki, the Portland
Pattern Repository 5:

The simplest online database that could possibly work.
Wiki is a piece of server software that allows users to freely create and edit Web

page content using any Web browser. Wiki supports hyperlinks and has a simple
text syntax for creating new pages and cross links between internal pages on the fly.

4http://httpd.apache.org/docs/2.0/howto/auth.html#basic
5http://c2.com/ppr/
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Wiki is unusual among group communication mechanisms in that it allows the
organization of contributions to be edited in addition to the content itself.

Like many simple concepts, ’open editing’ has some profound and subtle effects
on Wiki usage. Allowing everyday users to create and edit any page in a Web site
is exciting in that it encourages democratic use of the Web and promotes content
composition by nontechnical users.

TWiki The wiki engine of choice is TWiki6. TWiki is a mature and feature-rich open source
wiki engine. It is highly extensible through plug-ins and has a large and active developers’ and
users’ community. TWiki is written in the Perl programming language. It runs under Apache
and its internal Perl interpreter, mod_perl 7. TWiki versions each change to a page via the
RCS system 8, providing an unchangeable historic record. Since each change to a page has been
authenticated and authorized by Apache, a complete historic record of who did what when is
created.

Unformalized knowledge Wiki is mainly used to store unformalized knowledge. This
mainly means that text, images and other types of files can be stored and changed by any-
one authorized to do so. The main property of this unformalized knowledge is the so-called
wabi-sabi. It is defined by (Koren, 1994) as:

Wabi-sabi is the quintessential Japanese aesthetic. It is a beauty of things
imperfect, impermanent, and incomplete. It is a beauty of things modest and
humble. It is a beauty of things unconventional...

The unformalized knowledge stored on the wiki system is thus always changing and never
complete. It enables and involves the community around it, and is as close to a repository of
tacit knowledge as one can come in a written form.

Formalized knowledge In addition to the unformalized knowledge managed by the wiki,
there is a need to manage formalized knowledge. There are two types of formalized knowledge
that need managing: the “What Is” knowledge and the “How To” knowledge. The “What is”
knowledge is maintained in a formal ontology, the use of which was previously discussed. The
formal “How to” knowledge consists of computer algorithms that describe how things are to be
done. This knowledge is stored in a source code versioning system, Subversion.

D.2.3 Subversion
The best description of Subversion is given by its makers 9:

Subversion is a free/open-source version control system. That is, Subversion
manages files and directories, and the changes made to them, over time. This
allows you to recover older versions of your data, or examine the history of how

6http://twiki.org/
7http://perl.apache.org/
8http://www.gnu.org/software/rcs/
9http://svnbook.red-bean.com/en/1.4/svn.intro.whatis.html
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your data changed. In this regard, many people think of a version control system
as a sort of ’time machine’.

Subversion can operate across networks, which allows it to be used by people
on different computers. At some level, the ability for various people to modify and
manage the same set of data from their respective locations fosters collaboration.
Progress can occur more quickly without a single conduit through which all mod-
ifications must occur. And because the work is versioned, you need not fear that
quality is the trade-off for losing that conduit - if some incorrect change is made to
the data, just undo that change.

Subversion allows for the free experimentation with computer code and removes the fear of
breaking things, as there is always the previous version. It is implemented as Apache module
mod_svn and uses Apache’s authentification and authorization system.

D.2.4 Ontology
The formalized facts, or “What is” knowledge, is stored and managed through the Protegé, a
free, open source ontology editor and knowledge-based framework 10. It is the current de facto
standard for ontology development. Protegé itself uses a XML database to store the classes
and instances. The database files are stored in Subversion to ensure historic and authorship
record of all changes to it.

D.3 Simulation Software
Simulation Software components of the simulation engine are presented in blue areas in Figure
D.1. The light blue areas are generic for all models developed on the simulation engine. The
dark blue components are specific to the CostaDue model. Just as any other component, the
simulation software needs to conform with the requirements presented in Chapter 5. I will first
present the generic components before discussing the specific ones.

D.3.1 Java
Object Oriented Java is a high-level Object Oriented programming language, initially devel-
oped by the Sun corporation and recently open sourced under the Gnu General Public License.
One of the main features of Java is that its source code is not compiled to platform specific
machine code, as other computer languages are, but to a higher level “byte code” that runs
inside a Java Virtual Machine (JVM). JVMs are available on almost any imaginable hardware
platform.

Widely used Java is widely used in the scientific community, and there is great availability of
open source libraries. Java has high performance, even though the folklore claims otherwise 11.
It is a relatively high-level language. It is nonetheless relatively easy to use, since it abstracts
away most low-level programming tasks, such as memory management.

10http://protege.stanford.edu/
11http://en.wikipedia.org/wiki/Java_performance
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D.3.2 Eclipse
Programming Writing, debugging, compiling and running Java programs is a relatively
complex tasks that has been greatly automated by the development of Integrated Development
Environments, or IDEs. IDEs are a great help when less experienced programmers (such as
PhD candidates and MSc students) are involved in model development. The most advanced
open source IDE available for Java is Eclipse 12. It is available on all major operating systems
and has a large and active developers’ community.

Made easier Eclipse has an integrated build infrastructure, compiling programs on the fly
and detecting programming errors very quickly. It allows easy code factoring and change. It
is tightly integrated with Subversion for easy management of code versions and the required
libraries. Numerous plug-ins exist to further simplify common tasks and free the programmer
to focus on the important model logic.

D.3.3 Repast
The Recursive Porous Agent Simulation Toolkit (Repast) (N. Collier and North, 2003) is used
as the basic Agent Based Model platform. It contains the agents, schedules their interaction,
does all the data collection, facilitates parameter sweeps, etc. Repast can be seen as a meta-
Agent Based Model that creates, runs and manages other Agent Based Model s.

D.3.4 Simulation Generics
Modularity and reusability One of the important lessons from the learning cases presented
in Chapter 6 is the need for modularity. Modularity reduces the time needed to develop a model
and reduces the number of potential errors in models, since it reuses existing and tested code.
This notion led to the development of Simulation Generics 13, a collection of model components
that can be reused in any model developed using the ontology.

Specific vs. generic Whenever a model is developed, especially when evolving from an
earlier model, new functionalities are required - for example, a new type of graph. These
improvements can be made specific to the model developed. These new features work well with
the model and are relatively quick to implement. They are, however, not generic or modular
and cannot be reused on other models. The challenge for the modeller is to recognize which
components are interesting and/or useful enough to spend extra effort on in order to create a
generic component. When modelling in groups, this becomes easier to decide, as the modeller
is very likely to have used modules by others and it is more natural to then build components
that are in turn useful to others.

