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SUMMARY

Geostationary satellites have many advantages over other satellites, such as continuous
coverage of a specific geographic region and 24/7 contact with a single ground station.
These advantages have ensured that a large number of satellites are located in the geo-
stationary orbit. To cope with the heavy population, the orbit has been divided into
slots in geographic longitude and satellites are assigned to these geostationary slots. To
maintain a satellite inside a slot, station-keeping maneuvers are needed, requiring ac-
curate modeling of the orbital motion. In order to minimize the propellant required for
these station-keeping maneuvers, clever guidance strategies need to be implemented,
in order to maximize the lifetime of these highly valuable space assets. These topics, the
guidance, control and dynamics of geostationary satellites are the subject of this work.

The scarcity of geostationary slots above prime locations has led operators to collo-
cate several satellites in a single slot. This leads to a complication of the methods for
modeling, guidance and control, as new constraints enter the problem such as main-
taining a minimum separation distance between satellites in order to avoid collisions.
Another potential constraint is the avoidance of interference between the satellites. Such
interference can be caused by a satellite entering the field of view of a payload or another
sensor on another satellite. Nowadays, the situation is further complicated by the fact
that many newer satellites carry star sensors for more precise attitude measurements.
Such star sensors can potentially be blinded by the sunlight reflecting off another satel-
lite. These interferences can be avoided as part of the orbit control strategy, resulting in
the addition of so-called sensor cone avoidance constraints to the guidance and control
problem. The problem of maintaining minimum separation distances has been exten-
sively treated in the literature whereas the problem of sensor cone avoidance constraints
is still unsolved, motivating the need for new methods.

The motion of a geostationary satellite is governed by forces resulting from the grav-
ity of the Earth, sun and moon, as well as solar radiation pressure and forces resulting
from thrusters on-board the satellites. Since a geostationary satellite is actively con-
trolled to stay inside its assigned slot, the perturbing accelerations and the impact of
controlled accelerations can be approximated by those that a virtual satellite at the slot
center would experience. This simplifying assumption is used to develop a novel linear,
time-varying system of first order differential equations to describe motion of a geosta-
tionary satellite. The linear system is discretized and the resulting equations express an
affine relation between state and controlled accelerations, suitable for use in convex op-
timization problems. A similar assumption is used to develop a method to transform
between mean and osculating orbital elements.

The orbital state of a geostationary satellite is commonly represented using a set of
synchronous orbital elements. These non-singular elements essentially describe the
state of the satellite with respect to the center of the geostationary slot within which
the satellite is controlled. The synchronous orbital elements are effectively relative or-

xi



xii SUMMARY

bital elements between a satellite and the slot center (which is the “zero state”). Relative
orbital elements between two satellites are usually defined as the arithmetic difference
between the synchronous orbital elements of two satellites in the same slot. An approx-
imate linear transformation can be used to relate the relative orbital elements to Carte-
sian position and velocity in the radial, tangential and normal reference frame. Just like
the absolute orbital elements define the size and orientation of a satellite’s orbit, the rela-
tive orbital elements define the size and orientation of the relative orbit. A set of rational
relative orbital elements is introduced by dividing the relative orbital elements by the
magnitude of the relative eccentricity vector.

Three types of operational constraints have been identified: staying inside the geo-
stationary slot, maintaining minimum separation distances and the sensor cone avoid-
ance constraints. The first constraint is a convex constraint, whereas the latter two are
non-convex constraints. These non-convex constraints are dealt with by relative orbit
design. The combinations of relative orbital elements satisfying these constraints are
identified and visualized using the newly introduced rational relative orbital element
set. A key change, compared to the conventional collocation strategies, is that the rela-
tive mean longitude of the satellites needs active control in order to guarantee satisfac-
tion of the sensor cone avoidance constraints. An analysis of a sensor cone avoidance
constraint for an Earth-pointing sensor further reveals that the usual eccentricity/incli-
nation vector separation strategy no longer leads to satisfactory results and a change in
the strategy is required to satisfy minimum distance constraints and sensor cone avoid-
ance constraints simultaneously. A design process is introduced and demonstrated to
determine a set of (convex) tolerance windows on relative orbital elements that satisfy
various constraints simultaneously for any satellite position inside all of the resulting
relative orbits.

The single-satellite station-keeping problem is formulated as a convex optimization
problem in terms of orbital elements. This is made possible by the novel formulation of
the dynamics in the form of a linear time-varying system of first order differential equa-
tions. A sequence of increasingly complex problems is formulated. The final problem
and its solution constitute a novel method to the problem of station-keeping. This new
method results in a unique combination of the following beneficial characteristics:

• The problem is convex, well-scaled and guaranteed to have a solution satisfying
the constraints.

• The problem solution provides directly a maneuver plan with the thrusts that are
required for each thruster. Arbitrary thruster configurations can be defined and
included in the problem formulation.

• The thruster firings can be constrained to account for a maximum thrust force and
to avoid thruster firings during certain periods of time, e.g., to avoid firings during
eclipses or to allow firings only at certain days of a maneuver cycle.

• The method is applicable both to high thrust-to-mass chemical propulsion sys-
tems as well as low-thrust-to-mass electric propulsion systems.

• Convex inequality and affine equality constraints on the satellite state can be added
to the problem, allowing to formulate constraints at any (or every) discrete node.

The final problem formulation is defined using both a single-shooting and a multiple-
shooting approach. The first approach is conceptually simpler and results in a smaller
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optimization problem. The latter approach increases the problem size, but also the spar-
sity of the problem and is especially suitable for solving problems with large horizons
and many variables.

A validation of the new method for calculating station-keeping maneuvers consists
of comparing the results with a conventional scheme with two east/west maneuvers
per week and one north/south maneuver per fortnight. A simulation was performed in
which the new method was configured to reproduce similar results as the conventional
method. The results are compared side-by-side and a one year simulation reveals exactly
the same number of maneuvers in both cases, with maneuver size, location, cumulative
∆V and state trajectories being near-identical.

A further analysis of the method is performed by solving the station-keeping prob-
lem with a one-year horizon using a problem formulation with the multiple shooting
approach. A variety of problems were defined and solved and the solutions reveal clas-
sic guidance strategies such as the sun-pointing perigee strategy and the strategy to
make north/south maneuvers such that these maneuvers oppose the inclination vec-
tor’s secular drift. Further investigations reveal relations between the size of the sun-
pointing perigee circle and the east/west propellant consumption, as well as the size of
the eccentricity and inclination vector windows, propellant consumption and number of
thruster firings required. A further demonstration shows that the sun-pointing perigee
strategy is only beneficial for typical chemical propulsion thruster configurations with
thrusters pointing in north and south directions. Electric propulsion configurations with
thrusters pointing away from the purely north and south directions no longer require a
sun-pointing perigee strategy to save propellant.

Further simulation results demonstrate that the method works well in a variety of
scenarios, both for satellites with high thrust-to-mass ratios as well as satellites with low-
thrust-to-mass ratios. The simulations include realistic errors in thrust force magnitude,
direction and orbit determination, as well as errors resulting from mismodeling of the
dynamics. The results show that the magnitude of the errors in orbit prediction depend
on the thrust force, as well as on the thruster configuration. The simulation results of a
scenario in which the method was used as a receding horizon controller show that highly
accurate control of the state trajectory is possible using the novel method.

The method is extended from single-satellite station-keeping to collocation of mul-
tiple satellites in a single slot. A leader/follower hierarchy is used, where the leader
satellite is controlled using the method developed for single-satellite station-keeping,
whereas the follower satellites are controlled with respect to the leader satellite. The
problem is formulated in terms of relative orbital elements and both the minimum dis-
tance constraint as well as the sensor cone avoidance constraints can be included in the
problem formulation by defining convex control windows on relative orbital elements
that guarantee a satisfaction of the constraints. The method is robustified by including
the various error sources affecting the orbit prediction accuracy explicitly. The impact
of orbit determination errors, modeling errors and thruster errors on the state trajectory
in terms of relative orbital elements is investigated and 3σ bounds on these errors are
included in the robustified problem formulation as well.

The results of the collocation control simulations show that the method is suitable
for controlling an inhomogeneous fleet of four satellites with different characteristics in
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terms of propellant type, configuration and area-to-mass ratio. The method can also
be applied to much larger fleets, as demonstrated in another simulation, where sixteen
identical satellites are controlled within a small ±0.05◦ slot, albeit with a maneuver cy-
cle duration of only one day. Further simulations show how the method is able to deal
with highly complex scenarios not solvable with previous methods. Such scenarios in-
clude dealing with several sensor cone avoidance constraints and minimum distance
constraints simultaneously, while maintaining the fleet in its assigned geostationary slot.
The results demonstrate that the method was able to satisfy all constraints without a
degradation of performance in terms of propellant consumption. The robustified for-
mulation and solution of the problem is used in the last set of simulations. The results
show on one hand how the satellite state can be kept inside the predefined tolerance
windows, while on the other hand demonstrating some potential pitfalls of the robusti-
fied method.

The key conclusions from the work are that the new method is well able to deal with
complex problems of both single-satellite station-keeping as well as collocation control
of a fleet of satellites. The various geometric constraints can be dealt with successfully
without having (significant) negative impacts on the propellant consumption or number
of thruster firings of the satellites.



SAMENVATTING

Geostationaire satellieten hebben vele voordelen ten opzichte satellieten in een andere
baan, zoals constante dekking van een bepaald geografisch gebied en slechts één en-
kel grondstation is nodig om 24/7 contact te hebben met de satelliet. Deze voordelen
hebben ervoor gezorgd dat de geostationaire baan druk bezet is. Om met deze grote
hoeveelheid satellieten om te gaan is de geostationaire baan verdeeld in “slots” in geo-
grafische lengtegraden. Om een satelliet in een dergelijke slot te behouden zijn baanma-
noeuvres noodzakelijk, hetgeen nauwkeurige modellering van satellietenbanen beno-
digd. Om de brandstofconsumptie te beperken zijn slimme sturingsstrategiën gewenst,
om de levensduur van de satelliet te maximaliseren. Deze onderwerpen, het modelleren,
sturen en regelen van geostationaire satellieten worden in deze dissertatie onderzocht.

De schaarste van geostationaire slots boven belangrijke gebieden heeft ervoor ge-
zorgd dat operateuren meerdere satellieten in één slot plaatsen: co-lokatie. Dit compli-
ceert de methoden voor het modelleren, sturen en regelen van de satellietbanen, omdat
nieuwe randvoorwaarden aan het probleem worden toegevoegd. Een voorbeeld is het
behouden van een minimale afstand tussen de satellieten, om botsingen te voorkomen.
Een andere mogelijke randvoorwaarde is het vermijden van interferentie tussen satellie-
ten. Interferentie kan worden veroorzaakt doordat een satelliet door het zichtveld vliegt
van een sensor op een andere satelliet. Tegenwoordig kan deze situatie vaker voorko-
men omdat de meeste nieuwe satellieten worden uitgerust met sterrensensoren om hun
oriëntatie met hoge nauwkeurigheid te bepalen. Zulke sterrensensoren kunnen geblin-
deerd worden door zonlicht dat vanaf een andere satelliet gereflecteerd wordt. Deze vor-
men van interferentie kunnen worden vermeden door geschikte satellietbanen te kiezen
en de satellietbanen nauwkeurig te regelen. De randvoorwaarde voor het ontwerp van
zulke (relatieve) banen is het vermijden van het zichtveld van sensoren op nabije satel-
lieten. De eerste randvoorwaarde, het behouden van een minimale afstand, is reeds in
detail onderzocht in de literatuur, terwijl daarentegen de zichtveldvermijding een on-
opgelost probleem is. Dit onopgeloste probleem is een belangrijke motivatie voor dit
onderzoek.

De beweging van geostationaire satellieten wordt bepaald door gravitatie van aarde,
zon en maan, alsook door stralingsdruk van zonlicht en de krachten die worden uitge-
oefend op de satelliet als gevolg van het uitvoeren van een baanmanoeuvre. Omdat een
geostationaire satelliet actief geregeld wordt om in zijn aangewezen slot te blijven is het
mogelijk om de krachten die op de satelliet werken te benaderen door de krachten die
een virtuele satelliet zou ervaren die zich in het centrum van de slot bevindt. Deze aan-
name wordt gebruikt om een nieuw lineair tijdsafhankelijk model op te stellen om de
beweging van de satelliet te modelleren. Dit lineaire system wordt gediscretiseerd en de
resulterende vergelijkingen beschrijven een affiene relatie tussen de staat van de satelliet
en de krachten die worden uitgeoefend door het maken van baanmanoeuvres. Dit sys-
teem is geschik voor het gebruik in convexe optimalisatieproblemen. Een soortgelijke
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aanname wordt gebruikt om een methode te ontwikkelen om transformaties tussen ge-
middelde en osculerende baanelementen te maken.

De staat van een geostationaire satelliet wordt doorgaans weergegeven met behulp
van synchrone baanelementen. Dit zijn baanelementen zonder singulariteiten, welke
de staat van de satelliet beschrijven ten opzichte van het centrum van de slot waarin
de satelliet zich bevind. De synchrone baanelementen zijn effectief relatieve baanele-
menten tussen een satelliet en het centrum van de slot (welke ook wel de nulstaat wordt
genoemd). Relatieve baanelementen tussen twee satellieten zijn doorgaans gedefiniëerd
als het arithmetische verschil van de synchrone baanelementen van twee satellieten die
zich in dezelfde slot bevinden. Een lineaire transformatie kan worden gebruikt om een
benadering te maken van de Cartesische positie en snelheid in een radiaal, tangentiaal,
normaal referentie system, op basis van de relatieve baanelementen. Evenals absolute
baanelementen beschrijven de relatieve baanelementen de grootte en oriëntatie van de
relatieve satellietbanen. Een set van rationele relatieve baanelementen wordt geïntro-
duceerd als de ratio van de relatieve baanelementen en de grootte van de relatieve ec-
centriciteitsvektor.

Drie verschillende operationele randvoorwaarden worden gedefiniëerd: de satellie-
ten moeten in hun slot blijven, een minimale afstand moet worden gerespecteerd en
het zichtveld van sensoren op andere satellieten moet worden vermeden. De eerste
randvoorwaarde is convex, terwijl de andere twee niet-convex zijn. Om aan deze niet-
convexe randvoorwaarden te voldoen worden relatieve satellietbanen ontworpen. De
combinaties van relatieve baanelementen die aan de verschillende randvoorwaarden
voldoen worden geïdentificeerd en gevisualiseerd door gebruik te maken van de geïntro-
duceerde rationele relatieve baanelementen. Dit resulteert in de noodzakelijkheid van
een belangrijke verandering ten opzichte van conventionele baanregelingsstrategiën: de
relatieve lengtegraad van de satellieten moet actief worden geregeld. Ook de conventio-
nele eccentriciteit/inclinatie-vector separatie strategie, welke voornamelijk ontwikkeld
is om een minimale afstand tussen satellieten te garanderen, leidt niet langer tot het ge-
wenste resultaat. Door de randvoorwaarde van zichtveldvermijding van sensoren moet
ook deze strategie veranderd worden. Een ontwerpproces wordt geïntroduceerd om tot
een strategie te komen die gelijktijdig aan alle randvoorwaarden voldoet. Het resultaat
van dit ontwerpproces is een set van convexe tolerantievensters waarin de relative baan-
elementen gehouden moeten worden.

Een methode is ontwikkeld om een satelliet in zijn slot te behouden: station-keeping.
Dit station-keeping probleem wordt geformuleerd als een convex optimalisatieprobleem
in termen van synchrone baanelementen. Deze convexe formulering is mogelijk ge-
maakt door het eerder geïntroduceerde lineaire tijdsafhankelijke dynamische model.
Een reeks optimalisatieproblemen wordt gedefinïeerd met toenemende complexiteit.
Deze formulering van het probleem, samen met de oplossing, vormen een nieuwe station-
keeping methode. Deze nieuwe method resulteert in een unieke combinatie van voor-
delige eigenschappen:

• Het probleem is convex, goed geschaald, en dusdanig geformuleerd dat er altijd
een oplossing bestaat die aan de randvoorwaarden voldoet.

• De oplossing van het probleem is een plan met manoeuvres die uitgevoerd moeten
worden door het propulsiesysteem aan boord van de satelliet. Elke willekeurige
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configuratie van het propulsiesysteem kan worden ondersteund.
• Er kan rekening gehouden worden met de maximale stuwkracht van de motoren,

en met periodes waarin geen manoeuvres mogelijk zijn, bijvoorbeeld tijdens eclip-
sen.

• De methode is zowel toepasbaar op satellieten uitgerust met chemische motoren
met sterke stuwkracht als ook op satellieten met elektrische motoren die slechts
een zwakke stuwkracht leveren.

• Convexe ongelijkheden of affiene vergelijkingen in staat of regel variabelen kun-
nen aan het probleem worden toegevoegd, waardoor het mogelijk is om randvoor-
waarden te definïeren op elk discreet knooppunt.

De resulterende formulering van het probleem is zowel als zogenaamd “single-shooting”
probleem, als ook als “multiple-shooting” probleem gedefinïeerd. De eerste formule-
ring resulteert in een kleiner optimalisatieprobleem, terwijl de tweede formulering het
probleem ijler maakt, waardoor grotere problemen met meer discrete stappen opgelost
kunnen worden.

De methode wordt gevalideerd door de resultaten te vergelijken met conventionele
methoden voor station-keeping van geostationaire satellieten. De conventionele me-
thode gebruikt twee oost-west manoeuvres per week en één noord-zuid manoeuvre per
twee weken. De nieuwe methode wordt zo geconfigureerd dat een oplossing ontstaat
met dezelfde eigenschappen als de conventionele oplossingsmethode. De oplossingen
worden vergeleken over een simulatieperiode van één jaar. De benodigde brandstof is
nagenoeg identiek, terwijl het aantal benodigde manoeuvres exact gelijk is. Deze over-
eenkomsten vormen een belangrijke validatie van de methode.

De methode wordt verder onderzocht door het probleem te formuleren over de duur
van één jaar. De oplossing van dit probleem levert direct alle manoeuvres die tijdens dit
jaar moeten worden uitgevoerd om de positie van de satelliet te regelen. Een verschei-
denheid aan problemen wordt gedefinïeerd en opgelost en de oplossingen reproduceren
bekende sturingsstrategïen zoals de strategie om de eccentriciteitsvektor (en dus het pe-
rigeum van de baan) richting de zon te laten wijzen, als ook de strategie om noord-zuid
manoeuvres altijd in de richting te maken van de seculaire drift van de inclinatievektor.
Verder onderzoek onhult zowel relaties tussen de grootte van de cirkel die de eccentri-
citeitsvektor beschrijft en de brandstofconsumptie voor oost/west manoeuvres, als ook
tussen de grootte van de tolerantievensters voor eccentriciteitsvektor en inclinatievek-
tor, de brandstofconsumptie en het aantal benodigde manoeuvres. Tevens wordt aange-
toont dat de strategie om het perigeum richting de zon te laten wijzen slechts voordelig is
voor typische propulsiesysteem configuraties met chemische motoren. Omdat propul-
siesystemen met elektrische motoren doorgaans niet richting het noorden of het zuiden
zijn uitgericht, levert deze conventionele strategie geen besparing van brandstof meer
op.

Verdere simulatieresultaten laten zien dat de nieuwe methode goede prestaties le-
vert in tal van scenariën, zowel voor satellieten met chemische als elektrische motoren.
Realistische fouten in grootte en richting van de stuwkracht, de baanbepaling en de mo-
delering zijn toegevoegd aan de simulaties. De resultaten laten zien dat de grootte van
fouten in de baanvoorspelling afhankelijk zijn van zowel de grootte van de stuwkracht als
ook van de configuratie van het propulsiesysteem. De methode is tevens geïmplemen-
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teerd als een regelmechanisme met een voortlopende horizon. Deze implementatie laat
zien dat ook hoognauwkeurige regeling mogelijk is met de nieuwe methode.

Vervolgens wordt de methode uitgebreid om ook co-lokatie van meerdere satellie-
ten in een enkele slot te ondersteunen. Hiervoor wordt een leider/volger hiërarchie ge-
bruikt: de leider wordt geregeld met behulp van de hier boven beschreven methode voor
één satelliet terwijl de volgers worden geregeld met betrekking tot de leider. Het pro-
bleem wordt geformuleerd in termen van relatieve baanelementen en zowel de rand-
voorwaarde om een minimale afstand aan te houden, als ook om het zichtveld van sen-
soren te vermijden kunnen worden toegevoegd aan het probleem. Deze laatste twee
randvoorwaarden worden voldaan door de relatieve baanelementen in convexe toleran-
tievensters te houden die voldoening van deze randvoorwaarden garanderen. Een ro-
bustere variant van het probleem wordt geformuleerd door expliciet rekening te houden
met de verschillende bronnen van fouten die een invloed hebben op de nauwkeurigheid
van de baanvoorspelling. De invloed van fouten in baanbepaling, manoeuvres en mode-
lering op de baanvoorspelling wordt onderzocht in termen van relatieve baanelementen
en de 3σ-grenzen van deze fouten worden toegevoegd aan de robustere formulering van
het probleem.

De resultaten van de co-lokatie simulaties laten zien dat de nieuwe method geschikt
is om een inhomogene vloot van vier satellieten te regelen, waarin de satellieten ver-
schillende karakteristieken hebben, zoals type en configuratie van het propulsiesysteem,
massa en oppervlakte van de satelliet. De methode kan ook worden toegepast op gro-
tere vloten, dit wordt gedemonstreerd in een andere simulatie, waarin zestien satellie-
ten in een kleine slot van 0.05◦ gehouden worden. De duur van de manoeuvre-cyclus
wordt hierbij gereduceerd tot één dag. De simulaties laten ook zien hoe de methode om-
gaat met zeer complexe scenariën, die niet uitgevoerd kunnen worden met conventio-
nele methoden. In deze scenariën wordt tegelijkertijd voldaan aan de randvoorwaarden
van zichtveldvermijding van sensoren, het behouden van minimale afstanden tussen
satellieten en het behouden van de satelliet in de toegewezen slot. De resultaten laten
zien dat de methode ook in zulke complexe scenariën succesvol is, zonder dat hierbij
de brandstofconsumptie omhoog gaat. De robustere variant wordt in de laatste set van
simulaties onderzocht. De resultaten laten zien dat enerzijds de satelliet in de toleran-
tievensters gehouden kan worden, anderzijds laten de resultaten ook een mogelijke ne-
gatieve bijwerking van de robuste variant zien: een significante toename van het aantal
benodigde manoeuvres.

De belangrijkste conclusies van dit onderzoek zijn dat de ontwikkelde methode om
kan gaan met de complexe problemen van station-keeping en co-lokatie van geostatio-
naire satellieten. Zowel nieuwe als conventionele geometrische randvoorwaarden kun-
nen worden vervuld zonder significante negatieve invloeden op de brandstofconsump-
tie en het aantal benodigde manoeuvres.
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Symbols

A Surface area exposed to solar radiation pressure [m2]

AU Astronomical Unit (149597870700 m)

Ã System matrix of the discretized system

B Scaling matrix for equality constraints

B̃ Input matrix of the discretized system

C Covariance matrix

C Scaling matrix for inequality constraints

CR Solar radiation pressure coefficient of a satellite [-]

C̄nm Normalized geopotential coefficients of order m and degree n

E Eccentric anomaly [rad]

F System matrix of the concatenated system

H Input matrix for utot of the concatenated system

J2 Gravitational perturbation of degree 2 and order 0

J22 Gravitational perturbation of degree 2 and order 2

J Input matrix for dtot of the concatenated system

L Argument of mean longitude L =ω+Ω+M [rad]

∆L Relative mean longitude or mean longitude difference [rad]

δL Relative mean longitude difference (= relative mean longitude) [rad]

M Mean anomaly [rad]

δM Angle between satellite position vector and relative eccentricity vector [rad]

P Radiation pressure [N/m2]

P̄nm Normalized associated Legendre function of order m and degree n

R Radius of a body [m]

xix
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∆R Relative radius [m]

S̄nm Normalized geopotential coefficients of order m and degree n

T Thrust force [N]

T Orbital period [s]

T Scaling matrix for the thrust force vector [N−1]

T Scaling matrix for the thrust force vector for all discrete nodes [N−1]

Wa Weighting matrix for the affine equality constraints

Wτ Weighting matrix for thrust vector τtot

a Semi-major axis [m]

δa Non-dimensional semi-major axis difference (∆a/a) [-]

a Acceleration vector [m/s2]

a (·) Vector of affine equality constraints

b̂s Sensor bore-sight unit vector

c (·) Vector of inequality constraints

d̃ Disturbing accelerations on the discretized system [m/s2]

e Eccentricity [-]

δe Magnitude of relative eccentricity vector [-]

e Eccentricity vector e = (
ex , ey

)T [-]

∆e Relative eccentricity vector ∆e = (
∆ex , ∆ey

)T [-]

ê j Unit vector in direction specified by subscript j

h Discretization or integration timestep [s]

δhϕ Rational relative-orbit normal vector [-]

δh Relative angular momentum vector [m2/s]

i Inclination [rad]

δi Magnitude of relative inclination vector [rad]

i Inclination vector i = (
ix , i y

)T [rad]
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∆i Relative inclination vector ∆i = (
∆ix , ∆i y

)T [rad]

` Argument of true longitude `=ω+Ω+ν [rad]

m Satellite mass [kg]

n Mean orbital motion [rad/s]

∆n Relative mean orbital motion or mean orbital motion difference [rad/s]

oe Set of (synchronous) orbit elements

p Semi-latus rectum [m]

re Radius of eccentricity circle

r Magnitude of position vector [m]

r Position vector [m]

sa Vector of affine equality constraint slack variables

sc Vector of inequality constraint slack variables

t Time [sec]

u j Component of perturbing acceleration in the direction specified by j [m/s2]

u Control input vector, here: accelerations in radial, tangential and normal direc-
tions [m/s2]

v Magnitude of velocity [m/s]

v Velocity vector [m/s]

wc j Weighting factor for the j th inequality constraint

x, y, z Components of relative position vector in radial, tangential and normal direc-
tion [m]

x State vector, here: x = (
∆n, ex , ey , ix , i y , ∆L

)T

Γ Thruster configuration matrix [kg−1]

Γ Thruster configuration matrix for the concatenated system [kg−1]

∆α Normally distributed random variable capturing thrust attitude uncertainty

∆τ Normally distributed random variable capturing thrust magnitude uncertainty

Φ (t , t0) State transition matrix between t0 and t

Ω Right ascension of ascending node [rad]
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δΩ Phase angle of relative inclination vector [rad]

α Right ascension of geostationary position [rad]

β Off-radial pointing angle thruster [rad]

βs Sensor half-cone angle [rad]

γ Off-north pointing angle thruster [rad]

θ Azimuth angle [rad]

λ Longitude [rad]

∆λ Relative longitude [rad]

µ Gravitational parameter [m3/s2]

ν True anomaly [rad]

ρ Magnitude of relative position vector [m]

ρ Relative position vector [m]

ρ̇ Relative velocity vector [m/s]

τ Vector of thrusts of individual thrusters [N]

φ Latitude [rad]

∆φ Relative latitude [rad]

φp Polar angle [rad]

ϕL Rational relative mean longitude difference [-]

ϕa Rational relative semi-major axis difference [-]

ϕi Rational relative inclination difference [-]

ω Argument of perigee [rad]

ω̃ ω̃=ω+Ω [rad]

δω Angle between relative eccentricity and inclination vectors [rad]

δω̃ Phase angle of relative eccentricity vector [rad]

Indices

{·}0 At epoch t0

{·}3b Third body
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{·}E Earth

{·}EW East-West

{·}F B Finite burn

{·}I Impulsive

{·}K Kamel

{·}L Linear addition

{·}MC Maneuver Cycle

{·}MO Due to modeling

{·}N Refers to the last (N th) discrete node

{·}NS North-South

{·}OD Due to orbit Determination

{·}Q Quadratic addition

{·}T D Due to thrust direction errors

{·}T M Due to thrust magnitude errors

{·}c Controlled

{·}d Disturbing

{·}des Desired

{·}geo Geostationary, referring to the slot center of an ideal geostationary orbit

{·}gpot Geopotential

{·}k Referring to the kth discrete node

{·}m Mean elements

{·}m Maneuver

{·}max Maximum

{·}min Minimum

{·}msi The i th multiple-shooting segment

{·}nom Nominal

{·}n In normal direction

{·}o2m The difference between osculating and mean elements
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{·}osc Osculating elements

{·}⊥ Perpendicular

{·}p Perturbed

{·}r In radial direction

{·}rn In the radial-normal plane

{·}s Sun

{·}tot Referring to all concatenated discrete nodes simultaneously

{·}t In tangential direction

{·}tol Tolerance

{·}unc Uncertainty
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AOCS Attitude and Orbit Control System

AT Automated Task

BSS Boeing Satellite Systems

CER Constraint Enforcement Ratio

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

EW East-West

FDIR Fault Detection, Isolation and Recovery

GEO Geostationary Orbit

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSO Geosynchronous Orbit

ITU International Telecommunications Union

JPL Jet Propulsion Laboratory

LEO Low Earth Orbit

LTV Linear Time-Varying

MC Maneuver Cycle

NLP Nonlinear Programming Problem

NS North-South

OD Orbit Determination

OT Operator Task

RHC Receding Horizon Controller

RMS Root Mean Square

RTN Radial Tangential Normal

xxv
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SRP Solar Radiation Pressure
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INTRODUCTION

There is no such thing as an unsolvable problem.

Sergei Korolov

It is difficult to say what is impossible,
for the dream of yesterday

is the hope of today
and the reality of tomorrow.

Robbert H. Goddard

Abstract
A geostationary orbit has the prime advantage that a satellite in this orbit is at a fixed lo-
cation in the sky for an observer on Earth. This unique characteristic has lead to a strong
population of this particular orbit with satellites, or fleets of satellites, collocated together
within assigned slots. Safe collocation requires to constrain the relative motion of collo-
cated satellites, in order to avoid collisions and interferences caused when a satellite en-
ters the field of view of a sensor on another satellite. The avoidance of such interferences
motivates the development of new methods for modeling, guidance and control of geosta-
tionary satellites. The recent advancements of applying convex optimization techniques
to distributed space systems enable novel methods that can handle such problems.

1
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A geostationary orbit is an ideal orbit around the Earth with the special characteristic
that any satellite in this orbit remains stationary above a point on the Earth’s equator.
We say ideal because in reality no satellite will remain stationary, since perturbing forces
move the satellite away from its stationary position. In that sense, the geostationary
orbit is an unstable orbit, and we can only achieve (an approximate) stationary position
by actively controlling the satellite’s orbit. In order to do so, we need to accurately model
the satellite and the environment, we need to develop a strategy to make efficient use
of the scarce resources (e.g. propellant) while adhering to certain constraints, and we
need to determine the necessary control action to execute the strategy. These topics, the
guidance, control and dynamics of satellites in a geostationary orbit, are treated in this
dissertation.

1.1. THE GEOSTATIONARY ORBIT
A satellite in a geostationary orbit has an orbital period of one sidereal day, i.e. the time
it takes for the Earth to make a full revolution about its own axis relative to the stars.
The satellite is thus in “sync” with the Earth, hence the geostationary orbit is a subset of
the more general type of orbit, namely the Geosynchronous Orbit (GSO). All geosyn-
chronous orbits share the same orbital period, and hence have identical semi-major
axes. Ideal geostationary orbits have two further characteristics, namely, zero eccentric-
ity and zero inclination. The latter causes the orbit to lie in the equatorial plane, while
the former defines a circular orbit with a constant angular orbital motion of a satellite
in this orbit. The three characteristics together, an orbital period of one sidereal day,
zero eccentricity and zero inclination define the ideal geostationary orbit, and cause it
to have its unique properties.

The idea of a synchronous orbit appeared already in the thought experiments of Kon-
stantin Tsiolkovsky in the late 19th century. In his “Dreams of Earth and Sky” he imag-
ined asteroids with mountains so high that they reach the critical or synchronous or-
bital altitude [1]. A more technical description of geosynchronous and geostationary
orbits is found in Hermann Noordung’s (or Potočnik) book “Das Problem der Befahrung
des Weltraums - der Raketen-Motor” [2], published already in 1929. Figure 1.1 shows
the geostationary orbit as presented in [2]. The most well-known historic references of
geostationary orbits are those in Wireless World, by Arthur C. Clarke, the first being his
letter to the editor, published in the 1945 February issue. Later that year a full article ti-
tled “Extra-terrestrial relays” appeared in the November issue of Wireless World in which
Clarke expands on his ideas of geostationary space-stations for radio communication
[3].

Reality followed shortly afterwards. Syncom 2 was launched in 1963 and was the
first satellite to arrive in a geosynchronous orbit. The next Syncom satellite, Syncom 3,
arrived in a geostationary orbit in 1964 [4]. From that moment onwards, many satel-
lites followed, and the geostationary orbit has become increasingly populated. Since
satellites in a geostationary orbit are stationary with respect to the Earth, they can have
24/7 ground contact using only a single stationary ground station. The satellites can be
observed from Earth for latitudes between approximately -81◦ and 81◦ and only three
satellites are needed to cover the complete 360◦ longitude range. These properties make
geostationary satellites ideal candidates to host a multitude of different payloads.
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Figure 1.1: The geostationary orbit from [2].

The most dominant usage of geostationary satellites is for communication purposes.
Examples range from military communication satellites to satellites broadcasting televi-
sion channels as well as data relay satellites. Geostationary satellites are also used to
broadcast navigation signals, making meteorological observations and perform Earth
observation.

A key downside of the geostationary orbit is its altitude at approximately 35800 km.
A satellite requires a large amount of energy to arrive at the geostationary orbit, the al-
titude causes a communication latency of approximately a quarter of a second and it
limits the achievable spatial resolution of Earth imaging sensors, especially compared
to their counterparts in Low Earth Orbit (LEO). The geostationary orbit lies in the outer
radiation belt (van Allen belt), which has significant impacts on the satellite design. De-
spite of these disadvantages the geostationary orbit remains the single most populated
Earth orbit.

The popularity of the orbit required regulation of the orbital positions of satellites,
as well as their communication frequencies. The International Telecommunications
Union (ITU) is responsible for frequency allocation for radio communication and since
1959 this includes communication with satellites. Decisions on allocations are taken
at the World Administrative Radio Conferences (WARC) and during the 1971 WARC the
geostationary orbit was recognized as a “limited natural resource”. As of 1973, decisions
on the division of slots are also taken at the WARC [5]. Thus since that time, satellite op-
erators are required to maintain their satellites inside assigned orbital slots. These slots
usually have a size of 0.2◦ in longitude and latitude (or approximately 150 km) although
nowadays slots that are only 0.1◦ in longitude are common as well. At the moment of
writing, up to four satellites are collocated in a single slot. The most densely populated
slots are currently at 19.2◦E, 26◦E, 74◦E and 83.1◦E, all of which contain four satellites [6].
However, in the recent past, satellite operator SES has managed to collocate up to eight
satellites simultaneously in the slot at 19.2◦E [7].

Since geostationary satellites generally serve a specific location on Earth, and even
more so because geostationary satellites are assigned to small slots, the orbits of geosta-
tionary satellites need to be actively controlled. Station-keeping strategies are required
to counteract the many orbital perturbations acting on the satellites. This task becomes
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even more challenging when multiple satellites are assigned to the same slot, requiring
not only to maintain their position inside the slot, but also to control the relative posi-
tion of the satellites in order to avoid collisions or other types of interferences. These are
the topics treated in this work.

1.2. PREVIOUS WORK
In this section we discuss the previous work that is of relevance to our research. This
includes key works describing current operational practice in guidance and control of
geostationary satellites as well as theoretic approaches that have been proposed in the
literature over the years. We also discuss some particular works in the more general field
of distributed space systems (including formation flying) that were inspirational to this
work. Lastly, we discuss a number of ongoing technological developments that enable
new approaches to guidance and control of geostationary satellites. In the discussions
that follow we make several comparisons of methods from the literature to methods de-
veloped in this work. These comparisons are most useful if the reader is aware of the
methods developed in this work and it is advised to read at least the summary of this
work before continuing this section.

1.2.1. MODELING OF ABSOLUTE AND RELATIVE DYNAMICS
Orbital dynamics of artificial satellites has been a topic of research for many years. Read-
ing and understanding the vast body of work on this topic might take a lifetime and thus
we focused only on a small subset of available material. We used [8], [9] and [10] as key
sources of information on the topic of orbital dynamics. The works [5], [11] and [12] pro-
vide fundamental information specifically focused on satellites in geostationary orbits.
We used these works to develop the numeric propagator underlying the various simula-
tions that were executed as part of this research.

ABSOLUTE DYNAMICS

Since the launch of the Syncom satellites, a great increase in research on orbital dynam-
ics of geosynchronous satellites occurred. The work by Shrivastava [13] contains over
200 references and provides a good overview and summary of relevant work up to 1978.
In the same year, Kamel presented a method to determine the solution of the equations
of motion of a geostationary satellite by three decoupled sets of pendulum type equa-
tions with forced oscillations [14]. Kamel’s solution includes Earth gravity perturbations
up to third order and degree, as well as Sun and Moon gravity perturbations. Kamel’s
solutions still have merit today, thus we have implemented Kamel’s method and use it to
transform between mean and osculating orbital elements.

Losa developed a Linear Time-Varying (LTV) model of the dynamics of a satellite in a
geostationary orbit, including Earth gravity perturbations up to third order and degree,
Sun and Moon gravity perturbations and Solar Radiation Pressure (SRP) [15]. This model
was of particular interest as it relates closely to the model developed later in this work.
Losa gives approximate analytic expressions for the various perturbations affecting a
geostationary satellite by expanding the dynamics (including perturbations) in a first
order Taylor series about the center of the slot. We make a simplification and use only
the perturbations as experienced by the geostationary slot center while ignoring the par-
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tial derivatives of these perturbations with respect to the satellite state in our linearized
model. The advantage is that we can more easily incorporate also higher order pertur-
bations (i.e. we do not need to calculate the partial derivatives of these perturbations
with respect to the state) or use models of perturbing accelerations that are not analytic
in nature. Furthermore, we can evaluate all perturbing accelerations ahead of time. The
disadvantage is that our model has a reduced accuracy when the same perturbing forces
as in Losa’s model are included. The consequence of this reduced modeling accuracy
for an operational implementation is very limited since the orbit prediction errors are
dominated by orbit determination and actuation errors and not by the simplified linear,
time-varying dynamics.

RELATIVE DYNAMICS

The most famous linearized model of the relative motion of two satellites in a near-
circular orbit was developed by Clohessy and Wiltshire in their 1960 paper on a terminal
guidance system for satellite rendezvous [16]. A relative motion model for collocated
geostationary satellites was presented by Blumer in [17]. Blumer’s model describes the
motion of a slave satellite in the reference frame attached to a master satellite as a func-
tion of non-singular relative orbital elements. The model relies on the orbit of the master
satellite to be near-circular with near-zero inclination and as such applies well to geo-
stationary satellites. The same equations can also be used as a linear transformation
between relative orbital elements and Cartesian position and velocity in a Radial Tan-
gential Normal (RTN) reference frame attached to a leader (or master satellite) and this
application is extensively used in this work.

1.2.2. GUIDANCE AND CONTROL METHODS

Since both station-keeping and collocation of geostationary satellites are activities that
have been performed for decades, a lot of relevant information has appeared in books
treating the subject in detail. The book by Soop (1994) [5] is an excellent reference treat-
ing orbital dynamics, station-keeping, collocation and also orbit determination of geo-
stationary satellites. A much newer work by Li (2014) [12] also extensively treats geosta-
tionary dynamics, station-keeping and collocation.

STATION-KEEPING

The scientific literature on geostationary station-keeping has three focal points of partic-
ular interest: (optimal) station-keeping methods under the assumption that maneuvers
can be approximated as impulsive delta-V corrections, methods for satellites with low-
thrust propulsion systems and methods focusing on “autonomous” strategies. The pa-
per by Shrivastava [13] introduced earlier also provides an overview of the literature on
station-keeping up to 1978. Many ideas have been investigated up to that point, includ-
ing optimal strategies for impulsive maneuvers, continuous maneuvers using optimiza-
tion techniques such as dynamic programming, separating high frequency terms from
osculating elements to obtain mean elements and control those mean elements, as well
as studies of autonomous systems for orbit control. Several newer works are discussed
in more detail in the following paragraphs.
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Figure 1.2: Visualization of a geostationary orbit defining the eccentricity vector e and inclination vector i.

STATION-KEEPING: IMPULSIVE MANEUVERS

In terms of station-keeping for satellites with a high thrust-to-mass ratio, a fundamental
work is the paper by Eckstein, [18], in which several strategies are discussed for calculat-
ing impulsive maneuvers, both for an ideal propulsion system as well as in the presence
of deterministic thruster cross-couplings. Eckstein’s work still forms the basis for the
control strategy of many satellites that are nowadays in orbit and we have implemented
one of his strategies and use it as a reference to validate the method developed in this
work.

Slavinskas et al. introduced an efficient strategy for inclination control of geostation-
ary satellites [19]. Corrections to the inclination vector are usually made at a frequency
of one to several weeks. The concepts of eccentricity vector and inclination vector are
explained in Figure 1.2. Typical orbit control software cannot separate larger periodic
variations of the inclination vector from the (observed) osculating inclination vector and
hence, to save propellant, Slavinskas et al. propose to make inclination vector correc-
tions always in the direction opposite of the direction of secular inclination vector vari-
ations (instead of controlling the inclination vector towards a fixed point) and as such
save up to 4 percent of propellant required for inclination control. In this work we use
the observations made by Slavinskas et al., however, we include the periodic variations
due to luni-solar perturbations with a period of one year and shorter in our mean-to-
osculating conversion and control the mean inclination vector. As such we obtain the
same benefits as Slavinskas et al., but we can still control the mean inclination vector as
desired.

In [20], Kelly et al. formulate a combined eccentricity and longitude control strategy
for geostationary satellites. They improve on the legacy Sun-Pointing Perigee (SPP) strat-
egy (which aims to keep the eccentricity vector pointing towards the sun, thus following
the natural eccentricity circle but with a smaller radius) by accounting for the long pe-
riod luni-solar perturbations in their strategy. Their method allows a slight increase of
the eccentricity control circle radius, thereby saving some propellant for East-West (EW)
control. The algorithm simultaneously maintains the eccentricity vector within its al-
lowed circle as well as the longitude within a tolerated band. The algorithm chooses the
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number of required maneuvers based on the particular slot, a chosen maneuver cycle
duration and some additional parameters. The algorithm is demonstrated to work close
to one of the two unstable points in the geostationary orbit (the geostationary orbit has
four points where the perturbations due to tesseral harmonics vanish, two of which are
stable, whereas the other two are unstable). Although our method works vastly different,
we can achieve similar performance because we can choose to actively constrain the os-
culating orbital elements not just at the initial and final times of a maneuver cycle, but
also at intermediate points in time and thus enforce the same constraints.

Another work, [21], aims to maximize the time between regular EW maneuvers, such
that a minimum number of maneuvers is required for EW control. The work assumes
that a normal SPP strategy is used and that EW corrections are executed using two im-
pulses separated by half an orbit. A nonlinear programming problem is formulated for a
one year horizon and solved for different maneuvers cycle durations. Results are shown
for maneuver cycles of one, seven and fourteen days. Unfortunately, the paper provides
insufficient data to make a proper comparisons with the method developed in this work.

STATION-KEEPING: LOW THRUST

Performing station-keeping maneuvers using electric propulsion has both advantages
and disadvantages. The key idea is to benefit from the much higher specific impulse
that an electric propulsion system can deliver and hence, less propellant mass is required
for station-keeping. This propellant mass reduction can outweigh mass penalties of the
propulsion system and the power system together, especially for missions with a long
lifetime. As such it is possible to increase the payload mass fraction of the satellite and
improve the satellite’s capability for providing terrestrial services compared to a satellite
with a chemical propulsion system. From an orbit control point of view, a disadvan-
tage is that, because of their wide exhaust plume, the electric thrusters have to point
away from the North-South direction to avoid contamination of the solar panels, which
extend in these directions. This off-pointing reduces the efficiency of these maneuvers
(which usually account for more than 90% of the propellant consumption). Another dis-
advantage is that maneuvers last much longer due to the extremely low thrust force, thus
it is no longer possible to make maneuvers only at the most efficient locations in orbit.
The long duration of the maneuvers further invalidates the assumption that a maneuver
is impulsive, thereby requiring new methods to calculate maneuvers. Many works pro-
pose methods to solve the station-keeping problem using electric propulsion. Most of
these works use optimization techniques in the calculation of station-keeping maneu-
vers. We discuss a number of works in more detail.

In [22], Eckstein introduces an optimization-based method to find the optimal thrust
arcs for a satellite with a low thrust electric propulsion system. Eckstein’s problem finds
the optimal thrust arcs given a set of initial and final orbital elements and the number
of thruster firings. He first poses the problem without constraints on the allowed firing
times and later including constraints on the thrust arcs, where the unconstrained prob-
lem solution is used as an input to the constraint problem. Eckstein proposes a cost
function which minimizes a weighted combination of final state errors and propellant
consumption, thus leading to a problem that is always feasible. However, his problem
solution will not achieve the desired final states (although, the solution can get arbitrar-
ily close by changing the weight functions appropriately). Our method is more general
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than Eckstein’s as we can include state constraints anywhere along the trajectory, do not
necessarily require fixed target values to be achieved at the end of the maneuver, do not
need to specify the number of maneuvers a-priori and can deal with arbitrary thruster
configurations.

Losa formulates an optimization-based method to calculate station-keeping maneu-
vers for electric propulsion geostationary satellites using a differential inclusion approach
[23]. The equations of motion are formulated as a linear time-varying model, which is
discretized assuming constant thrusts over each discretization interval. The differential
inclusion method is used to reduce the dimensionality of the problem. The resulting
problem (in the transformed variables) is formulated as a quadratic programming prob-
lem with affine state and control constraints. The resulting problem is solved and Losa
shows that the resulting control inputs maintain a satellite inside a geostationary slot.
A disadvantage of the solution is that an almost continuous thrust profile results which
is not readily implementable. A follow-on paper [24] deals with this issue by solving a
second optimization problem using the solution of the first problem. The second prob-
lem requires some assumptions, such as each thruster is only fired once and the prob-
lem horizon for both problems is limited to one day. The resulting thrust profiles, after
solving the second problem, are readily implemented by a realistic propulsion system.
Our method has many similarities with Losa’s method (Losa’s work was inspirational to
ours); we rely also on a LTV model for the dynamics and we can include constraints on
state and control along the trajectory. However, we do not use a differential inclusion ap-
proach in formulating the problem, neither do we require two subsequent optimization
problems to be solved to arrive at a solution. A key difference is that we include the `1

norm of control input in the cost function and naturally obtain a sparse solution that is
easily processed so it can be executed by a realistic propulsion system. Furthermore, the
results in terms of propellant consumption obtained by the method developed in this
work are superior to the results from [24] and [25].

A recent study performed simultaneously by Airbus and GMV under an ESA contract
also investigated the optimization of geostationary satellite station-keeping strategies
using electric propulsion [26], [27]. Two tools resulted from these studies STAKE and
OPASKEP, respectively from Airbus and GMV. Both tools formulate the station-keeping
problem as a Nonlinear Programming Problem (NLP) and rely on ASTOS Aerospace Tra-
jectory Optimization Software by Astos Solutions for transcription and solution of the
optimization problems. Both tools can deal with a variety of different cost functions and
constraints. They are able to combine orbit control with angular momentum manage-
ment and some preliminary investigations into optimal thruster configurations are pre-
sented. The tools developed in these studies seem to be very capable and provide a lot of
flexibility in specifying the problem. The method developed in this work differs through
the formulation of the station-keeping problem as a convex optimization problem. The
results presented in [26] and [27] unfortunately do not allow a direct comparison, as pro-
pellant consumption is given in kilograms of propellant, while the specific impulse of the
thrusters is omitted.

STATION-KEEPING: AUTONOMY

Another line of work focuses on concepts or algorithms for station-keeping that can
function autonomously (possibly on-board the satellite). The key advantage of increas-
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ing automation is a reduction in operational costs. A key enabler to allow on-board au-
tonomy is the availability of reliable orbit determination information. Since geostation-
ary satellites have the advantage that 24/7 contact with a single ground station is pos-
sible, automation does not necessarily need to be implemented on-board, instead, the
processes can be fully automated on-ground as well. The tasks of planning or checking
planned station-keeping maneuvers, approving these plans and commanding the satel-
lite are usually performed by operators. Automating these repetitive tasks can relief the
workload of operators and reduce costs for ground operations.

A paper by Leibold and Eckstein [28] introduces a potential autonomous station-
keeping system. The paper discusses both the required hardware as well as algorithms
for orbit determination and correction. A sensor suite consisting of Earth sensors, Sun
sensors and a Polaris sensor is used for orbit determination, while four electric propul-
sion thruster are used as actuators. Leibold and Eckstein’s method for calculating station-
keeping maneuvers splits the problem of North-South (NS) and EW control and cal-
culates the corrective maneuvers separately. An analytic solution for NS maneuvers is
found by executing two NS maneuvers per orbit and maximizing the number of these
maneuvers over the period allocated for NS maneuvers. For EW maneuvers an optimal
solution is found only under the assumption of impulsive maneuvers (since EW maneu-
vers are small, this assumption introduces an acceptably small error) and a strategy with
three EW maneuvers per cycle is implemented. The simulation results show that the sys-
tem is able to maintain a satellite in a geostationary slot, with occasional small violations
in case random thrust errors are introduced. The propellant consumption for NS con-
trol is very much in line with the expected consumption for an optimal strategy, whereas
the propellant consumption for EW control is rather large (but the expectation is that
this is due mainly due to the relatively poor orbit determination accuracy of the system).
The method introduced in this work does not (need to) split NS and EW control, which
provides a strong benefit for a thruster configuration as introduced by Leibold and Eck-
stein, namely almost all EW control can be obtained as a by-product of NS control, thus
saving a significant portion of propellant. The disadvantage of our method, if it would
be implemented in an on-board autonomous fashion, is increased computational load.
This is not seen as critical due to the infrequent plan updates (daily to weekly) that are
required in a normal operational scenario.

In [29] several autonomous station-keeping strategies are presented for on-board or-
bit determination using a Global Positioning System (GPS) receiver. The performance of
two different receiver clock types was investigated and the paper reports 1-σ accuracies
of 10, 100, 48 m and 8, 25, 12 m in radial, tangential and normal directions for crystal
and atomic receiver clocks, respectively. The station-keeping strategies rely on the avail-
ability of predetermined ephemerides, where the on-board controller keeps the satellite
close to these predetermined ephemerides. Several strategies are presented, including
an innovative strategy that treats the problem as a formation flying problem with the pre-
determined ephemerides representing a virtual satellite with respect to which the actual
satellite is controlled. This strategy relies on maneuvers being executed at a fixed fre-
quency, every 6h or 8h. The reported additional propellant to keep a satellite close to the
predetermined ephemerides ranges between 2.5 and 5.5 m/s/year for a receiver with an
atomic clock and between 7.3 and 13.9 m/s/year for a satellite with a crystal clock. The
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additional propellant is directly driven by the measurement errors. The advantage of this
method is that the satellite position is known (within the accuracy of control) ahead of
time. The disadvantage compared to our method is the additional propellant consump-
tion that is required to keep the satellite close to the reference ephemerides.

Park et al. [30] propose another approach to autonomous station-keeping which
builds on the work from Chao ([29]). Instead of relying on GPS signals, they use two
ground stations that send out GPS-like signals and use these signals for orbit determina-
tion. Similar to Chao they rely on the availability of a predetermined reference trajectory,
however, they focus on improved reliability and low computational burden in the devel-
opment of the algorithm. The controller relies on the Clohessy-Wiltshire equations. A
linear quadratic feedback controller is presented for EW maneuvers making three ma-
neuvers per orbit (as in [29]) at equidistant points in time, based on a cost function that
penalizes propellant consumption and the error with respect to the reference trajectory
in tangential direction only (to save propellant at the cost of control accuracy). The NS
control strategy executes maneuvers at the location that is defined by the reference data,
while applying a correction to the predefined magnitude based on the error with respect
to the reference velocity in normal direction. The orbit determination algorithm is based
on a linear Kalman filter. The system is simulated and shown to be able to maintain posi-
tion errors of less than 5 km with respect to the reference trajectory. The simulations also
show the robustness of the system to a 20-day failure in one of the two ground stations.
The resulting velocity increment (∆V ) for a one year period was equal to 57.1 m/s. With
the method developed in this research a better performance is obtained, but at a much
higher computational burden.

Emma and Pernicka [31] derive equations for autonomous control of longitude and
eccentricity of a geostationary satellite both for a single as well as for two-part in-plane
corrections. The resulting equations are very similar to those presented by Eckstein [18],
with the exception that they assume that a thruster system may not be able to deliver a
pure tangential drift, and hence Emma and Pernicka account for a radial component as
well. The algorithm is developed for an autonomous on-board implementation, how-
ever, neither the autonomy concept nor their approach to autonomous orbit determi-
nation are discussed.

The work by Guelman [32] introduces another autonomous closed-loop station keep-
ing method. In contrast to other works, Guelman formulates the equations of motion in
an Earth-fixed reference frame and derives a closed-loop controller, first without, then
with active longitude control. Using the proposed controller, Guelman achieves control
of the satellite longitude deviation and latitude within respectively 0.004◦ and 0.001◦ un-
der the assumption that the acceleration profiles are implemented exactly as resulting
from the controller. When assuming thrusters with fixed acceleration levels, by using
a threshold function that applies a constant acceleration if the desired acceleration is
above a certain threshold, accurate control is still achieved, albeit with reduced perfor-
mance (0.03◦ in longitude and 0.005◦ in latitude). Guelman reports that 70 m/s was re-
quired for one year of station-keeping under the assumption that the propulsion system
can deliver accelerations in radial, tangential and normal directions. Since our method
does not directly control latitude and longitude the results cannot be compared one-to-
one with Guelman’s in terms of control accuracy. However, we can state that our imple-
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mentation as receding horizon controller achieves a similar order of magnitude accuracy
in terms of mean orbital elements at a more favorable propellant consumption.

COLLOCATION

Collocating several satellites in a single geostationary slot introduces risks of interference
between these satellites. The most destructive of such interferences would be a collision
between two collocated satellites. Other possibilities are radio frequency interference
or interfering with sensors on other satellites by passing through their field of view [33].
Several coordination strategies for the station-keeping of collocated satellites have been
developed to avoid collisions, whereas other interferences have not been dealt with to
date.

In a fundamental work, [34], Hubert and Swale developed collocation strategies for
six satellites sharing a 0.6◦ longitude band. The strategies included a division of the lon-
gitude band in six small boxes and assigning one satellite to each box, as well as dividing
the longitude band in respectively two and three boxes, with three and two satellites per
box. The proposed strategy for multiple satellites per box is the (now legacy) combined
eccentricity and inclination vector separation strategy. The eccentricity inclination vec-
tor separation strategy relies on parallel eccentricity and inclination vectors to ensure
that radial separation is maximal when normal separation vanishes and vice versa.

In [35], Eckstein et al. developed collocation strategies for a four-satellite cluster lo-
cated at 19◦ West. Three different strategies were introduced; a separation in longitude, a
separation strategy using the eccentricity vector only and also the combined e/i -vector
separation strategy. The latter is still the prime strategy used today to safely collocate
geostationary satellites. The strategy was implemented also in the geostationary satel-
lite control system (geo-control) for station-keeping and collocation [36] which has been
used to operate many satellites. We present application cases relying on this strategy,
but also propose adaptions to this strategy to account for another geometric constraint,
namely, to avoid the field of view of a sensor on another satellite in the fleet.

The work by Blumer introduced earlier ([17]) introduces a concept for coordinated
control of a fleet of collocated geostationary satellites. One satellite is designated the
master satellite, the orbit of which is determined and controlled from ground. The other
satellites are so-called slave satellites, and the master satellite determines the relative
orbits of the slaves as well as the required orbit maneuvers for controlling the relative or-
bits. The control method relies on the e/i -vector separation strategy. Although mention
is made of the problem of sensor interferences and link occultations, no analysis of the
problem or solutions thereof were included in the subsequent developments. The paper
introduces a concept for on-board relative orbit determination using inter-satellite links
and a tracking unit placed on the master satellite. The maneuvers are calculated using
a nonlinear programming method. We adopt a similar formation control hierarchy as
Blumer with one leader satellite and several follower satellites. The method of calculat-
ing the maneuvers are vastly different between Blumer’s method and this work.

In a series of two papers, [37] and [38], Wauthier et al. introduce the strategy and
operational experience of collocating three to six satellites in a single slot, using the e/i -
vector separation strategy. The problem of sensor interference is mentioned, including
the fact that the e/i -vector separation strategy is not ideal to avoid interference with
Earth-pointing sensors. The problem has not been dealt with in the strategy develop-
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ment but an analysis of the occurrences of such interference events is included. The
analysis showed that frequency interference can be expected to occur between once per
month to once per week per satellite for three to six collocated satellites. The papers fur-
ther showed the success of the strategy, safe separation was achieved at all times, as well
as the successful increase of the cluster from three to six satellites.

Beigelman and Gurfil [39] present a method for collocation of geostationary satellites
using relative orbital element corrections. The collocation problem is essentially formu-
lated as a formation keeping problem and optimal collocation maneuvers under the in-
fluence of the J2 perturbation are investigated, while omitting other important perturba-
tions. We also use relative orbital elements in the analysis and solution of the collocation
problems presented in this work, albeit with a much more accurate dynamics model (ac-
tually the synchronous elements can already be interpreted as relative orbital elements
between a geostationary satellite and the geostationary slot center, which allows one to
interpret the general problem of station-keeping as a formation keeping problem be-
tween a satellite and the slot center).

Another work that builds on the idea of using relative orbital elements for control-
ling collocated geostationary satellites is by Rausch and Howell ([40], [41]). The work
by Eckstein [18] is extended to a fleet of collocated satellites and the equations for cal-
culating impulsive corrections for a propulsion system including deterministic thruster
cross-couplings are given. The paper uses a leader follower control architecture for con-
trolling the relative motion of a set of follower satellites with respect to a leader satellite
that is controlled using conventional station-keeping techniques. The simulations in the
paper show that only a minor increase in propellant is required for the follower satellites
compared to the leader satellite. We use a similar architecture and rely also on relative
orbital elements. The key difference is that we use a completely different method for
calculating the corrective maneuvers relying on the solution of a convex optimization
problem instead of an analytic solution as proposed in the reference. Our method is
more versatile as it can cope with both high thrust and low thrust satellites and can in-
clude a variety of constraints that cannot be dealt with explicitly using the method from
Rausch and Howell.

1.2.3. DISTRIBUTED SPACE SYSTEMS

The problem of collocation is closely related to the field of orbit control of distributed
space systems (including formation and cluster flying). Some of the theories devel-
oped for collocation of geostationary satellites have been inspirational to the field of
distributed space systems. A good example is the adaptation of the e/i -vector separa-
tion strategy by d’Amico and Montenbruck to formations in LEO [42]. This strategy is
used, for example, on the TerraSAR-X / TanDEM-X formation [43]. In turn, some works
in the field of formation flying have been inspirational to the developments in this re-
search.

In [44] Wang and Nakasuka develop a method for cluster flight (relative) orbit design.
The paper formulates requirements in terms of minimum distance in the radial-normal
plane, a maximum distance and a condition of identical inclinations in order to min-
imize propellant consumption, by eliminating the J2 induced out-of-plane drift. The
analysis and design problems are formulated in terms of relative orbital elements and
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solved using both heuristic approaches as well as nonlinear programming techniques.
We treat a similar problem (stay inside the geostationary slot while maintaining mini-
mum separation distances), albeit in a different way. We investigate (and visualize) those
areas of the (e, i )-vector space that satisfy the constraints and use the resulting graphs to
design a configuration complying to our requirements, taking into account also that the
relative orbits can vary in mean longitude and semi-major axis (e.g. due to maneuvers).

To ensure safe separation between satellites one usually relies only on radial and nor-
mal directions, because the orbit prediction accuracy in tangential direction is typically
much larger than in the other directions. This observation was key to the development
of the e/i -vector separation strategy. Under one simplifying assumption, namely zero
semi-major axis difference, the minimum distance can be defined as a function of the
relative eccentricity and inclination vector only [5]. The derivation of the minimum
distance in the radial-normal plane for nonzero semi-major axis differences was first
worked out in detail in a recent work by Gaias and Ardeans [45]. Their work describes
a safety concept for a formation flying experiment (AVANTI) with two (noncooperative)
spacecraft. We build on the work from Gaias and Ardeans and formulate similar equa-
tions in terms of non-dimensional (rational) orbit elements, which forms the basis for
dealing with the minimum distance constraint in our collocation design approach.

One method of particular interest that appears often in the formation flying litera-
ture is model predictive control (or receding horizon control). A model predictive con-
troller determines the optimal (according to some cost function) control inputs, taking
into account future dynamics of the system while at the same time being able to account
for constraints on state and control at current and future (discrete) times. Essentially an
optimization problem is solved to determine the optimal control input over a finite hori-
zon. Only a small portion of the plan of optimal control inputs is executed, after which
the process is repeated and a new set of optimal controls are determined. Manikonda
et al. [46] were among the firsts to apply this method to formation keeping of satellites
(both attitude and position) using feedback linearization of the nonlinear dynamics.

The works by Tillerson et al. [47] and Breger and How [48] were especially inspira-
tional as they present methods for station-keeping (and reconfiguration) of a formation
using model predictive control techniques based on convex optimization. The first pa-
per develops the method using a formulation of the relative dynamics in terms of Carte-
sian coordinates, while the second paper uses relative orbital elements. Both works end
up with a LTV formulation of the dynamics (albeit with only a subset of perturbing forces
included) and derive a model predictive controller for formation keeping and recon-
figurations under various state and control constraints. The key idea that we adopted
from these papers was the formulation of the problem using an `1 norm of propellant
consumption in the cost function, leading naturally to a sparse solution of the problem
and hence only a small number of orbit control maneuvers required. This type of cost
function makes the solution of the optimization problem readily implementable by a re-
alistic propulsion system that has only a single qualified operational point (essentially
an on/off thruster), while at the same time having beneficial effects on the lifetime of a
thruster (which is usually qualified only for a limited number of duty cycles).

Convex optimization techniques have seen an increase in applications in path plan-
ning and control of spacecraft in the last decade. The main theory on convex optimiza-
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tion is well captured in [49]. Acikmese et al. ([50]) developed a convex guidance algo-
rithm for formation reconfigurations in deep space (double integrator dynamics) and in
orbit based on the Clohessy-Wiltshire equations. The only non-convex constraint in the
problem formulation was the minimum distance constraint which was convexified by
approximating the constraint by a series of half-spaces generated using a heuristic ap-
proach based on the unconstrained problem solution. Lu and Liu [51] take this several
steps further (building on further work by Acikmese, Blackmore et al., [52], [53], [54],
[55]). An optimal control problem for rendezvous and proximity operations is defined,
including nonlinear dynamics and a non-convex constraint on the thrust vector. A more
relaxed version of the problem is defined which includes a convexification of the thrust
vector constraint and a proof of equivalence with the original problem is given. The non-
linear dynamics are dealt with by a clever change of variables and by solving successive
convex optimization problems with linearized approximations of the dynamics, leading
to the solution of the original nonlinear problem. Morgan and Jung [56] develop a path
planning and control approach for (reconfigurations) of swarms of satellites using suc-
cessive convex optimization. The minimum distance constraint is treated using a series
of half-spaces as in [50], but successive approximations are used to find the optimal so-
lution, not relying on a heuristic to determine the half-spaces. These works all formulate
the control problem in Cartesian coordinates and treat the minimum distance constraint
(or other non-convex constraints) as part of the problem formulation, requiring either a
convexification of the constraint or a successive approximation algorithm converging to-
wards the original problem solution. We focus on the formulation of the station-keeping
problem in terms of relative orbital elements using a LTV model and identify convex re-
gions in orbital element space satisfying the various nonconvex constraints by analysis,
thereby avoiding to deal with these constraints in the optimization problem.

1.2.4. RECENT TECHNOLOGICAL DEVELOPMENTS

The classic attitude determination suite on a geostationary satellite consists of Sun sen-
sors, Earth sensors and gyroscopes. Nowadays, star sensors are the standard type of
sensor if more accurate attitude determination is required and most newer geostation-
ary satellites have replaced the less accurate Earth sensors with star sensors [57], [58],
[59]. When considering a fleet of collocated satellites, a star sensor provides another
possible constraint for the fleet. A satellite should stay out of the field of view of a star
sensor on another satellite in the fleet to avoid blinding the sensor [60]. This constraint
has appeared in the literature for Earth sensors or radio interferences, but not yet for star
sensors.

Orbit determination of geostationary satellites is normally performed by using one
or more ground stations to make angle measurements and range and/or range-rate mea-
surements. The use of Global Navigation Satellite System (GNSS) receivers for orbit de-
termination is commonly done on low Earth orbiting satellites and this technology is
currently being applied to higher orbits, including the geostationary orbit [61], [62], [63].
The key benefits of having a GNSS receiver on a geostationary satellite are a significant
performance increase as well as continuous availability of an orbit determination solu-
tion. Chapel et al. [63] report position errors of 54.2, 4.4 and 8.2 m (3σ) in respectively
radial, tangential and normal directions in a worst-case scenario including NS, EW and
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momentum dumping maneuvers. This performance is expected to improve even further
with the availability of the full constellation of Galileo satellites and improved hardware
in the form of AGGA-4 chipsets [64].

In order to increase the payload mass fraction, satellite manufacturers look for ways
to decrease the mass of the satellite bus and a key candidate is the propulsion system. By
using solar electric propulsion thrusters, much higher efficiencies can be achieved (more
than an order of magnitude difference) compared to chemical propulsion systems. This
led several manufacturers to develop all-electric platforms (e.g. [65] and [66]) which can
significantly increase the payload mass in a geostationary orbit for a given launch mass.
Although these are not the first missions that use electric propulsion systems for station-
keeping of geostationary satellites, extending the use of the electric propulsion system to
the transfer from the launch orbit to a geostationary orbit leads to much more significant
mass savings. Therefore, the availability of these types of satellites is certainly a threat
to the conventional chemically propelled satellites and will lead to an increased use of
electric propulsion.

1.3. MOTIVATION AND CONTRIBUTIONS

This section presents the motivations for the research in this dissertation. The research
questions are formulated and an overview of the contributions of this research to the
body of knowledge are given.

1.3.1. MOTIVATION

Station-keeping and collocation of geostationary satellites is a mature technology and
many methods exist today that not only show successful results in simulations, but have
been applied successfully in practice on a day-to-day basis for many years. However,
reviewing the literature, we discovered one definitive open point: the ability to avoid
mutual interferences such as sensor interference or radio-frequency interference. This
problem has been recognized for many years but no solutions appeared to date. The
problem used to revolve around interference with the broadcasting of a signal towards
Earth or a satellite passing through the field of view of an Earth sensor on another satel-
lite. Nowadays most new satellites are equipped with star sensors to provide accurate
inertial attitude measurements. The presence of a star sensor introduces yet another
case for sensor interference. If a satellite is passing through the field of view of a star
sensor on another satellite while reflecting sunlight towards the star sensor, this satel-
lite can appear as an object much brighter than other stars or even much brighter than
the moon. The brightness depends on the relative geometry, mounting location, point-
ing direction of the star sensor and attitude of the reflecting satellite. Depending on the
brightness level, type of star sensor and relative geometry such interferences can cause
outages of a star sensor that could last up to two hours [60]. Such interferences, both
from Earth-pointing payloads and star sensors, can be dealt with through the design
and control of relative motion orbits, thus impacting the guidance and control methods
for station-keeping and collocation. The need for a method that can deal with these ge-
ometric constraints is the primary motivation of this work.

Secondary motivations arise from two technological developments; the first being
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the increased use of solar electric propulsion systems on geostationary satellites. The
very low thrust that these propulsion systems produce invalidate typical station-keeping
strategies relying on the assumption that the thrust arcs can be approximated as im-
pulsive velocity corrections, thus requiring different (but not necessarily new) station-
keeping strategies. The second technological development is the use of GNSS technol-
ogy for orbit determination in geostationary orbit. The current generation of GPS re-
ceivers ([62], [63]) are already prepared for use in Geostationary Orbit (GEO). One disad-
vantage in GEO is that a much smaller number of GPS satellites is visible, with possibly
large data gaps in the reception of signals. This problem is being alleviated with the
rapid build-up of the Galileo constellation, as well as through the development of other
technologies such as the ability to track signals with extremely low signal-to-noise ra-
tios (which will enable tracking also side lobes of the GNSS signals). The availability of
a continuous orbit determination solution paves the way for different type of maneuver
planning schedules, relying more on autonomy (whether on-board or on-ground), with
shorter duration station-keeping cycles than currently used. The acceptance of such
technologies allows for a decrease of the minimum distance between satellites, which in
turn allows to collocate more satellites in a single slot.

Considering these developments, we see a need for the development of a method
that can address both the current situation with ground-based maneuver planning, ac-
cording to fixed schedules, for satellites with chemical or electrical propulsion systems,
as well as addressing the new paradigm in which frequent orbit determination solutions
are readily available and maneuver planning and execution are fully automated. The
analysis of the geometric constraints of sensor cone avoidance and minimum distance,
the formulation of a guidance method that can deal with these constraints and the devel-
opment of a maneuver planning method that has the versatility to deal with the different
operational implementations are the prime goals of this dissertation.

1.3.2. RESEARCH QUESTIONS
Considering the motivations we set out to answer the following research questions in
this research:

1. How to do safe and economic guidance and control of geostationary satellites
based on convex optimization?

(a) Can the perturbed equations of motion be described using convex functions
only?

(b) Can station-keeping maneuver plans be determined using numerical opti-
mization methods for convex problems?

(c) How are station-keeping strategies resulting from numeric optimization meth-
ods related to the current state-of-art?

(d) What are benefits and disadvantages compared to conventional methods in
terms of propellant consumption, maneuver frequency, control accuracy, flex-
ibility and robustness?

2. How to extend the proposed optimization methods to collocate several satellites
under geometric constraints?



1.3. MOTIVATION AND CONTRIBUTIONS

1

17

(a) Can the geometric constraints be formulated as a convex constraint?

(b) What is the impact of the geometric constraints on the conventional coordi-
nation and station-keeping strategies?

(c) How to incorporate the geometric constraints and to solve the resulting con-
strained optimization problem?

(d) Can the conventional e/i -vector separation strategy be adapted to account
for geometric constraints?

3. Can station-keeping and collocation guidance and control of satellites in GEO be
improved with on-board orbit determination and electric propulsion capabilities?

(a) What are suitable sensors and actuators and what are their performance?

(b) Is it realistic to perform autonomous on-board station-keeping using nu-
meric optimization based methods?

(c) What are potential concepts for collocation with increased onboard auton-
omy?

(d) How to transition towards on-board autonomous control within realistic op-
erational constraints and requirements?

The first question focuses on the development of a convex-optimization based method
for station-keeping of geostationary satellites. This development is a stepping stone to-
wards developing a method for collocating a fleet of satellites subject to various geomet-
ric constraints. The analysis of the constraints and the extension of the methodology
towards multiple satellites is the subject of the second question. The third question ad-
dresses opportunities that arise through the availability of an on-board orbit determina-
tion capability and the presence of an electric propulsion system. The research focused
mainly on the first two research questions and each of the research questions will be ad-
dressed in this dissertation, however, some open points remain, leading to a number of
recommendations for future work.

1.3.3. RESEARCH METHODOLOGY AND CONTRIBUTIONS
The first key focal point is the modeling of absolute and relative dynamics of geostation-
ary satellites. A review of the equations of perturbed motion of a satellite in a geostation-
ary orbit is performed. Two simplifying assumptions are posed that lead to the formu-
lation of the dynamic equations in the form of a linear, time-varying model. This model
includes the dominant perturbations of Earth gravity, sun gravity, moon gravity and solar
radiation pressure. A validation of the LTV model is performed, both analytically and nu-
merically, and bounds on the modeling accuracy are presented. An auxiliary method is
developed for converting between mean and osculating orbital elements, such that con-
straints on the motion of a geostationary satellite can be expressed in terms of mean and
osculating orbital elements. Equations relating the relative motion in Cartesian coordi-
nates to orbital element differences are given, as well as a relative motion model defined
in rational relative orbital elements. These rational relative orbital elements are obtained
by dividing the relative orbital elements by the product of semi-major axis and relative
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eccentricity vector magnitude. We developed a simulation environment in which we
can develop and test algorithms for guidance and control of geostationary satellites. A
simple satellite model is included with different types of propulsion systems. We intro-
duce errors into the simulation environment to represent realistic modeling errors, orbit
determination errors and maneuver errors. The key contributions to the body of knowl-
edge are:

• the definition and validation of a novel LTV model of dynamics of a geostationary
satellite,

• the introduction of relative rational orbital elements.

The second focal point is the analysis of the different geometric constraints in terms
of (relative) orbital elements. We analyze the geostationary slot boundaries in terms of
orbital elements and define bounds on inclination magnitude and combined eccentric-
ity magnitude and mean longitude difference that guarantee a satellite to remain inside
the geostationary slot. We then define the minimum distance constraint (in the radial-
normal plane) in terms of relative orbital elements and, in more general form, in terms
of rational relative orbital elements. The introduction of the rational relative orbital el-
ements reduces the number of elements in the design space of the minimum distance
constraint to only two variables, allowing us to visualize clearly how combinations of
these elements affect minimum distances. We then investigate the sensor cone avoid-
ance constraint, also in terms of relative orbital elements. One key finding is that the
presence of the sensor cone avoidance constraint requires active control of the relative
mean longitude of satellites in the fleet. We define a metric to evaluate combinations of
rational relative orbital elements with respect to a particular sensor cone avoidance con-
straint. This metric essentially represents the size of a tolerance window of the relative
mean longitude that is allowed without violating the sensor cone avoidance constraint.
We can then visualize the space of relative eccentricity and inclination vectors and their
performance regarding the newly defined metric. The maps thus created (both for the
minimum distance constraint as well as for the sensor cone avoidance constraint) sup-
port the design of a guidance method satisfying the various constraints simultaneously.
A number of steps leading to the design of a successful guidance are defined. This pro-
cess is applied to an extensive example case leading to the design of a guidance that
satisfies the various constraints simultaneously. The key contributions to the body of
knowledge here are:

• the analysis of the minimum distance constraint in terms of rational relative or-
bital elements,

• the analysis of the sensor cone avoidance constraint in terms of rational relative
orbital elements,

• the clear visualization of the constraints in rational relative orbital elements and
• an applied design process leading to a successful guidance method dealing with

sensor cone avoidance constrains and minimum distance constraints simultane-
ously.

The last focal point is the development and application of a convex-optimization based
method for station-keeping and collocation. We focused on convex optimization meth-
ods because convexity of the problem has several advantages: the optimum found by
solving the convex problem solution corresponds to a global optimum, crude bounds
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on the required computation time can be derived and very stable algorithms exist to
solve the problem.

We present several formulations of the problem with increasing complexity. One
key characteristic of our approach is the minimization of the `1-norm of control ac-
tion, leading naturally to a sparse solution of the optimization problem. In the case of
geostationary satellite station-keeping (or collocation) this translates into the need for
only a small number of thruster firings, readily implementable by a realistic propulsion
system that can only provide a fixed constant thrust level when switched on. A simple
post-processing of the optimization problem is introduced that results in a simple plan
stating which thruster to fire when over a station-keeping cycle. We actively constrain
the thrust force to be at or below this constant thrust level in the formulation of the
optimization problem. The dynamics are formulated using the discretized linear, time-
varying formulation introduced earlier, with the possibility to define convex constraints
on the state variables at any discrete node. These constraints allow to maintain (rela-
tive) orbital elements in convex windows that, corresponding to the analysis, guarantee
that the minimum distance constraints and sensor cone avoidance constraints are satis-
fied. The problem is scaled to improve the numerical behavior of the problem and slack
variables are introduced to guarantee feasibility. We present both single-shooting and
multiple shooting formulations of the problem, where the former is conceptually sim-
pler with a smaller number of optimization variables, while the latter results in a more
sparse problem solution which decreases computation time and required memory. The
multiple-shooting formulation is especially useful for solving long horizon optimization
problems with many variables.

We validate our method by comparing the results under specific settings to results
obtained using a conventional tried-and-true station-keeping strategy. We investigate
long-term optimal strategies by formulating and solving several optimization problems
with a one-year problem horizon. We demonstrate the method in the presence of mod-
eling, orbit determination and actuation errors and introduce a receding horizon imple-
mentation that could benefit from the presence of frequent orbit determination solu-
tions.

In terms of collocation we formulate the relative dynamics simply by subtracting the
absolute state of the leader satellite from the absolute state of the follower satellite. We
introduce a more robust formulation that accounts for errors in modeling, orbit determi-
nation and actuation in the problem formulation and solution. Several cases are studied
including an inhomogeneous fleet of four satellites, a homogeneous fleet of 16 satellites
in a small slot, fleets of respectively two and four satellites subject to sensor cone avoid-
ance constraints and a fleet of two satellites controlled using the robustified formulation
of the problem. We demonstrate the advantages of the method and point out where it
falls short. The key contributions to the body of knowledge are:

• The formulation of the station-keeping and collocation problems as convex opti-
mization problems that result in sparse solutions

• The analysis of the station-keeping strategies using an optimization problem with
a one year horizon

• The robustified formulation of the collocation problem
• The analysis of several station-keeping and collocation strategies relying on the
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convex optimization-based method for calculating the maneuvers.

Taken together, the various contributions listed in this section provide a powerful method
to treat the complex problem of collocation of geostationary satellites under geomet-
ric constraints. The geostationary slot boundaries, minimum distance and sensor cone
avoidance constraints are dealt with simultaneously. This method is the main contribu-
tion of this research to the current state of art.

1.4. THESIS ROADMAP
This dissertation is structured into four main parts. Chapter 2 covers the modeling as-
pects of geostationary satellite dynamics. This includes the nonlinear equations of mo-
tion, a simplified linear, time-varying model of the satellite motion in non-singular syn-
chronous orbital elements and the equations for relative motion. The method to con-
vert between osculating and mean orbital elements is discussed and rational orbital el-
ements are introduced. A reference mission and satellite are defined and overview is
given of the elements of the simulation environment as well as an introduction of the
various modeling errors that are introduced into the simulations for testing the methods
developed in later chapters.

In Chapter 3 we discuss the analysis and design of the guidance method in terms of
relative orbital elements. We analyze the geostationary slot boundaries, the minimum
separation distance and the sensor cone avoidance constraints in terms of relative or-
bital elements and in rational relative orbital elements. We look at some typical convex
sets of relative eccentricity and inclination vectors and the realization in rational space,
and vice versa. We then introduce a basic design process and work out this process in an
elaborate example case in which we design the guidance for a fleet of satellites subject
to minimum distance constraints and sensor cone avoidance constraints.

The development of the convex optimization-based method is discussed in Chap-
ter 4. We introduce a concept of operations and validate the convex optimization-based
method by comparison to an existing method. We investigate long-term optimal strate-
gies using an the optimization-based method with a one year horizon. We investigate
two station-keeping strategies relying on the new method at their core. These simula-
tions include realistic errors in orbit determination, actuation and modeling.

The collocation problem is introduced in Chapter 5 and the convex optimization-
based method is adapted to collocate a fleet of satellite using a leader-follower architec-
ture. A more robust formulation of the problem is introduced to actively deal with the
dominant forms of uncertainty. Several simulations are analyzed including an inhomo-
geneous fleet of four satellites, a large homogeneous fleet of sixteen satellites, fleets of
two and four satellites subject to sensor cone avoidance constraints and a demonstra-
tion of the robustified implementation of the method.

Chapter 6 provides concluding remarks and outlook and includes an identification
of topics of further research.
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2
MODELING GEOSTATIONARY

SATELLITE AND ORBIT DYNAMICS

Research is what I am doing when I do not know what I am doing.

Wernher von Braun

The two most powerful warriors are patience and time.

Leo Tolstoy

Abstract
The development of methods for guidance and control of geostationary satellites requires
a model of the orbital dynamics at its core. To this end, the full nonlinear equations of
motion are used to develop a linear, time-varying model. The accuracy of the model is
analyzed using analytical and numerical methods. A method for the conversion between
mean and osculating orbital elements is presented, as well as a model of relative motion in
terms of relative and rational orbital elements. The simulation environment that is used
to evaluate guidance and control methods is presented together with a reference mission
and the key satellite parameters.
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In this chapter we explore the equations of motion for satellites in a geostationary or-
bit. We use both Cartesian representations, as well as synchronous orbital element rep-
resentations, both for the absolute and relative states of the satellites. The dynamics are
expressed as a linear time-varying system by making a set of simplifying assumptions.
We investigate the validity and merits of the linear time-varying system and conclude
its suitability for guidance and control of the orbits of geostationary satellites. We then
define a set of rational orbital elements that we use in the design of a guidance method
in the next chapter. We also introduce the key satellite and mission characteristics, as
well as the simulation environment used for the analysis performed in later chapters.

2.1. DEFINITION OF REFERENCE FRAMES

This work relies on three different reference frames, namely an Earth Centered Iner-
tial (ECI)-frame, an Earth Centered Earth Fixed (ECEF)-frame and a RTN-frame. Each
reference frame is an orthogonal right-handed reference frame. We provide a short de-
scription of these reference frames. Additional information can be obtained from [1] and
[2].

As ECI-frame we use the EME2000 reference frame, where EME stands for Earth
Mean Equator. The fundamental (x,y)-plane is the Earth Mean Equator at the J2000
epoch. The x-axis is in the direction of the mean vernal equinox at J2000. The coor-
dinate system has its origin at the center of mass of the Earth.

The ECEF-frame is an Earth-fixed rotating reference frame that is obtained from
a time-dependent rotation of ECI by a transformation matrix capturing sidereal time
angle, precession and nutation [3], [4]. Polar motion is neglected in this work, which
makes the ECEF-frame a crust-fixed frame. Although this simplification can lead to small
(meter-level errors after a week) propagation errors, it has virtually no impact on the re-
sults, since these errors are much smaller than other error sources considered in this
work (introduced in Section 2.8). The ECEF reference frame is thus a true-of-date ro-
tating reference frame, and coordinates in ECEF are related to the international terres-
trial reference system by a rotation using a polar motion transformation matrix [2]. The
(x,y)-plane of the ECEF frame is the Earth’s true-of-date equator with the x-axis pointing
towards the zero meridian. We use both Cartesian and spherical coordinates to describe
a position in the ECEF reference frame.

Finally, the RTN-frame is centered on a satellite with axes obtained from the satellite
state in ECI: the x-axis points radially outward, the z-axis in the direction of the orbit
angular momentum and the y-axis completes the right handed system.

2.2. REVIEW OF EQUATIONS OF MOTION

This section presents the equations of motion of a satellite in Cartesian coordinates (in
ECI). These equations were implemented in the propagator that is used in the simula-
tions presented in this work. Besides the equations introduced in this section, a model
for transforming between ECI and ECEF was included, as introduced in the previous sec-
tion. Analytic models for the position of the Sun and Moon were used, as presented in
[1].
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2.2.1. CARTESIAN REPRESENTATION OF PERTURBED EQUATIONS OF MO-
TION

The motion of a satellite around the Earth can be described by the following differential
equation:

r̈ =−µE
r

r 3 +ad , (2.1)

where r is the position vector of the satellite in ECI, with r its magnitude, µE the gravita-
tional parameter of the Earth and ad comprises the disturbing accelerations. The term
−µE r/r 3 describes the gravitational acceleration in a two-body problem, where the mass
of the satellite is neglected over that of the Earth. All other accelerations, gravitational
and non-gravitational, including controlled accelerations, are comprised in the vector
ad . In the sequel we provide a brief summary of the key perturbing accelerations.

2.2.2. DOMINANT PERTURBATIONS IN GEOSTATIONARY ORBIT
The dominant perturbations for a satellite in a geostationary orbit are caused by the
difference between the true geopotential and a spherical approximation of Earth with
uniform density, by Sun and Moon gravity and by SRP. We shortly discuss these pertur-
bations in the following.

GEOPOTENTIAL

The geopotential perturbations are given by [1]:

ad ,gpot =∇µE

r

∞∑
n=2

n∑
m=0

Rn
E

r n P̄nm
(
sinφ

)(
C̄nm cos(mλ)+ S̄nm sin(mλ)

)
, (2.2)

where m and n are the order and degree of the spherical harmonics included in the equa-
tion, RE is the radius of Earth, P̄nm is the normalized associated Legendre function,λ and
φ are respectively longitude and latitude and C̄nm and S̄nm are the normalized geopoten-
tial coefficients. The dominant terms for a geostationary satellite in the above equation
are caused by the equatorial bulge, represented by the zonal term of degree 2 and order
0 (commonly referred to as J2), and the tesseral term of order and degree 2, representing
the Earth’s triaxiality (commonly referred to as J22). The J2 perturbation causes a gravita-
tional acceleration in radial direction, towards the Earth, thus slightly changing the ideal
(Keplerian) GEO semi-major axis. The J22 perturbation causes a tangential acceleration
on a GEO satellite, resulting in a longitudinal drift of the satellite, which will move the
satellite away from its assigned location if not compensated for. The size of this accel-
eration is longitude dependent. The geopotential can be modeled up to very high order
and degree, and with very high accuracy.

THIRD BODY GRAVITY PERTURBATION

The perturbing accelerations due to third bodies can be expressed as [1]:

ad ,3b =µ3b

(
r3b − r∣∣r3b − r3

∣∣ − r3b

|r3b|3
)

, (2.3)

where µ3b and r3b are respectively the gravitational parameter and position vector of the
third body. For a geostationary satellite the third bodies of prime interest are the Sun and
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Moon. In order to evaluate the above equation, an accurate model of the positions of the
Sun and Moon in ECI is required. Low-precision Solar and Lunar coordinates can be
modeled analytically. Alternatively, high precision planetary ephemerides are provided
by the Jet Propulsion Laboratory (JPL) [5]. The secular effect of Sun and Moon gravity
perturbations is dominant in normal direction, causing oscillations of the satellite in
North-South direction. These perturbations are well-known and well-understood and
can be modeled with a very high accuracy.

SOLAR RADIATION PRESSURE

An approximate relation for the SRP perturbation, assuming that the surface normal is
oriented towards the Sun, is given by [1]:

ad ,srp =−PsunCR
A

m

rsun

r 3
sun

AU2, (2.4)

where Psun is the solar radiation pressure, CR is the radiation pressure coefficient, A the
surface area exposed to solar radiation, m the satellite mass and AU is the astronomical
unit (the mean distance between the Earth and the Sun). Whereas the perturbing accel-
erations due to gravity can be determined with very high accuracy, those due to SRP can
only be approximated with low accuracy, as they depend on the satellites’ characteris-
tics and orientation. Uncertainty in satellites mass, surface area and orientation of the
surface areas with respect to the Sun direction, and absorption and reflectivity charac-
teristics cause errors in the modeling of SRP.

2.2.3. EQUATIONS OF MOTION IN SYNCHRONOUS ORBITAL ELEMENTS
Instead of Cartesian coordinates, the motion of a satellite can also be described using
a set of orbital elements. We start with a presentation of the variational equations in
classic orbital elements as given in [6], originally from [7]:

da

dt
= 2

nη

(
eur sinν+ p

r
ut

)
de

dt
= η

na
(ur sinν+ut (cosE +cosν))

di

dt
= 1

naη

r

a
un cos(ω+ν)

sin i
dΩ

dt
= 1

naη

r

a
un sin(ω+ν)

e
dω̃

dt
= η

na

(
−ur cosν+ut

(
1+ r

p

)
sinν

)
+2sin2 i

2

dΩ

dt

dL0

dt
=− 2r

na2 ur + e2

1+η
dω̃

dt
+2ηsin2 i

2

dΩ

dt
, (2.5)

where n =
√
µ/a3 is the mean orbital motion, ω̃ = ω+Ω, L0 = Ω+ω+ M0 is the mean

longitude at epoch t0, r is the orbital radius, η =
p

1−e2, E is the eccentric anomaly,
p = a

(
1−e2

)
the semi-latus rectum, ν is the true anomaly, ur , ut , un are the perturbing

accelerations in radial, tangential and normal directions and a, e, i ,Ω,ω, M are classical
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orbital elements.
Since an ideal geostationary orbit is characterized by zero eccentricity and zero in-

clination it is customary to use a set of non-singular synchronous orbital elements de-
scribing the state of the satellite with respect to a reference position in the geostationary
orbit. This approach avoids singularities associated to the use of classic orbital elements.
The following representation is used in this dissertation:

oe (t ) =



∆n
ex

ey

ix

i y

∆L

=



n −ngeo

e cos(ω̃)
e sin(ω̃)
i cos(Ω)
i sin(Ω)

L0 +
∫ t

t0
ndt −α (t )

 , (2.6)

where ngeo is the mean orbital motion of an ideal geostationary orbit (equal to the Earth’s
rotation rate), L = L0 +

∫ t
t0

ndt is the mean longitude, α is the right ascension of the ref-
erence geostationary position. The center of the geostationary slot in which a satellite
is maintained is normally used as the reference position. Note that the reference posi-
tion is given by the zero state vector and thus this particular non-singular synchronous
orbital element set can be interpreted as a set of relative orbital elements between the
satellite and the geostationary slot center. The elements can be interpreted as follows:
∆n is the angular rate difference between the satellite and the geostationary slot,

(
ex ,ey

)
is the (relative) eccentricity vector,

(
ix , i y

)
is the (relative) inclination vector and ∆L is

the difference in mean longitude between the satellite and the geostationary slot cen-
ter. Using Eqs. (2.5) the time-rate-of-change of the synchronous orbital elements was
derived:

d∆n

dt
=−3e sinν

ηa
ur − 3p

rηa
ut

dex

dt
=ηsin`

na
ur +

η
(
cos`+cosω̃cosE − r /p sinω̃sinν

)
na

ut

− r sinω̃ tan(i /2)sin(ω+ν)

na2η
un

dey

dt
=−ηcos`

na
ur +

η
(
sin`+ sinω̃cosE + r /p cosω̃sinν

)
na

ut

+ r cosω̃ tan(i /2)sin(ω+ν)

na2η
un

dix

dt
= r

na2η

(
cosΩcos(ω+ν)− i

sin i
sinΩsin(ω+ν)

)
un

di y

dt
= r

na2η

(
sinΩcos(ω+ν)+ i

sin i
cosΩsin(ω+ν)

)
un

d∆L

dt
=∆n −

(
eηcosν(
1+η)

na
+ 2r

na2

)
ur +

eη
(
1+ r /p

)
sinν(

1+η)
na

ut

+ r tan(i /2)sin(ω+ν)

na2

(
1+ e(

1+η)
η

)
un . (2.7)
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In these equations ` = ω+Ω+ν is the true longitude. The singularity at i = 0 in the
equations for ix and i y can be avoided by expanding i /sin i in a Taylor series as:

i

sin i
= 1∑∞

n=0
(−1)n

(2n+1)i
2n

, (2.8)

and truncating at an order in line with the accuracy requirements of the application.
Truncating after the zeroth order term results in the approximation i /sin i ≈ 1. For an
inclination i < 0.1◦ this approximation leads to an error |i /sin i −1| that is smaller than
5.1 ·10−7. Thus, if we allow the following assumption:

Assumption 2.1. The approximation i /sin i ≈ 1 introduces a negligible error in the dy-
namics when used to model a satellite inside a geostationary slot with i < 0.1◦,

then, the equations for the time rate of change of ix and i y can be simplified as fol-
lows:

dix

dt
= r cos`

na2η
un

di y

dt
= r sin`

na2η
un . (2.9)

Equations (2.7) and (2.9) constitute a system of equations that is nonlinear in state and
affine in control:

ẋ (t ) = Ax (t )+B (x (t ))uc (t )+B (x (t ))ud (x (t )) . (2.10)

The definition of A (a time-invariant matrix with all zero entries, except A61 = 1) follows
directly from Eqs. (2.7). The vector u = (ur ,ut ,un)T was split into uc and ud , repre-
senting respectively controlled and disturbing accelerations and is expressed in the RTN
frame, in contrast to ad in Eq. (2.1), which is expressed in an inertial frame. The input
matrix B (x (t )) and disturbing input ud (x (t )) are state-dependent as evident from Eqs.
(2.7).