12http://www.eclipse.org/
13http://gux.tudelft.nl/svn/SimulationGenerics/trunk/src/
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APPENDIX E
LHS VS RANDOM SAMPLING

LHS is usually applied to problems of up to 10 variables and a few hundred experiments.
For the application in this thesis, we stretched the method to tens of parameters and tens of
thousands of samples. This presented an unexpected computational challenge. When creating
a LHS matrix for 10,000 samples over 30 dimensions, Matalab takes 7 minutes on a fast server
with 2.6 GB of free memory. The memory requirement grows exponentially with the number
of sample sizes. Machines equipped with 10 GB of memory can only generate 20,000 samples.
If we want to have more samples, an alternative would be to use a random sample across
the parameter space. The random sampling process of the same size takes 0.025 seconds and
practically no memory space. This brings up the question of why we should use LHS at all.
Figure E.1 demonstrates the difference between samples generated by a random sampling and
those generated by LHS. The histogram presents the frequencies of samples falling within a
range of values. We can see that the LHS samples are very uniformly distributed across the
parameter range, whereas the random samples vary greatly.
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Figure E.1: Latin Hypercube Sampling (top row) vs Random Sampling (bottom row)
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APPENDIX F
REQUIREMENTS TABLE

Table F.1: Overview of the case study performances

Requirement Score Explanation
Flow Based Evolution

Non-Functional
Open Source Partly A the time of writing the source code is available to peers,

but not to the general public.
Sufficient com-
munity diver-
sity

No The model is developed as a first learning case, with the
author as the only stakeholder.

Organically
growing

No The model is built as a conceptual test. While extension is
kept in mind the current technical design does not allow for
easy extension.

Recorded his-
tory

Yes Versioning is initiated using CVS system. Due to technical
problems the models early history is lost. More robust ver-
sioning needed.

Enforceable
authorship

Yes Personal accounts are used to track code commits.

Modular No As the model was a technology test, no modularity is imple-
mented at this point.

Outcome
Useful Yes The model is useful at the meta-level to the modeler.
Testable Yes During model development, model was not versioned, so re-

peatable testing of intermediate states is not possible. Exper-
iments performed at the time of thesis writing are properly
versioned, and can be repeated and tested.

Combination of Infrastructures
Non-Functional

Continued on next page
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Table F.1 – continued from previous page
Open Source Partly The source code of the calculation method is available to

peers, but not to the general public. Social process has been
published.

Sufficient com-
munity diver-
sity

Yes Expert and user diversity was sufficient. Quality of commu-
nity was lacking.

Organically
growing

Partly Project requires external parties to proceed.

Recorded his-
tory

No Attempted and failed.

Enforceable
authorship

No Attempted and failed.

Modular Partly The description of infrastructures and their landscapes and
aspects is probably portable to other projects.

Outcome
Useful Yes Useful both at the process level to the modeler, as well at the

case level to the problem owner.
Testable Yes Social experiments are possible, observation of shifting in-

sights and knowledge directly readable from the fitness land-
scapes.
Chocolate Game Model

Non-Functional
Open Source Yes All computercode, game design delibrations and materials

and the ontology are available to the involved social network
Sufficient com-
munity diver-
sity

No Only students and staff from TU Delft involved in ontology,
game and model creation.

Organically
growing

Yes Ontology, game and the model are direct conceptual descen-
dents of the first case study, with generic modelling insights
from the second case applied.

Recorded his-
tory

Yes The entire modelling process, both formal interaction via
code and ontology and informal interaction via wiki are ver-
sioned.

Enforceable
authorship

Yes Via authentication in subversion and wiki.

Modular Yes Ontology, agents and decision algorithms are designed with
modularity and reuse in mind.

Outcome
Useful Yes Provided plenty insights into ontology development and mod-

elling process. Developed a usable system decomposition
method.

Testable Yes The SDM can be repeated and results compared. Model is
repeatable due to versioning and random seed record.

Continued on next page
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Table F.1 – continued from previous page
Costa Due

Non-Functional
Open Source Yes All unformalized and formal knowledge is accessible to all

involved parties.
Sufficient com-
munity diver-
sity

Yes A wide range of domain experts and stakeholders were in-
volved. While this is good a even greater diversity would
contributed to better insights.

Organically
growing

Yes The SDM is based on the previously developed approach.
The simulation engine was designed with insights obtained
from the learning cases but did not include any computer
code. It will serve as a basis for future organic growth.

Unchangeable
history

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable
authorship

Yes All formalized and unformalized contributions have full au-
thorship records.

Modular Yes The Simulation engine is designed to be modular, and Sim-
ulation Generic are extensively used to encourage reuse of
computer code.

Outcome
Useful Yes The model has yielded both useful case level insights as well

as provided a good bases for further method development. It
can be considered a resounding success.

Testable Yes More than any other model so far, every component can be
examined and tested because of the use of versioning.

Bulk Biochemicals
Non-Functional

Open Source Yes All unformalized and formal knowledge is accessible to all
involved parties.

Sufficient com-
munity diver-
sity

No The case study is performed as a technological development
step and no stakeholder was involved.

Organically
growing

Yes The case study is entirely based on the previous one.

Unchangeable
history

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable
authorship

Yes All formalized and unformalized contributions have full au-
thorship records.

Modular Yes Built on existing models. Additions created as modules.
Outcome

Useful Yes Useful as a proof of principle for both LHS environmental
mapping and in implementing MCA.

Testable Yes All outcomes are fully testable.
Metals Network

Continued on next page
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Table F.1 – continued from previous page
Non-Functional

Open Source Yes All unformalized and formal knowledge is accessible to all
involved parties.

Sufficient com-
munity diver-
sity

No The case study is performed as a technological development
step and no stakeholder was involved.

Organically
growing

Yes The case study is entirely based on the previous one.

Unchangeable
history

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable
authorship

Yes All formalized and unformalized contributions have full au-
thorship records.

Modular Yes Built on existing models. Additions created as modules.
Outcome

Useful Useful as a proof of principle for both encoding metal pro-
cessing knowledge refinemen t of economic reasoning.

Testable Yes All outcomes are fully testable.
Bioelectricity
Non-Functional

Open Source Yes All unformalized and formal knowledge is accessible to all
involved parties.

Sufficient com-
munity diver-
sity

Partial The case study is performed as an extension the work for the
government commitee. Only the scientiffic staff was involved
in the case study.

Organically
growing

Yes The case study is based on the previous one and extends it
organically.

Unchangeable
history

Yes Both the formalized and unformalized knowledge are fully
versioned.

Enforceable
authorship

Yes All formalized and unformalized contributions have full au-
thorship records.

Modular Yes Built on existing models. Additions created as modules.
Outcome

Useful Yes Greatly increases the insight into environmental impacts of a
simulated network and provides domain specific insights into
bioelectricity production.