2.3. LINEAR TIME-VARYING FORMULATION
Since geostationary satellites are typically controlled to stay inside a geostationary slot
with a size of up to ±0.1◦ in longitude and latitude, a coarse approximation of the posi-
tion of a geostationary satellite is obtained by assuming that the satellite is nominally at
the center of its assigned slot. The maximum “error” thus made is half of the geostation-
ary slot size in radial, tangential and normal direction. For this coarse approximation of
the satellite position (i.e. the geostationary slot center), we can determine the perturbing
accelerations for any point in (future) time using accurate models of the perturbations.
Now, if the perturbing accelerations at the geostationary slot center are a good approxi-
mation of the perturbing accelerations at an arbitrary location inside the geostationary
slot, we can integrate Eqs. (2.7) using the approximated perturbing accelerations. This
hypothesis is central to the developments in this section and its validity is investigated.
The center of the geostationary slot is given by the zero state (i.e. xgeo = [0,0,0,0,0,0]T ).
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2.3.1. ASSUMPTIONS AND EQUATIONS
The hypothesis introduced before can be captured by two key assumptions. The first
assumption is formulated loosely in the following.

Assumption 2.2. The input matrix at the ideal geostationary slot center provides an ac-
curate enough approximation of the input matrix at an arbitrary position inside the geo-
stationary slot.

The meaning of “accurate enough” is application dependent and the key application
investigated in this work is the calculation of station-keeping maneuvers with a propaga-
tion horizon between one and seven days. This assumption simplifies Eqs. (2.7) greatly
by allowing the B matrix to be approximated at the geostationary slot center, defined by
a = ageo, e = 0, i = 0 and `=α, and hence p = r = ageo, η= 1, E = ν and n = ngeo. These
simplifications result in the following approximation to B, valid in the neighborhood of
the slot center:

B (α (t )) ≈ 1

ngeoageo



0 −3ngeo 0
sinα 2cosα 0

−cosα 2sinα 0
0 0 cosα
0 0 sinα

−2 0 0

 . (2.11)

This assumption is commonly used in determining station-keeping maneuvers for geo-
stationary satellites and is the basis for analytically calculating maneuver size (as impul-
sive ∆V ) and maneuver location (in terms of α) resulting in desired changes to the or-
bital elements. The analytic calculation of maneuvers under this assumption has been
applied in operations for more than 30 years and is still the state-of-art for calculating
station-keeping maneuvers for geostationary satellites. Key maneuver strategies relying
on these assumptions are outlined in [6] and [8].

Under Assumption 2.2, the B matrix is no longer state-dependent. It remains time-
dependent through its dependency on the right ascension of the geostationary slot cen-
ter, which is calculated as:

α (t ) =α (t0)+ngeo (t − t0) . (2.12)

Thus the B-matrix can be determined for a particular geostationary slot at any point in
time. A similar hypothesis can be applied to the perturbing accelerations:

Assumption 2.3. The differential perturbing accelerations between a satellite at an ar-
bitrary position inside a geostationary slot and a virtual satellite located at the ideal geo-
stationary slot center are so small that the perturbing accelerations for a satellite at an
arbitrary position inside the slot can be approximated by the perturbing accelerations of
a virtual satellite at the geostationary slot center.

This assumption removes the dependency of the perturbing accelerations on the
satellite state. The perturbing accelerations remain nonlinear functions of time, but
the state-dependency is no longer present. As discussed before, the key perturbations
in the geostationary orbit are 1) gravity perturbations due to non-homogeneous, non-
spherical Earth, 2) perturbations due to Sun and Moon gravity, and 3) solar radiation
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pressure. The magnitude and direction of these perturbations can be modeled with high
accuracy and determined ahead of time for any point in time for any particular geosta-
tionary slot center. This allows us to describe the dynamics of a satellite in GEO by a
linear time-varying state-space system, driven by a time-dependent but known perturb-
ing function. Using Eqs. (2.10)-(2.11) we can write the linear time-varying system as:

ẋ (t ) ≈ Ax (t )+B (α (t ))uc (t )+B (α (t ))ud
(
xgeo (t )

)
, (2.13)

with A as before, B and ud are still time-dependent, however, the state-dependency
is removed through the two simplifying assumptions. Hence, Eq. (2.13) can be used to
obtain a linear approximation (linear in terms of initial state and controlled accelera-
tions) to any future state, while accounting for all dominant perturbations.

The same conclusion can be reached by linearizing Eq. (2.10) using a first order Tay-
lor series expansion around x0 (t ):

ẋ (t )≈(Ax (t )+Buc +Bud )
∣∣∣

x(t )=x0(t )
(2.14)

+
(

A+ ∂B

∂x
uc + ∂B

∂x
ud +B

∂ud

∂x

)∣∣∣
x(t )=x0(t )

(x−x0) .

Assumptions 2.2 and 2.3 imply that both ∂B/∂x and ∂ud /∂x are very small. By neglecting
these terms and substituting x0 = xgeo = 0 we retrieve Eq. (2.13).

Losa, [9], also arrives at a LTV system for the dynamics, albeit using a first order Taylor
series expansion. The model by Losa is therefore more accurate if the same perturbing
accelerations are considered. The LTV formulation proposed here also has an important
advantage: there is no need for explicit partial derivatives of both the input matrix and
the perturbing accelerations in terms of the synchronous orbital element set used. The
perturbing accelerations (with respect to the geostationary slot center) can be obtained
by any method deemed suitable by the user, as long as they are finally provided in the
radial, tangential, normal reference frame. This makes it easier to include high order
gravity perturbations or rely on models of perturbations that are not analytic in nature.

The worst-case errors that are introduced through the simplifying assumptions are
investigated analytically in the next section in order to validate and establish fidelity in
the modeling approach.

2.3.2. VALIDITY OF ASSUMPTIONS
Assumption 2.2 is commonly used both in the literature and in practice and is generally
assumed to hold for satellites inside the geostationary slot. We are interested to obtain
insight in the error introduced through this simplification. In order to quantify the error
we define the difference in B-matrix between an arbitrary position inside the geostation-
ary slot and the B-matrix corresponding to the geostationary slot center:

∆B = B−Bgeo, (2.15)

where B corresponds to the matrix obtained from Eq. (2.7) and Bgeo as per Eq. (2.11). As
in [10], the induced two-norm (or maximum singular value) is used as a measure of the
relative error:

e1 = ‖∆B‖2

‖Bgeo‖2
. (2.16)
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The largest possible error is then investigated by randomly generating Bgeo and B under
the following (uniform randomly generated) variations:

a = ageo +∆a, ∆a ∈ [−5,5] km

e = ∆e, ∆e ∈ [0,8.8 ·10−4]

i = ∆i , ∆i ∈ [0,17.6 ·10−4] rad

Ω = Ω, Ω ∈ [0,2π] rad

ω = ω, ω ∈ [0,2π] rad

L = α+∆L ∆L ∈ [−17.6 ·10−4,17.6 ·10−4] rad

α ∈ [0,2π] rad. (2.17)

The bounds on these orbital elements were chosen to contain the complete region in
which a GEO satellite in a large (±0.1◦) slot normally moves and a worst-case error of
0.00246, or 0.246%, was found over 10 million randomly generated samples.

Assumption 2.3 states that the errors made by evaluating the perturbations at the
geostationary slot center instead of at the actual position of the satellite are acceptably
small. To validate this assumption, an analytical treatment is presented in the follow-
ing sections, resulting in bounds on the maximum relative error due to the three largest
perturbations, namely the gravitational perturbation due to the equatorial bulge of the
Earth J2, Sun and Moon gravity. The worst-case relative errors are investigated for any
position within the geostationary slot defined in Cartesian coordinates in the Hill frame,
so that the maximum deviation from the slot center is 37.5 km in radial, and 75 km in
tangential and normal direction, corresponding again to a large (±0.1◦) geostationary
slot.

THE J2 PERTURBATION

The dominant Earth gravity perturbation is due to its oblateness and is characterized
largely by the term J2 and can be expressed in ECI coordinates as [11, p. 408]:

aJ2 =−3

2
J2µE

R2
E

r 5


(
1−5

( z
r

)2
)

x(
1−5

( z
r

)2
)

y(
3−5

( z
r

)2
)

z

 . (2.18)

Since J2 is a so-called “zonal” perturbation it is independent of longitude, hence we
can choose a nominal position vector on the geostationary orbit around which to expand
the perturbing acceleration. Let us choose r = (r,0,0)T as the nominal position vector so
that

aJ2 =−3

2
J2µE

R2
E

r 5

 r
0
0

 . (2.19)

The perturbed vector is rp = (
r +∆x,∆y,∆z

)T and for the specific choice of r, ∆x, ∆y
and ∆z correspond to radial, tangential and normal directions. Approximating rp using
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a first order Taylor series expansion with ∆x, ∆y , ∆z ¿ r , results in:

rp =
√

(r +∆x)2 + (
∆y

)2 + (∆z)2 ≈ r +∆x (2.20)

and equivalently
1

r 5
p
≈ 1

r 5 − 5∆x

r 6 . (2.21)

Substituting rp in Eq. (2.18), using Eq. (2.20-2.21) and keeping only first order terms in
∆x, ∆y and ∆z allows to approximate the differential perturbation as:

∆aJ2 = aJ2

(
rp

)−aJ2 (r) ≈−3

2
J2µE

R2
E

r 5

 −4∆x
∆y
∆z

 . (2.22)

For evaluation of the relative error, the `2-norm is used:

‖∆aJ2‖2

‖aJ2‖2
≤

√
(4∆xmax)2 + (

∆ymax
)2 + (∆zmax)2

r
= 0.0044, (2.23)

where∆xmax = 37.5 km and∆ymax =∆zmax = 75 km. Thus the relative error is at all times
smaller than 0.44%.

SUN AND MOON GRAVITY PERTURBATIONS

The approximate relation for a third body gravity perturbation is taken from [1, p. 69] as

a3b ≈ µ3br

s3 (−êr +3ês (ês · êr )) , (2.24)

where s represents the position of the third body in ECI and êr and ês are unit vectors
pointing towards the satellite and the third body respectively. In the radial, tangential,
normal reference frame a perturbed radius vector can be represented by rp = r +δr in
radial direction, and êrp = êr +δêr in tangential and normal direction. Expanding Eq.
(2.24) and using δr ¿ r results in the differential acceleration

∆a3b ≈ µ3br

s3 (−δêr +3ês (ês ·δêr ))+ µ3bδr

s3 (−êr +3ês (ês · êr )) . (2.25)

Evaluating the norm of the differential acceleration results in:

‖∆a3b‖2 ≤ µ3br

s3 ‖2δêr ‖2 +2
µ3bδr

s3 , (2.26)

where it was used that:
‖ês‖2 = 1,

‖−δêr +3ês (ês ·δêr )‖2 ≤ ‖2êr ‖2 and

‖− êr +3ês (ês · êr )‖2 ≤ ‖2êr ‖2 = 2.
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Substituting δr =∆R and ‖δêr ‖2 ≈ (1/r )
√

(∆T )2 + (∆N )2 for the deviations in radial ∆R,
tangential ∆T and normal ∆N directions allows to evaluate the maximum relative error
due to third body gravity:

‖∆a3b‖2

‖a3b‖2
≤ 2

√
(∆Tmax)2 + (∆Nmax)2 +2∆Rmax

r
= 0.0068, (2.27)

where we used

‖− êr +3ês (ês · êr )‖2 ≥ ‖êr ‖2 = 1

for the smallest absolute perturbation due to third body gravity. A worst-case error of
0.68% is observed.

OTHER SIGNIFICANT PERTURBATIONS

Solar radiation pressure and the perturbation due to J22 also play a major role in the
dynamics of a GEO satellite. The approximate relation for the disturbing acceleration
due to SRP is given by [1, p.79]:

asrp =−PsunCR
A

m

rsun

r 3
sun

AU2. (2.28)

This equation does not depend on the position of the satellite and thus no (significant)
differential perturbations are expected.

The perturbing acceleration due to J22 varies slowly with longitude, see e.g. [12], and
the differential acceleration between arbitrary points within the same geostationary slot
is small (we found a worst-case difference in acceleration of 4 · 10−8 m/s2 for a ±0.1◦
slot). Note that in contrast to the other perturbations, a bound on the relative accelera-
tion ‖∆aJ22‖2/‖aJ22‖2 is not very informative, since the absolute perturbing acceleration
due to J22 vanishes at the stable points 75.1◦E and 105.3◦W, and unstable points 11.5◦W
and 161.9◦E, respectively [8, p.72]. In [8, p.73] it is further stated that accelerations due
to tesseral gravity terms, including J22, within a 1◦ longitude band can be assumed con-
stant, whereas we use a band of only ±0.1◦.

FURTHER CONSIDERATIONS

The previous sections presented a worst case analysis of the errors resulting from a neg-
ligence of differential perturbations in a geostationary slot with respect to its center.
Even under worst-case assumptions the relative error made by evaluating the pertur-
bations at the geostationary slot center is smaller than 0.68%. In reality, the expected
time-averaged error is even smaller. The key reason is that small eccentricities and in-
clinations will cause a periodic motion around the geostationary slot center. Integrating
the effect over an orbital period will cancel out most of the differential accelerations. In
addition, the satellite is controlled to stay close to the reference position and is not ex-
pected to come close to the edge of the slot and certainly will not stay there for a long
time.
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2.3.3. DISCRETIZATION OF DYNAMICS
The optimization-based method that is developed in Chapter 4 requires a discretized
form of the dynamics, which is introduced here. This discretization is achieved here by
applying the Runge-Kutta fourth order (RK4) scheme [13] to the system in Eq. (2.13),
while using a zero-order hold on the control input uc (t ), matching well to a thruster
pulse with constant thrust, i.e. the controls are constant over a discrete interval. The
RK4 scheme is applied because it is sufficiently accurate for integrating the dynamics
studied in this work and results in a clean discrete system as is shown next. Recall

xk+1 = xk + 1
6 h (k1 +k2 +k3 +k4) , (2.29)

tk+1 = tk +h, (2.30)

where h is the stepsize and k indicates the discrete node. With a zero-order hold on the
control input uc we obtain:

k1 = Axk +Bk1uc,k+Bk1ud1,k

k2 = A
(
xk + h

2 k1

)
+Bk2uc,k+Bk2ud2,k

k3 = A
(
xk + h

2 k2

)
+Bk2uc,k+Bk2ud2,k

k4 = A (xk +hk3) +Bk3uc,k+Bk3ud3,k , (2.31)

where

Bk1 = B (tk ) , ud1,k = ud (tk ) ,

Bk2 = B
(
tk + h

2

)
, ud2,k = ud

(
tk + h

2

)
,

Bk3 = B (tk +h) , ud3,k = ud (tk +h) .

Combining these steps results in the discrete update

xk+1 = Ãxk + B̃k uk + d̃k , (2.32)

which is an affine function in state and control. Explicit definition of Ã, B̃k and d̃k are
given below:

Ã = 1

24
A4h4 + 1

6
A3h3 + 1

2
A2h2 +Ah + I (2.33)

B̃k =
(

1

24
A3h4 + 1

12
A2h3 + 1

6
Ah2 + 1

6
hI

)
Bk1 (2.34)

+
(

1

12
A2h3 + 1

3
Ah2 + 2

3
hI

)
Bk2 +

1

6
hBk3

d̃k =
(

1

24
A3h4 + 1

12
A2h3 + 1

6
Ah2 + 1

6
hI

)
Bk1ud1,k (2.35)

+
(

1

12
A2h3 + 1

3
Ah2 + 2

3
hI

)
Bk2ud2,k +

1

6
hBk3ud3,k .
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Matrix I is the identity matrix with a size equal to A. Repeatedly applying Eq. (2.32) from
k = 1 to k = N allows to write the N future states as a function of the current state and
future control inputs:

xtot = Fx0 +Hutot + Jdtot, (2.36)

where

xtot =


x1

x2
...

xN

 , utot =


u0

u1
...

uN−1

 ,

dtot =


d̃0

d̃1
...

d̃N−1

 , F =


Ã

Ã2

Ã3

...

 ,

H =


B̃0

ÃB̃0 B̃1

Ã2B̃0 ÃB̃1 B̃2
...

. . .

 ,

J =


I
Ã I

Ã2 Ã I
...

. . .

 .

Hence, all future states xtot are written as an affine combination of the current state
x0 (known), the control inputs utot (the controlled accelerations, to be determined by
a maneuver planning algorithm) and a term representing the perturbing accelerations
Jdtot (known).

2.3.4. ACCURACY OF DISCRETIZED MODEL
This section investigates the accuracy that is achieved using the discretized dynamics
formulation in the absence of controlled accelerations. Since both the input matrix and
the disturbing accelerations are approximated at the geostationary slot center, the ac-
curacy depends on the actual trajectory that is flown and to gain quantitative insight, a
Monte-Carlo analysis was done. Trajectories inside the geostationary slot with random
initial conditions are compared between the discretized linear dynamics approach in-
troduced in this work and a validated propagator (see Section 2.7) including all major
perturbations.

In order to use Eq. (2.32) both the B matrix and the disturbing accelerations at the
geostationary slot center are required at every discrete node. To obtain the disturbing
accelerations, the aforementioned propagator was used to obtain the accelerations at all
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discrete points in time in the interval of interest.
The initial state was determined using random variations of the orbital elements in

the same interval as presented in Eq. (2.17), except for ∆a, since a large ∆a would drift
the satellite quickly outside of the geostationary slot and hence ∆a ∈ [−500,500] m. In
addition to the aforementioned random initial conditions, the day of the year was also
randomly chosen to account for any part of the solar year. The analysis has been done
for the particular geostationary slot at 19.2◦E corresponding to the reference mission de-
fined in Section 2.6.

The results are presented in terms of Cartesian distances in Figures 2.1 and 2.2 and in
terms of orbital elements in Figures 2.3 and 2.4. The discretization timesteps range from
several hundred seconds to half a day. The figures show the Root-Mean-Square (RMS)
and Worst-Case (WC) errors after respectively 1 and 7 days of propagation, for several
timesteps. The values are obtained using 2000 Monte-Carlo runs with random initial
conditions as specified before.

Several conclusions can be drawn from the figures. The first is that reducing the dis-
cretization timestep further than approximately 3000 s will not increase the accuracy of
propagation using the discretized linear dynamics formulation. Secondly, the errors that
are introduced through the simplifying assumptions discussed in Section 2.3 are clearly
visible, but acceptably small for station-keeping purposes, even if used in an open-loop
control setting. Realistic uncertainties after one week of propagation as a result of orbit
determination errors only are in the order of 400 m, 4000 m and 1800 m in respectively
radial, tangential and normal directions [14]. Including also maneuver errors will signif-
icantly increase these values and hence, even the worst-case modeling errors observed
only have a small impact on the total error budget. Thirdly, for discretization timesteps
below 3000 s, the error grows roughly linear over time, i.e. the error after 7 days of propa-
gation is roughly 7 times the error after one day (this was confirmed for a range of errors
between 0 and 7 days).

2.4. MEAN AND OSCULATING ORBITAL ELEMENTS

The synchronous elements, with the exception of ∆L, are integration constants in the
Keplerian two-body problem [15]. In the absence of controlled and disturbing acceler-

ations, the orbital elements
(
∆n, ex , ey , ix , i y

)T are thus constants, while ∆L is chang-
ing at a constant rate of ∆n. In the presence of disturbing accelerations the orbital ele-
ments vary in time. By integrating Eqs. (2.7) with perturbing accelerations as inputs we
obtain the orbital element variations. The orbital element variations can be separated
into short-term periodic variations, long-term periodic variations and secular variations.
Station-keeping of a geostationary satellite generally requires “maintaining the satellite
inside the geostationary slot” for a single satellite, or “maintaining the satellites inside
the geostationary slot while maintaining a minimum separation distance with respect
to other satellites” in case of collocation. A minimization of propellant consumption is
always (one of) the major objectives of the guidance and control strategy. Therefore,
it is generally desirable to compensate only for the effects of secular variations (unless
the periodic effects are so large that other constraints are violated, e.g. the geostationary
slot boundaries). Since an accurate orbit determination gives us the satellites’ osculating
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Figure 2.1: RMS error in RTN frame after 1 and 7 days of propagation as a function of discretization timestep
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Figure 2.2: Worst-Case error in RTN frame after 1 and 7 days of propagation as a function of discretization
timestep
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Figure 2.3: RMS error after 1 and 7 days of propagation as a function of discretization timestep

Discretization timestep [s]

103 104W
o

rs
t-

C
as

e
E

rr
o

r
ov

er
20

00
M

C
sa

m
p

le
s

[r
ad

/-
]

10−7

10−6

10−5

10−4

δe 7 days

δi 7 days

∆L 7 days

δe 1 day

δi 1 day

∆L 1 day

Figure 2.4: Worst-Case error after 1 and 7 days of propagation as a function of discretization timestep



2.4. MEAN AND OSCULATING ORBITAL ELEMENTS

2

43

state (i.e. equivalent to the instantaneous (osculating) orbital elements, including also
the periodic variations), and since guidance strategies for geostationary satellite station-
keeping might be more efficiently defined in terms of mean orbital elements (i.e. the
orbital elements with (some) periodic variations removed), a method is required to con-
vert between mean and osculating orbital elements.

The usual approach is to define the mean orbital elements as orbital elements that
are averaged over some period. The most common averaging period is one orbital period
T , resulting in the following definition of mean orbital elements:

oem (t ) = 1

T

∫ t+T /2

t−T /2
oe (τ)dτ. (2.37)

Using this equation for averaging removes only periodic variations with one orbital pe-
riod. By choosing a longer averaging time, periodic variations with longer periods can
be removed as well.

We identify the periodic variations that we wish to remove and motivate this with a
qualitative argument regarding the orbital element variations due to perturbing accel-
erations in the RTN reference frame. The impact of a perturbing acceleration on the
orbital elements can be seen from Eq. (2.7). Since an ideal geostationary satellite is sta-
tionary with respect to a certain position on the Earth, the perturbing accelerations due
to the geopotential are approximately constant (as long as the satellite is controlled to
stay within a predefined geostationary slot). Looking at the terms in B in Eq. (2.11) such
constant accelerations cause only periodic effects with orbital period on the eccentricity
and inclination vectors, while the effect on the mean orbital motion and mean longitude
difference are of secular nature and hence can be excluded from the transformation be-
tween mean and osculating elements. The perturbation due to solar radiation pressure
has its main effect on the eccentricity vector; the eccentricity vector traces out an ap-
proximate circle over the course of one year with the satellite’s relative perigee pointing
in the direction of the Sun (relative perigee here refers to the perigee relative to the cen-
ter of the circle that is traced out). This natural eccentricity circle is usually so large that
it would result in violations of the geostationary slot boundaries, hence the effects of this
perturbation need to be compensated by the control strategy. Thus, we should exclude
this perturbation from the conversion between mean and osculating orbital elements.
The two remaining dominant perturbations are due to Sun and Moon gravity. These
perturbations have both short term periodic effects with orbital period as well as effects
with much longer periods. We found that the periodic variations of mean orbital motion
difference, eccentricity vector and inclination vector due to luni-solar gravity with peri-
ods up to one year are small enough to leave uncontrolled. In terms of mean longitude
difference the periodic variations with (half-)yearly period have too large of an effect on
the mean longitude difference and these variations need to be controlled, whereas the
periodic effect with smaller period can be left uncontrolled.

Table 2.1 provides an overview of the periodic variations that we wish to include in
the transformation between mean and osculating orbital elements. We note that in a
setup in which mean orbital elements are constrained we should account for the (maxi-
mum) magnitude of the mean-to-osculating variation to avoid crossing the geostation-
ary slot boundaries. What remains is to develop a method that approximates these vari-
ations as a function of time for a particular geostationary slot.
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Table 2.1: Overview of the periodic variations that should be included in the transformation between mean
and osculating orbital elements.

Geopotential SRP Sun/Moon gravity
Element Periods to include in transformation

∆n None None ≤ 1 year
ex T None ≤ 1 year
ey T None ≤ 1 year
ix T None ≤ 1 year
i y T None ≤ 1 year
∆L None None ≤ 1 month

In order to do so we implemented Kamel’s synchronous satellite ephemeris ([16]),
which essentially provides a solution to the equations of motion of a satellite in a geo-
stationary orbit, assuming that the satellite is kept close to some desired location, e.g.
a geostationary slot center. Kamel’s solution considers the Earth’s geopotential, up to
3rd order and degree and luni-solar perturbations. Kamel uses a slightly deviating set of
non-singular synchronous elements,

oeK (t ) =



h1

h2

e1

e2

g1

g2

=



sin i cos(Ω)
sin i sin(Ω)

e cos(ω̃)
e sin(ω̃)

L0 +
∫ t

t0
ndt −α (t )

0.5
(
a/ageo −1

)

 , (2.38)

which we can easily convert to the set of orbital elements used in this work, Eq. (2.6).
To analyze the orbital element variations we use the method outlined in [16], while set-
ting the terms in the solution of g1 and g2 arising from Earth gravity perturbations to
zero. The resulting variations in the orbital elements are the required variations due to
the geopotential with orbital period (eccentricity and inclination vectors only) and the
perturbations due to the luni-solar gravity (including also variations with longer periods
than the desired ones from Table 2.1), under the assumption that the satellite stays close
to the geostationary slot center.

To determine the mean elements from the osculating elements we average the ele-
ments over the longest period of the variations that we wish to capture in the transfor-
mation according to Table 2.1. Thus for a particular orbital element the integral

oem (t ) = 1

Pav

∫ t+Pav/2

t−Pav/2
oe (τ)dτ, (2.39)

where Pav is the averaging period (one year for the first five elements and one month for
∆L), can be evaluated to obtain the mean element at Epoch t . To obtain the difference
between mean and osculating elements we evaluate

oeo2m (t ) = oeosc (t )−oem (t ) (2.40)
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Figure 2.5: Osculating and mean variations of the mean orbital motion based on Kamel’s synchronous satellite
ephemeris

at epoch t . Under Assumptions 2.2 and 2.3 the accelerations (and hence also the vari-
ations) at any point in the slot can be approximated by those experienced by a virtual
satellite in the center of the slot and hence the difference between mean and osculating
elements oeo2m (t ) can be evaluated ahead of time for any time in the foreseeable future.

Instead of evaluating the integral in Eq. (2.39) we can approach this problem in a
simpler manner. We assume that we can approximate the mean variations oem (t ) using
an affine function (at least for the first five elements). To get this approximated mean
variation an affine function is fitted though the orbital element variations from Kamel’s
solution. The difference between the “real” variations and the affine fit is our mean-to-
osculating conversion (i.e. a nonlinear function of time for each element, which is, as
before, time-dependent but not state dependent). This approach is used for ∆n and the
elements of the eccentricity- and inclination vector. We have performed and compared
both approaches, Eq. (2.39) and an affine fit, and although the difference is small we
choose to use the affine fit as it leads to a small improvement in propellant consumption
(approximately 0.07% for the investigated period of March 2010 to March 2011) at the
cost of slightly larger absolute values of oeo2m (t ).

Figures 2.5, 2.6 and 2.9 show the nonlinear orbital element variation over the course
of a year (starting from the zero state), together with a linear fit. Figures 2.7 (and a zoom
in Figure 2.8) and 2.10 show the osculating to mean function (for ∆n this plot was omit-
ted, since it indistinguishable from the ∆nosc plot, because for ∆n the mean is zero (i.e.
the mean orbital energy does not change (significantly) over time). The figures were all
derived starting on 1 March 2010, 10:00:00 UTC, for 365 days, at a longitude of 19.2◦.

For the mean longitude we do not fit a linear function, but an 8th order polynomial
function. The key reason for doing this is that we wish to capture the yearly periodic
behavior inside the mean variation. If we would not do this, the difference between the
natural variations of ∆L due to Sun and Moon gravity and a mean approximated by an
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Figure 2.8: Zoom of osculating-to-mean variations of the eccentricity vector based on Kamel’s synchronous
satellite ephemeris
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Figure 2.10: Osculating-to-mean variations of the inclination vector based on Kamel’s synchronous satellite
ephemeris

affine fit would take up most of the longitude window. This approach is equivalent to
averaging ∆L over a period of one month (as indicated in Table 2.1). Furthermore, the
longitude corrections are usually obtained as a by-product of eccentricity control and
no (significant) increase in propellant consumption is expected because of controlling
these yearly variations. The approach for ∆L is visualized in Figure 2.11 and it is clear
from the figure that an affine fit would leave large variations in the transformation be-
tween mean to osculating elements.

In an operational scenario the osculating orbital elements at some epoch t are ob-
tained from an orbit determination. The difference between osculating and mean el-
ements oeo2m (t ) is obtained using the outlined approach. In practice we determine
oeo2m (t ) once over a time period of interest (e.g. one year, or the duration of the mis-
sion) and store this function for transforming between mean and osculating elements as
a set of piecewise polynomials in a database, which can be queried at any time of inter-
est.

The transformation between mean and osculating elements is reduced to a time-
dependent addition (or subtraction) which is identical for all satellites in a geostationary
slot because it is determined for the geostationary slot center. This has an advantage
for collocation; the relative orbital elements between two satellites formed using mean
orbital elements are identical to those formed using osculating orbital elements and we
can use either one to evaluate the relative geometry using Eq. (2.43). Table 2.2 provides
the maximum mean-to-osculating variations over the course of one year for an exem-
plary satellite located at 19.2◦E.

We used Kamel’s solution to the equations of motion to obtain the transformation be-
tween mean and osculating elements. Alternatively, we could have integrated Eq. (2.13)
with the perturbing accelerations (Earth, Sun and Moon gravity) as experienced by the
geostationary slot center (with the terms arising from the Earth gravity perturbations set
to zero for respectively ∆n and ∆L). This method would increase the accuracy of the
transformation because the model used to obtain the transformation would be consis-
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Figure 2.11: Osculating, mean and osculating-to-mean variations of the mean longitude difference based on
Kamel’s synchronous satellite ephemeris

Table 2.2: Maximum mean to osculation variations of the synchronous orbital elements over one year for a
satellite at 19.2◦, over the period 1 March 2010 to 1 March 2011.

Max. mean to osculating variation

∆n 4.8 nrad/s
ex 0.12 10−3

ey 0.12 10−3

ix 0.53 mrad
i y 0.49 mrad
∆L 0.23 mrad
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tent with the model underlying our simulations. We choose not to do so and as such
introduce a slight error between our simulated “reality” and the variations as expected
from Kamel’s model in much the same way that a model used in operations would differ
from the actual perturbations as experienced by the satellite. We performed a compari-
son to verify that the variations obtained from Kamel’s model match well with our prop-
agator providing an indirect validation that both Kamel’s model as well as the propagator
were implemented correctly.

2.5. RELATIVE DYNAMICS

After having analyzed the single satellite dynamics, we extend the analysis to the rela-
tive motion of multiple geostationary satellites. The relative dynamics of geostationary
satellites find their application when multiple satellites are collocated in a single slot.
The equations we provide describe the position of a follower satellite relative to a leader
satellite.

2.5.1. RELATIVE ORBITAL ELEMENTS

Blumer, [17], introduces the following relative motion model in spherical coordinates
valid for near circular, near equatorial orbits:

∆R ≈ − 2
3

a
n∆n −a∆ex cosL−a∆ey sinL

∆λ ≈ ∆L+2∆ex sinL−2∆ey cosL+∆n (t − t0)
∆φ ≈ ∆ix sinL−∆i y cosL.
∆Ṙ ≈ na∆ex sinL−na∆ey cosL
∆λ̇ ≈ ∆n +2n∆ex cosL+2n∆ey sinL
∆φ̇ ≈ n∆ix cosL+n∆i y sinL,

(2.41)

where the relative orbital elements on the right side of the equation, indicated by ∆,
are the arithmetic differences between a follower and a leader satellite. The absolute
orbital elements refer to the leader’s orbital elements (i.e. a, n and L). These relative
spherical coordinates can be mapped into Cartesian relative position and velocity in the
RTN-frame attached to the leader satellite as follows:



x
y
z
ẋ
ẏ
ż

≈



∆R
a∆λ
a∆φ
∆Ṙ

a∆λ̇
a∆φ̇

 , (2.42)

where x, y and z are the relative Cartesian coordinates in the RTN reference frame at-
tached to the leader satellite. Substituting the expressions on the right side of Eq. (2.42)
by those on the right side of Eq. (2.41) and setting t = t0, we obtain a linear mapping
between relative orbital elements and the relative Cartesian position and velocity in the
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RTN reference frame:

x
y
z
ẋ
ẏ
ż

≈ a



− 2
3n −cL −sL 0 0 0
0 2sL −2cL 0 0 1
0 0 0 sL −cL 0
0 nsL −ncL 0 0 0
1 2ncL 2nsL 0 0 0
0 0 0 ncL nsL 0





∆n
∆ex

∆ey

∆ix

∆i y

∆L

 . (2.43)

Here cL and sL refer to respectively cosL and sinL. This mapping is not only valid for
relative orbital elements of a leader and a follower satellite, it is also valid for the syn-
chronous orbital elements of a satellite and the center of the geostationary slot. The
geostationary slot center is the zero state, thus any absolute synchronous state is also a
relative state between a satellite and its slot center.

The mapping is still depending on the leader’s state. If required, this dependency can
be removed by replacing a by ageo, n by ngeo and L by αgeo for satellites inside a geosta-
tionary slot (i.e. the mapping is linear).

We further analyze this mapping to understand how relative orbital elements can be
used to ensure safe separation distances between satellites. As in [15] we write relative
eccentricity and inclination vectors in polar notation:

∆e =
(
∆ex

∆ey

)
= δe

(
cosδω̃
sinδω̃

)
, (2.44)

∆i =
(
∆ix

∆i y

)
= δi

(
cosδΩ
sinδΩ

)
. (2.45)

Note that we intentionally used δe 6=∆e and δi 6=∆i to indicate the magnitude and δω̃ 6=
∆ω̃ and δΩ 6= ∆Ω to indicate the phase of relative eccentricity and inclination vectors.
We further define δM = L−δω̃ as the angle between the (approximate) satellite position
vector and the relative eccentricity vector and δω= δω̃−δΩ as the angle between relative
eccentricity and inclination vectors. We also defineδL =∆Li−∆L j

(= Li −L j =∆L
)

as the
difference in mean longitude between satellite i and j . Lastly we can define δa = ∆a/a
(non-dimensional) and rewrite −2/3a/n∆n as aδa allows to write the relative position
in RTN coordinates from Eq. (2.43) as:

x ≈ aδa −aδe cosδM
y ≈ aδL+2aδe sinδM
z ≈ aδi sin(δM +δω) .

(2.46)

From these equations we obtain a set of equations in non-dimensional coordinates by
scaling each equation by aδe:

x/(aδe) ≈ ϕa −cosδM
y/(aδe) ≈ ϕL +2sinδM
z/(aδe) ≈ ϕi sin(δM +δω) .

(2.47)

where ϕa = δa/δe, ϕL = δL/δe and ϕi = δi /δe are defined as rational relative orbital
elements. We introduce these elements to support the design of relative motion under
geometric constraints in Chapter 3.
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2.5.2. RELATIVE ORBITAL MOTION
In this section we analyze the instantaneous non-dimensional relative orbit as a function
of the rational elements ϕa , ϕe , ϕi and the phasing angle between relative eccentricity
and inclination vectors δω. The instantaneous relative orbit is obtained by evaluating
Eqs. (2.47) for fixed ϕa , ϕe , ϕi , δω in the interval δM ∈ [0,2π].

The instantaneous relative orbit is restricted to lie on the surface of an elliptical cylin-
der of height ϕi . The projection of the relative orbit in the radial and tangential plane is
a 1:2 ellipse, forming the base of the cylinder. The center of the ellipse is shifted by ϕa

in radial, and by ϕL in tangential-direction. The relative mean anomaly δM is the fast
variable and determines the position of the satellite in the relative orbit. Under the con-
dition of drift-free motion ∆n = 0 (or energy matching, or semi-major axis matching),
and assuming Keplerian motion, the relative orbit is closed. Due to the scaling by aδe,
the non-dimensional relative orbit is fully specified by only four parameters in a Carte-

sian coordinate system. The center of the relative orbit is given by
(
ϕa , ϕL , 0

)T . The
non-dimensional height is specified by ϕi and to retrieve the dimensional height aδe is
required. The orientation of the relative orbital plane is a function of ϕi and δω and can
be defined by the relative orbit-normal vector:

δhϕ =
 −2ϕi sinδω

ϕi cosδω
−2

 (2.48)

To verify that this vector is indeed perpendicular to the relative orbital plane we need

to show that its perpendicular to δp = (−cosδM , 2sinδM , ϕi sin(δM +δω)
)T for any

choice of δM . We work out the inner product between these vectors and show that it is
equal to zero:

δhϕ ·δp = 2ϕi cosδM sinδω+2ϕi sinδM cosδω−2ϕi sin(δM +δω)
= 2ϕi sin(δM +δω)−2ϕi sin(δM +δω)
= 0.

(2.49)

In the following, we present a set of figures that demonstrate the effect of variations in
these rational elements on the relative orbital plane. The simplest variations are vari-
ations in ϕa and ϕL . They simply shift the instantaneous relative orbit in respectively
radial and tangential directions. Figures 2.12 and 2.13 demonstrate this in three dimen-
sions, with the bar on the right of the figures indicating the magnitude of the variations
in respectively ϕa and ϕL . From Figure 2.13 we observe that by increasing (or decreas-
ing) ϕL , the relative orbits trace out a tube. The same would be true for ϕa if we had
chosen a different value for δω (i.e. δω= 0 is the degenerate case tracing out a line).

Next, we investigate the variation in ϕi . By increasing or decreasing this rational
element, the relative orbit is respectively stretched or squeezed in normal direction. Fig-
ure 2.14 shows this stretching and squeezing and also shows the direction of the relative
orbit-normal vector δhϕ. For vanishing ϕi , this vector points in the direction of the neg-
ative normal axis, while for increasingly large ϕi , the pointing direction approaches the
tangential axis.

Lastly, we investigate the effect of varying δω. By varying δω, only the orientation
of the relative orbit changes. In terms of the elliptical cylinder introduced earlier, the
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Figure 2.12: Visualization of the effect of varying ϕa on the instantaneous relative orbit. The other elements
are kept constant: δω= 0, ϕi = 1 and ϕL = 0
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Figure 2.13: Visualization of the effect of varying ϕL on the instantaneous relative orbit. The other elements
are kept constant: δω= 0, ϕi = 1 and ϕa = 0
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Figure 2.14: Visualization of the effect of varying ϕi on the instantaneous relative orbit. The other elements
are kept constant: δω= 0, ϕa = 0 and ϕL = 0



2.6. REFERENCE MISSION AND SATELLITE CHARACTERISTICS

2

55

−2

0

2

−2

0

2

−2

0

2

δω

Radial [aδe]
Tangential [aδe]

N
o

rm
al

[a
δ

e]

0

1

2

3

4

5

6

Figure 2.15: Visualization of the effect of varying δω on the instantaneous relative orbit. The other elements
are kept constant: ϕa = 0, ϕL = 0 and ϕi = 1

location where the relative orbit reaches the top of the cylinder makes a complete rev-
olution of the cylinder top boundary for δω ∈ [0, 2π], as visualized in Figure 2.15. The
figure also clearly shows the elliptical cylinder itself, with heightϕi and its center located

at
(
ϕa , ϕL

)T . As δω is varied from 0 to 2π the relative orbit-normal vector traces out the
boundary of a 2:1 elliptical cone as expected from Eq. (2.48).

2.6. REFERENCE MISSION AND SATELLITE CHARACTERISTICS
In this section we present a number of key characteristics of the reference mission un-
derlying the simulations presented in this work, together with a number of important
characteristics of the simulated satellites.

2.6.1. MISSION CHARACTERISTICS

Although all methods developed in this work are independent of the particular longitude
of the geostationary satellite, we choose to focus on one particular longitude, namely a
geostationary slot centered on 19.2◦E. This slot was chosen for several reasons;

• it is a slot in which the satellite operator SES currently collocates several satellites,
i.e. the slot has a demonstrated relevance,
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• the slot has a significant perturbing acceleration due to tesseral gravity perturba-
tions (approximately 5 ·10−6 m/s),

• the derivative of this perturbing acceleration with respect to longitude is also sig-
nificant (approximately −2.2 ·10−7 m/s2/deg).

As such it is a challenging slot for using the LTV dynamics. All simulations done in this
work focus on a geostationary slot centered on this longitude. The simulations all start
at the same epoch, namely 1 March 2010 at 10:00:00 (UTC). Focusing on the same slot
and the same simulation epoch allows us to easily compare the simulation results.

2.6.2. SATELLITE CHARACTERISTICS
We consider a medium to large class geostationary satellite, with a considerable sur-
face area. The satellite is assumed to have an in-orbit mass of 3000 kg, a surface area
of 120 m2 and a reflection coefficient CR of 1.2. This area-to-mass ratio is slightly above
average [18] and therefore rather worst-case regarding the SRP perturbation. In one of
the simulations we reduce the surface area of one of the satellites in the fleet to 90 m2 so
that the satellites in that particular simulation are influenced differently by SRP.

Most common geostationary satellites are three-axis stabilized platforms with an
Earth-pointing payload and solar panels on drive mechanisms. This design allows to
keep the satellite attitude constant in an Earth-fixed reference frame and thus for a geo-
stationary satellite also in the RTN reference frame. We state the assumption explicitly:

Assumption 2.4. The satellite attitude is constant in the radial, tangential, normal ref-
erence frame.

This assumption allows us to ignore attitude control in the station-keeping algorithm
and ensures a time-invariant sensor geometry in RTN reference frame.

The most relevant satellite characteristics for the maneuver planning are the thruster
configuration and characteristics. We use two types of thrusters in the analysis, based on
typical chemical and electric thrusters. Since we neglect the mass decrease due to expen-
diture of propellant, the only relevant characteristics of the thrusters are the thrust force
and the minimum on-time. Chemical thrusters are able to produce much larger thrust
forces, and the on-time of these thrusters can go down to millisecond level. We assume
a 10 N thruster in our simulations and limit the minimum on-time to 0.1 s [19]. Electric
propulsion systems typically have a much smaller thrust force. Their key advantage is
that they are an order of magnitude more efficient, so that the propellant-to-mass ratio
of the satellite can be decreased. When electric thrusters are switched on, it takes a much
longer time before reaching a reliable and stable burn, i.e. the transient behavior is much
longer. Therefore, the minimum on-time for an electric thruster is usually constrained
to a much higher value than for a chemical propulsion system. The typical values used
in this work are modeled after the Boeing XIPS 25 cm thruster (79 mN thrust) [20] and
SPT-100 thruster (83 mN thrust) [21] and summarized in Table 2.3.