Testable Yes All outcomes are fully testable.
End of Table F.1
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APPENDIX G
OVERVIEW OF THE REVIEWED LITERATURE
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Ref Title Domain CAS ABM LSTS Evolution Social process
(Jarupathirun
and Za-
hedi,
2007)

Dialectic decision support systems: System
design and empirical evaluation

Decision Support No No No No No
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SUMMARY

Introduction Our human society exerts great pressure on Earth’s carrying capacity, leading
to exhaustion of natural resources, loss of habitats and biodiversity, and causing a resource and
climate crisis. To avoid a sustainability crisis, we urgently need to transform our production and
consumption patterns. Given that we are part of a complex and integrated global system where
and how should we begin this transformation? And how can we ensure that our transformation
efforts will lead to a sustainable world?

This thesis focuses on industrial systems, which many claim are partly responsible for the
global sustainability crisis. Rather than taking a traditional engineering science perspective,
this thesis studies industrial systems as a Large-Scale Socio-Technical Systems, or λ-systems,
composed of interconnected social and technical networks embedded in a geological and bio-
logical context. The λ-systems perspective implies we recognize global, national and regional
λ-systems as systems that grow and evolve as a result of the decisions and actions undertaken
by social entities or actors (individuals and organizations) in relation to the implementation,
operation, design and innovation of the technical elements of these systems.

The research theme is thus “to increase our understanding of industrial networks and help
steer their evolution towards sustainability,” which implies a - methodological - research ques-
tion: How can we model the evolution of Large-Scale Socio-Technical Systems such as industrial
networks?

This work is aimed at developing a better understanding of regional industrial networks,
with the goal of supporting Regional Development Authorities (RDA). We realize that this
work only begins to capture the complexity of the global sustainability challenge, implicit in
the research theme. The main hypothesis of this thesis, encompassing the larger theme, is that
the use of adequate models of λ-system evolution will improve the ability of decision makers
in industrial networks to make sustainable development choices. The hypothesis leads to the
main research question: How can we create a model for exploring the evolutionary patterns
of λ-systems? Three subquestions were derived from the central research question. First, how
can a generativist Complex Adaptive Systems perspective be operationalized in models that
capture λ-systems evolution? Second, what are the content specifications of such models in
terms of the relevant formalisms (knowledge domains)? Third, what are the specifications for
a process that would create such models?
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Theoretical foundations As part of answering the first two research questions, we referred
to the theory on Complex Adaptive Systems, which stipulates that overall λ-system behavior
can be understood as an emergent property of interactions between autonomous agents at the
lowest level of the system - in our case the firms and their technologies.

In our framework for understanding λ-system evolution, a system is conceptualized as con-
sisting of three levels: agent, network and emergent system. At the agent level, the agent is
defined as the smallest system component; its state and rules determine its behavior in terms
of conversion of inputs to outputs and its adaptivity. Agents are similar in their interaction
abilities and diverse in their states and rules. At the network level, interactions between the
agents create a network with a certain topology. Changes in the intensity of the connections
between agents determine the network dynamics; the addition and removal of nodes and edges
makes the network develop and evolve. The system level is where the entire system manifests
itself as an entity with aggregate in- and outputs, this entity having an aggregate state and
aggregate rules. In reality, the system’s properties are emergent; they are the result of low-level
interactions. The system exists within a larger environment, it self-organizes, is robust, can be
unstable, and its description is observer-dependent.

The presented framework is holistic, as it looks at all aspects of a system - from the smallest
individual elements to the highest level of system aggregation. It considers systems in their
entirety and only reduces elements to smaller elements if they are fully interrelated with other
elements. It is generativist, as it understands a system to be the result of a continuous process
of emergence across multiple levels, starting with the lowest level elements. It is multiformal,
as it allows different languages to be used to describe different levels and agent properties.

An important insight gained from Complex Adaptive Systems theory is that predicting the
exact outcome of the evolution of any λ-system is impossible, due to the intractability of the
evolutionary process; there exists no faster way of predicting a systems outcome than to simply
allow it to run its course. Simulation, however, can be used to generate emergent patterns of
possible futures and identify system attractors.

Agent Based Modelling (ABM) was identified as the only generative modelling tool able to
represent the structure and dynamics of evolving regional industrial networks. Individual com-
panies and their technical installations are conceptualized as the smallest system elements or
agents. Suitable representations of the systems economic environment (world market), natural
environment (physical sources and sinks of materials) and policy environment (laws an regu-
lations) are included in the model. Process Systems Engineering (PSE) is used to represented
technical elements as a mass conserving black box characterized by its inputs and outputs.
Corporate Finance offers suitable descriptions of the boundedly rational behavior of firms that
own and operate the technical installations.

The number and diversity of agents in any industrial network is substantial, and needs to
be adequately captured. Descriptions from technical, social, financial, ecological, engineering
and other domains must be incorporated. These fields represent an equal number of distinct
and often incompatible languages or formalisms. Knowledge management and artificial intelli-
gence literature demonstrate that interconnecting this ’Tower of Babel’ is not a trivial exercise.
Building a shared multiformalism requires an engineered social process that involves domain
experts of diverse backgrounds and expertise. To facilitate the communication between differ-
ent vocabularies and formalisms, ontologies were identified as a means to create an interface
between experts, while retaining the domain-specific vocabularies.

330



Modelling Foundations To answer the third research question an evolutionary modelling
method was constructed, progressing through a series of case studies. Based on principles from
collaborative modelling and insights from Complex Adaptive Systems and the evolutionary
formalism, six requirements for the modelling process were formulated: open sourceness of the
tools used and created, sufficient diversity in the community of modellers, the organic growth
of models, recorded history, enforceable authorship, and modularity of the software stack.

Model development is a co-evolutionary process that progresses in generations, or case
studies, and which takes place in a dynamic, socially constructed environment of modellers and
stakeholders who determine what is useful and what is not.

Co-evolution means that an element in an evolving system never exists in isolation but is
always in interaction with others. A change in the fitness (survival ability) of any component
has a direct effect on all other elements with which it shares its environment. In our method
for model development there are four modelling aspects that co-evolve:

1. Technical aspects of the model, namely which software and hardware systems to use, how
to organize the modelling software components, how to store data, how to analyze results,
etc.;

2. The social process of involving the stakeholders in identifying and collecting relevant
knowledge and providing feedback on the model’s outcomes - this process involves the
selection of the right participants, the execution of the collaborative process, the manner
feedback is organized, etc.;

3. Formalized and encoded knowledge domain representations of λ-systems - microeco-
nomics, chemical engineering and psychology are examples of relevant knowledge domains;
and

4. Factual information that describes the components of the λ-system, their interactions
and the overall system behavior - for example: specific processing plants, their in- and
outputs, economic performance data, etc.

The modelling method was anticipated to lead to the evolution of increasingly richer and
better models and tools, while at the same time providing insights per case study. The series
of seven case studies explored in this work included three that we call ’learning case studies’
because they explore the general applicability and usefulness of the modelling process, the
lessons of which are later applied to the four practical case studies.

Learning case studies To begin with, the Flow-Based Evolution model was created to
investigate whether the chosen conceptualization is good enough; in other words, whether or
not we can eventually meet our objectives by representing a λ-system as an input/output
flow-based network in an ABM in which the industrial network consists of producers and
consumers (nodes) connected by mass flows (edges). Developing the model also helped us to
determine what types of facts need to be collected and led us to the conclusion that technology
descriptions and economic decision-making processes must be implemented as separate but
connected modules.

In the Combination Of Infrastructures case study, the focus was on designing a social
process for multiformal knowledge and fact collection. The model built was intended to help
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elucidate the spatial combinability of infrastructures. Through this social process combinability
was defined to consist of social, legal, safety and technical aspects. In the social process a
proto-ontology of infrastructures and a parameterization of combinability aspects were created.
The facts collected from the stakeholders allowed the construction of a fitness landscape that
described the combinability of different infrastructures.

The final learning case, the Chocolate Game, involved the development and playing of
a serious game and developing a model based on it. The game identified the information
needed to create an ABM of a chocolate supply chain, that serves as a analogy of the chemical
process industry. The analogy and associated information were extracted from the game using
the System Decomposition Method (SDM), resulting in an ontology. This ontology serves as a
formal, machine-readable representation of the language used for reasoning and communicating
by the agents in the ABM. The SDM was designed as a collaboration script that consists of
a group modelling exercise in which experts in relevant knowledge domains and formalisms
interact. It offers a template of interfaces as well as a procedure to transform and encode their
knowledge into a single multiformalism that defines the states and rules of an Agent Based
Model. In the technical design aspect the conceptualization of flows was changed from discrete
to continuous. The technical implementation of the ontology proved to be relatively inflexible.

Main case study In the CostaDue case study the SDM was improved and completed. A
full-scale simulation engine for ABM modelling of λ-systems was developed, and knowledge
and facts about chemical and biochemical processes were encoded. The model was used to
explore the evolutionary patterns related to the transformation of the Groningen Seaports
industrial cluster from a chlorine to a bio-based network. The agents had realistic economic
properties and modular descriptions of technology, and they respected the mass balance. Basic
economic reasoning was implemented through contract selection and price setting mechanisms.
The possibility for the transition from a chemical to a bio-based industry was created by
adding new bio-based technological options to the simulation. These options had been identified
through a social process involving different stakeholders. The ensuing network evolution was
studied under different economic scenarios representing various selection pressures. The main
conclusions were that the bio-based options as identified by the stakeholders do not appear to
lead to a diverse biomaterials-based network in the Groningen Seaports region. An enrichment
of the existing network with bio-energy options is possible, the extent of which appears to
depend on the survival of the incumbent energy-intensive industry. The importance of path
dependency in network development is clearly demonstrated, as is the limited power that the
Regional Development Agency has in steering this evolutionary process.

Further case studies To provide a robustness and applicability test of the modelling pro-
cess, model and simulation engine, three additional case studies were completed. In the Bulk
Biochemicals study the performance and evolution of a bio-refinery network was investigated
across a large economic scenario space. Latin hypercube sampling was implemented as a tech-
nique to examine this large parameter space. Multi Criteria Assessment was implemented as a
rationalization of the RDAs network development process. This network is likely to emerge and
be successful under the majority of economic conditions examined. Testing a variety of RDA
strategies revealed that an increased rationality of the RDA does not improve the performance
of the network, due to the limited number of technological options available.
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In the Metals Network case the evolution of a global aluminum and copper production
network was studied under different economic conditions and different agent investment strate-
gies. The case study extended the agents reasoning with Net Present Value and Internal Rate
of Return calculations, as well as added a dynamic world market with global interest rate de-
velopments, next to encoding a wealth of metallurgical processes. Global economic conditions
and agent investment policies appear to have little effect on the development of this network.

The Bioelectricity study was completed to examine the evolution of the Dutch bioelec-
tricity production portfolio under different CO2 emission taxation levels and under different
agent reasoning strategies. The incorporation of Life Cycle Assessment (LCA) enabled agents
to reason about their environmental impact across their supply chain. Incorporation of the
EcoInvent LCA database enabled the World Market to provide goods with associated environ-
mental impacts from 3000 different production processes. The case solved a number of complex
algorithmic and computational challenges in combining a static analysis tool (LCA) with a
dynamic pattern generation tool (ABM). The main methodological outcome was a practical
way to combine LCA with ABM. The study showed that high levels of CO2 emission taxation
allow for structural change in the way bioelectricity production is organized.

Results Returning to the idea of the four co-evolving modelling aspects, the main accom-
plishment in the technical dimension is the design and implementation of the modular, open
source simulation engine. Recognition of the necessity of recording its development history is
important to the science and engineering of modelling. In the social dimension, the results
are the System Decomposition Method (SDM), the emergent community sharing the practical
knowledge on co-evolutionary modelling processes and the models that have been developed
and recorded in a wiki system. The results of the knowledge formalization process are the
formalizations of the PSE, microeconomics, corporate finance, industrial clusters, evolution
and Complex Adaptive Systems domains. This knowledge is formalized in an ontology. The
practical outcome of the fact collection process is the encoding of large numbers of industrial
processes, their flows and economic properties.

Domain insights On the basis of the modelling, case study results, insights from Complex
Adaptive Systems and evolution theory, seven general guidelines for shaping and steering the
evolution of industrial networks can be given.

First, network development is strongly path dependent, and RDAs must strive to develop
an understanding of networks’ future development patterns. The order in which firms appear
matters. Second, once established, the network structure is relatively robust. Third, the social,
legal, institutional and regulatory contexts can make or break a industrial network, even if the
right firm and technology mix is present. Fourth, given the importance of past decisions and the
chaotic nature of the evolutionary process, it is inevitable that mistakes will be made and the
wrong type of firm will be alloted space in the region. Consequently, RDAs must at all times
retain spatial control of their region. Fifth, RDAs must be aware of the importance of diversity
- in the types of firms and their physical installations, as well as in the options available for
the same functions within their network. Without diversity, evolution is impossible. Sixth, the
importance of the long-term view must be emphasized. In their planning, RDAs must be able to
look ahead several generations of firms or technical installations. Given the average installation
lifetime of 15 years or more, RDAs need to use a multi-decade planning perspective. Finally,
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RDAs must strive for balance. Too much top-down control will stifle change, and too much
bottom-up initiative will destroy the networks coherence.