Chemical propulsion thrusters are generally aligned with North, East, South and
West directions. We define a reference (REF) configuration for a satellite with a chemical
propulsion system in Fig. 2.16. The arrows in the thruster configuration diagrams point
in the direction of the force that is exerted on the spacecraft by each thruster (which is
opposite to the exhaust plume). Such a thruster configuration ties in well with the dy-
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Table 2.3: Thrusters and characteristics used in this work.

Chemical thruster Electric thruster

Thrust force 10 N 80 mN
Minimum on-time 0.1 s 60 s

Figure 2.16: Schematic of thruster configuration REF. The arrow points in the direction of the force exerted on
the satellite by the thruster. None of the thrust vectors have a radial component.

namics, since the controlled accelerations are defined in radial, tangential and normal
direction of the orbital reference frame (n.b. tangential and normal directions corre-
spond to respectively East/West and North/South directions) and the dynamics in the
radial and tangential plane are decoupled from the normal dynamics, see Eq. (2.11).
Note that on most satellites, the thrusters do not really point towards the center of mass
as in these simplified pictures, but instead are offset, such that the orbit control ma-
neuvers can be used to simultaneously manage the satellite’s angular momentum. Such
configurations are not further investigated in this work; we assume each thrust force vec-
tor to pass through the satellite’s center of mass and attitude dynamics are ignored.

Satellites employing an electric propulsion system usually have a different layout.
North and South sides are home to solar panels, and the plumes originating from an elec-

Figure 2.17: Schematic of thruster configuration A. The arrow points in the direction of the force exerted on
the satellite by the thruster. None of the thrust vectors have a radial component.
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Figure 2.18: Schematic of thruster configuration B with thrust vector projections on TN, RT and RN planes.
The arrow points in the direction of the force exerted on the satellite by the thruster.

tric thruster can cause significant degradation of the solar panel. Hence, the thrusters
are generally tilted away from the North and South directions to avoid contamination.
Furthermore, such configuration reduces the effect of plume impingement, which can
cause parasitic thrusts in undesired directions. We define two exemplary electric propul-
sion thruster configuration with four thrusters. We seek symmetric configurations and
describe the orientation of the thrusters by two rotations. For thrusters T1 and T4 we
first rotate a vector pointing North over an angle γ ∈ [0,90◦], while for T2 and T3 we
rotate a vector pointing South over an angle γ ∈ [0,90◦], both rotations are toward the
radial direction. A second rotation is applied as follows; thrusters T1 and T2 are rotated
by an angle β ∈ [0,90◦] about the North-axis (towards the East) and T3 and T4 at an an-
gle β ∈ [0,90◦] about the South-axis (towards the West). One configuration (A) used in
this work is obtained for γ = 45◦ and β = 90◦, shown in Fig. 2.17. With this choice for β
and γ the thrust vector lies completely in the tangential-normal plane, which is a com-
mon choice for geostationary satellites. This configuration is similar as implemented
on the Hispasat Advanced Generation 1 mission [22]. Another configuration (B), that is
analyzed in this work, is obtained by choosing γ = 45◦ and β = 10◦. Fig. 2.18 shows the
projected thrust force vectors in the TN, RT and RN planes. Note that for this configu-
ration the thrusters are all pointing away from the solar panels as well as away from the
Earth-facing panel. This configuration is similar to the configuration defined by Anzel in
[23].

For thruster configuration A it is possible to calculate maneuvers in EW and NS
directions and realize these maneuvers using the thrusters (e.g. a pure North maneu-
ver would be executed by firing thrusters T2 and T3 simultaneously). Alternatively, the
thruster configuration can be taken into account in the dynamics formulation by em-
ploying a matrix that maps the individual thrust directions to accelerations in the radial,
tangential and normal directions. The second approach is used in this work because
it enables thruster configurations that cannot realize for instance, pure North or South
maneuvers, such as configuration B, and a slight reduction in propellant consumption is
possible by directly optimizing the individual thruster firings. Thrust forces are mapped
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into radial, tangential and normal directions as follows;

u = Γτ, (2.50)

where τ = (T1,T2,T3,T4)T is the vector of individual thrust forces and Γ is the thruster
configuration matrix. For our definition of β and γ we obtain:

Γ= 1

m

−sinγcosβ −sinγcosβ −sinγcosβ −sinγcosβ
−sinγsinβ −sinγsinβ sinγsinβ sinγsinβ

−cosγ cosγ cosγ −cosγ

 (2.51)

This matrix can be used to reformulate Eq. (2.36) to:

xtot = Fx0 +HΓτtot + Jdtot, (2.52)

with

Γ=

Γ Γ

. . .

 . (2.53)

and τtot =
(
τT

0 ,τT
1 , ...,τT

N−1

)T
. This formulation relates the thrusts by each thruster to the

satellite state, described in synchronous orbital elements.
Note that these thruster configuration matrices can simultaneously be used to cap-

ture (the deterministic part of) thruster cross couplings due to, e.g., plume impingement
or misalignments.

2.7. SIMULATION ENVIRONMENT
Simulations are used to analyze the guidance and control strategies for station-keeping
and collocation that are developed in the next chapters. This section provides a short
overview of the simulation environment and the models that were implemented. The
actual simulation results follow in later chapters, after introducing the guidance and
control methods.

The simulations are carried out using Matlab. The simulation architecture resem-
bles that of the control loop depicted in Figure 2.19. The core of the simulator is the
plant model, which is essentially a propagator that was developed and validated in the
frame of this research. The propagator numerically integrates the equations of motion,
Eq. (2.1) with perturbing accelerations from Eqs. (2.2), (2.3) and (2.4). This is generally
referred to as Cowell’s method. We are using the classic 4th order Runge-Kutta method
for the numerical integration with a 108 s timestep. An investigation revealed that this
timestep resulted in relative errors of less than 1 m for a propagation horizon of 7 days.
Note that 108 s has the convenience that exactly 800 timesteps fit inside a single day. The
propagator includes Earth gravity perturbations up to 10th order and degree. The imple-
mented model is the 2008 Earth Gravity Model [24]. Further perturbations are those due
the Sun and Moon gravity with analytic models for the position of Sun and Moon ac-
cording to [1], as well as solar radiation pressure, including the effect of eclipses. Hence
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Figure 2.19: High level simulation architecture

the dominant perturbations in a geostationary orbit are included. To increase the com-
putational speed we have auto-coded the propagator to C, compiled it into a mex func-
tion, which we then call from Matlab. The propagator properly deals with discontinuous
events caused by thruster firings, by temporarily adjusting the integration step-size.

Following the control loop in Figure 2.19 in clockwise direction, the next building

Table 2.4: Overview of perturbations included in the simulations. The models were implemented based on [1].

Perturbation Implementation

Geopotential 10th order and degree
Sun gravity Analytic model
Moon gravity Analytic model
SRP Analytic model

block is a module for orbit determination. In an operational scenario, this is where mea-
surements are used to determine the satellite’s orbit. These measurements are typically
originating from one or two ground stations making angular measurements of the satel-
lite’s position (i.e. they determine the satellite’s azimuth and elevation with respect to
the station) and/or range and range-rate measurements. These measurements are then
used to determine an orbit that fits the measurements. To achieve this fitting, the mea-
surements are modeled and the orbit determination process attempts to determine an
initial state and a set of parameters such that the difference between the modeled and
actual measurements is minimized, usually in a (weighted) least-squares sense. An al-
ternative source of measurements, or even an orbit determination solution, is a GNSS
receiver. Such receivers are nowadays standard on LEO satellites, and are slowly being
applied to geostationary satellites [25], [26]. The reason for this delayed application is
that it is much more challenging to track GNSS signals and reliably determine the satel-
lite state from GNSS measurements in GEO. The GNSS satellites are pointing their an-
tennas (which are highly directional) towards the Earth, and since geostationary satel-
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lites are in a higher orbit than these GNSS satellites, they can only receive the signals
that “just” miss the Earth (at least for the main lobes of the signals). This significantly
reduces the number of satellites that are visible from GEO. Furthermore, since the signal
strength decreases with the square of the distance, the signals are much weaker in GEO
than in LEO. Lastly, the signals are all coming from within a small cone (as see from the
GEO satellite), resulting in a significantly less beneficial observation geometry than in
LEO (but typically better than using ground station tracking measurements). These fac-
tors make it much more difficult to perform an orbit determination from GNSS satellites
in GEO and explain the reduced acceptance compared to LEO satellites. GNSS receivers
for GEO satellites are nevertheless an important development that may pave the way
for more automatic or autonomous station-keeping strategies. Since we focused our ef-
forts on the guidance and control blocks, the orbit determination module is basically an
empty module and we assume that state measurements (inertial position and velocity)
are available in the maneuver planning module (albeit with an uncertainty characterized
by a covariance matrix as discussed in Section 2.8).

Apart from the orbit determination module, the guidance module provides inputs
to the maneuver planning. This guidance module is one of the key focal points in this
work. We treat the problem of station-keeping of a geostationary satellite, or a fleet of
satellites, using relative orbital elements. The guidance module is then the place where
the “desired” relative orbital elements are determined (either in terms of mean or oscu-
lating orbital elements), together with their tolerance windows. It is also the place where
the duration of the maneuver cycle is determined, and where constraints on the maneu-
vers are formulated. Examples are to exclude maneuvers on the 7th day of the maneuver
cycle, or to avoid maneuvers during eclipses or if maneuvers are executed according to
a schedule, this is the place to formulate the schedule. In summary, it is the place where
the state and control constraints are defined.

Both the guidance module and the orbit determination module provide inputs to
the maneuver planning module. This module contains the algorithm(s) that are used to
calculate the actual maneuvers, whether based on the solution of an optimization prob-
lem, or on a set of analytical equations. In the case of a maneuver plan resulting from
an optimization problem, we usually obtain (as a by-product) also the predicted satel-
lite trajectory. In case of collocation of a fleet of satellites, the predicted trajectory of
one satellite (e.g. the leader satellite) can be used as in input to the maneuver planning
module of another satellite (e.g. a follower satellite). The output of the maneuver plan-
ning module is a maneuver plan. Before arriving at a maneuver plan, there is usually a
processing step that takes either the analytically calculated ∆V ’s in RTN directions, or
a solution of an optimization problem and transforms this input into a maneuver plan.
In our simulations such a maneuver plan basically states the start-time and end-time of
each thruster firing, the thruster that executes the firing and the magnitude of the thrust.
Before transferring the plan to the propagator, maneuver errors are included and a sec-
ond processing takes place that transforms the maneuver plan into a set of accelerations,
together with start- and end-times.

The maneuver plan (including errors) arrives at the plant and is used as an input to
the propagator to simulate the motion of the satellite over the propagation horizon (usu-
ally the duration of a maneuver cycle), before the process starts again.
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In Chapters 3 to 5 we will discuss the guidance and maneuver planning modules in
more detail.

2.8. MODELING OF ERRORS
Comparing real-world data to simulated data will invariably result in differences. These
differences can enter the system, e.g., through erroneous measurements, deviations from
planned and actual actuation or from differences between the real world and the models
used to describe the real world. Not considering the presence of sensor errors, actuator
errors and modeling errors can invalidate results, or depict the performance of certain
methods too optimistic. Hence, to validate the ideas and methods developed in this
work, we introduce errors into the simulations to evaluate the performance and robust-
ness of the methods. We identified the following dominant errors sources:

• Thrust force errors, both magnitude and direction,
• Orbit determination errors,
• Errors due to mismodeling of the SRP perturbation.

We discuss each of these errors briefly and present the set of simple models that were
used to model these errors.

THRUST FORCE ERRORS

An error in the magnitude of the thrust force is modeled as a constant error per thruster
firing (i.e. the error has no dynamics of its own) and we implement a thrust force error
as multiplicative error:

τ= τnom (1+∆τ) , with ∆τ =N (0,στ) , (2.54)

in which τnom is the nominal magnitude of the thrust force and ∆τ is a normally dis-
tributed random variable with zero mean and standard deviation στ. We assume that
all thruster firings are independent events (both multiple firings of the same thruster
and firings of different thrusters), since systematic errors can be minimized through a
calibration as part of routine operations. Thrust magnitude errors are implemented by
generating a random variable with the distribution of∆τ for each thruster firing in a ma-
neuver plan and adding it (in the multiplicative sense of Eq. (2.54)) to the nominal thrust
force. The thrust magnitude errors are generated from a standard distribution with στ =
0.0167, such that we have 3σ errors of 5% in thrust force magnitude. This value is conser-
vative, [27] and [28] report an impulse bit standard deviation well under 1% for thruster
firings exceeding 0.1 s in duration and a common value for electric propulsion systems
is 0.5% 1σ ([29]).

A thrust direction error is implemented by generating a random vector on the unit
sphere, and rotating the nominal thrust vector by an angle about this unit vector. The
random unit vector is defined by two angles, the azimuth θ and the polar angle φp in
spherical coordinates. These angles are formed using two random variables with uni-
form random distribution in the interval [0, 1], u and v [30] such that:

θ = 2πu (2.55)

and
φp = cos−1 (2v −1) (2.56)
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The nominal thrust force vector is then rotated about the unit vector

w = (
cosθ sinφp , sinθ sinφp , cosφp

)T (2.57)

over an angleα representing the magnitude of the attitude uncertainty withα=N (0,σα),
which is achieved using the rotation matrix

C = I+Ωsinα+Ω2 (1−cosα) , (2.58)

where I is the identity matrix andΩ is the skew-symmetric matrix associated to w:

Ω=
 0 −cosφp sinθ sinφp

cosφp 0 −cosθ sinφp

−sinθ sinφp cosθ sinφp 0

 . (2.59)

The errors in thrust direction are also considered statistically independent between thruster
firings and applied separately for each thruster firing in a maneuver plan. Systematic off-
pointing or misalignments and deterministic cross-couplings are assumed to be identi-
fied as part of routine operations and included in the thruster configuration matrix. The
remaining errors are due to satellite attitude errors and stochastic variations in the thrust
direction between consecutive firings. These remaining uncertainties are dependent on
the characteristics of the attitude and orbit control system and the propulsion system.
In this work we generate the thrust direction errors using a σα of 0.5◦.

ORBIT DETERMINATION ERRORS

Whenever a maneuver plan is calculated we assume that the satellite state is available
from an orbit determination process. Since no orbit determination process is perfect, we
perturb that satellite state by generating a 6-dimensional state error from a distribution
described by the covariance matrix in Table 2.5. The covariance matrix is based on real
data from a single ground station, using Azimuth, Elevation and range measurements
over a 24-hour data arc. A more accurate orbit determination could be achieved using
two (or more) ground stations and hence the orbit determination accuracy assumed here
is conservative. Note that the covariance matrix is defined in the RTN frame and thus we
can interpret a 6-dimensional state error generated using this covariance matrix as a
relative state in the RTN-frame and this erroneous relative state is transformed back to
the inertial frame.

SOLAR RADIATION PRESSURE MODELING ERRORS

As discussed earlier, uncertainty in the satellite’s mass, surface area and orientation of
the surface areas with respect to the Sun direction, as well as absorption and reflectivity
characteristics cause errors in the modeling of SRP. A rough bound on the uncertainty in
modeling SRP can be derived by assuming an uncertainty of 10% in area-to-mass ratio
(capturing mass, surface area and orientation of the surface area) and 5% uncertainty
in reflectivity characteristics. A worst-case (linear) addition results in a maximum 15%
uncertainty in SRP acceleration. The perturbing accelerations due to SRP are dominant
in the radial and tangential plane. The direction depends on the time-of-day.



2

64 2. MODELING GEOSTATIONARY SATELLITE AND ORBIT DYNAMICS

Table 2.5: Covariance matrix of orbit determination error, Radial (R), Tangential (T) and Normal (N) position
[m2] and velocity (V) [m2/s2]

R T N VR VT VN

R 8.83E+00 -3.39E+01 -1.57E−02 1.88E−06 -1.18E−03 -1.86E−05
T -3.39E+01 1.32E+05 -1.78E+01 6.33E−04 3.65E−03 -2.95E−03
N -1.57E−02 -1.78E+01 4.24E+02 -1.19E−05 3.65E−06 -9.40E−05

VR 1.88E−06 6.33E−04 -1.19E−05 3.22E−08 -2.00E−10 -1.30E−09
VT -1.18E−03 3.65E−03 3.65E−06 -2.00E−10 1.61E−07 1.90E−09
VN -1.86E−05 -2.95E−03 -9.40E−05 -1.30E−09 1.90E−09 2.25E−06

DISCUSSION OF ERRORS

The size and implementation of the various errors that are affecting the performance of
the station-keeping and collocation methods have an important impact on the results.
Each of the implementations used in this work can be questioned. For example, are the
thrust uncertainties really statistically independent? Although this would be the goal of
a calibration campaign, it cannot be guaranteed. Is the covariance matrix for generating
the state error not time-varying and dependent on the particular state and observation
geometry? Yes, but it is questionable whether simulating an orbit determination would
really render a more reliable representation of the error since the quality of an orbit de-
termination solution depends on many factors such as:

• the tracking schedule,
• the ground-station equipment used for making the measurements,
• the particular observation geometry, i.e. the location of satellite with respect to

ground station(s),
• measurement characteristics,
• and the accuracy of the models used for orbit determination.

Thus, even if we would be able to simulate an orbit determination in line with today’s
state-of-art, the results would still be valid only for the particular geometry, under cho-
sen assumptions.

We conclude here the following concept; the errors that were implemented in this
research are realistic and in most cases conservative. The key idea is that if we can come
up with a method that can be used to control a (fleet of) satellite(s) under the errors
assumed in these simulations, it has a real chance of succeeding under real-world con-
ditions.

2.9. CONCLUDING REMARKS
In this chapter we presented an overview of the modeling approach that was used in this
work. The dynamics of a satellite in a geostationary orbit were approximated using a
discretized LTV model. The model was derived using two key assumptions, namely, the
input matrix and the perturbing accelerations at the center of a geostationary slot pro-
vide a good enough approximation for a satellite anywhere else in the slot. The resulting
model expressed all states at the discrete nodes as an affine function of the initial state
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and controlled accelerations (or thrusts) over the discrete intervals. The formulation
is directly suitable for use in a convex parameter optimization problem. The accuracy
of the model has been investigated both analytically and numerically and although the
model is not accurate enough for high accuracy propagation purposes, it suffices for use
in operational scenarios to determine station-keeping or collocation maneuvers. In such
a scenario orbit determination errors and actuator errors are still an order of magnitude
larger than the errors introduced through the LTV approximation of the dynamics.

The approach to transforming between mean and osculating orbital elements relied
on the same assumption as the derivation of the LTV model. The periodic variations
of the synchronous orbital elements were analyzed assuming that the satellite experi-
enced perturbing accelerations as if it were at the slot center. The periodic variations
that were small enough to leave uncontrolled in a station-keeping strategy were identi-
fied and only those variations were included in the transformation between mean and
osculating orbital elements. Kamel’s synchronous satellite ephemeris was used to ana-
lyze the variations and to obtain expressions for the transformation between mean and
osculating orbital elements, either by averaging over a suitable period or by fitting an
affine function through the orbital element variations.

To support the formulation of guidance and control strategies for a fleet of collo-
cated satellites also the relative dynamics have been analyzed. A model was presented
that enables a linear transformation between relative (synchronous) orbital elements
and Cartesian position and velocity coordinates in the RTN frame. The linear model was
further simplified through the introduction of rational relative orbital elements. These
rational relative orbital elements are well-suited for the visualization of constraints on
relative states treated in the next chapter.

The key mission and satellite characteristics were introduced. An important char-
acteristic is the propulsion system configuration and three different configurations were
provided; one classic configuration for use with chemical thrusters and two thruster con-
figurations for an electric propulsion system. The formulation of the dynamics was ex-
tended to include the thruster configuration explicitly, relating directly the thrust forces
over the discretization intervals to the state at the discrete nodes. Finally, an introduction
was provided of the simulation environment and modeling errors that were included in
the simulations.
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3
ANALYSIS AND DESIGN OF

GUIDANCE UNDER GEOMETRIC

CONSTRAINTS

I have yet to see any problem,
however complicated, which,

when you looked at it the right way,
did not become still more complicated.

Poul Alderson

Mystery creates wonder and wonder is the basis of man’s desire to understand.

Neil Armstrong

Abstract
We identify three types of geometric constraints for station-keeping and collocation of geo-
stationary satellites: stay inside the geostationary slot, maintain minimum separation
distances and avoid the field of view of sensors. These constraints are analyzed in terms
of (relative) orbital elements. An approach for dealing with such constraints is presented
and an elaborate example is introduced to further substantiate the methodology.
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The goal of this chapter is to present a control-free analysis and an approach to de-
sign a guidance method using relative orbital elements. Both guidance for single satellite
station-keeping and collocation of a fleet of satellites are treated. Although several opti-
mization problems are formulated and solved in this chapter, the goal is not to solve the
guidance problem by optimization. Instead, a set of tools is provided that allows a mis-
sion analyst direct insight into fundamental relations between (rational relative) orbital
elements and geometric constraints on the satellite state.

3.1. APPROACH AND SCOPE OF ANALYSIS
The focus in this work is on guidance and control of geostationary satellites using rel-
ative orbital elements. Note that for a single satellite, the synchronous orbital elements
are identical to the relative orbital elements between a satellite and the geostationary
slot center. For two satellites, the set of relative orbital elements are the arithmetic dif-
ferences between the satellites’ synchronous orbital elements. In the analysis in this
chapter we also use the rational relative orbital elements introduced in Section 2.5.1.

The relative orbital elements are used to analyze the following three geometric con-
straints on geostationary satellites:

1. maintain the satellite(s) inside an assigned geostationary slot,

2. maintain a minimum separation distance between satellites collocated inside the
same geostationary slot,

3. avoid the field of view of (conic) sensors on other satellites in the same geostation-
ary slot.

An important observation from these constraints is that the first constraint is convex,
while the latter two constraints are non-convex. The non-convex constraints are typi-
cally harder to deal with.

In the subsequent analysis and in the design of the guidance method(s) we focus on
relative orbital elements. The key idea is to deal with the various constraints by design-
ing a set of time-invariant convex constraints on relative orbital elements that satisfy
the geometric constraints for all positions inside the relative orbit (i.e. satisfaction of
the constraints for any value of the mean longitude L). The key benefit of this approach
is that for Keplerian orbits these relative orbital elements (with the exception of ∆L) are
constants of motion. By maintaining the orbital elements inside certain (convex) control
windows, the satellites will automatically exhibit a natural orbital motion (as opposed to
some forced motion). Thus, what we are actually doing is designing a set of relative or-
bits satisfying the constraints.

In the developments that follow, we first analyze whether a constraint is satisfied by
a particular relative state over the course of an orbit. We then extend this analysis to in-
vestigate whether a constraint is satisfied if the relative state is constrained within some
specific convex tolerance window. The selection of such a tolerance window is then a
relative orbit design task (i.e. the definition of these convex tolerance windows on rel-
ative orbital elements is essentially equivalent to the design of the guidance method).
To support this design activity we use rational orbital elements to create maps showing
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the level of satisfaction or influence of certain constraints with respect to the rational
elements. The key purpose of these maps is to present the design-space in a human
understandable format, so that a designer can make an informed selection of convex
tolerance windows on the relative orbital elements that ensure satisfaction of the con-
straints.

3.2. GEOSTATIONARY SLOT BOUNDARIES AND THE CONFIGU-
RATION SPACE

Since geostationary satellites are allocated to specific slots, satellite operators are re-
quired to maintain their satellites inside the assigned geostationary slots ([1]). A geosta-
tionary slot is generally defined in an Earth-fixed reference frame by a longitude window
centered at a specific longitude, together with a latitude window (centered at zero lat-
itude). The radius is implicitly defined as the geostationary orbit radius and, although
usually omitted, a radius window could be defined centered on this geostationary orbit
radius. In Cartesian space a geostationary slot can easily be visualized as a “box” cen-
tered on a specific longitude above the equator at the geostationary altitude. The linear
mapping in Eq. (2.43) allows us to analyze the space in which relative orbital elements
between a satellite and the slot center are allowed to vary such that the geostationary slot
boundaries are respected. We present the configuration space relating to a geostationary
slot of±0.1◦ in longitude and±0.1◦ in latitude and approximately half the size in altitude.
The size of the geostationary slot is defined by minimum and maximum deviations from
the slot center in respectively longitudinal direction (∆λ), latitudinal direction (φ) and
radial direction (∆R), or equivalently, East, North, Up:

−∆φmin =∆φmax =−λmin =λmax = 0.1◦ ·π
180◦ ≈−2∆Rmin

ageo
= 2∆Rmax

ageo
(3.1)

Let ∆R, ∆T and ∆N be the deviations from the geostationary slot center in respectively
radial, tangential and normal directions. In terms of these deviations, the geostationary
slot can be defined in Cartesian space as:

−2∆Rmin = 2∆Rmax =−∆Tmin =∆Tmax =−∆Nmin =∆Nmax = 75 km. (3.2)

Results for a slot with a different size are trivially obtained from the presented results.
We analyze the deviations from the slot center using the synchronous orbital ele-

ments. As observed from Eqs. (2.41), in longitudinal direction, the deviations are a func-
tion of the mean longitude difference and the magnitude of the relative eccentricity vec-
tor:

∆Lmin −2δemax ≤∆λ≤∆Lmax +2δemax. (3.3)

In latitudinal direction the magnitude of the relative inclination vector is characteristic
for the minimum and maximum deviation:

−δimax ≤φ≤ δimax. (3.4)
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The deviation in radial direction is a function of the magnitude of the relative eccentricity
vector and the mean orbital motion difference. The variations are given by:

−δemax − 2

3

∆nmax

ngeo
≤ ∆R

ageo
≤ δemax − 2

3

∆nmin

ngeo
. (3.5)

From Eqs. (3.3) and (3.5) we make two observations; 1. the bounds on∆λ are much more
restrictive than the bounds on ∆R (in practice, variations of

∣∣∆n/ngeo
∣∣ are one or two or-

ders of magnitude smaller than variations of |∆L|) and 2. to maintain bounds on ∆λ, the
size of the configuration space for∆e and∆L are traded with respect to each other. Thus
we define the tolerable configuration space (i.e. a subset of the configuration space in
(relative) orbital elements that satisfies the constraints) for ∆e and ∆L such that bounds
on∆λ are maintained, whereas the tolerable configuration space for∆i is chosen so that
bounds on φ are maintained. Bounds on ∆R are normally kept as a consequence of the
chosen configuration space of ∆e. However, if necessary, bounds on ∆n can be defined
explicitly such that bounds on ∆R are guaranteed.

To guarantee that a satellite stays within the geostationary slot it is required to main-
tain the osculating orbital elements within bounds. If osculating-to-mean variations
are not actively controlled (i.e. it would cost a lot of propellant to do so, thus control-
ling these variations is usually omitted) the tolerable configuration space should be re-
duced by the expected maximum variation between mean and osculating orbital ele-
ments δeo2m

max . Including this value as margin guarantees that if mean orbital elements
are kept inside the reduced configuration space, the geostationary slot boundaries are
guaranteed to be respected. Orbit determination, actuation and modeling errors require
a further margin, δeunc

max, on the configuration space. As discussed above, a trade-off is
required between the configuration space for ∆e and ∆L. If the variations of ∆L are
contained within a symmetric centered window [−∆Lmax, ∆Lmax] the eccentricity vec-
tor configuration space is bounded by:

δemax = ∆λmax −∆Lmax

2
−δeo2m

max −δeunc
max. (3.6)

Similarly, the inclination vector configuration space is bounded by:

δimax =∆φmax −δi o2m
max −δi unc

max. (3.7)

Figure 3.1 visualizes these concepts. We normally set bounds on |∆L|max in line with ex-
pected longitudinal drift and maneuver cycles duration and eccentricity and inclination
are kept within the values calculated from Eqs. (3.6) and (3.7). These bounds will guar-
antee satisfaction of the constraint to remain within the geostationary slot boundaries.

3.3. MINIMUM SEPARATION DISTANCE
Collisions pose a major threat to the safety of space assets. This may be even more true
for the satellites in a geostationary orbit; not only because it is the most populated orbit,
but also because it is the only Earth orbit that allows satellites to be stationary in an
Earth-fixed reference frame, not to mention the satellites themselves being extremely



3.3. MINIMUM SEPARATION DISTANCE

3

73

Figure 3.1: Configuration space of (absolute) inclination and eccentricity vectors (not to scale)

valuable assets. A collision could result in many debris particles in the geostationary
orbit, which could render (parts of) the GEO-belt unusable, with consequent societal
impact. To avoid collisions, satellites are tracked at regular intervals. Close approaches
between satellites are analyzed in detail to establish risk parameters such as probability
of collision. In the design of the relative motion of collocated satellites, such risks can be
mitigated by maintaining a minimum separation distance between satellites occupying
the same slot.

3.3.1. DEFINITION OF MINIMUM DISTANCE CONSTRAINT
The general definition of the separation distance is the Euclidean distance between two
satellites. This separation distance can be defined in Cartesian coordinates or in relative
orbital elements as follows (see Eq. (2.46)):

ρ =
√

x2 + y2 + z2

=
√

(aδa −aδe cosδM)2 + (aδL+2aδe sinδM)2 + (aδi sin(δM +δω))2.
(3.8)

The minimum distance constraint would then be to maintain this separation distance
above a certain threshold. In the design of safe relative motion between satellites it is
however customary to use only the distance in the radial-normal plane and maintain
this distance above a certain threshold [2], [3]. There are two factors motivating this;
1.) an orbit prediction is usually less accurate in tangential direction and 2.) in case of
an anomaly (e.g. a thruster failure) drift in the tangential direction will be significantly
higher than drift in radial or normal direction (n.b. in case of Keplerian motion only
the tangential direction will be subject to significant drift). Thus, in order to maintain
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safe separation distances between satellites it is customary to maintain the separation
distance in the radial-normal plane above a certain threshold:

ρrn =
√

(aδa −aδe cosδM)2 + (aδi sin(δM +δω))2 ≥ dmin. (3.9)

This is the philosophy followed in this research and Eq. (3.9) is referred to as the “general”
minimum distance constraint.

3.3.2. ANALYSIS OF MINIMUM DISTANCE
We investigate the minimum separation distance in the radial-normal plane as a func-
tion of relative orbital elements.

SIMPLIFIED MINIMUM DISTANCE

We begin the analysis under the following simplifying assumption:

Assumption 3.1. The satellites have identical semi-major axes: δa = 0, or alternatively,
the relative mean orbital motion is equal to zero: ∆n = 0.

This assumption implies energy matching of the satellites and the relative orbits are
closed under the assumption of Keplerian motion. Under Assumption 3.1 the minimum
distance is defined as:

ρrn =
√

(aδe cosδM)2 + (aδi sin(δM +δω))2 ≥ dmin, (3.10)

which we define as the “simplified” minimum distance constraint. This simplified min-
imum separation distance is found by minimizing:

ρ2
rn = x2 + z2 = a2δe2 cos2δM +a2δi 2 sin2 (δM +δω) (3.11)

over δM ∈ [−π,π). Taking the derivative of ρ2
rn with respect to δM and applying some

trigonometric identities we obtain:

d

dδM

(
ρ2

rn

)=−a2δe2 sin2δM +a2δi 2 sin(2δM +2δω) , (3.12)

which can be rewritten to
c1 sin(2δM + c2) , (3.13)

where c1 and c2 are constants determined as follows:

c1 = a2
√
δe4 +δi 4 −2δe2δi 2 cos2δω, (3.14)

c2 = atan2
(
δi 2 sin2δω, −δe2 +δi 2 cos2δω

)
. (3.15)

The minimum is found by solving:

d

dδM

(
ρ2

rn

)= 0, (3.16)
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which occurs at δM =−c2/2+k/2·π, and hence there are four solutions in the domain of
interest, two corresponding to the maximum separation distance, and two correspond-
ing to the minimum separation distance. The symmetry of the relative motion requires
us to only examine one of the solutions to find the minimum distance. If we choose
δM =−c2/2 we can verify (c1 > 0):

d2

dδM 2

(
ρ2

rn

)= 2c1 cos(2δM + c2) > 0, (3.17)

hence, the minimum is obtained. The minimum is found by substituting δM =−c2/2 in
Eq. (3.11) and taking the square root, Eq. (3.22). We now discuss some special cases for
δω ∈ (−π,π].

Case 1: δω= 0∨δω=π, δe = δi

This solution is well known to be:

ρrn,min = ρrn = aδe = aδi . (3.18)

The relative motion is a perfect circle in the radial-normal plane.

Case 2: δω= 0, δe 6= δi :

In this case, the motion in the radial-normal plane is elliptical, with semi-axes aδe
and aδi

and the minimum separation distance is given by:

ρrn,min = min(aδe, aδi ) . (3.19)

Case 3: δω 6= 0, δe = δi :

Substituting the conditions in Eq. (3.15) we obtain:

c2 = −π
2 +δω for δω< 0

c2 = π
2 +δω for δω> 0

(3.20)

and substituting δM =−c2/2 in Eq. (3.11) we find:

ρrn,min = aδe
p

1+ sinδω for δω< 0
ρrn,min = aδe

p
1− sinδω for δω> 0.

(3.21)

Case 4: δω 6= 0, δe 6= δi :

The solution to the general case was found previously as:

ρrn,min = a

√
δe2 cos2

(
−c2

2

)
+δi 2 sin2

(
−c2

2
−δω

)
. (3.22)

In [1], another general solution to the same problem was found. Defining

B1 = 0.5
(
δe2 +δi 2) and B2 =−∆ex∆ix −∆ey∆i y (3.23)
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gives the general solution for the minimum distance:

ρrn,min = a

√
B1 −

√
B 2

1 −B 2
2 , (3.24)

which can also be defined completely in terms of the variables δe, δi and δω if B2 is
written as:

B2 =−∆eT∆i =−δeδi cos |δω| . (3.25)

We confirmed numerically that Eqs. (3.22) and (3.23) provide identical solutions. The
recent work [4] includes the more general solution to the minimum distance problem in
the radial-normal plane without requiring Assumption 3.1. In Section 3.3.3 we derive a
similar solution using rational orbital elements.

SIMPLIFIED MINIMUM DISTANCE IN CIRCULAR TOLERANCE WINDOWS

In the previous section we found a nonlinear relation between simplified minimum sep-
aration distance and relative orbital elements. In this section we investigate the relation
between circular control windows on relative orbital elements and corresponding mini-
mum separation distance, still under Assumption 3.1.

Circular (2-norm bounded) tolerance windows are convenient convex tolerance win-
dows on relative eccentricity and inclination vectors. These tolerance windows are de-
fined by the following sets:

Se (∆ec ,re ) = {
∆e | ‖∆e−∆ec‖2 ≤ re

}
(3.26)

Si (∆ic ,ri ) = {
∆i | ‖∆i−∆ic‖2 ≤ ri

}
, (3.27)

where ∆ec and ∆ic are the centers of the tolerance windows, and re and ri are the radii
of the tolerance windows on respectively ∆e and ∆i.

We investigate the smallest minimum distance for relative eccentricity and inclina-
tion vectors constrained inside these circular tolerance windows under Assumption 3.1,
which allows us to use the analytic expression for the separation distance found in the
previous section. In addition, we impose another assumption:

Assumption 3.2. The inner product between relative eccentricity and inclination vec-
tors is positive: ∆eT∆i > 0.

This assumption guarantees that the minimum separation distance is larger than
zero and limits the analysis to only half of the design space:

∆eT∆i = δeδi cos |δω| > 0
⇓

δe > 0, δi > 0, |δω| <π/2
⇓

ρrn,min > 0.

(3.28)

We now investigate the problem of finding the minimum separation distance in the
radial-normal plane, for relative eccentricity and inclination problems constrained in-
side the 2-norm bounded set centered on ∆ec and ∆ic with norm smaller than or equal
to respectively re and ri . The resulting problem can be formulated as an optimization
problem as follows:
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Problem 3.1.
minimize ρrn,min

subject to ∆e ∈ Se (∆ec ,re )

∆i ∈ Si (∆ic ,ri ) ,

in which the optimization variables are ∆e and ∆i. Note that this optimization prob-
lem is not convex (i.e. the cost function is non-convex in the optimization variables).
We did not find an analytic solution to this problem, but we do proof that the solution
of this optimization problem always lies on the boundary of Se and Si . This reduces the
solution space of the optimization problem to two lines (i.e. the respective boundaries
of Se and Si ). Both lines can be parametrized with a single variable allowing a visualiza-
tion of the solution space. In order to proof that the solution always lies on (a subset of)
the boundary (under Assumptions 3.1 and 3.2), it suffices to demonstrate the following
three inequalities:

∂ρrn,min

∂δe
≥ 0,

∂ρrn,min

∂δi
≥ 0,

∂ρrn,min

∂ |δω| ≤ 0. (3.29)

Using Eqs. (3.23)-(3.25) we can express:

∂ρrn,min

∂δe
= a2

2ρrn,min

δe − B1δe2 −B 2
2

δe
√

B 2
1 −B 2

2

 , (3.30)

since a > 0, δe > 0 and ρrn,min > 0 we have:

∂ρrn,min
∂δe ≥ 0

⇑
δe − B1δe2−B 2

2

δe
√

B 2
1−B 2

2

≥ 0

⇑√
B 2

1 −B 2
2 −B1 +δi 2 cos2 |δω| ≥ 0

⇑√
B 2

1 −B 2
2 ≥ B1 −δi 2 cos2 |δω|

⇑
B 2

1 −B 2
2 ≥ B 2

1 −2B1δi 2 cos2 |δω|+δi 4 cos4 |δω|
⇑

−B 2
2 ≥ −B 2

2 −δi 4 cos2 |δω|+δi 4 cos4 |δω|
⇑

0 ≥ cos4 |δω|−cos2 |δω| ,

(3.31)

and since cos |δω| ≤ 1 the last inequality is fulfilled, proving the first inequality in Eqs.
(3.29). The proof for the second inequality is obtained by interchanging δe with δi in
the above equations. To proof the third inequality we obtain the partial derivative with
respect to |δω|:

∂ρrn,min

∂ |δω| = −a2δe2δi 2 cos |δω|sin |δω|
2ρrn,min

√
B 2

1 −B 2
2

, (3.32)
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Figure 3.2: Control windows for relative eccentricity and inclination vectors, left: relative eccentricity vector
lies within the circle, the inclination vector is arbitrary, right: relative eccentricity vector lies in one circle the
relative inclination vector in the other circle.

and since a > 0, ρrn,min > 0 and
√

B 2
1 −B 2

2 > 0 we obtain:

∂ρrn,min

∂ |δω| ≤ 0 ⇐ cos |δω|sin |δω| ≥ 0 for |δω| ≤ 90◦. (3.33)

The inequalities in Eqs. (3.29) do not just restrict the solution set to the boundary of
the set, but to a specific part of the boundary. This can be seen from Figure 3.2. If we
look at the left plot in Figure 3.2 and assume that the eccentricity vector is constrained
to lie within the circle, the eccentricity vector that solves Problem 3.1 is restricted to lie
on the light (golden) boundary if ∆i is on the right-side of the line through the center
of the tolerance window of ∆e or on the dark (blue) boundary if ∆i is on the left-side of
the line through the center of the tolerance window. If both ∆e and ∆i are restricted to
a circular window, the values that solve Problem 3.1 lie on respectively the golden and
blue boundaries as indicated in the right-side plot of Figure 3.2.

PARTICULAR SOLUTIONS UNDER RESTRICTED CONDITIONS

We present an (analytic) solution to Problem 3.1 under the following restriction:

Assumption 3.3.
∆ec =∆ic and re = ri , (3.34)

thus obtaining identical eccentricity and inclination vector control windows. Note
that these restrictions have practical relevance since |δωc | = 0 for the e/i -vector sep-
aration strategy. From Eq. (3.19) we see that we obtain no increase in the minimum
separation distance by making δe larger than δi or vice versa for δω= 0.
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The minimum distance for this particular `2-norm bounded eccentricity and incli-
nation vectors can be found by substituting

δe =
√

r 2
e +δe2

c −
p

2reδec and δω=p
2

re

δe
(3.35)

into Eq. (3.22).
To summarize: for circular tolerance windows on relative eccentricity and inclination

vectors we can find the minimum distance by solving Problem 3.1. From the analysis we
know that this solution must lie on a subset of the boundary of the tolerance window.
Under Assumption 3.3 we have found an analytical solution to the minimum distance
problem if the eccentricity and inclination vectors are controlled inside identical circular
tolerance windows.

3.3.3. MINIMUM DISTANCE IN RATIONAL ELEMENTS
Building on the work from [4] we derive the solution to the general minimum distance
problem (without the need for Assumption 3.1) in terms of rational orbital elements. The
radial-normal distance in rational elements is defined as:

ρrn

aδe
=

√(
ϕa −cosδM

)2 +ϕ2
i sin2 (δM −δω). (3.36)

There are several conditions that lead to a simplification of Eq. (3.36) impacting the solu-
tion of the minimum distance problem. These are discussed before the general solution
is presented.

Case 1: ϕa = 0
This case is equivalent to Assumption 3.1 and the solution to the minimum distance
problem in rational elements is given by:

ρrn,min

aδe
=

√
0.5

(
1+ϕ2

i

)−√
0.25

(
1+ϕ2

i

)2 −ϕ2
i cos2δω. (3.37)

Case 2: ϕi = 0
This case describes vanishing out-of-plane motion, and a nonzero minimum separation
distance is achieved only if

∣∣ϕa
∣∣> 1. The minimum separation distance is equal to:

ρrn,min

aδe
= max

(
0,

∣∣ϕa
∣∣−1

)
. (3.38)

This case is not expected to occur in practice.
Case 3: cosδω= 0
This case describes perpendicular relative eccentricity and inclination vectors. The satel-
lite motion in the radial-normal plane is restricted to a line that is shifted by ϕa in the
radial direction. The minimum separation distance in this case is given by:

ρrn,min

aδe
= ϕaϕi√

ϕ2
i +1

. (3.39)
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Note that normally one aims to avoid perpendicular relative eccentricity and inclination
vectors.
Case 4: sinδω= 0
This case describes (anti-)parallel relative eccentricity and inclination vectors. The solu-
tion is found by evaluating Eq. (3.36) at the points

δM ∈

0, π, atan2


√
ϕ4

i −2ϕi +1−ϕ2
a(

ϕi +1
)(
ϕi −1

) ,
−ϕa

ϕ2
i −1


 , (3.40)

which are solutions of dρrn/dδM = 0.

Case 5: General case
To obtain the general solution, we differentiate Eq. (3.36) with respect to δM and equate
to zero:

dρrn

dδM

1

aδe
=

(
ϕa −cosδM

)
sinδM +ϕ2

i sin(δM −δω)cos(δM −δω)√(
ϕa −cosδM

)2 +ϕ2
i sin(δM −δω)2

= 0. (3.41)

The roots of Eq. (3.41) are given by:

δM = atan2

(
ϕ2

i sinδωcosδω
(−1+2x2

)
x +2xϕ2

i sin2δω−xϕ2
i −ϕa

, x

)
, (3.42)

where x are the real roots of a 4th order polynomial in the following coefficients:

p4 = ϕ4
i −2ϕ2

i +4ϕ2
i sin2δω+1

p3 = 2ϕaϕ
2
i −2ϕa −4ϕaϕ

2
i sin2δω

p2 = −ϕ4
i +2ϕ2

i +ϕ2
a −4ϕ2

i sin2δω−1
p1 = −2ϕaϕ

2
i +2ϕa +4ϕaϕ

2
i sin2δω

p0 = −ϕ4
i sin4δω+ϕ4

i sin2δω−ϕ2
a .

(3.43)

These equations can be used to find the minimum separation distance for any combina-
tion of relative orbital elements by first transforming the set of relative orbital elements
into rational elements and then evaluating the relevant equation.

3.3.4. DESIGN SPACE AND IMPACT ON MINIMUM SEPARATION DISTANCE
One of the key benefits of the rational orbital elements is that they can be used to reduce
the design space from four variables (∆ex ,∆ey ,∆ix ,∆i y ) or three variables (δe, δi , δω) to
only two variables (ϕi , δω). This reduction allows a direction visualization of the design
space in relation to the minimum distance constraint. Equations (3.37) to (3.42) allow
to parametrize the design space in terms of ϕi and δω and evaluate these equations ei-
ther for a fixed ϕa or a range of realistic values for ϕa to gain a complete picture of how
a choice of (a set of) relative eccentricity and inclination vectors impacts the minimum
separation distance.

Under Assumption 3.1 the rational minimum distance is only a function of ϕi and
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Figure 3.3: Minimum distance as a function of rational elements δω and ϕi for ϕa = 0.

δω, allowing us to directly visualize the minimum separation distance as a function of
these variables. Figure 3.3 shows a contour plot of the rational minimum distance as
function of ϕi and δω. The plot clearly shows the vanishing minimum separation dis-
tance for perpendicular relative e/i vectors. It further shows that a maximum separation
distance is obtained for (anti-)parallel relative e/i -vectors. Lastly, the plot shows that
the minimum separation distance becomes zero for small ϕi and that increasing ϕi to a
value higher than ca. 1.5 has only a very small impact on the minimum separation dis-
tance.