Conclusions Concluding, the execution of seven case studies in an evolutionary modelling
process has allowed us to answer the research questions and to conclude that the posed hy-
pothesis that “the use of adequate models of λ-system evolution will improve decision-making
abilities in industrial network development” was not falsified.

Central to this thesis has been the development of a method for creating models. Opera-
tionalizing insights from complex adaptive systems theory and evolutionary thinking, has led to
the development of requirements for the modelling method and the method itself. It has been
used to create consecutively “good enough” models of λ-systems evolution. These models are
“good enough” in the sense that they provide useful insights that can support strategic decision
makers involved in industrial network development. The main practical result presented is the
description of the modelling process, a modular, expandable simulation engine, a collection of
domain knowledge formalized in an ontology and the encoding of a large number of facts on
industrial network elements.

One of the main strengths of the models presented in this work is that their representation
of λ-systems is intuitively understood by users and modelers. Furthermore, ABMs represent an
exciting new paradigm, through which collective understanding of λ-systems can be expressed.
Their main weaknesses are the large data requirement for realistic models and relatively compli-
cated implementation. Main strengths of the modelling process are that it is a socially inclusive,
adaptive process for long term capacity building with a high scientific output. Its weaknesses
are that its high cost in terms of people and time, the slow takeoff phase, the dependence on
the quality of the social network and its divergence from the modeling paradigms that decision
makers are familiar with. It takes am imaginative decision maker to truly appreciate ABM.

The co-evolution of the technical design of the models, the social process involved, the
knowledge and facts encoded have been set in motion. As this body of knowledge gathers
speed and momentum it will continue to increase our understanding of λ-system evolution. We
hope that it will ultimately contribute to a more sustainable development of the human species
on planet Earth.
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SAMENVATTING

Thema en onderzoeksvragen De belasting van het systeem Aarde door de mensheid leidt
tot uitputting van natuurlĳke hulpbronnen, de teloorgang van habitats en tot verlies van bio-
diversiteit. Inmiddels dreigt een grondstoffen- en klimaatcrisis. Alleen door verandering van
onze productie- en consumptiepatronen kan een duurzaamheidscrisis worden afgewend. Echter,
wĳ maken deel uit van een complex en geïntegreerd wereldomspannend systeem waarvan de
onderdelen op allerlei wĳzen (via geld-, massa- en informatiestromen) met elkaar zĳn verbon-
den, over enorme afstanden en tĳdschalen. Waar en hoe kunnen we beginnen aan de benodigde
transformatie? En hoe kunnen we zeker stellen dat onze inspanningen zullen leiden tot een
duurzame wereld?

Dit proefschrift is gericht op industriële systemen; systemen die op zĳn minst ten dele debet
zĳn aan de mondiale duurzaamheidscrisis. In dit onderzoek beschouwen we industriële syste-
men niet vanuit het traditionele ingenieursperspectief, maar als Grootschalige Socio-Technische
Systemen. Dergelĳke systemen, ook wel λ-systemen genoemd, bestaan uit onderling verbonden
sociale en technische netwerken, die op hun beurt ingebed zĳn in een biologische en geologische
omgeving. Het λ-systemen systeemperspectief impliceert bovendien dat we de mondiale, na-
tionale en regionale industriële systemen zien als systemen die groeien en evolueren als gevolg
van handelingen en beslissingen die door sociale entiteiten, actoren (individuen en organisaties),
worden genomen over ontwerp, implementatie, werking, gebruik en innovatie van deze systemen.

Zo werd het centrale thema van dit proefschrift: “inzicht te verkrĳgen in het gedrag van in-
dustriële netwerken om sturing van hun evolutie in meer duurzame richting mogelĳk te maken”.
Dit thema impliceert een methodologische onderzoeksvraag: “Hoe kunnen we de evolutie van
Grootschalige Socio-Technische systemen modelleren?”

De focus van dit werk is het ontwikkelen van een beter begrip van regionale industriële
netwerken, beseffend dat dit maar een begin is van de uitwerking van het centrale thema.
Onze hypothese is dat het gebruik van adequate modellen van de evolutie van λ-systemen
strategische beslissers in deze industriële netwerken kan helpen om “hun” systeem in de richting
van duurzame ontwikkeling te sturen. Deze hypothese leidt tot de hoofdonderzoeksvraag: “Hoe
kunnen we modellen maken om de evolutionaire patronen van λ-systemen te verkennen?” Uit
deze onderzoeksvraag zĳn drie subvragen afgeleid: (1) Hoe kan een generatief perspectief op
Complexe Adaptieve Systemen worden geoperationaliseerd in modellen van λ-systeem evolutie?
(2) Wat zĳn de inhoudelĳke specificaties van zulke modellen in termen van relevante formalismes
(domeinkennis)? (3) Wat zĳn de specificaties van het betreffende modelleerproces?
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Theoretische achtergrond Een deel van het antwoord op de eerste twee vragen vonden wĳ
in de theorie van Complexe Adaptieve Systemen. Deze geeft aan dat het gedrag van λ-systemen
kan worden beschreven als een emergente eigenschap van de interacties van autonome agenten
op het laagste systeemniveau - in ons geval bedrĳven en hun technologie.

Het raamwerk dat we ontwikkelden om de evolutie van λ-systemen te kunnen begrĳpen
bestaat uit drie conceptuele niveaus: agent, netwerk en emergent systeem. Op het laagste
niveau is de agent gedefinieerd als het kleinste systeemelement; zĳn toestand en gedragsregels
bepalen hoe zĳn inputs worden omgezet in outputs, en hoe de agent zich aanpast aan zĳn omgev-
ing. De agenten zĳn gelĳk in hun mogelĳkheden tot interactie, maar verschillen in de toestanden
die ze kunnen aannemen en de gedragsregels die ze hanteren. Op het netwerkniveau ontstaat
door wisselwerkingen tussen de agenten een netwerk met een bepaalde structuur. Veranderin-
gen in de intensiteit van verbindingen tussen agenten leiden tot dynamiek in het netwerk. Het
toevoegen of verwĳderen van verbindingen of agenten leidt tot evolutie van het netwerk. Op
het emergente systeemniveau kan het systeem opgevat worden als een geaggregeerde agent,
met geaggregeerde inputs en outputs, en met geaggregeerde gedragsregels. In werkelĳkheid
zĳn alle systeemeigenschappen op dit niveau echter emergent, immers ze vloeien voort uit de
wisselwerking tussen de componenten op lagere systeemniveaus. Het systeem bevindt zich in
een omgeving, is zelf-organiserend, robuust, en kan instabiel zĳn; de wĳze van beschrĳving is
afhankelĳk van de toeschouwer.

Dit is een holistisch raamwerk omdat het alle aspecten van een systeem in beschouwing
neemt, van het kleinste element tot het algehele systeem. Het beschouwt het systeem in zĳn
geheel, en ontleedt systeemelementen slechts in kleinere onderdelen als deze volledig in verbind-
ing staan met elkaar. Het is een generatief raamwerk, omdat het systemen beschouwt als het
resultaat van een continu proces van emergentie dat begint bĳ de kleinste systeemonderdelen.
Het raamwerk is multiformeel, dat wil zeggen het staat het gebruik van verschillende “talen”
(uit verschillende kennisdomeinen) toe bĳ de beschrĳving van systemen op verschillende aggre-
gatieniveaus van de verschillende typen eigenschappen van de systeemonderdelen.

Een belangrĳk inzicht uit de theorie van Complexe Adaptieve Systemen is dat het onmogelĳk
is om de precieze uitkomst van een evoluerend systeem te voorspellen. Evoluerende systemen
zĳn onnavolgbaar en daarmee onvoorspelbaar. Er is geen snellere manier om de uitkomst van
een evolutieproces te berekenen dan het proces zelf te laten verlopen. Simulatie van evolutiepro-
cessen heeft echter wel degelĳk zin om te verkennen welke patronen zouden kunnen ontstaan,
om daarmee als het ware de “mogelĳke toekomsten” van het systeem te identificeren, zonder
enige pretentie om een exacte uitkomst te voorspellen.

Agentgebaseerde Modellen (ABM) zĳn geïdentificeerd als de enige modelleeraanpak die
generatief is én in staat is de structuur en dynamica van evoluerende regionale industriële
netwerken te beschrĳven. In onze ABM worden bedrĳven en hun technische installaties gezien
als de kleinste onderdelen van het systeem, de agenten. In de beschrĳving van het systeem
wordt de relevante economische omgeving gerepresenteerd (wereldmarkt), evenals de natuurli-
jke omgeving (bron en ontvanger van materiestromen) en de bestuurlĳke omgeving (relevante
wetgeving en regulering). Met behulp van proceskundige kennis worden de relevante technische
eenheden/agenten beschreven als een “black box” met in- en outputs; bedrĳfskundige inzichten
en noties van “beperkte rationaliteit” zĳn gebruikt om het gedrag van de bedrĳven die deze
technische installaties beheren te beschrĳven.

Industriële netwerken bevatten een aanzienlĳk aantal agenten van divers karakter die allen
op een geschikte manier dienen te worden beschreven. Om dit voldoende nauwkeurig te kun-
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nen doen zĳn inzichten uit een groot aantal disciplines nodig, zoals de technische, sociale en
bedrĳfskundige wetenschappen. De verschillende onderzoeksvelden hanteren even zoveel ver-
schillende (vaak incompatibele) talen of formalismen, die met elkaar moeten worden verbonden.
De literatuur op het gebied van kunstmatige intelligentie en kennismanagement laat zien dat
het smeden van verbindingen in deze wetenschappelĳke “Toren van Babel” geen sinecure is.
Het creëren van een gedeeld formalisme, of taal, die door domeinexperts uit verschillende dis-
ciplines wordt begrepen en gebruikt, vereist een zorgvuldig ontworpen sociaal proces. Om dit
proces te faciliteren en de verschillende talen die nodig zĳn om de modellen te maken, zodanig
te verbinden dat betekenisvolle communicatie over disciplinegrenzen heen mogelĳk wordt, is
gebruik gemaakt van ontologieën. Ontologieën vormen de interfaces tussen verschillende ken-
nisgebieden, terwĳl ze toelaten dat de betrokken experts hun eigen taal gebruiken.

Modelleren Om de derde onderzoeksvraag te beantwoorden is een co-evolutionaire mod-
elleermethode ontworpen, die vordert in generaties, per casus. Gebaseerd op inzichten van
“collaborative modelling”, complexiteits- en evolutietheorie zĳn zes eisen geformuleerd voor de
modelleermethode: (1) de brongegevens van de gebruikte (software) gereedschappen dienen
openbaar te zĳn; (2) het sociale netwerk van modelleurs en experts is voldoende divers; (3)
modellen kunnen organisch groeien (4) de ontwikkelgeschiedenis wordt volledig vastgelegd en
is altĳd opvraagbaar (5) de identiteit van alle deelnemers aan het proces is bekend; (6) de
ontwikkelde software is modulair.

Modelontwikkeling is een co-evolutionair proces, dat over generaties, casus na casus, vordert
en plaats vindt in een dynamische en sociaal geconstrueerde omgeving van modelleurs en be-
langhebbenden, die gezamenlĳk bepalen welke verbetering nuttig is en welke niet.

Co-evolutie betekent dat een element in een evoluerende omgeving nooit is geïsoleerd, maar
steeds in wisselwerking staat met andere elementen. Verandering in ”fitness”, of zĳn ver-
mogen tot overleven, is daardoor altĳd gekoppeld aan en heeft altĳd invloed op alle andere
co-evoluerende elementen. In de beschreven modelleermethode zĳn er vier elementen die co-
evolueren:

1. Technische model aspecten. Welke software en hardware systemen worden gebruikt, hoe is
de software georganiseerd, hoe wordt data beheerd en opgeslagen, hoe worden de uitkom-
sten geanalyseerd, enzovoorts.

2. Het sociale proces dat de belanghebbenden en de modelleurs helpt om de relevante kennis
en feiten te identificeren en feedback te leveren in het modelleerproces. Het sociale proces
bestaat uit de selectie van relevante deelnemers, de feitelĳke samenwerking, de vorm(en)
van terugkoppeling, en het selectiemechanisme van de co-evolutie.

3. Geformaliseerde en gecodeerde kennis over λ-systemen, hun elementen, hun interacties en
het emergente systeemgedrag. Voorbeelden van relevante kennisgebieden zĳn psychologie,
bedrĳfskunde, scheikundige technologie, enzovoorts.

4. Feitelĳke informatie die de relevante entiteiten en hun interacties in het λ-systeem beschri-
jft. Bĳvoorbeeld de technische specificatie van een fabriek, de economische prestaties
daarvan, enzovoorts.

De verwachting was dat deze modelleermethode steeds rĳkere en nuttiger modellen zal doen
ontstaan, naast het genereren van nieuwe inzichten in elke casus. Dit proefschrift laat een serie

337



van zeven casus zien; de serie begint met drie “leercasus” waarin de toepasbaarheid en het nut
van de modelleermethode zelf verkend worden. De in het proces ontwikkelde en verbeterde
methode is daarna toegepast op vier praktische probleemgedreven casus.