By dropping Assumption 3.1 the minimum distance can be determined by solving
Eqs. (3.37) to (3.40). However, if ϕa is not fixed to a specific value, but allowed to vary in
a certain range, the following optimization problem results:

Problem 3.2.
minimize

ρrn,min

aδe
subject to

ϕi fixed

δω fixed

ϕa ∈ [
ϕa,min, ϕa,max

]
where the cost function is as per Eq. (3.36), or one of its simplifications in Eqs. (3.37)-

(3.42). The only variable in this equation is ϕa and we can solve the problem by a grid
search over the domain of ϕa . Figure 3.4 shows an exemplary plot of the rational mini-
mum distance as a function of ϕi and δω for ϕa,min = −0.3 and ϕa,max = 0.3. The influ-
ence of nonzero ϕa is evident from the plot.

If a target minimum separation distance is given in designing a set of (convex) toler-
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Figure 3.4: Rational minimum distance for
∣∣ϕa

∣∣< 0.3 as a function of rational elements δω and ϕi

ance windows on the relative orbital elements, we can determine (e.g. from operational
experience) a realistic window on ϕa , determine a range of values for aδe (e.g. by ana-
lyzing the configuration space in terms of ∆e), and then from Figure 3.4 (adjusted to the
right window on ϕa) determine all possible combinations of ϕi and δω that satisfy the
constraint. In going back from ϕi and δω to windows on ∆e and ∆i we have two addi-
tional degrees of freedom that we can use to design the tolerance windows. Section 3.5
discusses this transformation for two particular cases.

3.4. SENSOR CONE AVOIDANCE CONSTRAINT
Geostationary satellites carry payloads which are used most commonly for communica-
tion, Earth observation or navigation purposes. An observation or the transmission of a
signal could be disturbed when an object, e.g. another satellite, passes through the field
of view of a sensor. This problem was discussed in [5], where an analysis was presented
showing that a non-negligible amount of such cases occur when multiple geostationary
satellites are collocated in a single slot. No countermeasures were implemented.

In the recent past the, “standard” Attitude and Orbit Control System (AOCS) suite
on three-axis stabilized geostationary satellites consisted of a combination of Earth and
Sun sensors, complemented by a gyroscope. Nowadays most geostationary satellites
are equipped with star sensors since these sensors provide reliable and accurate atti-
tude measurements. These star sensors add another possibility for sensor interference,
namely, when the sunlight reflected off one satellite enters the field of view of an active
star sensor on another satellite.

This problem can be addressed in several ways. One option is to develop a star sen-
sor that is robust enough to tolerate such cases. Star sensor manufacturers claim to have
developed star sensors that can provide a reliable solution through such events (at least
for a limited duration). However, operators are hesitant to accept these claims. Another
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possibility is a redundant star sensor setup with at least two “heads” in hot redundancy.
The satellite can be commanded to switch sensors (or use information from only one
sensor if attitude measurements from both sensors are used simultaneously) when a po-
tential interference case occurs. This requires accurate and continuous orbit knowledge
of all satellites in the fleet, and even then, a baseline strategy with frequent switching of
star sensors is generally undesirable. A third option is to deal with this problem through
the design of a relative motion guidance and control algorithm that avoids such cases
altogether. The last option, if an increase in propellant consumption can be avoided,
would not pose additional risk to the fleet of satellites and could already be applied to
fleets of satellites currently in orbit, if the sensor geometry allows it.

Motivated by these use-cases, we investigated the possibilities of avoiding the field
of view of sensors on other satellites in the fleet by designing a guidance (and control)
method for the relative motion of a fleet of two or more satellites, tackling both problems
of payload interference and star sensor interference simultaneously.

3.4.1. DEFINITION OF THE SENSOR CONE AVOIDANCE CONSTRAINT
The sensor cone constraint is to avoid the field-of-view (i.e. the sensor cone) of sensors
on other satellites in the fleet. Figure 3.5 depicts the sensor cone constraint graphically.
The sensor cone is defined by the set

Ks
(
b̂s ,βs

)= {
ρ ∈R3 |ρT b̂s ≥

∥∥ρ∥∥
2 cosβs

}
, (3.44)

for a sensor with bore-sight unit vector b̂s and half-cone angle βs . The sensor cone
avoidance constraint is then defined as:

ρT b̂s <
∥∥ρ∥∥

2 cosβs (3.45)

where ρ is the position vector of a (follower) satellite in a reference frame attached to
the (primary) satellite carrying the sensor. In the remainder of this section, Cartesian
position vectors and sensor bore-sight vectors are defined in the RTN frame attached to
the satellite carrying the sensor, unless otherwise stated. The satellite carrying the sensor
is termed the primary satellite. Before analyzing the constraint in more detail, we limit
the scope of the analysis. Three important assumptions are made:

Assumption 3.4. The satellite is three-axis stabilized and Earth-pointing, hence the ori-
entation of the satellite in the RTN reference frame is fixed.

This assumption is reasonable since most modern GEO-satellites are three-axis sta-
bilized and Earth-pointing, with solar arrays on drive mechanisms, such that the satellite
body can maintain a fixed attitude in the RTN frame.

Assumption 3.5. The sensor geometry is invariant in a body fixed reference frame.

This assumption basically states that the sensor is rigidly attached to the satellite
body and not mounted on some mechanism that can direct the orientation of the sensor.

Assumption 3.6. The satellites are considered to be points in space, i.e. the satellites
have no dimensions.
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ρ
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b̂s

Figure 3.5: Visualization of the (relative) geometry of a sensor cone avoidance constraint

The implication of Assumptions 3.4 and 3.5 is that the sensor cone constraint is in-
variant in the RTN frame, which allows dealing with this constraint by relative orbit de-
sign. More specifically, it allows specifying time-invariant control windows on relative
orbital elements that satisfy the sensor cone constraint. Assumption 3.6 avoids dealing
with the satellite dimensions, which would unnecessarily complicate the problem. In-
stead, if the minimum distance between satellites is known, the satellites’ dimensions
can be dealt with by applying an angular margin in the constraint definition (which in
practice is so small that it can be ignored altogether).

The subsequent analysis focuses on two types of sensors in particular. The first
type is a star sensor and the second is a generic payload sensor pointing towards the
Earth. Star sensors on Earth-pointing satellites ideally point (anti-)parallel to the angular
momentum vector, which in case of GEO-satellites is towards the North or South. This
results in only small variations in the pointing direction in an inertial reference frame,
hence allowing the star sensor to track particular stars for longer periods of time, thereby
improving measurement accuracy. Following this philosophy, we focused the analysis
to star sensor bore-sight directions maximally 30◦ away from the North or South direc-
tions. In our examples, we look at North pointing sensors, however, (anti-)symmetry of
the satellite’s relative motion allows to draw similar conclusions for North and South-
pointing star sensors. The sensor itself has a half-cone angle βs = 26◦, which is a typical
value for a star sensor’s sun exclusion angle [6], and hence a conservative assumption
for the sensor cone constraint half-cone angle (i.e. the Sun is (much) brighter than the
reflection of a part of the Sun). The geometry of the star sensor is visualized in Figure 3.6.

The second constraint originates from a general Earth-pointing payload sensor. This
could be a set of repeaters on telecommunications satellite, a science instrument on an
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Figure 3.6: Potential star sensor boresight directions
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Figure 3.7: Earth sensor geometry

Earth observation mission or any other Earth pointing payload. The sensor bore-sight
is in the direction of the Earth’s center, with a half-cone angle βs = 9◦, thus covering the
entire Earth. Most sensors will only service a specific region on the Earth. Thus by defin-
ing the sensor cone constraint to contain the entire Earth all sensors observing Earth or
providing terrestrial services are included in a conservative manner. This constraint is
visualized in Figure 3.7.

The analysis is performed for a pair of satellites in a geostationary slot, where only
one of the satellites, the primary, carries either a star sensor, an Earth pointing sensor or
both. A discussion is included on the validity of the results for larger fleets, where more
than one satellite carries sensors, thereby constraining the relative motion of the other
satellites.
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3.4.2. ANALYSIS OF THE SENSOR CONE CONSTRAINT
Our aim is similar to that of section 3.3, namely, to investigate which combinations of
relative orbital elements can be chosen such that the sensor cone avoidance constraints
are respected. As indicated earlier, the sensor cone avoidance constraint is a non-convex
constraint. The largest convex region in Cartesian space that respects the constraint is a
half-space attached to the primary satellite. Any half-space defined by a normal vector in
the dual cone K ∗

s of the sensor cone satisfies the constraint. However, these half-spaces
only allow a natural orbital motion if the satellites are separated in terms of relative mean
longitude. Thus we could deal with a sensor cone avoidance constraint by defining an
appropriately oriented half-space attached to the primary satellite while at the same
time enforcing a strict separation in mean longitude difference. This solution quickly
exhausts the configuration space and therefore less restrictive solutions are sought (i.e.
solutions that do no rely on a strict separation in mean longitude difference).

SIMPLIFIED ANALYSIS FOR VANISHING RELATIVE MEAN LONGITUDE

To gain geometrical insight, we first investigate the problem under Assumption 3.1 and
the following additional assumptions:

Assumption 3.7. Relative mean longitude is equal to zero: ∆L = 0.

Assumption 3.8. The distance between the satellites is larger than zero (ρ > 0).

Assumption 3.7 ensures centered relative motion, while Assumption 3.8 avoids the
trivial constraint violation when two satellites share the same position (a situation that
has no practical relevance). Under these assumptions the relative motion lies on a 2:1
elliptical cylinder centered on the primary, as shown in Section 2.5.2. The sensor cone
avoidance constraint is met when the sensor cone does not intersect with the relative or-
bit. This constraint can be formulated in terms of relative orbital elements by introduc-
ing the relative angular momentum vector δh. The relative angular momentum vector
is defined in the RTN frame of the primary and is perpendicular to the relative orbital
plane and parametrized in terms of the relative eccentricity and relative inclination vec-
tors (see also Eq. (2.48)):

δh

na2 :=

 −2
(
∆ex∆i y −∆ey∆ex

)
∆ex∆ix +∆ey∆i y

−2
(
∆e2

x +∆e2
y

)
=

 −2δeδi sinδω
δeδi cosδω
−2δe2

 . (3.46)

Under Assumptions 3.1 and 3.7 the relative angular momentum vector can also be cal-
culated in a manner equivalent to the usual orbital angular momentum vector:

δh =ρ× ρ̇. (3.47)

From these equations we clearly see that the orientation of the relative orbit is fully de-
termined by the relative eccentricity and inclination vectors. The sensor cone avoidance
constraint is met when the relative angular momentum vector lies in the union of the
dual cone of the sensor cone and its negative, i.e. under Assumptions 3.1 and 3.7, all
relative orbits for which

δh ∈ {
K ∗

s ∪−K ∗
s

}
(3.48)
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satisfy the cone avoidance constraint. We stress an important point here: satisfaction
of the constraint is not dependent on the absolute orientation of the relative eccentric-
ity and inclination vectors as given by

(
∆ex ,∆ey

)
and

(
∆ix ,∆i y

)
, it is only depending on

the magnitude of the relative eccentricity and inclination vectors (δe and δi ) and their
relative orientation (δω). We can go one step further; scaling the relative angular mo-
mentum vector by a positive value does not alter its orientation, and thus if we scale the
relative angular momentum vector as follows:

δh

δe2na2 =
 −2 δi

δe sinδω
δi
δe cosδω

−2

=
 −2ϕi sinδω

ϕi cosδω
−2

= δhϕ, (3.49)

we can observe that satisfaction of the constraint is only dependent on the ratio ϕi and
δω, further motivating the value of rational orbital elements. Now for a particular relative
state (and under Assumptions 3.1 and 3.7), it is straightforward to evaluate whether or
not the constraint is satisfied by evaluating whether δhϕ ∈ {

K ∗
s ∪−K ∗

s

}
, or alternatively

by evaluating if the following constraint is met:∣∣∣δhT
ϕb̂s

∣∣∣≥ ∥∥δhϕ
∥∥

2 cos
(π

2
−βs

)
. (3.50)

For a given sensor bore-sight direction and half-cone angle, we can parametrize the re-
gion satisfying the constraint in terms of ϕi and δω. Two exemplary graphs are given
in Figure 3.8, where the light (yellow) area corresponds to satisfaction of the constraint,
while the dark (blue) area corresponds to a violation of the constraint. A direct insight
obtained from Figure 3.8 is that the configuration that is ideal from the point of view
of relative separation distances with relative eccentricity and inclination vectors (anti-
)parallel conflicts with the constraint of an Earth-pointing sensor. Note that if Eq. (3.48)
is met, the sensor cone avoidance constraint is satisfied at any position in the (relative)
orbit.

SIMPLIFIED ANALYSIS FOR NONZERO MEAN LONGITUDE

Although the previous analysis provides valuable geometric insight, it is only valid under
Assumptions 3.1 and 3.7, where especially the latter is too restrictive. We now investigate
the more general case without Assumption 3.7. We limit the analysis to satellites inside
the same geostationary slot which, for a minimum absolute eccentricity of zero, results
in the following relative mean longitude window, see Eqs. (3.2):

φmin ≤∆L ≤φmax. (3.51)

Let us assume we have chosen a set of relative eccentricity and inclination vectors that
satisfy the constraint for ∆L = 0. We intend to find out in what window around ∆L = 0
the constraint remains satisfied. To that end, we first perform a conceptual exercise to
further develop our geometrical understanding. We use the geometry in Figure 3.9 for
this conceptual exercise. If the sensor cone avoidance constraint is satisfied at ∆L = 0,
the constraint will remain satisfied for ∆L in one of the following two domains:

∆L ∈ {
0, φmax

}
∆L ∈ {

φmin, 0
} , (3.52)
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(a) North pointing sensor, β= 26◦
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Figure 3.8: Yellow regions show the possible configurations respecting the sensor cone avoidance constraint
under Assumptions 3.1 and 3.7.

i.e., we can move the relative orbit either in the direction of increasing or decreasing ∆L
without ever violating the constraint. Identifying this direction gives us directly either
the upper bound or lower bound on ∆L (which is the geostationary slot boundary). This
can be done by an analysis of the geometry, or by evaluating the following expression:

sign
(
b̂T

c ·δh
) · sign

(
êT

2 ·δh
)= { −1 ⇒ ∆Lmax =φmax

1 ⇒ ∆Lmin =φmin
, (3.53)

where ê2 = (0, 1, 0)T selects the tangential component of δh. We define the bound found
from Eq. (3.53) as the “closed-end”. We then start at the closed-end and keep increasing
(or decreasing) the value of∆L until the relative orbit coincides with the sensor cone and
the constraint is violated. The largest (or smallest) ∆L at which the sensor cone avoid-
ance constraint is violated is the other bound on∆L, which we define as the “open-end”.
In performing this exercise, the relative orbit traces out a tube (the cross-section of this
tube is the projection of the relative orbit onto the x–z plane). Figure 3.9 shows the tube
and the end-points for the case ∆Lmax =φmax. We used the term “open-end” as the sen-
sor looks through this end of the tube.

The previous exercise, although conceptual, helps to create a geometric understand-
ing of the constraint. We arrive at a more formal approach to finding the bound on ∆L
(open-end) by solving the following optimization problem:
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Figure 3.9: Tracing out the relative orbit between ∆Lmin and ∆Lmax forms a tube where the sensor looks
through the open end

Problem 3.3.
minimize

√
∆L2

subject to ∆e fixed

∆i fixed

∆n = 0

L ∈ {0, 2π}

ρT b̂s ≥
∥∥ρ∥∥

2

∥∥b̂s
∥∥

2 cosβs .

The optimization variables in this problem are L and ∆L. The variable ρ is the rela-
tive position of the satellite in the RTN frame, which is a function of the relative orbital
elements. The solution of the problem is the smallest (absolute) ∆L (and corresponding
L) resulting in a violation of the constraint.

GENERAL ANALYSIS OF SENSOR CONE AVOIDANCE CONSTRAINT

Let us take this analysis one step further. Instead of assuming fixed relative eccentricity
and inclination vectors and a zero mean orbital motion, we look into a more realistic
case. We assume that these relative orbital elements are varying inside (convex) control
windows, similar to the control windows defined in Section 3.3.2 for the minimum dis-
tance constraint. Small variations in the relative eccentricity and inclination vectors and



3

90 3. ANALYSIS AND DESIGN OF GUIDANCE UNDER GEOMETRIC CONSTRAINTS

8060
-20

-10

0

10

20

40

N
o

rm
al

[k
m

]

-20

Tangential [km]

20

Radial [km]

0 0-2020 -40

Open-end

Closed-end

Figure 3.10: When eccentricity and inclination vectors vary inside a window, the tube becomes a torus where
the sensor looks through the open end

mean orbital motion result in variations in the position, the size and the orientation of
the relative orbital plane. We can conceptually visualize a 3-dimensional elliptical torus
enclosing all of these relative orbits, as done in Figure 3.10. Dealing with the sensor cone
avoidance constraint can thus be solved as a relative orbit design problem, rather than
a relative orbit control problem. The design problem becomes an informed selection of
control windows on relative orbital elements such that, when the relative state is main-
tained inside these control windows, the sensor cone avoidance constraint is guaranteed
to be satisfied.

The selection of these control windows is discussed later. Here, it is assumed that
we have selected a set of control windows on relative eccentricity and inclination vectors
Se , Si and realistic bounds on minimum and maximum relative orbital motion Sn . We
formulate the following two problems (a. and b.):
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Problem 3.4.
minimize

√
∆L2

subject to

∆e ∈ Se

∆i ∈ Si

∆n ∈ Sn

L ∈ {0, 2π}

ρT b̂s ≥
∥∥ρ∥∥

2

∥∥b̂s
∥∥

2 cosβs

a.) ∆L ≤ 0,

b.) ∆L > 0.

The solution of Problem 3.4a gives us a lower bound on ∆L, while the solution of
Problem 3.4b gives an upper bound. In most cases, either Problem 3.4a or 3.4b will re-
turn infeasible in line with the “closed-end” of the tube. However, since ∆n is no longer
zero, but allowed to vary inside Sn , we can no longer guarantee that a “closed-end” exists
and hence we are required to solve both Problem 3.4a and 3.4b to find the window on∆L
satisfying a particular sensor cone avoidance constraint.

3.4.3. SENSOR CONE AVOIDANCE IN RATIONAL ELEMENTS
The sensor cone avoidance constraint is conceptually more difficult than the minimum
separation distance constraint. The constraint depends not only on the relative eccen-
tricity and inclination vectors, but also on the relative mean longitude, the sensor bore-
sight direction and the sensor cone half-angle. The relative mean longitude is the most
“sensitive” relative orbital element to control, since small differences in semi-major axes
of the satellites cause a drift of the relative mean longitude. In that sense we can define
a set of relative orbital elements to be “good” (with respect to the sensor cone avoidance
constraint) if they allow a large window for the relative mean longitude to vary in. Thus,
in designing the relative motion we seek those combinations of relative orbital elements
that allow large variations of the relative mean longitude within the boundaries of the
geostationary slot. Again, we first consider the relative motion under Assumption 3.1
since it is conceptually simpler. We further assume:

Assumption 3.9. The relative inclination vector has nonzero magnitude: ϕi > 0

and

Assumption 3.10. The tolerance window for ∆L is symmetric and centered at ∆L = 0,
such that ∆Lmin = −∆Lmax. The primary satellite (the satellite carrying the sensor) is
located at the center of the tolerance window at ∆L = 0.

The first assumption is of little practical consequence sinceϕi = 0 result in zero min-
imum separation distance in the radial-normal plane, which is something we should
avoid anyhow. From a theoretical point of view this assumption avoids dealing with
relative orbits that lie completely in the radial-tangential plane. This type of relative or-
bit could result in “theoretical” satisfaction of the constraint for arbitrary relative mean
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longitude (since by Assumption 3.6 the satellites have no dimensions). The second as-
sumption makes the problem symmetric and allows us to argue that a tolerance window
between ∆Lmin and ∆L is “equivalent to”, or “as good as” a tolerance window between
−∆L and ∆Lmax for some value of ∆L ∈ [∆Lmin,∆Lmax].

In Section 3.4.2 it was shown that the set of possible satellite positions having a fixed
ϕi , fixed δω, zero ϕa and an arbitrary δM ∈ [0, 2π] trace out a tube for varying ϕL . If we
now attach a sensor to the primary satellite, then forϕL = 0 there are two possibilities; 1.)
the relative orbit of the secondary satellite crosses the sensor cone and the constraint is
violated, or 2.) the constraint is satisfied for the complete relative orbit of the secondary
satellite. In case 1.) the largest continuous tolerance window on ϕL is smaller than half
of the tolerance window on ∆L. This case is of little interest to us as satellites could be
contained in such region by defining an appropriate half-space in Cartesian space con-
taining the complete relative orbit. In case 2.) there are again two possibilities, a.) we
can decrease ϕL without ever violating the constraint, or b.) we can increase ϕL without
ever violating the constraint (i.e. under Assumptions 3.1 and 3.9 there is always an open-
end and a closed-end, see also Figure 3.9). Now we can attach a metric to “how good”
a certain combination of orbital elements is with respect to a sensor cone avoidance
constraint, namely how far can we change ϕL (in either positive or negative direction)
before the constraint is violated. We can obtain the score of a combination of elements
with respect to this metric by solving the following optimization problem:

Problem 3.5.

minimize
√
ϕ2

L

subject to ϕi fixed

δω fixed

ϕa = 0

δM ∈ {0, 2π}

ρT b̂s ≥
∥∥ρ∥∥

2

∥∥b̂s
∥∥

2 cosβs .

The optimization variables in this problem are δM andϕL . The solution of the prob-
lem is the smallest (absolute) ϕL (and corresponding δM) resulting in a violation of the
constraint.

If we drop Assumption 3.1 and let ϕa vary in Sϕa in line with with Problems 3.4a and
b, we can no longer guarantee that a closed-end exists (i.e. the absence of either a lower-
or upper bound onϕL). Therefore, two optimization problems are required to be solved:



3.4. SENSOR CONE AVOIDANCE CONSTRAINT

3

93

Problem 3.6.
minimize

√
ϕ2

L

subject to

ϕi fixed

δω fixed

ϕa ∈ Sϕa

δM ∈ {0, 2π}

ρT b̂s ≥
∥∥ρ∥∥

2

∥∥b̂s
∥∥

2 cosβs

a.) ϕL ≤ 0,

b.) ϕL > 0.

If both Problems 3.6a and 3.6b are feasible, an upper and a lower bound onϕL exists,
otherwise, we obtain the usual open- and closed-ends.

3.4.4. DESIGN SPACE AND IMPACT ON SENSOR CONE AVOIDANCE
To support the design of a set of (convex) tolerance windows on the relative orbital ele-
ments we parametrize again the design space in terms ofϕi and δω and show the objec-
tive value of Problem 3.5 or 3.6 as a function of these elements. We focus first on Problem
3.5, under the assumptionϕa = 0. The right side of Figures 3.11 and 3.12 show such plots
for respectively an Earth-pointing sensor with a 9◦ half-angle and a North-pointing star
sensor with a 26◦ half angle.

In order for such plot to be useful in designing a set of tolerance windows on orbital
elements additional information is required: we need to know whether the open-end
is facing in the positive or negative ϕL direction. Note that this information is directly
obtained from the solution of Problem 3.5, namely from the sign of ϕ?L . The graphs on
the left side of Figures 3.11 and 3.12 present this information. The information in this
plot is encoded as follow; the white areas correspond to areas where a constraint viola-
tion occurs already at ϕL = 0, the light-gray areas correspond to areas where a violation
occurs for ϕL < 0 and the dark gray areas correspond to areas where a violation occurs
for ϕL > 0. The smallest

∣∣ϕL
∣∣ resulting in a constraint violation is read from the figure

on the right side. An interesting and important observation from these figures is that the
direction of the open-end switches instantly at δω = −π/2 and δω = π/2. If we select a
tolerance windows on e/i -vectors that includes such a switching point, the result is that
we have to include both an upper bound and a lower bound on ∆L to guarantee con-
straint satisfaction, whereas if such switching point can be avoided, we only have to deal
with either an upper or a lower bound.

We also include results where ϕa ∈ Sϕa . Similar to the minimum distance constraint
we choose bounds between ϕa,min = −0.3 and ϕa,max = 0.3 in the examples in this sec-
tion. Figures 3.13 and 3.14 show the achieved objective value of Problem 3.6 on the right
side. On the picture on the left side we added an additional shade of gray; the darkest
areas in the graph shows the region in which no “closed-end” exists. In these sections of
the configuration space we need to include both an upper and a lower bound on ϕL in
order to satisfy the sensor cone constraint.
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Figure 3.11: Solution to Problem 3.5 in terms of δω and ϕi for an Earth pointing sensor with a 9◦ half cone
angle. The graph on the left side shows whether 1. the constraint is violated at ϕL = 0 (white), 2. the violation
occurs for ϕL < 0 (light-grey) or 3. the violation occurs for ϕL > 0 (dark-grey). The graph on the right side
shows the magnitude of ϕL .
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Figure 3.12: Solution to Problem 3.5 in terms of δω andϕi for a North pointing star sensor with a 26◦ half cone
angle. The graph on the left side shows whether 1. the constraint is violated at ϕL = 0 (white), 2. the violation
occurs for ϕL < 0 (light-grey) or 3. the violation occurs for ϕL > 0 (dark-grey). The graph on the right side
shows the magnitude of ϕL .
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Figure 3.13: Solution to Problem 3.6 in terms of δω and ϕi for an Earth pointing sensor with a 9◦ half cone
angle. The graph on the left side shows whether 1. the constraint is violated at ϕL = 0 (white), 2. the violation
occurs for ϕL < 0 (light-grey), 3. the violation occurs for ϕL > 0 (dark-grey) or 4. the violation occurs for ϕL < 0
and ϕL > 0 (darkest-gray). The graph on the right side shows the magnitude of ϕL .
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Figure 3.14: Solution to Problem 3.6 in terms of δω andϕi for a North pointing star sensor with a 26◦ half cone
angle. The graph on the left side shows whether 1. the constraint is violated at ϕL = 0 (white), 2. the violation
occurs for ϕL < 0 (light-grey), 3. the violation occurs for ϕL > 0 (dark-grey) or 4. the violation occurs for ϕL < 0
and ϕL > 0 (darkest-gray). The graph on the right side shows the magnitude of ϕL .
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3.5. TYPICAL CONVEX SETS IN RATIONAL ELEMENTS
In the analysis presented in this chapter we reduced the 4-dimensional design space of
relative eccentricity and inclination vectors to the 2-dimensional design space in terms
ofϕi and δω. If we now use the results from this chapter to select a suitable set ofϕi and
δω, there are an infinite number of realizations of this set in terms of the relative eccen-
tricity and inclination vectors. We can use this freedom to select tolerance windows that
are well suited for control.

It might be more convenient to approach this problem the other way around. Select
a shape, size and nominal (i.e. center of the window) eccentricity and inclination vector
magnitude. We can leave the relative orientation unspecified. Now the transformation
into rational space is unique up to the nominal δω, which can be chosen freely. Thus we
have a set in rational space which we can move from left to right over the diagrams and
find a position satisfying the constraints.

We investigate both approaches, each for one specific example. We limit ourselves
to an analysis of how circular tolerance windows in e/i -space look in rational space and
how a rectangle in rational space can be realized in e/i -space. We start with the circular
e/i -windows. The center of a set can be parametrized using magnitude/phase notation
for the relative eccentricity vector as

∆ec = δec

[
cosδω̃c

sinδω̃c

]
(3.54)

and for the relative inclination vector as

∆ic = δic

[
cosδΩc

sinδΩc

]
. (3.55)

Using this set center, we can define an `2-norm bounded set in relative eccentricity and
inclination vector space as follows:

Se (∆ec ,re ) = {
∆e | ‖∆e−∆ec‖2 ≤ re

}
(3.56)

Si (∆ic ,ri ) = {
∆i | ‖∆i−∆ic‖2 ≤ ri

}
, (3.57)

where re and ri are the radii of the sets for respectively relative eccentricity and inclina-
tion vectors. We need to make one assumption for the following analysis to hold:

Assumption 3.11. The origin of the e/i plane is not part of the sets Se and Si (or equiv-
alently δe > 0 and δi > 0).

The rational elements δω and ϕi are fully defined by the relative eccentricity and
inclination vectors as follows:

δω (∆e,∆i) = atan2
(
∆ey∆ix −∆ex∆i y , ∆ex∆ix +∆ey∆i y

)
(3.58)

and

ϕi (∆e,∆i) = δi

δe
=

√
∆i 2

x +∆i 2
y√

∆e2
x +∆e2

y

. (3.59)
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Figure 3.15: Exemplary transformation of circular relative e/i -windows into rational space.

Using these equations we can transform any pair of relative eccentricity and inclination
vectors into δω and ϕi . We can define the set of all possible combinations of δω and ϕi

as follows:
Sϕ = {

ϕi (∆e,∆i) , δω (∆e,∆i) |∆e ∈ Se , ∆i ∈ Si
}

. (3.60)

The boundary of the set Sϕ can be formulated analytically as follows:

bd Sϕ =

ϕi (∆e,∆i) , δω (∆e,∆i) |
∆e (θ) =∆ec +

[
re cos(θ+δωc )
re sin(θ+δωc )

]
∆i (θ) =∆ic +

[
ri cos(θ+π)
ri sin(θ+π)

]
θ ∈ [0, 2π)

 , (3.61)

since the set boundary is now fully parametrized by a single variable θ we can directly
visualize the set Sϕ (under Assumption 3.11) for any choice of two-norm bounded sets in
relative eccentricity and inclination vector space parametrized by δec , re for the eccen-
tricity vector and by δic , ri for the inclination vector and δωc , the angle between relative
eccentricity and relative inclination control window center. Since the set Sϕ is not de-
pendent on δω̃c and δΩc , but only on their difference δωc = δω̃c −δΩc , we can freely
chose either δω̃c or δΩc .

We include an example of two-norm bounded sets in relative e/i -space and their
transformation into rational space. Note that only one rational set results from a set in
e/i -space, but there are infinitely many realizations of that rational set in e/i -space. Fig-
ure 3.15 shows the transformation of two circular relative eccentricity and inclination
vector windows into rational space. The resulting shape in rational space resembles an
egg.

We look at one example of transforming a set in rational space into e/i -space, namely,
that of a rectangular box in rational space parametrized by:

ϕi min ≤ϕi ≤ϕi max (3.62)
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δωc −∆δω= δωmin ≤ δω≤ δωmax = δωc +∆δω. (3.63)

We are now looking for sets in e/i -space that realize the rectangular set in rational space.
Since we go from a 2-dimensional space to a 4-dimensional space there are infinitely
many possibilities for this realization. We look into one particular example, which we
motivate as follows. If we would keep the inclination vector restricted to a point, the
transformation of the rectangular set into e/i -space would be one-to-one. The result-
ing shape of the eccentricity set is a section of an annulus. We maintain this shape for
the eccentricity, but we make it smaller. The resulting shape in inclination space is also
an annular sector. We can parametrize this shape using its center (δec and δω̃c for the
eccentricity and δic and δΩc for the inclination) and maximum deviation, symmetric in
positive and negative direction (∆δe and ∆δω̃ for the eccentricity and ∆δi and ∆δΩ for
the inclination) so that:

δemax = δec +∆δe (3.64)

δemin = δec −∆δe (3.65)

δω̃max = δω̃c +∆δω̃ (3.66)

δω̃min = δω̃c −∆δω̃ (3.67)

δimax = δic +∆δi (3.68)

δimin = δic −∆δi (3.69)

δΩmax = δΩc +∆δΩ (3.70)

δΩmin = δΩc −∆δΩ (3.71)

Now we can infer that:
∆δω=∆δω̃+∆δΩ (3.72)

and
δωc = δω̃c +δΩc (3.73)

and so we can choose a nominal value for the relative eccentricity vector phase angle (or
alternatively the relative inclination vector phase angle) and we can choose how to divide
the available “space” between the relative eccentricity and inclination vector phase angle
tolerance windows.

We also have

ϕi max = δimax

δemin
and ϕi min = δimin

δemax
. (3.74)

And so we have two constraints on the magnitude of the windows, while we have four
parameters for sizing the window, namely δec , ∆δe, δic and ∆δi (or alternatively δemin,
δemax, δimin, δimax). We can “freely” choose two of the parameters, while the other two
follow from Eqs. (3.64)-(3.67) and (3.74).

As a particular example we could choose freely δemin and δω̃c and we choose to en-
force ∆δe = ∆δi and ∆δω̃ = ∆δΩ to obtain tolerance windows on relative eccentricity
and inclination vectors that have identical tolerance magnitudes. By choosing δemin we
are directly influencing the minimum distance that is guaranteed by the tolerance win-
dow, as well as the relative mean longitude window that results in sensor cone constraint
satisfaction.
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Figure 3.16: Exemplary transformation of rectangular rational window into relative e/i -space. The dashed line
in the graph on the right-side is the original (non-convex) shape of the window. The convexified approximation
is given by the solid lines.

Figure 3.16 shows an exemplary transformation of a rectangular window into e/i -
space using the constraints ∆δe =∆δi and ∆δω̃=∆δΩ. We further set δemin = 1.5·10−4

and δω̃c = 67.5◦. The resulting control window is not convex (see the dashed line in Fig-
ure 3.16). The set is convexified by approximating the lower arc by a straight line touch-
ing the arc in the center, and the convexified set is given by the solid line in Figure 3.16.

3.6. DESIGN PROCESS
This section presents a process for designing a guidance method that can deal with the
geometric constraints introduced in this chapter. The goal is to find a guidance that
deals with the constraints, while achieving good performance in terms of propellant
consumption. The latter is only verified through simulations in which the control al-
gorithms are included. The key idea here is that we design a guidance method in terms
of relative orbital elements, which are integration constants in the Keplerian problem,
hence natural orbital motion results.

1. Constraint Identification
Identify the different geometric constraints (geostationary slot, sensor cone avoid-
ance and minimum distance constraints) for all the satellites in the fleet.

2. Constraint Mapping
Create a map (in rational elements) showing the level of satisfaction of each of
the constraints as a function ϕi and δω, one map for each constraint. If there
are satellites imposing identical constraints (such as minimum distance or a con-
straint arising from an Earth-pointing sensor), one map is sufficient for all identi-
cal constraints.

3. Tolerance Window Sizing
Based on the number of satellites and the size of the geostationary slot, select an
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appropriate value for δemin. Based on the maneuver strategy (mainly the maneu-
ver cycle duration) select an appropriate tolerance window size (possibly only for
the eccentricity vector). If the maneuver cycle duration is to be determined we
can try to find the largest maneuver cycle duration such that we can fulfill all con-
straints simultaneously.

4. Definition of Rational Element Boundaries
Using the constraint values (e.g. minimum distance), the maneuver cycle dura-
tion and δemin define suitable boundaries for each constraint in rational elements
(in practice these are boundaries on ϕL and the non-dimensional minimum dis-
tance).

5. Identification of Constraint Satisfaction Regions
Using the rational element boundaries and the maps, identify the regions in ratio-
nal space that satisfy all constraints simultaneously. We perform this step by over-
laying all maps and indicating (binary color coding) which areas violate at least
one constraint.

6. Tolerance Window Selection
With the areas that satisfy the constraints indicated, we need to determine the tol-
erance window in rational space and find the tolerance windows in e/i -space that
are a realization of the tolerance windows in rational space or vice-versa. We can
choose to define tolerance windows that realize only a subset of the constraint sat-
isfaction regions. Furthermore, for the control algorithms in the next chapter the
tolerance windows on relative e/i -vectors should be convex sets that are formu-
lated mathematically. We use only tolerance windows that can be described fully
using linear and quadratic inequality constraints. Furthermore, the relative con-
figuration in e/i -space could be rotated (by selecting either δΩc or δω̃c ) without
affecting the satisfaction of constraints. Such rotations could be used, e.g., to align
the tolerance window in a beneficial way to the natural inclination vector drift.

7. Optional: Constraint Satisfaction Check
Although the above steps result in a rigorous (and perhaps slightly conservative)
design, we can still perform checks on the tolerance windows to verify whether
they indeed satisfy all geometric constraints (by solving Problem 3.4 for the se-
lected tolerance windows), whether they satisfy the geostationary slot boundaries,
whether they can be formulated as convex constraints that can be dealt with ade-
quately by the solution algorithm, whether the tolerance windows are sufficiently
spacious for the control algorithm, etc. If one or more checks fail the design is it-
erated until all constraints are satisfied simultaneously, or until we conclude that
the constraints are conflicting and that the method outlined in this work does not
provide a viable solution.

This is an exemplary design process that can be followed to come up with a successful
design of a guidance for a fleet of satellites in a geostationary orbit. Since this short
description is rather abstract we include a design example in which we go through each
of the steps in more detail for a concrete case.
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3.7. DESIGN EXAMPLE
In this section we include a design example that is meant to be both realistic and instruc-
tive. At the core of the example is a two-satellite fleet, where the leader satellite carries
a star sensor and an Earth-pointing payload. The follower satellite’s guidance should
avoid the field of view of both the Earth pointing payload and the star sensor on the
leader satellite. We then discuss how this problem changes if not only the leader satel-
lite, but also the follower satellite carries an Earth-pointing payload and a star sensor.
Lastly, we investigate how this problem changes if multiple follower satellites are collo-
cated with the leader satellite.

We design the guidance for a fleet of satellites collocated at 19.2◦E. We target a ma-
neuver cycle duration of 7 days. The leader satellite is controlled using the SPP strategy
with a mean eccentricity circle radius of 2·10−4. The leader’s longitude control strategy
aims at maintaining a mean longitude window with a size of 0.525 mrad (or 0.03◦). The
leader’s mean inclination is maintained smaller than 0.5 mrad (or 0.029◦). The maximum
mean-to-osculating variations for the different elements over a period of one year are
given in Table 2.2. The follower satellite(s) is (are) controlled with respect to the leader
satellite. The control windows in which the follower satellite(s) is controlled are the re-
sult of this design example. Two design options are developed in the following sections.
Option 1 has circular e/i tolerance windows, while option 2 is a realization of a rectan-
gular window in rational space (both options were discussed in Section 3.5).

1. CONSTRAINT IDENTIFICATION

We start by an identification of the constraints. The first constraint is for the satellites to
stay inside the geostationary slot. For this example we consider a large slot of ±0.1◦ in
both longitude and latitude. The second constraint is to maintain a separation distance
in the radial-normal plane that is larger than or equal to 5 km. The third constraint is for
the follower satellite to avoid the field of view of an Earth-pointing sensor with a 9◦ half-
cone angle. The fourth and last constraint is for the follower satellite to avoid the field
of view of a star sensor on the leader satellite. The star sensor is pointing in North-East
direction (boresight: [0, cos30◦, sin30◦]T ) with a 26◦ half cone-angle. The constraints
are summarized in Table 3.1.

2. CONSTRAINT MAPPING

The next step in the design process is to create maps of the constraints in rational space.
We do this for constraints C2, C3 and C4. In creating these maps we assume

∣∣ϕa
∣∣ <

0.1, this value is based on experience. In the simulations in Chapter 5 we will justify
this choice. Figure 3.17 shows the minimum distance (in units of aδe) as a function of
δω and ϕi . Figures 3.18 and 3.19 show rational element maps for the Earth-pointing
payload and the star sensor. The left figure shows whether the open-end of the tube is
in the negative ϕL-direction (light-grey), in the positive ϕL direction (dark-grey), in both
directions (darkest-grey) or if the constraint is violated already at ϕL = 0 (white). The
right figure shows the magnitude of ϕL .

3. TOLERANCE WINDOW SIZING

This step is perhaps the most difficult one in the process as it crosses the boundary be-
tween guidance and control and requires the analyst’s experience and judgment. We try
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Table 3.1: Constraints on (Relative) Motion of the Fleet of Satellites

C1 Geostationary Slot Boundary
The satellites shall stay inside the geostationary slot. A geostationary slot of ±0.1◦
in longitude and ±0.1◦ in latitude is used in this example

C2 Minimum Distance
The satellites shall maintain a minimum distance in the radial-normal plane larger
than or equal to 5 km

C3 Earth Sensor Cone Avoidance
To avoid sensor interference with the leader satellite’s payload a cone attached to
the leader satellite pointing Earthwards shall be avoided by the follower satellite
Boresight unit vector: [−1, 0, 0]T

Half-cone angle: 9◦
C4 Star Sensor Cone Avoidance

To avoid sensor interference with the leader satellite’s star sensor a cone attached
to the leader satellite pointing North-East shall be avoided by the follower satellite
Boresight unit vector: [0, cos30◦, sin30◦]T

Half-cone angle: 26◦
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Figure 3.17: Rational Element Map for C2 - Minimum Distance
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Figure 3.18: Rational Element Map for C3 - Earth pointing sensor. The graph on the left side shows whether
1. the constraint is violated at ϕL = 0 (white), 2. the violation occurs for ϕL < 0 (light-grey), 3. the violation
occurs for ϕL > 0 (dark-grey) or 4. the violation occurs for ϕL < 0 and ϕL > 0 (darkest-gray). The graph on the
right side shows the magnitude of ϕL .
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Figure 3.19: Rational Element Map for C4 - Star sensor pointing North-East. The graph on the left side shows
whether 1. the constraint is violated at ϕL = 0 (white), 2. the violation occurs for ϕL < 0 (light-grey), 3. the
violation occurs for ϕL > 0 (dark-grey) or 4. the violation occurs for ϕL < 0 and ϕL > 0 (darkest-gray). The
graph on the right side shows the magnitude of ϕL .
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Table 3.2: Contributors to the configuration space independent of the fleet’s relative configuration

Eccentricity Inclination Mean Longitude

Leader control window 2.00·10−4 5.00·10−4 5.25·10−4

Osculating-to-mean 1.20·10−4 5.35·10−4 -
Uncertainty margin 2.50·10−5 2.50·10−5 2.00·10−4

Sum 3.45·10−4 1.06·10−3 7.25·10−4

to objectify this step of the process as much as possible. Since all rational elements are
scaled with the magnitude of the relative eccentricity vector we would like to have δemin

as large as possible. The limiting factor is the size of the geostationary slot. We analyze
the geostationary slot size and allocate the available space to different contributors. The
required latitude window is only dependent on the inclination of the satellites, while the
longitude window is shared between contributions from the satellites’ eccentricity and
mean longitude. We can separate between contributions of the relative configuration
and those that are independent of the relative configuration.

The independent contributors are the leader satellite’s control window, the maxi-
mum osculating-to-mean variations and an uncertainty margin for the different orbital
elements. Contributions due to the relative configuration are the control window of the
follower satellite(s) and the nominal relative orbital elements (the relative orbital ele-
ments of the tolerance window’s center). The independent contributors of the design
example are listed in Table 3.2.

From the eccentricity and mean longitude contributions in Table 3.2 we can calcu-
late how much of the longitude window we can allocate to the relative contributors. To
compute the contribution of eccentricity to the longitude window we multiply the sum
of the eccentricity contributions by four (recall that the eccentricity results in a 1:2 el-
lipse in the radial-tangential plane, with a semi-major axis of 2e, hence a major axis of
4e). Thus the independent contributors already use up 2.1 mrad (or 0.12◦) of the 0.2◦
longitude window and 1.06 mrad or ±0.06◦ of the ±0.1◦ latitude window. The remaining
space can be allocated to the relative contributors.

We exemplify this allocation with Figure 3.20 in which a schematic of the eccentricity
vector configuration space is given. The mean eccentricity vector of the leader satellite
is controlled inside its control window. Furthermore, margins for osculating-to-mean
variations and uncertainty are added. The follower satellite is controlled to a nominal
distance of δec and is kept inside a relative element control window. Since the follower
satellite is controlled relative to the leader satellite, the contributors of the leader also
affect the follower satellite. If we now want to calculate the maximum eccentricity emax

we count the independent contributors once and half of the value δec and half of the fol-
lower relative control window radius. The mean longitude window ∆Ltot consists of the
independent contributors (Table 3.2) and the size of the relative mean longitude window.
To satisfy the geostationary slot boundaries the following inequality should be fulfilled:

4emax +∆Ltot ≤ 0.00349 rad
(= 0.2◦

)
. (3.75)
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Figure 3.20: Configuration space allocation of a leader and a follower satellite.

In selecting δemin, the size of the eccentricity control window and the size of the relative
mean longitude control window, the inequality in Eq. (3.75) should hold. Based on the
preceding analysis we take δemax = 4.5·10−4 and a tolerance window radius of re = 5·10−4

(or∆δe = 5·10−4), such that δec = 4·10−4 and δemin = 3.5·10−4. These choices for δec and
re allow a maximum tolerance window on relative mean longitude of roughly 0.5 mrad
(so that ∆Ltot = 0.725+0.5 = 1.225 mrad) for Eq. (3.75) to hold. This value is taken for
design option 2, whereas a smaller value is taken for design option 1, as explained later
in the design process. The values of the relative contributors are summarized in Table
3.3. The values for the inclination vector tolerance window are determined later in the
process.