Leercasus Om te beginnen is een generiek model ontwikkeld dat “stroom-gebaseerde evolu-
tie” beschrĳft en kan simuleren. Doel van de casus was te verkennen of de gekozen systeemcon-
ceptualisatie überhaupt geschikt is. De zo geteste conceptualisatie van λ-systemen gaat er van
uit dat een industrieel netwerk voorgesteld kan worden als een netwerk van in- en uitgaande
massastromen tussen producerende en consumerende agenten. De modelontwikkeling in deze
casus hielp om te bepalen welke typen feitelĳke kennis noodzakelĳk zĳn. De resultaten leid-
den tot de conclusie dat de beschrĳving van de technische elementen voldoende nauwkeurig
was, maar dat de bedrĳfseconomische beslissingsprocessen moesten worden geïmplementeerd
als modulaire elementen.

Het ontwerp van het sociale proces voor het coderen van multiformele domeinkennis en
-feiten stond centraal in de “Combinatie van Infrastructuren” casus. Daarvan was het doel
de ruimtelĳke combineerbaarheid van infrastructuren te verkennen. In het sociale proces werd
vastgesteld dat combineerbaarheid afhangt van sociale, wettelĳke, veiligheidskundige en tech-
nische aspecten. Het proces leverde een proto-ontologie op; de verzamelde feitelĳke informatie
maakte het mogelĳk om een combineerbaarheidslandschap te maken waarmee de “fitness” van
de combinatiemogelĳkheden van verschillende infrastructuren wordt gevisualiseerd.

Het “Chocoladespel” was de laatste leercasus. Deze bestond uit het ontwikkelen van een “se-
rious game” waarvoor daarna een agentgebaseerd model werd ontwikkeld. Het spel verkende
de noodzakelĳke kennis om een productieketen voor chocola te beschrĳven. Deze beschrĳv-
ing dient als een analogie van de productieketens in de chemische industrie. De analogie en de
noodzakelĳke feiten werden verkregen door ontwikkeling van een “Systeem Decompositie Meth-
ode” (SDM). Deze is ontworpen als een sociaal script dat bestaat uit een groepsmodelleerproces
waarin domeinexperts hun kennis delen en formaliseren. De SDM leidde vervolgens tot de on-
twikkeling van een ontologie die gebruikt wordt als de taal waarmee de agenten in het model
kunnen communiceren. De ontologie laat het coderen van verschillende formalismen toe (tech-
nische en bedrĳfskundige); tevens maakt ze een eenduidige beschrĳving van agenten mogelĳk.
Wat betreft het modelleertechnische aspect is in deze casus het werken met discrete stromen
verkend; daaruit bleek dat de gekozen technische implementatie van de ontologie niet flexibel
genoeg was.

Hoofd casus In de “CostaDue” casus is de SDM verbeterd, is de agentgebaseerde simu-
latieomgeving ontwikkeld, is een model gemaakt en zĳn kennis en feiten van chemische indus-
trie en bioprocesindustrie vastgelegd in de ontologie. De casus omvat een verkenning van de
mogelĳke evolutiepatronen van het industriële netwerk in en rond Delfzĳl, meer in het bĳzon-
der van de mogelĳkheden om een transformatie te bewerkstelligen van een chloor- naar een
biomassa-gebaseerd netwerk. De beschreven agenten hebben realistische, modulaire economis-
che en technische beschrĳvingen die voldoen aan het criterium van een gesloten massabalans.
De bedrĳfskundige aspecten van de agenten bevatten beslissingen over de prĳsstelling van hun
producten en methodes voor de selectie en het sluiten van contracten. De evolutie naar een
biomassa-gebaseerd netwerk werd gesimuleerd door agenten die biomassa (kunnen) verwerken
toe te voegen aan het bestaande netwerk van chloorchemie-gerelateerde agenten. De set van
biomassa-agenten werd bepaald in een sociaal proces met een keur van deskundigen en lokale
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stakeholders. De resulterende evolutionaire ontwikkeling van het netwerk werd verkend voor
verschillende economische scenario’s. Uit de simulatieruns volgt dat het niet waarschĳnlĳk
is dat er een robuust en divers biomaterialencluster zal ontstaan in Delfzĳl; wel zĳn er mo-
gelĳkheden dat een bioenergiecluster zich zal ontwikkelen. Echter, dat is afhankelĳk van het
voortbestaan van de huidige, energieintensieve, chloorgebaseerde industrie. Uit de simulaties
blĳkt bovendien dat de padafhankelĳkheid groot is en dat het vermogen van het havenbedrĳf
om als regionale ontwikkelingsautoriteit de evolutie van het netwerk te beïnvloeden beperkt is.

Overige casus Om de robuustheid en algemene toepasbaarheid van de co-evolutionaire mod-
elleermethode, het model en de simulatie omgeving te verkennen zĳn nog drie casus uitgevo-
erd. In de “Bulk-biochemicaliën” casus werden de evolutionaire ontwikkelingspaden inclusief
de economische prestaties van een (gedistribueerde) bioraffinaderĳ gesimuleerd onder een groot
aantal verschillende economische omstandigheden. De “Latin Hypercube Sampling” methode is
gebruikt om de zeer grote parameterruimte systematisch te verkennen. Multicriteria analyse is
gebruikt om het sturingsproces van de gebiedsmanager te rationaliseren. De hoofduitkomst was
dat de bioraffinaderĳ onder de meeste economische omstandigheden waarschĳnlĳk winstgevend
zal zĳn. Een verkenning van de verschillende sturingsstrategieën van de regiomanager liet zien
dat het rationaliseren van de beslissingen weinig effect heeft op de prestaties van het netwerk.
Dat komt vooral doordat het aantal technische opties beperkt is.

In de “Metalenproductienetwerk” casus is de evolutie van het wereldwĳde aluminium- en
koperproductienetwerk verkend onder verschillende economische omstandigheden en invester-
ingscriteria gehanteerd door de agenten. Daartoe zĳn de bedrĳfskundige redeneerprocessen
van de agenten uitgebreid met Netto Contante Waarde en Investeringsrendement overwegin-
gen. Verder is het model van de wereldmarkt uitgebreid met dynamisch prĳsstellingsgedrag
en renteontwikkelingen en is een groot aantal metallurgische processen en mĳnbouwtechnieken
toegevoegd aan de ontologie. De simulaties van het netwerkevolutieproces brachten aan het
licht dat economische condities en de investeringsstrategieën van de agenten weinig invloed
hebben op de uiteindelĳke netwerkstructuur omdat er maar een beperkt aantal technische op-
ties beschikbaar is.