4. DEFINITION OF RATIONAL ELEMENT BOUNDARIES

The next step in the process is the definition of the rational element boundaries. To
have a minimum distance of 5 km with a value of δemin = 3.5·10−4 we require a rational
minimum distance ≥ 0.34, see Eq. (3.36). We further impose that ϕL at which constraint
violation occurs is ≥ 0.5 so that the relative mean longitude window ±0.175 mrad is in
any case free of constraint violations.
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Table 3.3: Relative configuration dependent contributors to the configuration space of the fleet

Eccentricity Inclination Mean Longitude

Option 1:
Relative control window size 5.00·10−5 5.00·10−5 3.50·10−4

Nominal relative separation 4.00·10−4 4.00·10−4 -

Option 2:
Relative control window size 5.00·10−5 5.00·10−5 5.00·10−4

Nominal relative separation 4.00·10−4 4.55·10−5 -
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Figure 3.21: Rational element map showing simultaneous satisfaction of constraints C2, C3 and C4 (Table 3.1)
in white. The indicated windows (red) show the tolerance window design in rational space for option 1 (right)
and option 2 (left).

5. IDENTIFICATION OF CONSTRAINT SATISFACTION REGIONS

Using the maps in Figures 3.17 to 3.19 we can identify the regions in rational space that
satisfy the constraints and in Figure 3.21 we show these regions in white, thereby com-
pleting the identification of constraint satisfaction regions.

6. TOLERANCE WINDOW SELECTION

We are now ready to select the tolerance windows. We demonstrate this using both meth-
ods from Section 3.5. We start with option 1: if we select a tolerance window on the incli-
nation vector that is identical to the eccentricity vector tolerance window (δic = 0.4 mrad
and ri =0.05 mrad), we can use Eq. (3.61) to calculate the set boundary in rational space.
By changing δωc we can move the set horizontally to find a region that satisfies the dif-
ferent constraints. The final choice is indicated in Figure 3.21 by the red shape on the
right-hand side. The resulting value of δωc = 140.5◦ for design option 1. The values of
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Figure 3.22: Control windows for relative eccentricity and inclination vectors, left: option 1, right: option 2.

the relative inclination vector size and control window are indicated in Table 3.3. Lastly,
we have arbitrarily chosen δω̃c = 140.5◦, so that δΩc = 0◦.

Option 2, discussed in Section 3.5, is to choose a rectangular window in rational
space and realize this window in relative e/i -space. Using Figure 3.21 we have selected
the window in rational space indicated by the rectangular square on the left-side of the
figure, by choosingϕi min = 0.9, δωmin =−154.7◦ and δωmax =−126.1◦. The other bound-
aries follow from the choice of δemin = 3.5·10−4 and ∆δe = 5·10−5, and the constraint
∆δe =∆δi (see also Table 3.3, option 2). Furthermore, we chose δΩc = 40◦ so that the di-
agonal of the relative inclination vector control window is roughly in line with the natural
secular inclination evolution over the simulation period. Figure 3.22 shows the control
windows in relative e/i -space.

We left out a discussion on the relative mean longitude window until this point. If we
look back to Figures 3.18 and 3.19 and we observe the left figures, we see that for design
option 1, we have the tube’s open-end in the positive ∆L-direction for the star sensor
and in the negative ∆L-direction for the Earth sensor. The resulting implication is that
we need to constrain the relative mean longitude in a window of [−0.175, 0.175] mrad,
hence the smaller longitude window in Table 3.3. For design option 2, we have the open-
end of the tube in the positive ∆L-direction for both sensors and thus we only need to
constrain the relative mean longitude using an upper bound ∆L ≤ 0.175 mrad to satisfy
the sensor cone constraints.

If we consider the same fleet of two satellites, but now both satellites carry the same
Earth and star sensors, the design we obtained before would still work, given that we
use the symmetric window for the relative mean longitude ∆L ∈ [−0.175, 0.175] mrad,
for both of the design options. It will be demonstrated in Chapter 5 that only an upper,
as in design option 2, won’t satisfy the constraints when both satellites carry the same
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sensors.
If we consider, however, a fleet of more than two satellites, where each satellite is

controlled with respect to the leader satellite only, the same configuration with circular
control windows could still work if we reduce the tolerance window radius by a factor
two and the relative mean longitude window also by a factor two: ∆L ∈ [−0.0875, 0.0875]
mrad. In addition, the difference between the centers of the relative e/i tolerance win-
dows between two follower satellites should be at least as large as between a follower and
the leader satellite. The reason that the tolerance windows need to be reduced by a factor
two is because all follower satellites are controlled with respect to the leader satellite, but
not with respect to each other. The tolerance windows on relative eccentricity and incli-
nation vectors between two follower satellites are also circular, but with radius 2re and
2ri . For the tolerance windows based on the annular sector, the addition of two follower
satellites is not so straightforward and can only be approached numerically. We there-
fore prefer circular tolerance windows for fleets with more than two satellites to simplify
the associated analysis.

If one of the follower satellites imposes a constraint different than those from the
leader satellite, the design process is exactly the same. The additional constraint is added
and treated similar as the other constraints. With sensor cone constraints originating
from multiple satellites (in most cases) only a symmetric mean longitude window guar-
antees simultaneous satisfaction of all constraints.

We leave out the last step of the process. Instead, the guidance worked out in this de-
sign example is used in Chapter 5 in simulations. It is verified that the design adequately
deals with the various constraints.

3.8. CONCLUDING REMARKS
This chapter presented an analysis of three types of geometric constraints imposed on a
fleet of collocated satellites:

1. The satellite(s) shall be kept inside the geostationary slot.

2. A minimum separation distance between the satellites shall be maintained.

3. A satellite shall avoid the (conic) field-of-view of a sensor (or multiple sensors)
attached to another satellite in the fleet.

These constraints were analyzed in detail and a method was presented to design a set
of tolerance windows respecting these constraints. The analysis and design focused on
the identification of the (relative rational) orbital elements that satisfy the constraints for
any value of the mean longitude.

The geostationary slot boundaries were translated into boundaries on the orbital el-
ements. To respect the boundaries in longitude, a combination of eccentricity and mean
longitude difference were required to be constrained. To satisfy the latitudinal bound-
aries, the inclination needed to be kept below the maximum latitude. The radial bound-
aries are normally respected as a result of satisfying the longitude boundaries.

To maintain a minimum separation distance, we choose to constrain the distance
in the radial-normal plane. The tangential direction was omitted because this direc-
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tion is usually subject to much larger uncertainty in orbit determination and predic-
tion. The key to satisfying the minimum distance constraint was to design the relative
e/i -configuration such that the constraint is respected. In addition to the e/i -vectors,
a nonzero mean orbital motion difference has a small impact as well. For the simpli-
fied cases of zero mean orbital motion difference and circular tolerance windows that
are identical in size and location in respectively the eccentricity and inclination plane,
an analytic solution was provided for the minimum distance in the radial-normal plane.
A general solution of the minimum distance problem in rational orbital elements was
provided, i.e. a solution that did not rely on the assumption of zero mean orbital mo-
tion difference. The introduction of rational orbital elements allowed to parametrize the
configuration space using only two variables, thus allowing a clear visualization of the
minimum distance in terms of rational orbital elements.

The sensor cone avoidance constraint was formulated mathematically and analyzed
in terms of relative orbital elements and rational relative orbital elements. This con-
straint required to actively control the relative mean longitude between two satellites
to ensure satisfaction of the constraint, something that was not required with only a
minimum distance constraint. The strategy for dealing with this constraint was again
to design the relative motion of two satellites using the relative eccentricity and incli-
nation vectors. A metric was defined to attach a value to “how good” a combination of
relative eccentricity and inclination vectors was. This metric indicated the size of win-
dow in mean longitude difference that respected the sensor cone avoidance constraint.
The design space was parametrized in terms of rational orbital elements and maps were
created that visualize the chosen metric for combinations of rational orbital elements.

Since the design space in rational orbital elements is two-dimensional, whereas the
design space in relative eccentricity and inclination vector space is four-dimensional, an
area in rational space has infinitely many realizations in e/i -space. Two useful options
were presented, one option to transform a set of circular relative e/i -windows into ratio-
nal space and a second option for realizing a rectangular rational set in e/i -space.
A process was introduced to design a set of relative orbits that simultaneously satisfy
the different geometric constraints. An elaborate example demonstrated the process to
design a set of tolerance windows on relative eccentricity and inclination vectors and
relative mean longitude difference that satisfy simultaneously the constraints to stay in-
side a geostationary slot, respect a minimum distance and avoid the field of view of both
a star sensor and an Earth pointing sensor.
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4
SINGLE-SATELLITE

STATION-KEEPING

The further one goes, the less one knows.

Lao Tzu

We can know only that we know nothing.
And that is the highest degree of human wisdom.

Leo Tolstoy

Abstract
The station-keeping problem is defined together with a number of key constraints. A new
method is introduced to solve the station-keeping problem. The method relies on using
convex optimization techniques to calculate a sequence of maneuvers over a maneuver
cycle. The resulting solution is processed into a maneuver plan that can be realized by
a system with on-off thrusters. Various simulation results are presented to validate the
methodology, to investigate long-term optimal strategies, to investigate the performance
under various uncertainties and to evaluate the method in a receding horizon setting.
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Station-keeping of a single geostationary satellite is simply speaking maintaining the
position of the satellite inside its assigned geostationary slot. Secondary goals are a min-
imization of propellant consumption and limiting the required number of thruster fir-
ings to an acceptable level. To perform station-keeping of geostationary satellites the key
task is to determine the orbit control maneuvers for a certain time window, a so-called
maneuver cycle. In geostationary satellite station-keeping this task is usually performed
on-ground. A maneuver plan is calculated and uploaded to the satellite and executed
on-board in open-loop. The station-keeping problem is a problem that has been solved
(in various ways) already many years ago and many satellites are controlled successfully
inside their geostationary slots. The current state-of-art methods are elegant in their
simplicity, yet able to deal with the problem adequately.

Despite of the success of state-of-art methods, this chapter develops a new method
for station-keeping of geostationary satellites. The primary motivation for introducing a
new method arises from the need to be able to deal with the sensor cone avoidance con-
straints. The station-keeping method developed in this chapter forms the basis for the
collocation control method developed in the next chapter. In addition to the usefulness
for collocation, the method has a number of benefits for single-satellite station-keeping
as well:

• It is is flexible in the sense that it can be applied to satellites with a classical chem-
ical propulsion system with high thrust-to-mass ratio as well as to satellites with
an electric propulsion system.

• The method can deal with arbitrary thruster configurations and is in that sense
more general than the state-of-art methods

• The resulting maneuver plans can be realized by simple on-off thrusters.
• The method is shown to be propellant efficient, while using an acceptably small

number of thruster firings.
• It can be configured such that the resulting maneuver plans resemble closely those

derived from a classic method, which directly provides a valuable validation of the
methodology.

• The method can be applied in an open-loop setting such as conventional methods,
as well as in a closed-loop setting, in the form of a receding horizon controller.

The method is applied in a normal station-keeping scenario in which maneuvers are
calculated for the duration of a maneuver cycle, as well as in a receding horizon control
setting. In addition, the method is used with an optimization horizon of one year and
as such, optimal guidance strategies are investigated as well as the influence of several
parameters on the optimization problem solution.

4.1. INTRODUCTION TO STATION-KEEPING
The problem of station-keeping of a geostationary satellite is a guidance and control
problem. We define the guidance problem as the formulation of desired state, as well
as constraints on state and control variables such that, if these constraints are met, the
resulting motion has desired characteristics. The control problem, or maneuver plan-
ning problem, is the calculation of orbit control maneuvers that satisfy the constraints
coming from guidance. These two problems are treated together in this work.
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4.1.1. DEFINITION OF THE STATION-KEEPING PROBLEM AND CONSTRAINTS
The key objectives of the station-keeping problem are 1.) stay inside the geostationary
slot, while 2.) minimizing propellant consumption and 3.) do so with an acceptably
small number of thruster firings. Of the state constraints that have been discussed in the
previous chapter, only the constraint to stay inside the geostationary slot is relevant to
single-satellite station-keeping (the other constraints are treated in the next chapter). In
addition to constraints on the satellite state, several constraints on control are common.
We provide a short summary of some of the most relevant constraints:

1. The thrust that can be delivered by a thruster is limited and hence an important
constraint is the maximum thrust force T ≤ Tmax.

2. Thruster firings are not allowed during specific time periods (e.g. during orbit de-
termination, eclipses, weekends, etc.).

3. The thrusters have only a single (qualified) operational point and are on/off thrusters
(i.e. thrust force cannot be modulated).

4. The thrusters have a minimum (or maximum) firing duration.

Such constraints can apply both to single-satellite station-keeping and to satellites col-
located in a single slot. In developing a method for station-keeping it is key that these
constraints can be dealt with in an appropriate manner.

4.1.2. THE STATUS QUO
The majority of geostationary satellites that are currently in orbit are chemically pro-
pelled satellites with a thruster configuration that is equivalent to the REF configuration
described in Section 2.6. Here, we say equivalent, since generally many more thrusters
are equipped, which are not pointing through the center of mass, such that angular mo-
mentum can be controlled as a by-product of making orbit maneuvers. The key advan-
tage of the REF configuration is that it allows to decouple NS control and EW control.
This decoupling is usually capitalized upon by satellite operators and separate strategies
for NS and EW control are developed. Maneuvers are usually calculated analytically and
satellites are controlled using fixed schedules (an exemplary schedule is given in one of
the analysis cases presented at a later stage, Figure 4.3). The typical inputs to the algo-
rithms calculating the maneuvers are the corrections to the orbital elements that shall
be achieved by the maneuvers, together with the duration of the maneuver cycle. Hence
it is the task of the guidance module to define the desired orbital elements and compare
these to the current orbital elements (or propagated orbital elements) to calculate these
orbital element corrections. The length of a maneuver cycle duration is typically deter-
mined by analyzing the longitude drift rate for EW maneuvers (which is a function of
the satellite longitude) and the inclination drift rate for NS maneuvers. These drifts are
then compared to the geostationary slot size to determine a maneuver cycle duration
that is short enough to guarantee that the satellite can be controlled within the geosta-
tionary slot. Orbit prediction accuracy, especially in the along-track direction also plays
a significant role. Further operational constraints can enter this analysis, such as having
a maneuver cycle duration that synchronizes with the usual 5-day work week. Typical
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maneuver cycle durations are between 7 and 28 days. Other considerations made in the
guidance module are typically to determine the long-term direction of the drift of the
mean inclination vector and enforce inclination vector corrections in the same direction
as the mean inclination vector drift such that propellant consumption for NS control is
minimized. In EW direction the propellant consumption is usually minimized by con-
trolling the mean eccentricity vector to a circle, such that the eccentricity vector points
in the direction of the Sun (projected onto the equatorial plane). This strategy is called
the SPP strategy and the general idea is as follows; in the absence of control the mean ec-
centricity vector would describe a circle over the course of a one-year period due to per-
turbations by SRP. The SPP strategy basically keeps this natural circle, but with a smaller
radius such that the geostationary slot boundaries are respected. As such, the smallest
amount of propellant is required for controlling the eccentricity vector. With the in-
clination vector and eccentricity vector corrections defined, the remaining elements to
control are the mean longitude difference and drift rate (or mean orbital motion differ-
ence). Since the drift rate is the derivative of the mean longitude difference it suffices to
discuss the mean longitude. A mean longitude correction is usually determined by prop-
agating the orbit to the end of the maneuver cycle and comparing the propagated mean
longitude with a desired mean longitude. The goal of the EW maneuvers is to achieve
this desired mean longitude at the end of the maneuver cycle (which is then achieved
through controlling the drift rate).

The fundamental equations for calculating the maneuvers based on a set of orbital
element corrections are worked out by Eckstein in [1]. In this paper, the equations for
calculating maneuvers are presented for one, two, or three EW maneuvers per cycle, as
well as one or two NS maneuvers per cycle. Eckstein provides the equations for an ide-
alized propulsion system and for a realistic propulsion system including deterministic
cross-couplings, e.g., a north-pointing thruster introduces some deterministic thrust in
radial and EW directions as a result of plume impingement or thruster misalignment.
The equations rely on the cross-coupling coefficients to be small and cannot be gener-
alized to propulsion systems with significantly different configurations than the typical
REF configuration. As we use Eckstein’s method with two EW maneuvers and a single
NS maneuver for an idealized propulsion system as a reference case in later simulations
we shortly state the equations for calculating the maneuvers. It is assumed that the de-
sired corrections and maneuver cycle duration are known (i.e. provided by a guidance
module). The equations from Eckstein are adapted to the orbital element set of Eq. (2.6)
and the orbital element differences are the desired differences to be accomplished by
the maneuvers. The corrections are calculated as impulsive ∆V s and the maneuver lo-
cations are expressed using the right ascension of the geostationary slot center (α). The
magnitude of the NS maneuver is given by:

∆V NS = ngeoageo

√
∆i 2

x +∆i 2
y , (4.1)

while the location of the maneuver can be determined from the following two equations:

sinαNS = ∆i y√
∆i 2

x +∆i 2
y

(4.2)
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cosαNS = ∆ix√
∆i 2

x +∆i 2
y

. (4.3)

In case of the NS maneuver, the actual orbit in the maneuver cycle in which the maneu-
ver is executed is essentially arbitrary (from the point of view of achieving the desired
inclination correction). We assume however that the maneuver is executed within the
first orbit. Note that in a real-world case it is customary to place the execution of a NS
maneuver one or two orbits before executing an EW maneuver so that the EW maneuver
can correct for the undesired parasitic thrust of the NS maneuver in the radial-tangential
plane.

The location of the first EW maneuver is within the first orbit after calculating and
uploading the maneuver. The second EW maneuver is executed exactly half an orbit
further so that mean longitude and eccentricity vector are controlled simultaneously in
an effective manner. The first maneuver is executed at a right ascension defined by the
following two equations:

sinαEW
1 = s

∆ey

δe
(4.4)

and

cosαEW
1 = s

∆ex

δe
, (4.5)

where δe =
√
∆e2

x +∆e2
y and s is equal to the sign of the nominal longitude accelera-

tion due to the geopotential (the factor s is included only for safety so that the drift rate
change due to the first maneuver is in the direction opposite of the longitude accelera-
tion, which is beneficial when the second maneuver would fail). As mentioned before,
the location of the second maneuver is given by:

αEW
2 =αEW

1 +π. (4.6)

The magnitude of the maneuvers is determined such that their sum achieves the re-
quired longitude drift, while their difference achieves the desired eccentricity change:

∆V EW
1 =− ngeoageo

∆t1 +∆t2

(
1

3

∆L

ngeo
− 1

2
s∆t2∆e

)
(4.7)

and

∆V EW
2 =− ngeoageo

∆t1 +∆t2

(
1

3

∆L

ngeo
+ 1

2
s∆t1∆e

)
. (4.8)

The times ∆t1 and ∆t2 are the durations between the execution of respectively first and
second maneuver and the end of the maneuver cycle:

∆t1 =∆tMC − mod(α1 −α0,2π)

ngeo
, (4.9)

where∆tMC is the maneuver cycle duration,α0 is the right ascension of the geostationary
slot at the Epoch of maneuver calculation and

∆t2 =∆t1 − π

ngeo
. (4.10)
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As such, these durations capture the influence of the change in drift rate of a maneuver
on the mean longitude difference that is achieved at the end of the maneuver cycle.

In terms of station-keeping methods for electric propulsion satellites, we found Dou-
glas et al. ([2]) to be a good source of information. In this paper the authors describe their
experience in Telesat in station-keeping of a Boeing Satellite Systems (BSS) 702 platform
with ion thrusters. The methods used for calculating the station-keeping maneuvers is
captured in a series of patents by Anzel, assigned to BSS, [3], [4], [5], [6]. These methods
are in essence relying on the same equations as the method by Eckstein, albeit worked
out for a particular thruster configuration that has strong similarities to configuration B
used in this work (Figure 2.18). Again, the equations rely on a set of orbital element differ-
ences to be achieved by the maneuvers, in a similar way as discussed before. A particular
add-on compared the work of Eckstein is the use of the thrusters to simultaneously con-
trol orbit and angular momentum (i.e. the BSS 702 platform has the thrusters mounted
on gimbaled platforms so that the thrusters can be pointed away from the center of mass
to create control torques on the satellite [2]). This combined control of orbit and angu-
lar momentum was further developed and published in yet another series of patents by
BSS, [7], [8]. Due to the much lower thrust force that an electric propulsion system pro-
vides, more frequent maneuvers are required. The work by Douglas ([2]) and Goebel ([9])
report that four burns per day are required for station-keeping. Another work by Casare-
gola ([10]) describes Eutelsats experience in operating geostationary satellites with elec-
tric propulsion. One of their satellite, SESAT-1, is equipped with the SPT-100 thrusters.
This satellite requires two to four burns per day, on each day of a 7-day maneuver cycle.

What the current state-of-art methods share, whether for chemical or electric propul-
sion, is that the maneuver algorithms aim to achieve a predefined set of orbital element
corrections and the actual maneuvers are calculated using the analytic solutions avail-
able for impulsive corrections. These tried-and-true solutions have been used success-
fully for decades. They are conceptually straightforward and extremely effective. What
these methods cannot do, however, is account for constraints on state and control ex-
plicitly in the determination of orbit control maneuvers and it is this void that we aim to
fill.

4.2. DEVELOPMENT OF A NOVEL STATION-KEEPING METHOD
The geometric constraints discussed in the previous chapter motivate the need for a con-
trol methodology that can maintain relative orbital elements within certain tolerance
windows. The development of the LTV dynamics in Chapter 2 enables the formulation
of such constraints in convex form. The satellite state at any point in time can be formu-
lated as an affine function of the initial state and controlled accelerations and hence we
can impose convex constraints on the satellite state which are then also convex in terms
of the controlled accelerations (i.e. the composition of a convex function with an affine
function is convex). The analysis of geometric constraints from Chapter 3 as well as
the LTV dynamics presented in Chapter 2 motivated the focus on convex optimization
techniques for determining maneuver plans for station-keeping of (a fleet of) geosta-
tionary satellites. In the remainder of this section we introduce a series of increasingly
relevant optimization problems. Each subsequent problem addresses a shortcoming of
the prior problem formulation. The solution of each problem is a maneuver plan for
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station-keeping of a geostationary satellite.

4.2.1. GENERAL PROBLEM FORMULATION AND CONVENTIONS
The planning of station-keeping maneuvers of GEO satellites can be formulated as an
optimal control problem. We aim to formulate the station-keeping problem as a convex
optimization problem in standard form [11, chap.4]:

Problem 4.1.

minimize f0 (z)

subject to fi (z) ≤ 0

Az = b, (4.11)

with cost function f0 and inequality constraints fi convex and the equality constraints
Az = b affine. The solution of the optimization problem is the decision variable vector
z? that minimizes the cost function while satisfying all constraints.

We will formulate a sequence of problems with increasing complexity that can be
solved to determine station-keeping maneuvers for a geostationary satellite. Each of the
problems we consider is formulated as a convex optimization problem. This important
characteristic ensures that the problem solution, a minimum of the cost function sat-
isfying the constraints, is in fact the global minimum. Further, crude bounds on the
computation time can be derived from a complexity analysis of the problem and sta-
ble algorithms exist to robustly solve the optimization problem [11]. In every problem
formulation the ultimate goal is to determine the thrust force exerted on the satellite by
each of the thrusters over the duration of a maneuver cycle. The main decision variable
vector is thus the thrust force vector τ and the “planning horizon” is the maneuver cycle
duration.

We repeat the affine equation for the dynamics for all N future states xtot, Eq. (2.52),
where we include the size of the vectors and matrices explicitly for clarity (assuming 6
states and 4 thrusters):

x6N×1
tot = F6N×6x6×1

0 +H6N×3NΓ3N×4Nτ4N×1
tot + J6N×3N d3N×1

tot . (4.12)

As an example, an optimization problem with a timestep of 1080 seconds and a plan-
ning horizon of 7 days requires N = 560 time intervals and 4N = 2240 decision variables,
comprised in the vector τtot.

Assuming a convex domain for τtot allows to include any convex combination of xtot

and τtot as cost function or inequality constraint and any affine combination of xtot and
τtot as equality constraint. To obtain a certain state at a particular discrete point in time
we can simply select the particular rows in F, H and J corresponding to that state. As a
general convention we use indices to refer to particular rows and columns of the matri-
ces. As an example, to “select” the last state we use to following notation:

xtot (6N ) = F (6N , : )x0 +H (6N , : )Γτtot + J (6N , : )dtot. (4.13)
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We introduce another notational convention, namely to refer to the state vector (all 6
elements) at a particular discrete point in time k by adding a subscript to F, H and J.
Again we illustrate with an example. The notation

xk = Fk x0 +HkΓτtot + Jk dtot (4.14)

refers to the kth discrete state vector. The subscript k added to F, H and J indicates that
only those rows required to form xk are “selected” from those matrices. The same con-
vention can be applied to individual elements of the state vector such that e.g. ∆Lk is the
mean longitude difference at the discrete node k.
The above equations provide us with the osculating satellite state. However, desired
states are often defined in terms of mean states. To obtain the mean state xm

tot, we simply
evaluate the mean-to-osculating transformation at the discrete time-points matching
the discrete osculating state and subtract it from the osculating state:

xm
tot = Fx0 +HΓτtot + Jdtot −xo2m

tot .. (4.15)

Hence, in summary, we aim to formulate an optimization problem that solves the station-
keeping problem. The thrust force variables over the discrete intervals are the optimiza-
tion variables and we have access to the state at each discrete node, such that both state
variables and thrust variables can be constrained.

4.2.2. BASIC FORMULATION
We start with a basic formulation in which the optimization variables are directly the
accelerations over the discrete intervals (utot). Note that from these accelerations we
can directly obtain ∆V by multiplying the acceleration with the length of the discrete
interval. We include only a constraint on the final state and as such, this basic problem
is equivalent to the conventional station-keeping problem of calculating a set of orbital
element differences to be achieved at the end of a maneuver cycle.

The basic formulation of the convex optimization problem to calculate the station-
keeping maneuvers is as follows:

Problem 4.2.

minimize ‖utot‖1

subject to

FN x0 +HN utot + JN dtot −xo2m
N = xm

N ,des.

Solving this problem gives the optimal acceleration profile u?tot that brings us from
initial state x0 at t0 to the desired final state xN ,des = xm

N ,des +xo2m
N at tN .

The choice of the objective function significantly impacts the solution of the opti-
mization problem. As the use of propellant in space is extremely costly, a general objec-
tive is to minimize propellant consumption. In addition, thrusters have a limited num-
ber of duty cycles which can range from hundreds to millions of firings depending on the
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type of thruster. Common operational practice and a limited number of thruster firings
strongly favor a cost function that penalizes the `1-norm of control since the formula-
tion of an optimization problem with an `1-norm of control action naturally results in a
sparse solution with limited thruster firings and it explicitly minimizes propellant con-
sumption. The solution resulting from this cost function has significant benefits over a
cost function penalizing the `2-norm of control. An `2-norm penalizes large ∆V s more
(in a relative sense) than an `1 norm would, resulting in a solution to the optimization
problem with many small accelerations (usually a continuous acceleration profile) re-
quiring more propellant and more thruster firings than a solution based on an `1-norm
in the cost function. Examples of thrust profiles resulting from an `2-norm in the cost
function can be found in [12].

The only constraints are defined as a desired final state to be achieved at the end of
the maneuver cycle. Note that this optimization problem is very similar to the conven-
tional method; the conventional method calculates a set of impulsive maneuvers (∆V s)
to achieve a desired set of state differences. In conventional station-keeping usually only
five states are constrained, while ∆n is left free. The degree of freedom thus gained can
then be used to minimize propellant consumption. In the optimization problem formu-
lation we can do exactly the same by simply eliminating the constraint related to ∆n.
Furthermore, the conventional method usually separates NS and EW maneuvers and al-
lows these maneuver to take place only at certain specific days in the maneuver cycle.
Again, we can enforce a similar schedule by splitting the optimization problem in two
smaller problems, one problem for calculating NS maneuvers and one for calculating
EW maneuvers. The smaller problems can be obtained by setting the relevant elements
in utot equal to zero (or removing them completely from the decision vector, while also
remove the corresponding columns in H and Γ). In Section 4.4.1 a demonstration is
given under these settings, and the results between a conventional scheme is compared
to the solution of Problem 4.2.

4.2.3. THRUST AND THRUSTER CONFIGURATION

Two key limitations of Problem 4.2, and also of the conventional methods, are that 1.)
the thrust force cannot be constrained and 2.) it is assumed that either the thrusters
are aligned with East-West and North-South directions, or pure East-West and North-
South maneuvers can be realized by the thruster configuration of the satellite, e.g. by
firing two thruster simultaneously. In general, for a classical satellite with a chemical
propulsion system in the REF configuration and a relatively large thrust-to-mass ratio
this does not cause any issues. However, for satellites with an electric propulsion system
with a much smaller thrust-to-mass ratio this can result in non-negligible errors in the
predicted and achieved effect of a maneuver. The size of the error increases for larger
thruster firing durations, and an approximation of this error can be derived from the re-
sults presented in Section 4.3.3. In addition, electric thrusters usually point away from
North and South directions, creating the need to explicitly account for the thruster con-
figuration in the problem definition. To counteract these limitations we can extend the
optimization problem to include thrust force limitations and include the thruster con-
figuration:
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Problem 4.3.

minimize ‖τtot‖1

subject to

FN x0 +HNΓτtot + JN dtot −xo2m
N = xm

N ,des

τtot ≤τmax

−τtot ≤ 0.

The independent variables are now directly the thrust forces of each thruster sep-
arately and can vary in the range [0,τmax] (the vector inequalities are element-wise in-
equalities). Of course τmax can vary between the different thrusters (or can be set to zero
whenever a thrust is not allowed for other reasons such as during eclipses). The key ad-
vantage of this formulation is that it decreases the error in achieving the final state for
satellites with a very low thrust-to-mass ratio.

4.2.4. STANDARD PROBLEM FORMULATION
One of the key advantages of formulating the station-keeping problem as an optimiza-
tion problem is that it allows to constrain the satellite states at any of the discrete time-
points. One major application is to explicitly constrain the satellite to stay inside the
geostationary slot, which can be achieved by defining suitable bounds on the eccentric-
ity, inclination and mean longitude deviation. We first define the problem in general
terms; we then introduce some particular constraints.

Problem 4.4.

minimize ‖Wττtot‖1

subject to

c (τtot) ≤ cmax

Aτtot = b

τtot ≤τmax

−τtot ≤ 0

In this problem c (τtot) ≤ cmax is a vector of inequality constraints while Aτtot = b
are equality constraints. The inequality and equality constraints are respectively convex
and affine in τtot. Since xtot is affine in τtot, we can include also any convex or affine
function of xtot as inequality, respectively equality constraint in the problem. We further
included a weighting matrix Wτ. This matrix is diagonal and can be used to add a relative
importance to the different thrusters, or thrust components at different times.



4.2. DEVELOPMENT OF A NOVEL STATION-KEEPING METHOD

4

121

To enforce an equality constraint on the osculating state at the kth discrete time we
formulate:

Aτtot = HkΓτtot =−Fk x0 − Jk dtot +xk,des = b1 (4.16)

and similarly to constrain the mean state at the kth discrete time we write:

Aτtot = HkΓτtot =−Fk x0 − Jk dtot +xo2m
k +xm

k,des = b2. (4.17)

Inequality constraints could be added to enforce the geoslot boundaries through con-
straining the mean orbital motion deviation, the mean longitude deviation, the eccen-
tricity and the inclination. For a particular discrete time k these constraints are as fol-
lows:

c1 (τtot) = −∆nk ≤−∆nmin = c1,max (4.18)

c2 (τtot) = ∆nk ≤ ∆nmax = c2,max (4.19)

c3 (τtot) =
√

e2
x,k +e2

y,k ≤ emax = c3,max (4.20)

c4 (τtot) =
√

i 2
x,k + i 2

y,k ≤ imax = c4,max (4.21)

c5 (τtot) = −∆Lk ≤−∆Lmin = c5,max (4.22)

c6 (τtot) = ∆Lk ≤ ∆Lmax = c6,max, (4.23)

for suitable choices of ∆nmin, ∆nmax, emax, imax, ∆Lmin and ∆Lmax. Of course any
other inequality constraint that is convex in τtot or equality constraint that is affine in
τtot could be formulated and included in the optimization problem as well.

4.2.5. STANDARD SCALED PROBLEM
In order to improve the numerical solution of optimization problems it is good prac-
tice to scale the problem such that the different variables and constraints vary in more
uniform ranges. Proper scaling enhances robustness and improves convergence of the
optimization problem [13] and a proper scaling will make the problem reliably solvable
for a large range of thrust-to-mass ratios and a large range of different constraints. As
an example, consider a constraint that limits the absolute value of ∆n. From Figure 2.5
we see that this variable has a magnitude in the order of 1e-9 rad/s. Depending on the
solver’s setting, the algorithm for solving the optimization problem might terminate if
the constraints are met to within a tolerance of 1e-8. Now in this case, a constraint vi-
olation of ∆n will never be detected. To counteract such problems and to improve the
convergence properties of the solution algorithms a scaling of the optimization is per-
formed.

The decision variables (i.e. the concatenated thrust vector) are scaled so that the
magnitude of each decision variable can vary in the range [0,1]. This is achieved by ap-
plying the following scaling law:

τ̄= Tτ (4.24)

=


1/T1,max

1/T2,max

1/T3,max

1/T4,max

τ,
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where Ti ,max denotes the (maximum) thrust that the i th thruster can deliver. Note that
we use a bar { ·̄ } to indicate a scaled variable. The complete (concatenated) vector of
thrusts in the range k = 1, .., N is defined as:

τ̄tot =T τtot (4.25)

=

T
T

. . .

τtot.

For the constraints the scaling might not be as unambiguous as for the thrust vector,
but we aim to implement a similar idea. As discussed above, an inequality constraint
generally has the following form:

c (τtot) ≤ cmax, (4.26)

scaling this equation by cmax and assuming cmax is positive results in the following scaled
constraint:

c̄ (τtot) = 1

cmax
c (τtot) ≤ 1. (4.27)

To apply this simple scaling law we need to formulate a constraint such that this scal-
ing leads to a desired scaled constraint (i.e. if the right hand side of Eq. (4.26) would
be equal to zero this clearly would not work). We do this by formulating affine inequal-
ity constraints with an upper and lower bound such that the upper and lower bound
have identical magnitude cmax (and after scaling these bounds are equal to one). The
convex constraints we deal with are formulated so that they are allowed to vary in the
range [0,cmax] (and after scaling [0,1]). We exemplify the scaling using the inequality
constraints from the previous section. We define

c1,max = c2,max = ∆nmax −∆nmin

2
, (4.28)

∆nk,mid = ∆nmax +∆nmin

2
, (4.29)

c5,max = c6,max = ∆Lmax −∆Lmin

2
, (4.30)

and

∆Lk,mid = ∆Lmax +∆Lmin

2
. (4.31)
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The scaled constraints can now be formulated as follows:

c̄1 (τtot) =
−(
∆nk −∆nk,mid

)
c1,max

≤ 1 (4.32)

c̄2 (τtot) =
(
∆nk −∆nk,mid

)
c2,max

≤ 1 (4.33)

c̄3 (τtot) =
√

e2
x,k +e2

y,k

emax
≤ 1 (4.34)

c̄4 (τtot) =
√

i 2
x,k + i 2

y,k

imax
≤ 1 (4.35)

c̄5 (τtot) =
−(
∆Lk −∆Lk,mid

)
c5,max

≤ 1 (4.36)

c̄6 (τtot) =
(
∆Lk −∆Lk,mid

)
c6,max

≤ 1 (4.37)

If we consistently apply this logic in the formulation of the constraints we can define a
diagonal scaling matrix for the constraints similar to the thrust vector scaling as follows:

c̄ (τtot) =C c (τtot) (4.38)

=

1/c1,max

1/c2,max

. . .

c (τtot) ≤ 1.

Alternatively, Eqs. (4.18)-(4.23) can be scaled using the geostationary slot size as a guide-
line for the maximum variations in each orbital element. It is not important to use the
exact variations of the orbital elements, we only need to guess roughly the order of mag-
nitude, so that the scaled variables vary in the same order of magnitude. For example,
the mean longitude difference ∆L can be scaled by a factor 180/(0.1◦ ·π) ≈ 570 rad−1. A
similar value can be used for eccentricity and inclination, while a value about two orders
of magnitude larger should be used for mean orbital motion difference.

An affine equality constraint can be scaled based on the expected variations of that
constraint during a maneuver cycle under “normal” circumstances. It might be debat-
able what “normal” circumstances are, but in most cases some guidelines could be ob-
tained from operational experience. Consider an affine constraint:

aT
i τtot = bi . (4.39)

If we define bi ,min and bi ,max as the expected variations of the i th constraint, with ∆bi =
1
2

(
bi ,max −bi ,min

) 6= 0, the scaled constraint can be defined as follows:

1

∆bi

(
aT

i τtot −bi
)= 0, (4.40)
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or for all equality constraints together we arrive at:

ā (τtot) =B (Aτtot −b) (4.41)

=

1/∆b1

1/∆b2

. . .

 (Aτtot −b) = 0.

Again, as an alternative, we could also scale the constraints using the geostationary slot
size as a guideline for the maximum variations in each orbital element.

Now we are ready to define the scaled optimization problem:

Problem 4.5.

minimize ‖Wττ̄tot‖1

subject to

c̄ (τtot) ≤ 1

ā (τtot) = 0

τ̄tot ≤ 1

−τ̄tot ≤ 0.

To retrieve the solution of the unscaled problem, the optimal decision variables need
to be unscaled using the inverse of T . Note that this is the scaled version of Problem 4.4.
To obtain scaled versions of Problems 4.3 and 4.2, we can apply the scaling to the final
state constraints and the thrust vector. Note further that the constraints are still formu-
lated as a function of τtot, whereas this should actually be replaced by T −1τ̄tot. We keep
the current formulation as it is significantly more readable. In general, in the results de-
rived in this work, scaled versions of the optimization problems were used due to their
superior numerical stability and convergence properties.

4.2.6. GUARANTEEING FEASIBILITY
An undesired characteristic of the formulation of Problem 4.5 is that no guarantees can
be given on the feasibility of the problem. This undesired property can be eliminated by
including slack variables in the formulation of the problem as follows [11]:

Problem 4.6.

minimize ‖Wττ̄tot‖1 +‖Wa sa‖1 +
Mc∑
j=1

wc j ·max
(
0, sc j −1

)
subject to

c̄ (τtot) ≤ sc

ā (τtot) = sa

τ̄tot ≤ 1

−τ̄tot ≤ 0
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In this problem sa and sc are the slack variables related to respectively the Ma equal-
ity constraints ā (τtot) and Mc inequality constraints c̄ (τtot). The matrix Wa is a diagonal
(positive definite) matrix containing the Ma weight factors on sa , and wc j are the Mc

weight factors on sc . The decision variables in the optimization problem are now τ̄tot, sa

and sc , and the optimal solution is τ̄?tot, s?a and s?c . Due to the introduction of the slack
variables, this optimization problem is always feasible. If a constraint cannot be met, or
if a constraint is extremely costly in terms of propellant consumption, the problem defi-
nition allows a violation of the constraints, however, with an impact on the cost function.
The weight factors can be used to add a measure of relative importance between the dif-
ferent constraints. If the weights on the constraints are high (i.e. if constraint violations
are heavily penalized), the solution of Problem 4.6 is identical to the solution of Problem
4.5, given that Problem 4.5 is feasible.

Now if an autonomous implementation of the calculation of the maneuvers is de-
sired, a guaranteed problem feasibility is an important property. By solving Problem 4.6
we obtain the optimal values of s?a and s?c of the problem and can, by analyzing the op-
timal slack variables, directly see if all constraints are met, and if not, which constraints
are causing problems. An autonomous implementation of such algorithms would ben-
efit from Fault Detection, Isolation and Recovery (FDIR) functionality and a good input
for a possible FDIR would be these slack variables.

4.2.7. LONG HORIZON - MULTIPLE SHOOTING FORMULATION

If we can solve the optimization problem for a very large horizon we can investigate
whether guidance strategies such as the sun-pointing perigee strategy are suggested by
the optimization problem solution. Furthermore, we could investigate the dependency
of the thruster configuration on the optimal station-keeping strategy. Due to the period-
icity of the perturbations a period of one year is a suitable time-horizon for investigating
optimal station-keeping strategies. Hence, we need to formulate and solve the optimiza-
tion problem for a horizon of one year.

In order to do so, we can “simply” take Problem 4.5, determine all involved equations
for a horizon of one year and attempt to solve the resulting problem. The main problem
with this approach is that each state is dependent on all preceding controls and the ma-
trices involved in the problem are large dense matrices which require loads of memory
and computational power to formulate and solve the resulting problem. By formulating
the problem using a multiple shooting transcription method we can significantly de-
crease the number of control variables that a state variable depends on, at the cost of
introducing additional decision variables [14].

We motivate this idea with an example. Let us assume we have formulated an in-
stance of Problem 4.4 with affine equality constraints on all states

a (τtot) = Fx0 +HΓτtot + Jdtot −xtot,des = 0. (4.42)

The algorithm for solving the problem requires the Jacobian of the constraint functions
(a matrix containing the partial derivatives of all constraints with respect to all decision
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variables). In this case, the Jacobian is simply

da

dτtot
= HΓ, (4.43)

since the equation is affine in τtot. The Jacobian is a 6N ×4N dense matrix with lower-
triangular structure, see Eq. (4.12). Solving a linear equation containing this matrix be-
comes increasingly costly for large N . We can reformulate this equation, by introducing
additional decision variables. In this motivating example, we split the problem into two
segments with respectively n1 and n2 discretization steps so that n1 +n2 = N . We refer
to the discrete step at the end of the first shooting segment with N1 and thus xN1 is the
state at the end of the first shooting interval. This state is added to the decision variable
vector. The state constraints now become:

a1 (τms1) = Fms1x0 +Hms1Γms1τms1 + Jms1dms1 −xms1,des = 0 (4.44)

and
a2 (τms2) = Fms2xN1 +Hms2Γms2τms2 + Jms2dms2 −xms2,des = 0. (4.45)

We used subscript “msi ” to refer to all elements in the i th multiple shooting interval.
Furthermore, we introduce an additional “defect” constraint:

a3 (τms1) = FN1 x0 +HN1Γms1τms1 + JN1 dms1 −xN1 = 0, (4.46)

to enforce that the new set of constraints is equivalent the original set of constraints. A
defect constraint is a constraint that enforces continuity [14], i.e. it ensures that the final
state at a multiple shooting segment is the same as the initial state at the next multiple
shooting segment. We now have two shooting intervals with an additional constraint en-
forcing continuity between the segments. The Jacobian of the constraints now becomes
a (6N +6)× (4N +6) matrix with a much more sparse structure:

da

dz
=

 Hms1Γms1 0 0
0 Hms2Γms2 Fms2

HN1Γms1 0 0

 , (4.47)

with the new optimization variables:

z =
[
τT

ms1 τT
ms2 xT

N1

]T
. (4.48)

Note that the upper left block in the Jacobian has the same size as the Jacobian in Eq.
(4.43), however, half of the matrix is filled with zeros. Now any attempt at solving a lin-
ear equation involving this Jacobian can benefit from the increased sparsity obtained
through the introduction of the additional decision variables and can potentially be per-
formed more efficiently. Additionally, due to the increased sparsity of the upper-left
block, less memory is required to store that part of the matrix compared to Eq. (4.43)
(if the sparse structure is capitalized upon).

We can split the problem into at most N shooting segments, one for each discretiza-
tion interval. However, introducing an additional shooting segment is penalized by an
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increase in problem size (more constraints, more decision variables), and additional ma-
trices are now included in the Jacobian (Fms2 and HN1Γms1 in the example). Further-
more, going from one to two shooting intervals significantly increases sparsity of the
upper-left block (by a factor two). However, the sparsity gain decreases for an increasing
number of shooting segments. The computational time of the problem formulation and
solution depends on the number of shooting segments. The required computational
time depends on 1.) forming and storing the matrices in the problem formulation, 2.)
transcribing the problem into one that is solvable by the solver (using the software CVX
[15]) and 3.) solving the problem (using MOSEK [16], an off-the-shelf solver).

We are now ready to formulate the optimization problem using a multiple shooting
transcription. We use the scaled Problem 4.6 as a basis, but with a decision variable vec-
tor z that now includes the state at the start of each “shooting interval”. The optimization
problem formulation is as follows:

Problem 4.7.

minimize ‖Wττ̄tot‖1 +‖Wa sa‖1 +
Mc∑
j=1

wc j ·max
(
0, sc j −1

)
subject to

c̄ (z) ≤ sc

ā (z) = sa

ādef (z) = 0

τ̄tot ≤ 1

−τ̄tot ≤ 0

The key difference with Problem 4.6 is that now the individual constraints in c̄ (z) and
ā (z) depend on z = [τ̄tot, x̄ms]T and the defect constraints ādef (z) have been added to the
problem. We still have N discrete timesteps, which are now divided into Nms equally
sized shooting intervals. Each shooting interval spans nms timesteps so that nms ·Nms =
N .