De laatste casus was het “Bioelektriciteits” model. Hierin is de evolutie van de Nederlandse
elektriciteitsproductieportfolio bestudeerd onder verschillende regimes voor CO2 emissiebelast-
ing en investeringsstrategieën van agenten. Levenscyclusanalyse (LCA) is gecombineerd met het
agentgebaseerde model zodat agenten hun beslissingen (mede) kunnen baseren op de milieuef-
fecten over gehele leveringsketens. Koppeling tussen het model en de EcoInvent LCA database
maakt het de agenten mogelĳk om de milieueffecten van meer dan 3000 producten te overwe-
gen. In de casus is een aantal complexe algorithmische problemen opgelost die voortvloeien
uit de combinatie van een dynamische model met een statische database. Het belangrĳkste
methodologische resultaat is dan ook het verbinden van een statische methode (LCA) met een
dynamische simulatie (ABM). De casus liet ook zien dat hoge CO2 belastingniveaus leiden tot
structurele veranderingen in de elektriciteitsproductieportfolio, en dat die verandering gepaard
gaat met het verdwĳnen van vervuilende technologie.

Resultaten Terugblikkend naar de vier co-evoluerende aspecten is het belangrĳkste resul-
taat in de technische dimensie het ontwerp en de implementatie van de modulaire, open-bron
simulatieomgeving. De erkenning van de noodzaak tot vastleggen van het ontwikkelproces is
een belangrĳke toevoeging aan de wetenschap van modelleren. De belangrĳkste resultaten wat
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betreft de sociale dimensie van het modelleerproces zĳn het ontwerp van de Systeem Decom-
positie Methode (SDM), het emergente sociale netwerk waarbinnen praktische kennis van ABM
modelontwikkeling wordt gedeeld en de modellen zelf die ontwikkeld en beschreven zĳn op het
gebruikte wiki platform. Het belangrĳkste resultaat van het proces van kennisformalisering
is de ontologie die de brug slaat tussen de vele betrokken kennisgebieden (o.m. scheikundige
technologie, bedrĳfskunde, economie, netwerktheorie en complexiteitstheorie). Het praktische
resultaat van het proces van feitenverzameling is de codering van een groot aantal industriële
processen, hun stromen en economische eigenschappen.

Domeinspecifieke inzichten Op basis van de ontwikkelde modellen, de resultaten uit de
casus en inzichten uit de complexiteits- en evolutietheorie kunnen zeven generieke aanbevelingen
worden gegeven voor het sturen van de ontwikkeling van industriële netwerken.

Ten eerste, de ontwikkeling van industriële netwerken is sterk padafhankelĳk. De volgorde
waarin bedrĳven tot een netwerk toetreden is sterk bepalend voor de netwerkontwikkeling.
Dat betekent voor de gebiedsmanager dat inzicht in de mogelĳke patronen van ontwikkeling
essentieel is, afhankelĳk van de aard en volgorde waarin bedrĳven zich aandienen. Ten tweede,
een industrieel netwerk is, eenmaal ontwikkeld, zeer robust en moeilĳk te veranderen. Ten
derde, de sociale en institutionele context kunnen een netwerk maken of breken, zelfs bĳ de
aanwezigheid van de juiste mix van technologieën. Ten vierde, gegeven de padafhankelĳkeid
en het chaotische karakter van evolutieprocessen is het onvermĳdelĳk dat een gebiedsmanager
fouten zal maken. Het is daarom uitermate belangrĳk dat een gebiedsmanager als grondeigenaar
of -uitgever controle over zĳn gebied behoudt. Vĳf, diversiteit in zowel technische installaties
als soorten bedrĳven in een netwerk is van groot belang voor de veerkracht van het netwerk.
Een gebiedsmanager zou deze diversiteit moeten stimuleren en bewaken, zodat daarmee het
vermogen tot evolutionaire aanpassing van het netwerk behouden blĳft. Zes, het belang van
een lange-termĳn visie moet benadrukt worden. Om de evolutie van industriële netwerken te
kunnen sturen is een visie over meerdere generaties van vernieuwing nodig. Gezien het feit dat
grootschalige technische installaties tien tot veertig jaar meegaan, vereist dit een langetermĳn
gebiedsontwikkelings visie. En tenslotte zouden gebiedsmanagers moeten streven naar balans.
Te veel top-down sturing of te veel bottom-up initiatief kan de coherentie van een industrieel
netwerk ernstig verstoren.

Conclusies De zeven evolutiemodellen die met behulp van de co-evolutionaire modelleer-
methode tot stand zĳn gekomen, hebben ons in staat gesteld om de drie onderzoeksvragen te
beantwoorden en te concluderen dat de hypothese dat “het gebruik van adequate modellen van
de evolutie van λ-systemen zal leiden tot verbeterde en meer duurzame beslissingen in deze
industriële netwerken” niet gefalsificieerd is.

Het centrale thema van dit proefschrift was de ontwikkeling van een co-evolutionaire meth-
ode voor het ontwikkelen van simulatiemodellen voor de evolutie van complexe socio-technische
systemen. Het operationaliseren van inzichten uit de complexiteits- en evolutietheorie heeft
geleid tot de ontwikkeling van eisen voor de modelleermethode en voor de modellen zelf. De
methode is toegepast om een serie modellen van λ-systemen te maken die “goed genoeg” zĳn, in
de zin dat ze nuttige inzichten leveren die gebruikt kunnen worden om strategische beslissers te
ondersteunen in hun streven de evolutie van de industriële clusters in “hun” gebied in duurzame
richting te sturen. De praktische resultaten van dit proefschrift zĳn het modelleerproces, de
modulaire, uitbreidbare simulatieomgeving, de collectie van domeinkennis geformaliseerd in een
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ontologie en de codering van een groot aantal feitelĳke gegevens over de elementen (procesin-
stallaties, technologieën) van industriële netwerken.

Het belangrĳkste voordeel van de modellen beschreven in dit proefschrift is dat hun struc-
tuur intuïtief wordt begrepen door de gebruikers en modelleurs. ABM is een nieuw en span-
nend modelleerparadigma; het gebruik ervan laat het ontstaan van een collectief begrip van
λ-systemen toe. Het belangrĳkste nadeel is dat ABM een relatief grote dataintensiteit hebben
en dat hun implementatie relatief gecompliceerd is. Het belangrĳkste voordeel van de gep-
resenteerde modelleermethode is het sociaal inclusieve larakter; een adaptief proces leidt tot
capaciteitsontwikkeling bĳ de modelleurs en de gebruikers. De belangrĳkste zwaktes zĳn dat
het een relatief duur proces is in termen van tĳd en mankracht, dat de opstartfase (daardoor)
traag is, dat het sterk afhankelĳk is van de kwaliteit (diversiteit) van het sociale netwerk en dat
de gebruikers die vertrouwd zĳn met traditionele modelleermethodes, ABM nog moeten leren
appreciëren.

Het co-evolutionaire proces van het technische modelontwerp, het sociale procesontwerp, de
codering van kennis en data is in gang gezet, en neemt gestaag toe in snelheid. We hopen dat
dit proces uiteindelĳk zal leiden tot meer inzicht in de evolutie van λ-systemen en daarmee zal
bĳdragen aan een kleine stap voorwaarts in de richting van een duurzame ontwikkeling.
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