The state equations for the Nms shooting intervals are defined as follows:

xmsi = Fmsi xNi−1 +HmsiΓmsiτmsi + Jmsi dmsi , for i = 1, ..., Nms, (4.49)

so that the total state equation is given as:

xtot =

 Fms1

. . .
FmsNms


 x0

...
xNNms−1

+

 Hms1Γms1

. . .
HmsNmsΓmsNms

τtot

+

 Jms1

. . .
JmsNms

dtot

= Fmsxms + (HΓ)msτtot + Jmsdtot. (4.50)



4

128 4. SINGLE-SATELLITE STATION-KEEPING

The additional defect constraints that are added to the problem are:

adef = FNi xNi−1 +HNiΓmsiτmsi + JNi dmsi −xNi = 0, for i = 1, ..., Nms. (4.51)

Now we can, as before, select the rows from Eq (4.50) to obtain the states that we would
like to constrain and formulate the convex inequality and affine equality constraints
on these states. Scaling of these constraints can be performed in a manner similar as
demonstrated in Section 4.2.5. Note that every state is again an affine function of the
decision variable vector z.

4.3. CONCEPT OF OPERATIONS
In describing the concept of operations we focus on the two topics of interest in this
work, which are guidance and maneuver planning. This concept of operations is the en-
visioned method of operations using the ideas developed in this work. The architecture
is similar as in Figure 2.19, except that the plant model is replaced by an actual satellite in
a geostationary orbit. We separate between Operator Task (OT) and Automated Task (AT)
as well as between tasks that are required only infrequently (e.g. once at the start of the
mission, or once every year) and tasks that are required every Maneuver Cycle (MC).
Whenever we mention an automated activity, it is assumed that the automation is im-
plemented on-ground, unless otherwise stated.

4.3.1. GUIDANCE
This section discusses several important processes in the guidance module. Table 4.1
summarizes the most important tasks that were identified. The table shows the fre-
quency of execution and whether a task is to be performed by an operator or fully au-
tomated. The operator tasks are essentially the strategic definition and configuration
of the station-keeping strategy. The first task (OT1) is self-explanatory, the second task
(OT2) includes several strategic decisions, some examples are:

• Is a SPP strategy flown?
• Are NS and EW control treated together, or separated?
• Should a (weekly) schedule be used?
• Do we enforce constraints on mean or osculating orbital elements?

The third operator task (OT3) is the specification of the actual schedule: on which days
are maneuvers flown, which days are reserved for orbit determinations. In OT4 the con-
straints are defined on a general level. Examples of such “general” constraints are:

• The definition of orbital element boundaries based on the geostationary slot size
and maneuver duration

• Whether or not to avoid maneuvers in eclipses
• The definition of the maneuver constraints based on the propulsion system char-

acteristics.

These operator tasks are ideally performed only once for the duration of the mission.
The first two automated tasks (AT1 and AT2) generate piece-wise polynomials that are
used to determine respectively the mean-to-osculating transformations at any desired
epoch and the perturbing accelerations for setting up the LTV dynamics. Since both
are determined for the center of the geostationary slot, this can be done ahead of time,
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e.g. once at the start of the mission, or re-evaluated every year. The remaining tasks are
executed every maneuver cycle. These tasks include the specification of the actual con-
straints to be respected during the upcoming maneuver cycle (AT3) and the specification
of the cost function including weight functions (AT4). Once the start time of a particu-
lar maneuver cycle is known, the mean-to-osculating transformation and the perturbing
accelerations for all discrete nodes in the upcoming maneuver cycle can be determined.
These provide important inputs for the maneuver planning algorithm.

Table 4.1: Overview of the key guidance tasks in the envisioned concept of operations (OT: operator task, AT:
automated task, MC: maneuver cycle).

Identifier Task Freq.

OT1 Set the maneuver cycle duration < 1/yr
OT2 Generalized strategy definition < 1/yr
OT3 Set the schedule for the maneuver cycle < 1/yr
OT4 Generalized constraint definition < 1/yr
AT1 Determine the osculating to mean transformation at

the slot center in the form of piece-wise polynomials,
as a function of time

< 1/yr

AT2 Determine the perturbing accelerations experienced by
the slot center in the form of piece-wise polynomials as
a function of time

< 1/yr

AT3 Specific constraint definition 1/MC
AT4 Specific cost function definition 1/MC
AT5 Evaluate piecewise polynomials for osculating-to-

mean transformation at the discrete nodes for the up-
coming maneuver cycle

1/MC

AT6 Evaluate piecewise polynomials for perturbing acceler-
ations at the discrete nodes for the upcoming maneu-
ver cycle

1/MC

4.3.2. MANEUVER PLANNING
The maneuver planning module is essentially an automated function that receives a
great deal of input from the guidance module, together with an initial state and epoch
as a result of an orbit determination. The execution of the maneuver planning is trig-
gered from within the guidance module (e.g. when a new orbit determination solution
is available) and is executed generally once per maneuver cycle. The maneuver planning
module uses the guidance and orbit determination information to generate a maneuver
plan. This process can be summarized into several steps:

1. Setup the affine equations representing the orbital dynamics

2. Formulate the variables entering the cost and constraints function mathematically

3. Formulate the optimization problem (we did this using CVX)
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4. Parse the optimization problem and feed it to a numeric solver (CVX)

5. Solve the problem (MOSEK)

6. Process the solution into a maneuver plan that can be executed by the satellite

Note that we have introduced both CVX and MOSEK. These are external software that
we used to support the formulation (CVX [17], [15]) and solution (MOSEK [16]) of convex
optimization problems. These tools make it straightforward to parse and solve the op-
timization problems, such that, in order to solve the station-keeping problem, we focus
on the formulation of the problem rather than parsing it and feeding it to an algorithm
that can solve the problem.

In a real-world application the maneuver plan would be send to the satellite as a (se-
quence of) telecommand(s) and executed (in open-loop) on-board the satellite. In prin-
ciple, the maneuver planning can be repeated whenever a new orbit determination so-
lution is available. The maneuver plan can then simply be overwritten in the satellite. As
such it is possible to implement the same process as a receding horizon controller, with
the planning horizon determined by the maneuver cycle duration and the frequency of
re-planning determined by the frequency at which new orbit determination solutions
are available. We provide one exemplary application using receding horizon control.

4.3.3. MANEUVER IMPLEMENTATION
The maneuver plans resulting from solving the optimization problems are processed
before they are implemented. This is required because we assume that the thrusters
have only a single qualified operational point and are hence on/off thrusters. Since we
penalize the `1-norm of the thrust vector in the cost function, the resulting maneuver
plans are always sparse (i.e. they contain only a small number of nonzero elements).
The maneuver plans resulting from a conventional method require a similar processing.
Conventional station-keeping methods calculate an impulsive ∆V , which is applied by
switching on the thruster for a duration, so that the∆V is realized. Assuming a burn with
constant thrust force Tmax and assuming that the mass m stays constant, the accelera-
tion profile resulting from a finite burn in tangential direction over the interval [t1, t2] is
defined as:

ut (t ) =
{ Tmax

m , t ∈ [t1, t2]
0, otherwise.

(4.52)

This burn can be approximated by an impulsive burn at tm = (t2 + t1)/2 as:

ut (t ) =∆Vtδ (t − tm) dt , (4.53)

where ∆Vt = Tmax/m · (t2 − t1) and δ (t − tm) is the Dirac delta function.
The left side of Figure 4.1 shows the concept for a transition from an impulsive∆V to

a finite burn. In realizing the maneuver plans resulting from an optimization problem we
use the following logic; if subsequent time intervals for a single thruster have a nonzero
thrust, these are combined into a single burn, centered on a weighted average of the
individual thrusts, with a magnitude equal to Tmax, and a duration such that the total
impulse is equal to the sum of the individual elements. This process is visualized on the
right side of Fig. 4.1. We can limit the number of subsequent intervals that are combined
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Implemented

From optimization

Tmax

∆V

Thrust force

Tmax

Time

Figure 4.1: Implementation of finite thrust maneuver from impulsive ∆V (left) or from the solution of an opti-
mization problem (right).

into a single burn so that the error resulting from this processing remains bounded. We
found three subsequent segments (for a segment duration of 1080 s) a good trade-off
between limiting the maximum error and allowing for long duration maneuvers (i.e. for
satellite with low thrust-to-mass ratios).

A short analysis on the magnitude of the error introduced due to this processing is
presented here. From Eq. (2.11) it is observed that both methods introduce an error in
realizing changes to eccentricity and inclination vectors. The maneuver duration affects
the change at a particular orbital element through a sinusoidal function of α, hence we
can provide an estimate of the error for both approaches. We investigate the effect of a
tangential maneuver on ey . An impulsive (superscript I ) approximation is obtained as:

∆e I
y =

2

Vgeo
sinαm ·∆Vt , (4.54)

where ∆Vt = ut∆t = ut ngeo∆α. The effect of a finite burn (superscript F B) is calculated
as:

∆eF B
y = 2

Vgeo
ut ngeo

∫ α+∆α/2

α−∆α/2
sinα ·dα. (4.55)

The relative error e∆ey can be expressed analytically as

e∆ey =
∆e I

y −∆eF B
y

∆e I
y

= ∆α−2sin ∆α
2

∆α
, (4.56)

where the numerator has been specified so that a positive error results from a positive
value for ∆α. An analysis of the other sinusoidal terms in Eq. (2.11) provides us with the
exact same result. From Eq. (4.56) we find that the error that is made in case of calculat-
ing an impulsive maneuver is unbounded and depends on the maneuver duration. On
the other hand, the maximum error that is made from the optimization problem solu-
tion is bounded through the length of the optimization interval. The maximum error is
reached when processing an infinitesimally small maneuver, which can be interpreted
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Figure 4.2: Maneuver realization error as a function of optimization timestep for a GEO satellite

impulsive. To guarantee an error smaller than a desired error tolerance etol we solve the
following equation for ∆α:

0 =∆α (1−etol)−2sin ∆α
2 . (4.57)

This equation is solved iteratively using Newton’s method and the resulting ∆α provides
an upper bound for the optimization stepsize

(
∆t =∆α/ngeo

)
that guarantees an error

smaller than the specified tolerance. The relation between the optimization timestep
and the maximum error through maneuver realization is given in Figure 4.2 for errors up
to 0.1%. We generally use optimization timesteps of 1080 s in most applications, result-
ing in a maneuver realization errors smaller than 0.023%. Figure 4.2 can be interpreted
in another way. In case a maneuver is treated impulsively, the x-axis can be interpreted
as maneuver duration with the y-axis showing the actual maneuver realization error.
Hence the figure shows the benefits of the optimization based approach versus the con-
ventional approach when maneuvers have long duration (e.g. when using low-thrust
electric propulsion). Lastly, if the station-keeping algorithm calculates maneuvers that
are shorter than the thruster’s minimum on-time, these maneuvers are discarded, result-
ing in a maximum error equal to the minimum impulse bit.

4.4. SIMULATIONS, RESULTS AND ANALYSIS
In this section, we test the newly developed method. We start off with a comparison
between the new method and the conventional scheme with two EW maneuvers and a
single NS maneuver using a typical maneuver schedule for chemically propelled geo-
stationary satellites. Another series of simulations investigates the solutions of the opti-
mization problem with a one year horizon. These results are used to further validate the
method by showing that the long horizon solution reproduces solutions (or strategies)
known to be optimal, such as SPP. The sensitivity of the solution to certain constraint
formulations is investigated, as well as the impact of the thruster configuration on the
performance.
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After the long horizon simulations we test the method in a more realistic scenario
including orbit determination, actuation and modeling errors. We show that we can per-
form station-keeping in the presence of these errors and include a Monte-Carlo analysis
to gain insight into the orbit prediction accuracy in terms of (relative) orbital elements.
This orbit prediction accuracy is driving the achievable orbit control accuracy and hence
the results obtained in this section provide a valuable source of information for the more
challenging simulations in the next chapter, in which applications to a fleet of satellites
are analyzed. The final simulation in this chapter demonstrates that if an orbit determi-
nation solution is available at a high frequency we can use the developed method as a
receding horizon controller and substantially increase orbit control accuracy.

The simulations are performed using the simulation environment introduced in Sec-
tion 2.7. Standard settings for the simulations are presented in Table 4.2 and these set-
tings apply to all simulations unless otherwise stated.

Table 4.2: Standard simulation settings

Aspect Implementation

Integrator RK4
Simulation timestep [s] 108

Optimization timestep [s] 1080
Order and degree Earth gravity 10

Sun gravity yes
Moon gravity yes

Solar radiation pressure yes
Duration [days] 364

Longitude slot [deg] 19.2

4.4.1. COMPARISON OF CONVENTIONAL AND NOVEL METHOD
We first demonstrate how the novel method for calculating station-keeping maneuvers
functions in a scenario that is designed to resemble typical conventional operations. We
configure the novel method such that the maneuver plans resulting from the optimiza-
tion are very similar to a conventional operational scenario in which maneuvers are cal-
culated according to a fixed schedule. We use a schedule in which EW maneuvers are
calculated weekly, while NS maneuvers are calculated every fortnight. The schedule we
use for this demonstration is given in Figure 4.3. On the first day an Orbit Determina-
tion (OD) is made, followed by a NS maneuver on day two. Day three and day ten are
also used for OD, followed by EW maneuvers on day four and day eleven. The method is
setup in such a way that thruster firings for NS maneuvers are constrained to take place
only on the days marked by NS, and similarly EW maneuvers are allowed only on days
marked with EW.

The goal of this scenario is to demonstrate that the novel method can reproduce the
current state-of-art when configured to do so. This provides a valuable validation of the
methodology (both for the modeling approach as well as for the method to calculate
the station-keeping maneuvers) and establishes fidelity in the novel method. In order to
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EW EWNSOD OD OD

NS plan update (day 1)

EW plan update (day 3) EW plan update (day 10)

Figure 4.3: Typical 14 day maneuver schedule. Each box represents one day.

make the comparison, we have simulated side-by-side a conventional maneuver scheme
and the novel method. The conventional scheme uses an analytic calculation of thruster
pulses according to the method described in [18] (reproduced in Section 4.1.2), with two
thruster pulses for EW maneuvers (separated by half an orbit) and a single pulse for NS
maneuvers. The constraints on the final state are defined in an identical manner be-
tween the conventional method (conv) and the novel method (cvx). Both methods tar-
get a mean longitude of zero at the end of the EW maneuver cycle (7 days). The mean
eccentricity at the end of the EW maneuver cycle is constrained to lie on an eccentricity
circle following the classic SPP strategy. The inclination corrections target a zero mean
inclination, to be achieved at the end of the day on which the NS maneuver is executed.

The novel method used a simplified version of the formulation in Problem 4.2; this
was achieved by splitting up the problem into two smaller problems. The first problem
considers only maneuvers in NS direction such that the optimization variables are only
the acceleration components in NS direction utot,NS, while the objective function simpli-
fies to “minimize ‖utot,NS‖1”. The constraints are defined as the desired mean inclination
vector components at the end of day two in the cycle (i.e. only two constraints). This is
achieved through a reduction of FN , HN , JN , xo2m

N and xm
N ,des by selecting only the 4th and

5th rows, corresponding to the inclination vector components at N (in this case N corre-
sponds to a time horizon of 1 day), while further reducing HN by selecting the columns
corresponding to the NS maneuvers (every 3rd column, starting at the 3rd column).

Similarly, the EW problem allows EW maneuvers (utot,EW) on the first day after an
EW plan update (see also Figure 4.3) with objective function “minimize ‖utot,EW‖1”. The
constraints are the desired mean longitude and eccentricity vector components to be
achieved at the end of the EW maneuver cycle (the end of day 10, and day 3 in Figure
4.3). Now the 2nd, 3rd and 6th rows of the above matrices are selected at N (here N corre-
sponds to a time horizon of 7 days), while further reducing HN by selecting the columns
corresponding to the EW maneuvers (every 3rd column, starting at the 2nd column). Both
problems have the acceleration components over one day, in respectively NS and EW di-
rection as optimization variables. The resulting optimization problems are very small
and are setup, parsed and solved well under one second even with the parser-solver CVX
in the loop.

The simulations contain no orbit determination, actuation or modeling errors (other
than those induced by the LTV formulation of the dynamics). The satellites are mod-
eled with a chemical propulsion system using the reference configuration with thrusters
pointing in North, East and West directions (i.e. the NS maneuvers can be accomplished
either with a North pointing thruster or with a South pointing thruster, we force both al-
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Table 4.3: Initial osculating orbital elements

Parameter Value

∆n [rad/s] -6.9E-09
ex [-] -8.9E-05
ey [-] 2.8E-04

ix [rad] 8.8E-04
i y [rad] -1.2E-04
∆L [rad] 8.4E-05

Epoch 1 March 2010 10:00:00.0 UTC

Table 4.4: Satellite parameters

Parameter Value

Mass [kg] 3000
Surface area [m2] 120

Solar reflection coefficient [-] 1.2
Max. thrust force [N] 10

Min. on-time [s] 0.1

gorithms to use only a North pointing thruster to maximize comparability of the results).
The initial state (in osculating orbital elements) is given in Table 4.3. This initial state

is chosen such that the mean initial state and the mean final state (after one year) are
roughly the same (i.e. the mean eccentricity is already on the SPP circle, while the other
elements have a mean of zero). Further relevant satellite parameters are summarized in
Table 4.4.

Table 4.5: Propellant consumption and thruster firings over one year

method ∆VN S [m/s] ∆VEW [m/s] NS pulses EW pulses

conv 47.972 3.039 26 104
cvx 47.968 3.036 26 104

The simulation was performed over a one year timeframe and the results present
a side-by-side comparison of the conventional and novel methods. The main perfor-
mance characteristics, namely number of thruster firings and propellant consumption,
are presented in Table 4.5. From the table we observe that the performance is almost
identical. Figures 4.4 and 4.5 present the location and magnitude of the orbit maneu-
vers. The figures show a remarkable resemblance. The maximum difference in mag-
nitude of EW maneuvers was 0.0013 m/s. The maximum difference in location of the
maneuver was equal to 0.53◦. For NS maneuvers these figures are 0.0023 m/s and 0.16◦
respectively. From these results we conclude that the formulation of the problem as a
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Figure 4.4: EW maneuvers in terms of∆V of conv and cvx implementations over one year. A positive∆V corre-
sponds to a maneuver in the positive tangential direction, whereas a negative ∆V corresponds to a maneuver
in the negative tangential direction.

convex optimization problem can reproduce thruster firings as if a state-of-art conven-
tional method was used. This provides a critical validation of the concept.

The state trajectories in terms of synchronous orbital elements are given in Figures
4.6, 4.7 and 4.8. From these figures we can draw the same conclusion as before; namely
both methods to calculate station-keeping maneuvers (although they are vastly differ-
ent) produce almost identical results.

4.4.2. ANALYSIS OF LONG HORIZON PROBLEM SOLUTIONS
In this section, we solve Problem 4.7 for a horizon of one year, i.e. we solve an opti-
mization problem to simultaneously determine the thruster pulses over a period of one
year. The goals of this section are twofold. The first goal is to analyze the solution of
the optimization problem and compare the results to tried-and-true guidance strategies
for station-keeping of geostationary satellites. This can provide a further validation of
the methodology. The second goal is investigate how sensitive the problem solution is
to various parameters settings (e.g. thruster configuration) and constraint definitions.
We focus on those settings that are relevant for the subsequent implementations of the
novel method in more realistic simulation scenarios including orbit determination, ac-
tuation and modeling errors, both for a single satellite as well as for a fleet of collocated
satellites.

Compared to the problem solved in Section 4.4.1 we now focus on a much more elab-
orate version of the problem:

• The time horizon is much larger (one year instead of one or two weeks).
• A single problem is solved (i.e. the problem is not split into smaller problems in

respectively NS and EW direction).
• The thruster configuration is included.
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Figure 4.5: NS maneuvers in terms of ∆V of conv and cvx implementations over one year. A positive ∆V
corresponds to a maneuver in the positive normal direction.
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Figure 4.6: Mean and osculating eccentricity vector of conv and cvx implementations over one year. The dif-
ferences between conv and cvx are not discernible.
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Figure 4.7: Mean longitude deviation of conv and cvx implementations and their difference over one year.
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Figure 4.8: Mean and osculating inclination vector of conv and cvx implementations over one year. The differ-
ences between conv and cvx are hardly discernible.
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• The maximum thrust force is constrained.
• The problem is scaled.
• The state is constrained at many more places than in Section 4.4.1.

The number of places at which we constrain the state is captured by a parameter that we
call the Constraint Enforcement Ratio (CER). A CER of one would imply that state con-
straints are enforced at every discrete node in the optimization problem, while a CER of
10 would imply that constraints are enforced every 10th timestep. The disadvantage of a
large CER is that we have no (explicit) control over the state in the periods between two
state constraints, while the disadvantage of a small CER is that parsing and solving the
optimization problem requires more time and computational resources. Note that in the
conventional case we have no control over the state at times other than the single point
in time at which we apply the constraint. Being able to control the state at many more
places is one of the key advantages of the novel method. We will investigate the impact
of changing the CER such that we gain insight into the sensitivity of the algorithm to this
parameter.

Another parameter that we can choose is how many discrete timesteps we include
per multiple shooting segment. We have performed an analysis of the time it takes to
setup the problem matrices, parse the problem (done by CVX) and solve the problem
(done by an external solver, MOSEK). Without going into the details of this analysis we
found as a general rule that it is a good idea to choose the number of discrete timesteps
per multiple shooting segment equal to CER. Intuitively this makes sense, since we need
to formulate and satisfy the defect constraint, Eq. (4.51), for the multiple shooting prob-
lem formulation. Thus, we have to calculate the state vector at these discrete times, and
hence, we might as well formulate the constraints exactly at these discrete points in time.
We further constrain the initial and final states to have identical mean values, such that
the resulting strategy can be repeated year after year (i.e. otherwise we would always end
up at the boundary of the control window and the results might look a little better than
they would be in reality). The actual value of the initial and final state are left free for the
optimizer to determine. This constraint ensures that the results are representative also
if we are interested in scenarios that are longer that one year.

In these long-horizon problems we use a slightly larger timestep as in the other prob-
lems we investigate, in order to reduce the problem size to an acceptable level. We chose
a timestep of 2160 seconds, such that exactly 40 timesteps fit into one day (or roughly
one orbit). From Figure 4.2 we see that the maximum error thus made in realizing the
thruster pulses is still smaller than 0.1%. We consider thruster configurations with four
thrusters, and thus, with this choice of timestep we have 4 ·40 ·364 = 58240 thrust force
optimization variables to determine. In addition we have the state vectors at the end of
each multiple shooting interval and the slack variables as optimization variables.

ANALYSIS OF OPTIMAL STRATEGY FOR HIGH THRUST-TO-MASS RATIO

In this analysis we configure the optimization problem to use a high thrust chemical
propulsion system in the reference configuration. We constrain either the osculating or
mean eccentricity, inclination and mean longitude difference, either with or without en-
forcing a schedule. This leads to a total of four cases. The constraints are enforced once
per orbit, i.e. the CER is equal to 40. Whenever we constrain mean orbital elements we
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reduce the tolerance window with the maximum mean-to-osculating variation of that
element over the simulation horizon. A summary of the four cases used to setup Prob-
lem 4.7 is given in Table 4.6, where the cases are named using the identifier MS, meaning
multiple shooting.

Before comparing the results of the four cases side-by-side, we investigate one case

Table 4.6: Key simulation settings for long horizon simulations with high thrust-to-mass ratio.

Parameter Unit Value

Case MSA MSB MSC MSD
Tolerance on e 10−3 0.32 0.2 0.32 0.2
Tolerance on i mrad 1.22 0.69 1.22 0.69

Tolerance on |∆L| mrad 0.6 0.4 0.6 0.4
Type of elements constrained Osculating Mean Osculating Mean

CER 40 40 40 40
Horizon days 364 364 364 364

EW Schedule None None 1 out 14 1 out 14
NS Schedule None None 1 out 14 1 out 14

in more detail. Figures 4.9 to 4.12 show results from the MSC case. The state trajectories
for the other cases look similar and hence we only need to analyze one of the four cases
in detail to draw some more general conclusions regarding the optimal guidance strat-
egy.

Figure 4.9 shows the osculating inclination variation (light-grey) over a year. The NS
maneuvers are shown in the figure by the thick (blue) line, while the tolerance window
is indicated by the dashed (red) line. The important observation from this figure is that
all inclination maneuvers achieve a change to the inclination vector that is (roughly) in
the same direction. In terms of inclination control, conventional wisdom dictates that
maneuvers should be made in the direction of the long-term secular variation of the in-
clination vector, and this is exactly what we see in Figure 4.9. All maneuvers are made
in the same direction corresponding to the long-term (i.e. one year averaged) secular
variation of the inclination vector, while the periodic variations are left uncontrolled.

Figure 4.10 shows the osculating eccentricity vector over one year as well as the im-
plemented maneuvers and the tolerance window. We see very similar behavior of the
eccentricity vector over the year as in Figure 4.6 in which a SPP strategy was used. To
show that the optimization problem solution indeed suggests a SPP strategy, we show
the difference between the eccentricity vector and the projection of the Sun onto the
orbital plane in Figure 4.11. From this figure we see that the mean eccentricity vector
closely follows the Sun vector over the one year period. Hence, also from the eccentricity
control strategy we can see that the optimizer confirms the optimality of tried-and-true
classical guidance strategies, or vice-versa, it provides a further validation that the novel
methodology used to calculate station-keeping maneuvers is sound.

Figure 4.12 shows the osculating mean longitude difference over one year. In this fig-
ure we can recognize the typical parabolic longitude variations that are characteristic of
a classical longitude control strategy when a schedule is imposed. We also see from this
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Figure 4.9: Osculating inclination vector over one year, case MSC.

figure that the constraints are violated at certain points in time. These violations result
from the constraints being enforced only once every 40 discrete steps, while allowing vi-
olations in between. An analysis of the impact of a choice of CER is presented later in
this chapter.

We now compare the four different cases in terms of propellant consumption and
thruster firings. An overview of these results is given in Table 4.7. We first observe that
the results are in close agreement with the results in Table 4.5 (which were based on a
simulation using the full nonlinear equations of motion, while the results in this sec-
tion are based only on the results of the optimization problem solution using the LTV
approximation). We point out some interesting observations from this table; firstly, the
∆VN S is almost identical in all cases, while the ∆VEW is slightly higher in case the mean
orbital elements are constrained (MSB and MSD). The reason is that the mean element
constraints are slightly more restrictive since we reduced the tolerance window by the
maximum expected osculating-to-mean variation to occur over the year. A much more
interesting observation is the significant increase in number of thruster firings between
cases MSA and MSB. This increase results from the constraint on mean eccentricity be-
ing active (n.b. with an active constraint we mean that the values on the left and right side
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Figure 4.10: Osculating eccentricity vector over one year, case MSC.
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Figure 4.11: Angular difference between eccentricity vector and projected Sun vector, case MSC.
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Figure 4.12: Osculating mean longitude difference, case MSC.

of an inequality constraint are roughly the same as the solution of the optimization prob-
lem) at (almost) every point in time in which the constraint is enforced. To show this we
included Figure 4.13, displaying the mean eccentricity vector variations over one year, as
well as the tolerance window. We see that the mean eccentricity lies almost completely
on the constraint boundary and hence this constraint is active almost everywhere. Note
that this is not the case when the osculating eccentricity is constrained, as evident from
Figure 4.10. We further see that by imposing a schedule, we can reduce the number of re-
quired maneuver significantly (i.e. the cases where a schedule was enforced only needed
respectively 59 and 66 of maneuvers per year for NS and EW station-keeping combined.

Table 4.7: Key results for long horizon simulations with high thrust-to-mass ratio.

Parameter Unit Value

Case MSA MSB MSC MSD
∆VN S m/s 48.05 48.05 48.06 48.06
∆VEW m/s 2.80 2.99 2.81 3.04

NS Thruster firings 16 18 14 14
EW Thruster firings 62 383 45 52

SIZING ECCENTRICITY AND INCLINATION TOLERANCE WINDOWS

In this section we investigate case MSA from Table 4.6 again, while making changes to
the size of the tolerance windows on eccentricity and inclination. We investigate what
the impact of reducing or enlarging these windows is on the propellant consumption
and number of thruster firings. Furthermore we show that we can reduce thruster fir-
ings by choosing suitable weight factors in the matrix Wτ.

Figures 4.14 and 4.15 show the propellant consumption and the number of thruster
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Figure 4.13: Mean eccentricity vector over one year, case MSB.

firings required for NS control. We observe from Figure 4.14 that the propellant con-
sumption decreases with increasing size of the tolerance window, until the tolerance
window reaches a size of approximately 0.5 mrad. This size coincides roughly with the
size of the mean-to-osculating variations. This observation could be expected since
for tolerance windows larger than 0.5 mrad the algorithm can “choose” a solution that
only compensates for the secular variations while leaving the periodic variations un-
controlled. Also in terms of thruster firings we see a reduction with increasing control
window size.

The graphs showing the propellant consumption and thruster firings for EW control
are shown in Figures 4.16 and 4.17. In the propellant consumption plot we can identify
three regions. Starting from the left, the first region corresponds to a control window
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Figure 4.14: Required ∆V for NS control as a function of the tolerance window on inclination vector.
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Figure 4.15: Number of thruster firings for NS control as a function of the tolerance window on inclination
vector.
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that is so small that osculating-to-mean variations are actively controlled, leading to ex-
cessive and unnecessary propellant expenditure. In the region between approximately
0.5·10−3 and 4.5·10−3 the propellant consumption is dominated by eccentricity vector
control. The region to the right of 4.5·10−3 corresponds to the region where propellant
consumption is dominated by controlling the mean longitude variations.

In the following paragraph we provide the analytical background, explaining the ob-
served behavior. An analytic equation for the natural mean eccentricity vector circle
radius in the absence of control is given by [19]:

r natural
e = 3

2

1

ngeoageo
CR

(
A

m

)
Ps

1

ns
≈ 0.011

[
kg

m2

]
·CR

A

m
(4.58)

where ns is the mean motion of the Sun. For the satellite characteristics used in the
simulations this natural mean eccentricity circle has a radius of 5.3·10−4. If the toler-
ance window is large enough, the satellite can follow its natural eccentricity circle and
no propellant is required for eccentricity control. However, if the eccentricity is forced to
a smaller circle with a radius r forced

e , we can analytically determine the propellant that is
required to compensate for this difference (assuming we always make “optimal” eccen-
tricity maneuvers). For a natural drift over an infinitesimally small angle dθ the eccen-
tricity vector components drift as follows:

denatural
x =−r natural

e sinθdθ and denatural
y = r natural

e cosθdθ (4.59)

we force this drift to be:

de forced
x =−r forced

e sinθdθ and de forced
y = r forced

e cosθdθ (4.60)

and so we need to compensate the difference:

∆dex =∆re sinθdθ and ∆dey =∆re cosθdθ (4.61)

where ∆re = r natural
e − r forced

e . To compensate for this infinitesimal difference we require
(assuming an optimally placed maneuver in tangential direction):

d∆V = 1

2
ngeoageo

√
∆de2

x +∆de2
y =

1

2
ngeoageo∆re dθ (4.62)

Since the natural eccentricity makes a full revolution over the course of a year, the yearly
propellant required for eccentricity vector control with SPP is equal to:

∆Ve =
∫ 2π

0

1

2
ngeoageo∆re dθ =πngeoageo∆re (4.63)

and thus, if we constrain the (mean) eccentricity to be smaller than a certain value em
max,

the required propellant consumption for eccentricity control is equal to:

∆Ve = max
(
πngeoageo

(
r natural

e −em
max

)
, 0

)
(4.64)

Since we are constraining the osculating eccentricity vector, we need to subtract 0.76·10−4

from the osculating bound to get a representative forced mean eccentricity value from a
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bound on osculating eccentricity (i.e. from the results of case MSA we have calculated
that the averaged mean eccentricity was 0.76·10−4 smaller than the constraint bound-
ary on osculating eccentricity). The red (diagonal) dashed line in Figure 4.16 shows the
theoretical propellant consumption required for eccentricity control, as a function of a
bound on the osculating eccentricity vector.

We can also determine the ∆V required for controlling the mean longitude in order
to compensate for the tesseral gravity perturbations affecting the satellite in tangential
direction (which we conveniently group under the term u J22

t identified by the biggest
contributor J22). Since the satellite is not moving significantly with respect to the Earth
the term u J22

t is roughly constant and the∆V required to compensate the tesseral gravity
perturbations is given by:

∆V∆L =
∫

u J22
t dt = u J22

t ∆t (4.65)

where ∆t is 364 ·86400 s. For the 19.2◦E slot used in these simulations, the ∆V∆L is equal
to 1.59 m/s for a period of 364 days. This is the blue (horizontal) dashed line in Fig-
ure 4.16.

Since the maneuvers to compensate for mean longitude can be used to simultane-
ously control eccentricity and vice versa, the total propellant required for EW control can
be approximated by the maximum of these two contributors:

max(∆V∆L , ∆Ve) (4.66)

Looking again at Figure 4.16 we see that the solution to the optimization problem cor-
responds almost perfectly to these analytically determined components. The only ex-
ception is for very small tolerance windows, since in this case, the periodic variations of
the eccentricity vector need to be compensated as well and the analytic method fails to
provide a reliable solution.

The dark line in Figure 4.17 shows the number of thruster firings for EW control re-
sulting from the optimization problem solution when no weight matrix is used. We ob-
serve a large number of thruster firings for small bounds, which is expected, due to the
need to control the periodic variations of the eccentricity vector. The thruster firings
then reduce to a number well below a 100. However, around 4.5·10−4 we see a sudden
increase in thruster firings. This increase corresponds exactly to the tolerance window
size at which the mean longitude variations start to dominate the propellant budget.
The number of thruster firings increases significantly because, as far as the optimizer is
concerned, there is no better or worse place along the orbit to execute thruster firings
for controlling the mean longitude. All tangential maneuvers have an equal effect on
the mean longitude and hence the optimizer has no incentive to return a sparse solu-
tion with little thruster firings. This is where the weight matrix Wτ can play an important
role. By default, Wτ is an identity matrix, with size equal to the number of thrust force
variables in the optimization problem (here it is 58240 by 58240). Each element on the
diagonal corresponds to a thrust force variable of a particular thruster over a particular
discrete timestep. By setting the weight factors corresponding to all EW thruster firings
at one discrete timestep per orbit to a value less than one, the optimizer is incentivized
to place thruster firings to reduce the mean longitude at these timesteps. If we choose
a weight just below one this will have no noticeable impact on the propellant consump-
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Figure 4.17: Number of thruster firings for EW control as a function of the tolerance window on eccentricity
vector.

tion. In addition we can “stimulate” the optimizer to execute maneuvers according to
a certain schedule by making the weights relating to a particular day (or other period)
smaller than unity as well.

We have chosen a weight matrix in which the weights for all thrusters on the first
day of every fortnight were equal to 0.999. In addition, the weights for the first discrete
timestep per orbit have been reduced by 0.0001 (such that a weight of one is reduced to
0.9999 and a weight of 0.999 is reduced to 0.9989). This gives the optimizer an incentive
to follow a schedule, however, the schedule is not mandatory as before. At the same time,
we avoid the distribution of thruster firings for mean longitude control over many inter-
vals. The result is shown by the light line in Figure 4.17. We see that in the period where
the eccentricity control dominates the propellant consumption, no noticeable change
is observed, while in the period where the mean longitude control dominates the EW
propellant consumption a major reduction in thruster firings was achieved. The propel-
lant consumption for all cases with and without Wτ was almost identical, the maximum
cumulative difference in propellant consumption over the complete analysis period was
1.2 mm/s.

ANALYSIS OF OPTIMAL STRATEGY FOR LOW THRUST-TO-MASS RATIO

The one-year horizon optimization problem is using a 3000 kg satellite carrying four
80 mN thrusters. The thruster configuration is represented by Eq. (2.51), with γ = 45◦,
whileβ is varied between 0 and 90◦. We show results in terms of propellant consumption
and thruster firings. We show also the propellant consumption and thruster firings for
different eccentricity vector control window sizes to demonstrate that for typical electric
propulsion systems, the SPP no longer results in significant propellant savings and can
be forfeited. The space in the eccentricity plane thus gained can be used for collocating
more satellites in one slot.

Figure 4.18 shows the propellant consumption as a function of β. The important
observation from this graph is that it is roughly flat for β between 5◦ and 90◦, with a
∆V of around 68.02 m/s. If we assume that control of mean longitude difference and
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Figure 4.18: Required ∆V as a function of the thruster configuration, parametrized by β for γ= 45◦.
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Figure 4.19: Number of firings as a function of the thruster configuration, parametrized by β for γ= 45◦.
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eccentricity can be achieved completely as a by-product of inclination control, we can
provide an approximate lower bound on the propellant consumption by taking the NS
propellant consumption from Table 4.7 and dividing this number by cosγ. The resulting
lower bound on propellant consumption is equal to 67.97 m/s. We almost achieve this
lower bound (a slight efficiency loss can be expected due to the lower thrust level, and
hence longer thrust arcs), thus establishing fidelity in the approach to also find good so-
lutions for a range of thruster configurations with low thrust. For values of β below 5◦,
the propellant consumption increases rapidly for decreasing β. The underlying reason
is that for small β the thrusters deliver only a small thrust component in tangential di-
rection and if this component gets too small the mean longitude difference cannot be
controlled efficiently anymore, leading to a waste of propellant.

Figure 4.19 shows the number of thruster firings for varying β. From this figure we
observe that for β larger than 10◦, roughly four thruster firings per day are required to
simultaneously control inclination vector, eccentricity vector and mean longitude. The
number of thruster firings is much larger than in the setup with the high thrust chemical
propulsion system. The reason for this increase is that the thrust force is so small that
thruster firings have much longer burn arcs. The longer the arc, the larger the efficiency
loss (since we do not thrust at the optimal location). To counteract this efficiency loss
the optimizer chooses to use thruster firings around every “optimal” location (from the
point of view of controlling the inclination vector). With the locations of the firings fixed
and the total impulse determined by the total size of inclination control maneuvers, the
optimizer “just” distributes this total impulse over four thruster firings to control simul-
taneously three other variables: eccentricity vector and mean longitude.

At around β = 2◦ an interesting observation is made from Figure 4.19. The number
of thruster firings is reduced almost by a factor of two. The reason is that at β ≈ 2◦, the
total amount of tangential thrust that is delivered as a by-product of inclination control
is roughly equal to the amount of propellant required for mean longitude control. In
this case the most efficient strategy is to use only two firings to achieve the necessary
inclination vector change and simultaneously the required mean longitude drift. The
total thrust is distributed over these two firings to achieve the required eccentricity vec-
tor change.

We further included Figure 4.20 in this section to show that for a typical low thrust
propulsion configuration (configuration B is used in the example, but the result extends
to any configuration with β between 10◦ and 90◦), the size of the eccentricity window
does not have a significant influence on the propellant consumption, which allows us to
forfeit the SPP strategy without a penalty on propellant consumption (unless we make
the window so small that we actively need to control mean-to-osculating variations).

IMPACT OF CONSTRAINT ENFORCEMENT RATIO

A key question to answer is how often we need to apply tolerance window constraints
in order to avoid excessive constraint window violations in between the points at which
the constraints are applied. This section therefore investigates the relation between the
tolerance window violations and the CER. In general we expect that the more discrete
points we apply the constraints to, the smaller the constraint violations will be, with the
best case a CER of one, such that the constraints are enforced at every discrete point in
time. The disadvantage of a small CER is that the optimization problem requires more
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Figure 4.20: Propellant required as a function of the tolerance window on eccentricity vector: for typical electric
propulsion configurations the SPP strategy is no longer required to save propellant.
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Figure 4.21: Tolerance window violations of mean orbital elements as a function of CER.

computational resources to setup and solve.
We setup the optimization problem as before in case MSB, with the same tolerances

on the mean elements. As before we have used an optimization timestep of 2160 sec-
onds, such that we have roughly 40 discrete points per orbit. We have investigated CER’s
between 1 and 160, meaning that the constraints have been enforced between 40 times
per orbit and once every 4 orbits. The resulting maximum constraint violations over the
one year simulation horizon are given in Figure 4.21 for the following mean orbital el-
ements: mean longitude, inclination and eccentricity. From the results we clearly see
that tolerance window violations on the mean elements are significantly smaller when
we apply the constraints more often. Based on these results we choose a CER such that
constraints on tolerance windows are enforced at least eight times per day for the sim-
ulations in the subsequent sections and in Chapter 5. The expected tolerance window
violations are smaller than 0.01 mrad in the absence of uncertainty for these settings.
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4.4.3. NOVEL METHOD WITH STATE CONSTRAINTS AND UNCERTAINTY

In the previous sections we have shown that the novel method produces reliable results.
The method can be configured such that a conventional maneuver scheme results with
identical performance and near-identical state trajectories. Using the long horizon prob-
lem formulation we have shown how the method retrieves classic guidance strategies.
We have also shown that we can easily deal with different thruster configurations and
thrust-to-mass ratios. We have investigated some important sensitivities with respect to
different parameter settings.

In this section we are applying the method in a more realistic simulation scenario in
which maneuver plans are determined using the optimization-based method, but the
implementation of the maneuver plans relies on high fidelity simulations of the satel-
lite and orbital dynamics. The simulations include various types of uncertainty, namely
orbit determination errors, thrust force magnitude and direction errors and modeling
errors of the SRP perturbation. Further modeling errors result from the fact that the
optimization relies on the LTV dynamics, while the simulation relies on a numerical in-
tegration of the nonlinear equations of motion. The errors that we introduce are pes-
simistic in magnitude; if we can deal with errors of this size, we can deal with smaller
errors as well.

This section is a core section investigating the merits of the new method. The goal is
to show several advantages of the new method in a realistic simulation scenario. We aim
to show the versatility of the algorithm to be used for chemical propulsion and electrical
propulsion satellites, as well as the possibility to include state constraints and control
constraints at any point in time. We further investigate how the state knowledge de-
creases over time, and discuss why our state prediction is worse for satellites with a large
thrust-to-mass ratio than for satellites with low thrust-to-mass ratio (under identical as-
sumptions on the uncertainty). An overview of simulation settings (in addition to Table
4.2) used for the analysis in the remainder of this chapter and the next chapter are given
in Table 4.8. The implementation and magnitude of the errors was presented in Section
2.8.

We study three simulation cases with the three different thruster configurations from
Section 2.6. The main settings of each case are summarized in Table 4.9, with identifier
SS to note that we used a single shooting formulation (Problem 4.6), as opposed to the
multiple shooting formulation in the previous section. We include final state constraints
on the mean eccentricity and inclination vectors. In the case of SSREF the final mean

Table 4.8: Additional simulation settings for simulation including uncertainty. The errors are implemented as
presented in 2.8.

Aspect Implementation

Include orbit determination errors Yes
Include thruster errors Yes

Include SRP modeling errors Yes
Include maximum thrust force constraint Yes

Allow eclipse firings No



4.4. SIMULATIONS, RESULTS AND ANALYSIS

4

153

Table 4.9: Simulation settings for SSREF, SSA and SSB simulation cases

Parameter Unit Value

Case SSREF SSA SSB
Thruster configuration REF A B

Thrust magnitude N 10 0.08 0.08
Constraint on e Fixed final e Fixed final e Fixed final e
Constraint on i Fixed final i Fixed final i Fixed final i

SPP Yes No No
Tolerance on |∆L| mrad 0.4 0.4 0.4

Type of elements constrained Mean Mean Mean
Maneuver cycle days 7 7 7

Schedule 6 out 7 6 out 7 6 out 7
Use Wτ Yes No No

Monte-Carlo runs 10 10 10

eccentricity vector is constrained using a SPP strategy with an eccentricity circle radius
of 2·10−4. In cases SSA and SSB, the final mean eccentricity vector is constrained to zero,
i.e. in the previous section we demonstrated that a SPP has no added value for typical
electric propulsion thruster configurations. In all three cases the final mean inclination
vector is constrained to zero as well. Each case includes a schedule in which thruster
firings are allowed 6 out of 7 days (with the 7th day reserved for orbit determination). In
the case of SSREF a weighting matrix Wτ is used to incentivize the optimizer to execute
maneuvers on the first day of the cycle. To investigate the impact of the various ran-
dom errors that were implemented, each case was simulated 10 times, giving us a total
of 10 · 52 = 520 maneuver cycles per simulation case, which are used for the statistical
analysis performed later in this section. The optimization problem used for these simu-
lations is Problem 4.6, such that feasibility is still guaranteed even if the satellite state is
outside of the constraint boundaries.

The main results of the simulations are summarized in Table 4.10. Firstly, we see from
the table that even under influence of the various types of uncertainty, the performance
in terms of propellant consumption and thruster firings is very good. In case SSREF the
propellant consumption deviates no more than 0.42 m/s from the results excluding un-
certainty (see Table 4.5). In terms of number of thruster firings we would expect around
208 thruster firings, an average of four firings per maneuver cycle, two EW firings and
two NS firings. The results in Table 4.10 are closely meeting the expectation. The main
difference between these performance numbers and those in Table 4.5 result from the
fact that here we are applying a 7-day maneuver cycle also to NS control, as well as hav-
ing two thrusters to perform NS maneuvers instead of a single thruster. Taking these
changes into account the thruster firing results are in line with expectations. In cases
SSA and SSB we have a propellant consumption that is very close to the theoretical min-
imum of 67.6 m/s (which is the propellant required for control of the secular variations
of the inclination vector divided by cos45◦ due to the off-pointing of the thrusters). In
terms of thruster firings we expect an average of 4 thruster firings per day. With firings
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allowed on six out of seven days, this would result in an expected 1248 thruster firings.
This value is almost exactly matched by SSA. In case SSB the value is slightly lower, as
could be expected based on inspection of Figure 4.19.

The maximum longitude deviation from the slot center reveals a much larger devia-

Table 4.10: Key simulation results of cases SSREF, SSA and SSB

Parameter Unit Value

Case SSREF SSA SSB
Mean ∆V m/s 51.23 68.18 68.05
Max. ∆V m/s 51.43 68.23 68.11

Mean firings 211 1240 1129
Max. firings 214 1245 1136

Max. longitude deviation deg 0.080 0.046 0.040
Max. latitude deg 0.041 0.032 0.032

tion for SSREF than for the other two cases, even though a similar tolerance on the mean
longitude was used. This difference has two root causes. The first and most obvious one
is that SSREF uses a SPP strategy and hence the eccentricity induces longitude variations
that are significantly higher than in the other cases (approximately 0.023 deg). The sec-
ond cause stems from the impact of maneuver errors on the prediction accuracy of the
orbital elements. Since SSREF uses significantly less maneuvers, these maneuvers are
on average much larger than in the other cases and a maneuver error will also be much
larger. In cases SSA and SSB more maneuvers are used to achieve similar changes to the
orbital elements. Since the errors in separate maneuvers are statistically independent
(for the error model that we choose to implement), the resulting errors in orbital ele-
ments are smaller. The same is true for the maximum latitude, but to a lesser extent.

In the sequel, we investigate the orbit prediction error in terms of orbital elements
in more detail. We have included several errors sources, namely, orbit determination er-
rors, maneuver errors (in magnitude and direction) and modeling errors (mismodeling
of the SRP force and the LTV approximation of the nonlinear dynamics). We study the
combined effect of these errors. Figures 4.23 to 4.26 show the Root Mean Square (RMS)
of the error evolution over the maneuver cycle duration (the RMS was obtained from 10
Monte-Carlo simulations, each containing 52 maneuver cycles).

From Figures 4.23 to 4.25 we can make an interesting observation, namely, for the
SSREF case, the error increases most significantly over the first day. This is due to ma-
neuver errors, which, due to the schedule (incentivized by Wτ), take place mostly on the
first day of the maneuver cycle. In cases SSA and SSB, the increase in error is much more
continuous over the maneuver cycle. The initial errors are due to orbit determination,
while the (roughly linear) increase in error over the maneuver cycle is due to a combina-
tion of SRP errors and the LTV approximation. These errors are most obvious in terms
of the eccentricity and are mostly due to the SRP errors that we introduced in the simu-
lations. In the case of SSREF, we observe that the error in ∆n hardly increases after the
first day, indicating that this error depends mostly on the maneuver errors and is hardly
affected by the other error terms.
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From Figures 4.23 to 4.26 we can conclude that the errors in mean longitude differ-
ence are significantly larger than the errors in the other elements. Firstly the orbit de-
termination errors are significantly larger for the mean longitude than any of the other
elements, and secondly, the error in mean longitude grows linearly as a result of a con-
sistent error in mean motion. It is clear from Figure 4.26 that the choice to guarantee
minimum distance between two satellites by relying only on their relative eccentricity
and inclination vector configurations is wise. Especially for larger prediction horizons,
the knowledge of the mean longitude difference is poor. This is an important observa-
tion in order to be able to deal with geometric constraints successfully. The sensor cone
avoidance constraints discussed in Chapter 3 require active control of the mean longi-
tude between two satellites and large uncertainty in the knowledge of this parameter can
be prohibitive in dealing with these constraints. The usual countermeasure is to reduce
the maneuver cycle duration, which would necessitate additional orbit determinations.
Another countermeasure is to include a constraint on the final mean longitude that is
far away from the normal boundary. As evident from Figure 4.26, for each of the thruster
configurations, the mean longitude prediction error is largest at the end of the maneu-
ver cycle. By including a constraint on the mean longitude far away from the normal
boundary, to be achieved at the end of the cycle, the constraint violations of mean lon-
gitude during the rest of the cycle will reduce significantly as well. Since mean longitude
control is usually achieved as a by-product of either eccentricity control (for the REF
configuration) or inclination control (for configurations A and B), no increase in propel-
lant is expected if a tighter constraint on the final mean longitude is introduced (in fact,
we may see a slight reduction in the propellant consumption, since the constraint vio-
lations at the end of the maneuver cycle, and hence at the start of the next maneuver
cycle, are smaller or completely absent). In case of single-satellite station-keeping we
can generally deal with the constraint violations. However, in case of collocating a fleet
of satellites such violations can have larger consequences. In the next section and in the
next chapter, we will introduce tighter constraints on the final state as a baseline.

Another observation from Figure 4.26 is that the mean longitude difference predic-
tion error is larger for thruster configuration A than for configuration B. The reason for
this increase in prediction error is that the thrust force component in tangential direc-
tion (which is the only direction contributing to mean longitude drift) is much larger
with configuration A. Every thruster firing introduces an error in thrust force magnitude,
which has a significant component in tangential direction. In the case of thruster con-
figuration B the contribution in tangential direction is much smaller, resulting in better
orbit prediction accuracy in this direction. Hence the general observation is that the par-
ticular thruster configuration that we chose can have an impact on the orbit prediction
error.

4.4.4. NOVEL METHOD AS RECEDING HORIZON CONTROLLER

Motivated by the large uncertainties for longer prediction horizons we investigate the
implementation in the form of a Receding Horizon Controller (RHC). We aim to show
that with this setup we can maintain very tight bounds on the mean orbital elements
with only a minor increase in propellant consumption. A potential use-case arises only
if accurate orbit control is mandatory, for example, when a large number of satellites
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Figure 4.22: Mean longitude difference of SSREF
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Figure 4.26: Orbit prediction errors in mean longitude difference ∆L

are collocated in a single slot. The simulation settings are those in Tables 4.2 and 4.8.
The key difference with previous simulations is a shorter maneuver cycle duration: we
reduced the maneuver cycle duration from seven days to one day. Note that we need
to include at least one orbit in the maneuver cycle, such that the control algorithm has
a chance of achieving the desired orbital elements using maneuvers at those locations
that are most efficient. Furthermore, no SPP strategy is used and the control windows
on the (relative) orbital elements are much more stringent than before: the tolerance
window on ∆L is reduced by a factor four, and small tolerance windows on eccentricity
and inclination vectors were introduced that were previously absent. The frequency of
re-planning is set to 6 hours, such that only the first quarter of a devised maneuver plan
is actually executed, after which a new plan is calculated. The simulation cases and set-
tings are summarized in Table 4.11.

We investigated the receding horizon controller for the three different propulsion
system configurations used in this work. We show that in the presence of all those uncer-
tainties we can still maintain very tight bounds on all relevant states. A summary of the
achieved performance is given in Table 4.12. For the chemical propulsion case (RHCREF)
we see an extremely large (relative) increase in number of thruster firings, which is some-
thing most chemical propulsion systems are not designed for. In the case of the electric
propulsion configurations, we see only a minor (relative) increase in thruster firings and
a RHC implementation can be feasible. The propellant consumption is hardly affected
in any of the cases. Note that for case RHCREF the increase is mainly due to the fact that
no SPP strategy was followed in these simulations.
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Figures 4.27, 4.28 and 4.29 show the simulation results for the RHCA case. The state
trajectories for the other two cases look very similar. We observe from these figures that
the constraints on the mean orbital elements are maintained with sufficient margin. The
state trajectories are at no point in time close to the boundaries of the tolerance win-
dows, which is mainly due to the final state constraint. Especially in terms of mean lon-
gitude difference the control accuracy is remarkable. This control accuracy is achieved
because of the combination of the short planning horizon together with the frequent re-
planning. A mean longitude prediction error (other than the initial error due to OD) is
established over time due to an error in the predicted drift rate. By allowing “only” six
hours before applying a form of feedback, this state can be controlled accurately as well.

The key enabler for an implementation of such scheme is the availability of frequent
(or continuous) orbit determination solutions. An on-board GNSS receiver could pro-
vide the required capability. Such a GNSS receiver would make near continuous mea-
surements, which could be used in an on-board filter to achieve real-time orbit deter-
mination solutions, or alternatively, the raw measurements could be sent to the ground
station to perform a precise orbit determination on-ground. The maneuver planning
could be implemented either on-board or on-ground. A geostationary satellite benefits
from the possibility to have 24/7 contact using a single ground station and hence does
not have a strong need for on-board autonomy.

Table 4.11: Simulation settings of RHC cases

Parameter Unit Value

Case RHCREF RHCA RHCB
Thrust magnitude N 10 0.08 0.08

Tolerance on e 0.05 0.05 0.05
Tolerance on i mrad 0.05 0.05 0.05

Tolerance on |∆L| mrad 0.1 0.1 0.1
Final state constraint e, i and ∆L zero zero zero

Type of elements constrained Mean Mean Mean
Planning horizon days 1 1 1

Replanning frequency day−1 4 4 4

Table 4.12: Simulation results of RHC cases

Parameter Unit Value

Case RHCREF RHCA RHCB
∆V m/s 53.10 68.14 68.45

# of Firings 1546 1543 1684
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Figure 4.27: Inclination vector over one year, RHCA simulation.
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Figure 4.29: Longitude difference of RHCA simulation.

4.5. CONCLUDING REMARKS

This chapter presented the definition and solution to the problem of station-keeping of a
geostationary satellite. Conventional methods for station-keeping usually rely on an an-
alytic determination of maneuvers, based on the approximation of these maneuvers by
impulsive∆V ’s. In contrast to these methods we have developed a novel station-keeping
method based on convex optimization. The formulation of the station-keeping problem
as a convex optimization problem was enabled by the LTV formulation of the satellite
dynamics. A sequence of increasingly complex problems was defined, culminating in
the formulation of Problems 4.6 and 4.7. Both multiple shooting and single shooting
approaches were applied, where the first is conceptually simpler, whereas the latter re-
sulted in a reduction of computational effort, especially useful for larger problems.

The maneuver plans resulting from the solution of one of the convex optimization
problems were not directly suitable for implementation using typical on/off thrusters.
The method for processing these maneuver plans was introduced and an analysis was
performed to obtain a bound on the errors introduced through this processing. The
same analysis was used to determine the accuracy of the realization of a maneuver that
was calculated under the assumption of an impulsive velocity increment. It was shown
that the error, resulting from the use of an electric propulsion system, can become sig-
nificant for long duration burns.

In the first simulation case, the station-keeping problem was configured to resem-
ble a conventional approach with two EW maneuvers per week, and one NS maneuver
per fortnight. This configuration allowed a validation of the methodology by compar-
ing the results obtained from the new method to results obtained using a conventional
approach. A remarkable similarity was shown both in the location and size of the ma-
neuvers, as well as in the resulting state trajectories. These findings established fidelity
in the new method.
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The multiple shooting approach was used to formulate several station-keeping prob-
lems with a horizon of one year. The solutions of these problems were analyzed to fur-
ther validate the methodology and to investigate the impact of certain parameters on the
optimal strategy. The method confirmed tried-and-true strategies such as SPP. Other re-
sults obtained from these investigations are as follows:

• The analysis showed how the required ∆V and number of thruster firings were
related to the size of the tolerance windows on inclination and eccentricity vectors.

• It was found that the SPP strategy has no benefits for typical electric propulsion
thruster configurations.

• The number of thruster firings can be reduced significantly by using a weighting
matrix, without (significantly) impacting the performance of the method.

The impact of the constraint enforcement ratio on the magnitude of the violations of the
tolerance windows was also investigated.

The method was tested in a realistic simulation scenario including errors due to orbit
determination, maneuver errors and modeling errors, both for a satellite with a chem-
ical propulsion system and for two satellites with different electric propulsion system
configurations. It was found that the performance of the method (in terms of propellant
consumption and number of thruster firings) was hardly influenced by the various types
of errors. Additionally, the impact of these errors on the state prediction accuracy was in-
vestigated by running each one year simulation ten times and comparing the predicted
state trajectories to the actual state trajectories. This analysis showed that the prediction
accuracy of the mean longitude difference is poor, confirming that it is a good choice
not to rely on the tangential direction for ensuring a minimum separation distance. An-
other important observation for the electric propulsion configurations was that the state
prediction error, especially in terms of mean longitude difference and mean motion dif-
ference, depends on the thruster configuration. Two exemplary thruster configurations
were studied to arrive at this conclusion.

The final simulations demonstrated the method in a receding horizon controller set-
ting. This implementation allowed to accurately control the state trajectories within
small tolerance windows. In the simulation cases with electric propulsion systems, only
a small increase in ∆V and number of thruster firings was observed. The simulations
with the chemical propulsion system showed a very steep increase in the number of
thruster firings, to a level comparable to the required thruster firings using an electric
propulsion system. The increase in ∆V for the chemical propulsion system was small
and resulted mainly from the omission of the SPP strategy. A receding horizon control
implementation is only feasible if frequent orbit determination solutions are available.

The simulation scenarios have shown several aspects of the station-keeping method.
Here, we summarize the positive characteristics:

• It was demonstrated that it can be used successfully to perform station-keeping of
a geostationary satellite.

• The performance, both in terms of ∆V usage and number of thruster firings, is
similar to conventional methods.

• The method can be used to both high thrust-to-mass chemical propulsion systems
as well as low-thrust-to-mass electric propulsion systems with various thruster
configurations.
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• Implementing convex constraints on control is straightforward, making it easy to
deal with constraints such as, e.g., avoid firings during eclipses or allow firings only
at certain days of a maneuver cycle.

• The satellite state can be constrained at any discrete node in the optimization
problem, allowing much more control over the state trajectory than using con-
ventional methods.

• The method can be implemented as a receding horizon controller, allowing very
accurate control of the satellite state.

• The formulation of the problem as a convex optimization problem with a guaran-
teed feasibility makes the method suitable for automation.

Despite all these strong characteristics the method also has some disadvantages in com-
parison to conventional methods. Both the conceptual and computational complexity
of the method are much higher compared to conventional methods. An operator has
no explicit control over the number of thruster firings that results from a solution of
the station-keeping problem. A processing was required before the resulting maneuver
plans could be implemented and small errors arise due to this processing. The magni-
tude of this error was shown to depend on the length of the discretization interval. It
was not possible with the novel method to deal with the minimum on-time of a thruster
explicitly. Instead, small thrusts were simply discarded, also leading to small errors, with
maximum magnitude that is half of the minimum impulse bit.
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5
STATION-KEEPING OF

COLLOCATED SATELLITES

Collaboration is not about giving up our individuality;
it is about realizing our greater potential.

Joshep Rain

Our future lies not in competition, but in responsible, interdependent cooperation.

Joshep Rain

Abstract
Collocating a fleet of satellites requires a coordinated approach. This is even more true if
not only minimum distance constraints, but also sensor cone avoidance constraints are
present. The station-keeping method is extended to calculate maneuvers for a fleet of geo-
stationary satellites using a leader follower hierarchy. An alternative problem formulation
includes the various error sources to achieve a more robust satisfaction of the constraints.
Simulation results present the performance and applicability of the method for an inho-
mogeneous fleet, a large homogeneous fleet as well as fleets subject to sensor cone avoid-
ance constraints.

165



5

166 5. STATION-KEEPING OF COLLOCATED SATELLITES

In this chapter we formulate and analyze a maneuver planning algorithm for a fleet
of satellites that are collocated in a single geostationary slot. The analysis and design of
the guidance method discussed in Chapter 3 is combined with the method for station-
keeping that was presented in Chapter 4. We require only small adaptations of the method
from Chapter 4 to be applicable to collocation and hence the theoretical developments
in this chapter are kept to a minimum. We do develop an extension of the method so
that several error sources can be accounted for in the problem formulation, resulting
in a more robust solution. Most of all, we spend time on studying applications of the
method. We demonstrate how the station-keeping method can be used together with
the design of a suitable guidance to simultaneously satisfy the geometric constraints that
motivated this research.

5.1. INTRODUCTION TO COLLOCATION
The uniqueness of the geostationary orbit renders it a scarce natural resource. To man-
age the distribution of this resource, the orbit has been divided into a limited number of
slots. These slots, especially above key areas, such as highly populated or highly devel-
oped countries, are extremely valuable. To make most use of a slot, operators collocate
multiple satellites within a single slot. Since a single collision in a geostationary slot
could potentially render the entire orbit unusable, it is of crucial importance to avoid
close approaches between (collocated) geostationary satellites. This requires a coor-
dinated approach to controlling the satellite orbits, requiring methods to analyze and
control the relative motion of the satellites.

5.1.1. DEFINITION OF THE COLLOCATION PROBLEM AND CONSTRAINTS
The main objectives of the collocation problem include the station-keeping objectives
that were defined in the previous chapter. In collocation an operator still aims to 1.) keep
the satellites in the slot, 2.) minimize propellant expenditure and 3.) limit the number
of thruster firings. In addition to these objectives, the collocation problem has two other
important objectives, the first and foremost is to maintain safe separation distances be-
tween satellites, while the second objective is to avoid the satellites from interfering with
each other, whether this be radio frequency interference, or interference through enter-
ing the field of view of a star sensor or an optical payload. The maneuver constraints
from Section 4.1.1 still apply, while “new” constraints are introduced, which are of ge-
ometric nature. The two geometric constraints that are included are the minimum dis-
tance constraint and the sensor cone avoidance constraint. In Chapter 3 we have worked
out methods for analyzing and designing a set of convex tolerance windows on relative
orbital elements such that these geometric constraints are satisfied. The design of these
tolerance windows is tested in this chapter to confirm that indeed they result in satisfac-
tion of the constraints.

5.1.2. CURRENT OPERATIONAL PRACTICE
Several methods for collocating satellites in a geostationary slot exist. Soop ([1]) catego-
rizes the different methods essentially into four approaches:

1. No collision avoidance measures: in the old days of geostationary operations, the
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collision probability of two satellites in a geostationary slot was assumed to be ex-
tremely low (based on a volume integral over the geostationary box) and collision
avoidance was neglected. Nowadays this approach is no longer acceptable.

2. Uncoordinated collocation with collision checking: the fleet is monitored for po-
tential collisions and a reactive strategy is implemented to avoid close approaches.
This means that a collision avoidance maneuver is executed when a conjunction
with an unacceptably high probability of collision occurs.

3. Collocation by separation: different satellites in a slot are allocated to different
regions usually defined in terms of orbital elements. These regions are chosen
such that no collisions occur when the satellites stay inside these regions. This
approach requires no coordination between the control strategies of the satellites,
but large regions are required since they need to allow for drift of the elements, the
(short) periodic variations and the errors in orbit determination, actuation and
modeling.

4. Coordinated station-keeping: the collocation strategy and maneuver executions
are coordinated between the satellites. The separations are defined in terms of
relative orbital elements. Since the satellites experience roughly the same accel-
erations and the periodic variations of the orbital elements are almost identical,
these need not be included as additional margin in the definition of the regions
for the relative orbital elements. It can be advantageous to designate one satellite
the fleet leader (or master), and implement an optimal strategy for controlling the
leader.

It may be clear from the content of Chapter 3 that we focused on the fourth approach.
The control windows are defined in terms of relative orbital elements, thus requiring a
coordinated approach. Soop ([1]) further specifies several separation methods which he
calls modes. A total of six different modes are described in detail. The first four modes
rely on achieving a separation between satellites in the radial-tangential plane only, ei-
ther by separating the satellites in longitude, eccentricity or both. The last two modes
use also the normal direction and Soop ([1]) provides the equations for calculating the
minimum distance in the radial-normal plane and in three dimensions under the as-
sumptions of zero mean longitude difference and zero semi-major axis difference.

As evident from the analysis in Section 4.4.3, the errors in orbit prediction are most
dominant in the mean longitude difference. This was already realized by Eckstein in his
1989 paper on a collocation strategy minimizing the need for collision avoidance ma-
neuvers [2]. In this paper Eckstein presents collocation strategies which use separations
in longitude, in eccentricity vector and by combining the effects of eccentricity and in-
clination vectors. Eckstein identifies as “safest” strategy for collocation the eccentric-
ity/inclination vector separation strategy. This strategy relies on the satellites in the fleet
having relative eccentricity and inclination vectors that are (anti-)parallel and the min-
imum distance is guaranteed using only the radial-normal plane. Eckstein simulates
side-by-side this coordinated approach and an uncoordinated approach for satellites
that are subject to orbit determination and maneuver errors. The results are a signifi-
cant reduction in close approaches when a coordinated approach is used. It may come



5

168 5. STATION-KEEPING OF COLLOCATED SATELLITES

as no surprise that the eccentricity/inclination vector separation strategy remains the
state-of-art method for collocating geostationary satellites.

One of the downsides of this strategy is that sensor interference is not mitigated as
part of the strategy (i.e. it was never an objective). The occurrence of such interference
events is frequent, and increases as the number of satellites in the slot increases [3]. A
solution that is able to deal with the geometric constraints of minimum distance and the
sensor cone avoidance constraints simultaneously has not been proposed to date. We fill
this gap by presenting a method that does not only deal with the minimum distance con-
straint, but also successfully mitigates violations of sensor cone avoidance constraints,
based on carefully selected relative control windows according to the method presented
in Chapter 3.

5.2. CONVEX OPTIMIZATION BASED METHOD

We build on the method introduced in Chapter 4 and extend it towards collocated satel-
lites. The collocation problem is formulated as a convex optimization problem and
solved accordingly.

5.2.1. OPERATIONAL ARCHITECTURE

Following the concept of operations introduced in Section 4.3 we discuss the extensions
that are required for collocating a fleet of satellites. The design of the guidance discussed
in Chapter 3 introduces the need to constrain the relative states defined in relative orbital
elements. Several different architectures allow for such constraints. The simplest option
would be to constrain the absolute states of all satellites such that the relative state con-
straints are met. This would be in line with Soop’s third approach: collocation by sepa-
ration. As pointed out before, this quickly exhausts the configuration space and severely
limits the amount of satellites that can be collocated in a single slot. We therefore choose
to implement a leader/follower architecture. One satellite in the fleet is designated as a
formation leader and this satellite is controlled using a method such as introduced in the
previous chapter on single-satellite control. The other satellites in the fleet, the follower
satellites, control their state relative to the leader satellite. An advantage is that the leader
state trajectory includes maneuvers that are, if the leader’s strategy is optimal, executed
at optimal locations. If the other satellites follow this trajectory at some offset in terms
of synchronous orbital elements (except for ∆n), similar maneuvers result naturally for
the other satellites. All satellites in the fleet experience very similar perturbations, most
of which cancel out when forming the relative states (remember that we approximate
the perturbations by those affecting the slot center). Hence, only the secular effects of
the differential perturbations between satellites need to be corrected for. Using a similar
argument, if controlling the relative states, no mean-to-osculating transformation is re-
quired (we determine the mean-to-osculating transformation by approximating the pe-
riodic perturbations at the geostationary slot center, and hence this mean-to-osculating
transformation is identical for all satellites in the fleet).

In order to form the relative state and formulate the relative state constraints, the fol-
lower satellites need to know the (predicted) leader state. If the method from Chapter 4
is used to determine the leader maneuver plan, a by-product of solving the optimization
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Figure 5.1: High level simulation architecture for a follower satellite

problem is the predicted state trajectory at the discrete nodes. This can be used directly
as an input to the follower satellites’ maneuver planning module. The relative state can
be formed and the relative state constraints can be formulated. Figure 5.1 presents a
high level architecture for a follower satellite. In the next section, the formulation of the
optimization problem and constraints is discussed.

5.2.2. GENERAL PROBLEM FORMULATION
The collocation problem usually includes a mixture of both absolute state constraints
(e.g. stay inside the geostationary slot) and relative state constraints (e.g. maintain a
specific relative eccentricity/inclination vector configuration). As a starting point we can
use the scaled problem formulation with guaranteed feasibility from Chapter 4, Problem
4.6, repeated here for convenience:

Problem 5.1.

minimize ‖Wττ̄tot‖1 +‖Wa sa‖1 +
Mc∑
j=1

wc j ·max
(
0, sc j −1

)
subject to

c̄ (τtot) ≤ sc

ā (τtot) = sa

τ̄tot ≤ 1

−τ̄tot ≤ 0.

The difference with the single-satellite station-keeping problem is in the definition
of the constraints. The absolute (scaled) state constraints for staying inside the geosta-
tionary slot can be implemented similar to those used in Chapter 4. Alternatively they
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can be omitted altogether if the combination of the leader state trajectory and the rela-
tive state constraints is defined such that the geostationary slot boundaries are respected
for every choice of relative state within the allowed tolerance windows. If xL

k defines the
leader state at time k, the relative state is simply defined as:

∆xk = xF
k −xL

k , (5.1)

or for the total state trajectory at all N discrete points in time:

∆xtot = xF
tot −xL

tot

= FxF
0 +HΓFτF

tot + JdF
tot −xL

tot, (5.2)

with superscript F for those vectors and matrices different between leader and follower
satellites. We consider several types of constraints on relative states for the collocation
problem which we can separate depending on the particular orbital element that is in-
volved. We usually constrain only the relative eccentricity vector, the relative inclination
vector and the relative mean longitude of the satellites.

The typical constraints for relative eccentricity and inclination vectors were discussed
in Chapter 3. We focus on two typical constraints, which are either a circular tolerance
window, centered on some nominal relative eccentricity or inclination vector, or a con-
vexified annular sector (see Section 3.5), which is defined as the intersection between
three affine inequality constraints and a two-norm constraint centered on the origin of
the relative eccentricity or inclination plane. We also include an equality constraint for
the relative eccentricity or inclination vector to a target value at a particular point in
time. For the relative mean longitude, we consider affine equality and/or affine inequal-
ity constraints.

In the sequel, we provide some examples of the constraints that are implemented in
the application cases in this chapter. We would like to constrain the relative eccentricity
vector at the kth discrete step to lie within a circle with radius re , centered on some nom-
inal relative eccentricity vector defined by ∆enom

x,k and ∆enom
y,k . This constraint is convex

in the optimization variables τtot and is formulated as follows:

c̄1 (τtot) =

√(
∆ex,k −∆enom

x,k

)2 +
(
∆ey,k −∆enom

y,k

)2

re
≤ 1, (5.3)

where ∆ex,k and ∆ey,k are obtained by selecting the corresponding rows from Eq. (5.2).
In a similar manner, a constraint on the relative inclination is formulated as:

c̄2 (τtot) =

√(
∆ix,k −∆i nom

x,k

)2 +
(
∆i y,k −∆i nom

y,k

)2

ri
≤ 1. (5.4)

Contraints on the relative mean longitude are similar as for a single satellite:

c̄3 (τtot) =−
(
∆Lk −∆Lk,mid

)
c3,max

≤ 1 (5.5)

c̄4 (τtot) =
(
∆Lk −∆Lk,mid

)
c4,max

≤ 1, (5.6)
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with scaling factors determined by the size of the relative mean longitude window:

c3,max = c4,max = ∆Lmax −∆Lmin

2
, (5.7)

the window center is given by

∆Lk,mid = ∆Lmax +∆Lmin

2
. (5.8)

In some cases we also define affine inequality constraints on the relative eccentricity and
inclination vectors, for example, when we require to constrain the relative e/i -vectors
inside annular sectors, as per the guidance design example in Chapter 3. In this case, a
constraint is defined as follows:

c̄5 (τtot) = ae∆ex,k +be∆ey,k ≤ 1, (5.9)

or, for a constraint on the inclination vector:

c̄6 (τtot) = ai∆ix,k +bi∆i y,k ≤ 1, (5.10)

where ae , be , ai and ai are chosen such that the desired constraint arises. As before we
define these constraints at every CER discrete nodes. In addition, we separately define
a constraint on the final state, which is usually tighter than the other constraints. The
reason for doing this is to reduce the impact of the various error sources (orbit determi-
nation, maneuvers, modeling) on the dissatisfaction of the constraints, as discussed in
more detail later in the simulations and analysis section.

5.2.3. ROBUSTIFIED PROBLEM FORMULATION
The optimization method introduced before can be robustified by accounting for the
different types of uncertainty affecting the station-keeping process in the solution of the
optimization problem. In this section we develop a method that accounts for uncer-
tainty in orbit determination errors, errors due modeling the dynamics as a LTV system,
errors due to SRP model mismatch, thrust force magnitude errors and errors in thrust
direction. Our aim in robustifying the process is to achieve a 3-sigma probability that
a satellite stays inside some predefined tolerance windows at those times where con-
straints are enforced. We will first discuss the methods used to assess the 3-sigma error
bounds of the different sources of errors. We then develop the formulation of the opti-
mization problem taking these errors into account.

ORBIT DETERMINATION ERRORS

In Section 2.8 the orbit determination errors affecting the system were presented. Since
the orbit dynamics are well-described by an LTV-system with a constant system matrix
A, the orbit determination covariance matrix can be propagated linearly to achieve the
orbit prediction covariance matrix at any time in the future. For a state transition matrix
Φ (t , t0), the covariance at time t is as follows:

C (t ) =Φ (t , t0)C (t0)ΦT (t , t0) . (5.11)
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In terms of the synchronous orbital elements defined in Eq. (2.6) the state transition
matrix has a very simple structure:

Φ (t , t0) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
∆t 0 0 0 0 1

 , (5.12)

with ∆t = t − t0. Thus, the error in the first five states remains constant, while an error
in the mean longitude ∆L increases linearly with time. The rate of change of the error
in ∆L is dependent only on the initial error in ∆n. The standard deviation of the orbital
elements at time t due to an initial orbit determination error at t0 is equal to:

σOD
∆x(t ) =



σ∆n

σex

σey

σix

σi y

σ∆L



OD
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t=t0

+∆t



0
0
0
0
0

σ∆n



OD∣∣∣∣∣∣∣∣∣∣∣∣∣
t=t0

. (5.13)

We used the linear transformation of Eq. (2.43) to convert the covariance matrix from
RTN coordinates into synchronous orbital elements for a variety of values of the mean
longitude L. We approximated the standard deviations of the individual elements in Eq.
(5.13) using only the diagonal elements of the covariance matrix in orbital elements and
average the standard deviations over one orbit (i.e. values of L between 0 and 2π). The
resulting standard deviations are given in Table 5.1. The standard deviation of the error
contribution due to orbit determination is then computed from Eq. (5.13). To obtain
the standard deviation of the state vector at all discrete times in the optimization prob-
lem simultaneously we evaluate Eq. (5.13) at the discrete nodes tk and concatenate the
standard deviations to obtain σOD

∆xtot
.

Table 5.1: Standard deviations of orbit determination errors in synchronous orbital elements

Element σOD

∆n [rad/s] 4.4E-12
ex [-] 5.8E-8
ey [-] 5.8E-8
ix [rad] 4.9E-7
i y [rad] 4.9E-7
∆L [rad] 8.7E-6
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MODELING ERRORS

The dominant dynamics modeling errors result from the approximation of the nonlin-
ear dynamics by the LTV system in Eq. (2.13) and the errors introduced in approximat-
ing the SRP as defined in Section 2.8. An analysis of the accuracy of the LTV system
was performed in Section 2.3.4. By comparing the errors in eccentricity, inclination and
mean longitude we found that the errors grow roughly linear with time. To character-
ize the accuracy of the modeling errors in terms of synchronous orbital elements, we
have performed a Monte-Carlo analysis for an optimization timestep of 1080 seconds
for randomly generated initial states as in Section 2.3.4. The results of this analysis are
presented in this section in order to derive a simple linear model of the uncertainty due
to the LTV approximation of the dynamics. We performed a similar exercise to estimate
the uncertainty resulting from SRP modeling errors and also derive a linear approxima-
tion of the standard deviation of the resulting error in terms of synchronous orbital el-
ements. Hence we approximate the standard deviation of the error in orbital elements
due to modeling errors as a linear function of time.

Table 5.2 presents the results of this analysis: the time-rate-of-change of the standard
deviation of the errors in orbital elements due to the LTV dynamics and SRP mismodel-
ing are given. To obtain an approximation of the standard deviation of the errors due to
LTV or SRP mismodeling at time t , we multiply the entry from Table 5.2 with the time
since the last orbit determination epoch ∆t = t − t0.

σLTV/SRP
∆x(t ) = d

dt



σ∆n

σex

σey

σix

σi y

σ∆L



LVT/SRP

·∆t . (5.14)

As before, to obtain the standard deviation of LTV and SRP modeling errors at each dis-
crete node we evaluate Eq. (5.14) at every tk and concatenate the standard deviations to
obtain σLTV

∆xtot
and σSRP

∆xtot
.

Table 5.2: Time derivative of a linear approximation of the standard deviation of the error due LTV dynamics
model and SRP mismodeling.

Element Unit d
dt

(
σLTV

) d
dt

(
σSRP

)
∆n rad/s/day 4.29E-12 2.3E-14
ex 1/day 1.02E-07 4.86E-7
ey 1/day 1.26E-07 5.00E-7
ix rad/day 3.25E-07 7.14E-10
i y rad/day 1.58E-07 2.86E-10
∆L rad/day 9.76E-07 1.00E-6
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THRUST ERRORS

Thrust force magnitude errors (TM) are separately treated from thrust direction errors
(TD). We investigate how these errors affect our knowledge of the orbital elements, start-
ing with a thrust force magnitude error. The influence of a maneuver on the orbital ele-
ments is captured by:

HΓτtot, (5.15)

where the j th element of τtot is referred to as τ j . An uncertainty in this variable was
modeled as a multiplicative uncertainty (Section 2.8):

τ j = τ j ,nom (1+∆τ) , with ∆τ =N
(
0,στ j

)
. (5.16)

This thrust uncertainty τ j ,nom∆τ, will affect all orbital elements in xtot corresponding to
the nonzero entries in the j th column of matrix HΓ, which we refer to as HΓ

(
: , j

)
. The

uncertainty in xtot due to the τ j ,nom∆τ can be evaluated as:

∆xtot, j = HΓ
(

: , j
)
τ j ,nom∆τ, (5.17)

with standard deviation (element-wise):

σTM
∆xtot, j

= ∣∣HΓ(
: , j

)∣∣τ j ,nomστ j . (5.18)

The total standard deviation due to all thrusts combined can be calculated by summing
over all thrusts either linearly (L):

σTM,L
∆xtot

=∑
j

∣∣HΓ(
: , j

)∣∣τ j ,nomστ j , (5.19)

or, if we assume that the errors of different thruster firings are statistically independent
of each other (as we have implemented in our simulations, see Section 2.8), we can sum
quadratically (Q):

σ
TM,Q
∆xtot

=
√∑

j

(
HΓ

(
: , j

)
τ j ,nomστ j

)2
. (5.20)

In the simulations we used a 3-σ thrust magnitude error of 5%, such that στ j = 0.0167
for each thruster firing. Note that both Eq. (5.19) and Eq. (5.20) are convex functions of
the independent variables τtot.

Thrust direction errors are treated in a similar fashion as thrust magnitude errors.
We first establish that a thrust direction error (for the errors considered in this work)
results in an erroneous thrust in the plane perpendicular to the thrust vector, but has
no significant impact on the magnitude of the thrust vector in the intended direction.
For a maximum off-angle of the thrust vector of 1.5◦ the reduction of thrust τ j ,nom in the
intended direction is: (

1−cos1.5◦
) ·τ j ,nom = 3.2 ·10−4 ·τ j ,nom, (5.21)

while in the plane perpendicular to the thrust vector a parasitical thrust of

sin
(
1.5◦

) ·τ j ,nom ≈ 1.5
π

180
·τ j ,nom = 0.026 ·τ j ,nom (5.22)
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occurs. We neglect the impact of a thrust direction error on the thrust force in the in-
tended direction and approximate the thrust direction error in the direction perpendic-
ular to the thrust direction as a linear function of the attitude error, such that a thrust

error resulting from an attitude error with ∆a =N
(
0,σa j

)
has a magnitude given by the

random variable τ j ,nom∆a . This approximation is conservative as a rotation around the
thrust vector itself does not contribute to a thrust direction error (i.e. only the perpen-
dicular components do).

In order to project the thrust direction uncertainty of a thruster onto radial, tangen-
tial and normal directions we use:

Γ⊥i j =
p

2

2

√
1−Γ2

i j , (5.23)

where i j refers to the i j th element of the matrix. This results in the following matrix for
our definition of Γ (Eq. 2.51):

Γ⊥ =
p

2

2m


√

1− sin2γcos2β

√
1− sin2γcos2β

√
1− sin2γcos2β

√
1− sin2γcos2β√

1− sin2γsin2β

√
1− sin2γsin2β

√
1− sin2γsin2β

√
1− sin2γsin2β

sinγ sinγ sinγ sinγ

,

(5.24)

such that
u⊥ = Γ⊥τ. (5.25)

We also define Γ⊥ similar to Eq. (2.53):

Γ⊥ =

Γ
⊥

Γ⊥
. . .

 . (5.26)

As for the thrust magnitude errors, we describe the effect of a thrust direction error of
an individual thruster firing by τ j ,nom∆a . This error affects all orbital elements in xtot

corresponding to the nonzero rows of the j th column of matrix HΓ⊥. The uncertainty in
xtot due to τ j ,nom∆a can be evaluated as:

∆xtot, j = HΓ⊥
(

: , j
)
τ j ,nom∆a , (5.27)

with standard deviation (element-wise):

σTD
∆xtot, j

= ∣∣HΓ⊥ (
: , j

)∣∣τ j ,nomσa j . (5.28)

Again, the total standard deviation due to all thrusts combined can be calculated by sum-
ming over all thrusts either linearly:

σTD,L
∆xtot

=∑
j

∣∣HΓ⊥ (
: , j

)∣∣τ j ,nomσa j , (5.29)

or quadratically:

σ
TD,Q
∆xtot

=
√∑

j

(
HΓ⊥

(
: , j

)
τ j ,nomσa j

)2
. (5.30)

We demonstrate both linear and quadratic summations of the thrust force and magni-
tude errors in the simulations in section 5.3.4.
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ROBUSTIFIED OPTIMIZATION PROBLEM

Using simplified error models, we have obtained a set of functions that describe the stan-
dard deviation of the synchronous orbital elements at every discrete node in the opti-
mization depending on the various contributors. A conservative approximation of the
total standard deviation of a satellite’s total state vector is then:

σ∆xtot =σOD
∆xtot

+σLTV
∆xtot

+σSRP
∆xtot

+σTM,L
∆xtot

+σTD,L
∆xtot

, (5.31)

in case of linearly added thrust uncertainties, or

σ∆xtot =
√(

σOD
∆xtot

)2 +
(
σLTV
∆xtot

)2 +
(
σSRP
∆xtot

)2 +
(
σ

TM,Q
∆xtot

)2 +
(
σ

TD,Q
∆xtot

)2
, (5.32)

when we assume that all errors are independent from each other and the standard devi-
ations can be added quadratically. Note that the equations are convex functions in the
optimization variables τtot, both for a linear and a quadratic addition of the thrust mag-
nitude and thrust direction errors. The other components of the error are independent
of the optimization variables.

In the collocation problem we enforce constraints on the relative orbital elements
and both leader and follower satellites contribute to the uncertainty in the relative or-
bital elements. The contribution of the leader satellite is a function of the leader’s or-
bit control maneuver, but not of the optimization problem variables in the collocation
problem (which are the thrust force variables of the follower satellite). The standard de-
viations of the leader and follower state trajectory in each orbital element at each of the
discrete nodes are calculated using Eq. ( 5.31) or Eq. (5.32). The combined uncertainty
in the relative orbital elements is then:

σ∆xtot =σF
∆xtot

+σL
∆xtot

(5.33)

in case of linear addition, or

σ∆xtot =
√(

σF
∆xtot

)2 +
(
σL
∆xtot

)2
(5.34)

in case of quadratic addition. The superscripts L and F refer to leader and follower satel-
lites. Note that these standard deviations remain convex functions of the optimization
variables.

The typical constraint windows that we implement are bounds that are either affine
or quadratic functions of the satellite state. We “robustly” enforce these constraints
by “forcing” the optimization problem to stay three standard-deviations away from the
boundary, hence essentially applying tighter (and time, state and and control depen-
dent) bounds. For affine state constraints we can use affine combinations of the stan-
dard deviations of the (relative) orbital elements to robustly enforce a constraint.

The quadratic bounds in the station-keeping and collocation problems essentially
keep the (relative) eccentricity or inclination vector inside a circular window. To apply
such a constraint in a robustified manner we reduce the radius of the circular bound-
ary, such that the satellite state stays inside reduced circular window with a probability
exceeding 99.7%. As an example, if σ∆ex,k and σ∆ey,k are the standard deviations of the
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errors of the eccentricity vector components, the eccentricity vector will be in a circle
with a radius of

3σδek
= 3

√(
σ∆ex,k

)2 +
(
σ∆ey,k

)2
. (5.35)

with a probability ≥ 99.7% (assuming Gaussian errors, the probability reduces to 99.7%
only in case ∆ex and ∆ey are fully correlated). Note that the value in Eq. (5.35) is not
actually a standard deviation, however, we still used the σ-symbol. If we reduce the tol-
erance window radius by this value, the probability that the relative eccentricity vector
stays inside the tolerance windows is then also ≥ 99.7%.

As examples of robustified constraint formulations we provide the “robustified” ver-
sions of Eqs. (5.3) and (5.4):

c̄1 (τtot) =

√(
∆ex,k −∆enom

x,k

)2 +
(
∆ey,k −∆enom

y,k

)2

re
+ 3σδek

re
≤ 1 (5.36)

and

c̄2 (τtot) =

√(
∆ix,k −∆i nom

x,k

)2 +
(
∆i y,k −∆i nom

y,k

)2

ri
+ 3σδik

ri
≤ 1. (5.37)

in which σδek
and σδik

represent the uncertainty in the relative orbital elements, result-
ing from the combined leader and follower uncertainties from Eq. (5.33) or Eq. (5.34).

The constraints are applied in a similar manner at each discrete node in the opti-
mization problem, except at the final time. At this time the tolerance window is reduced
even further, namely by three standard deviations of the combined orbit determination
error of the leader and follower satellites (either linearly or quadratically). This is done
to ensure that the constraint is not violated at the initial time of the next maneuver cy-
cle, at which the tolerance windows is reduced by the orbit determination uncertainty
(at the initial discrete node, no maneuvers have taken place and the standard deviations
of the state error are only due to the orbit determination errors of leader and follower
satellites).

5.3. SIMULATIONS, RESULTS AND ANALYSIS
We present the results of simulations for a variety of applications, each chosen for spe-
cific reasons. We start with an inhomogeneous fleet of four satellites in a ±0.1◦ slot. With
this simulation case we show that we can apply the method for controlling a fleet of satel-
lites in which each satellite has different characteristics. We show that we can maintain
a minimum separation distance in a manner similar to the current operational practice.
The next application case demonstrates that the method easily scales to larger fleets by
showing an application with a large fleet of 16 satellites in a small ±0.05◦ slot. To be able
to control that many satellites inside a small slot we have reduced the maneuver cycle
duration to a single day. The subsequent applications build on the guidance design ex-
ample introduced in Chapter 3 and show how we can deal with sensor cone avoidance
constraints in addition to the minimum distance constraint. The last case study uses
the robustified formulation of the collocation problem. We show that this formulation
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allows us to guarantee that we stay inside certain pre-defined tolerance windows. The
advantages and disadvantages of the robustified formulation are discussed. All simula-
tions included in this chapter include errors due to orbit determination, actuation and
modeling.

5.3.1. INHOMOGENEOUS FLEET OF FOUR SATELLITES
In Chapter 3 we have shown how a minimum distance can be guaranteed if we can main-
tain the relative eccentricity and relative inclination vectors inside certain (convex) toler-
ance windows. Here, we use these tolerance windows and simulate the station-keeping
of a fleet of four satellites in a geostationary slot. The calculation of the station-keeping
maneuvers of the follower satellites is done by solving Problem 5.1. The goals are to
maintain a certain minimum separation distance between the satellites while staying
inside a geostationary slot of ±0.1◦. One satellite is the designated fleet leader, while
the other three follower satellites are controlled with respect to the leader satellite. We
show a simulation case including the different forms of uncertainty discussed before, for
satellites that all have either a different propulsion system from the leader satellite or
a different surface area exposed to SRP, or both. We aim to show that the method we
have developed in the previous chapter, and extended towards multiple satellites in this
chapter, can be used to control a fleet of satellites such that minimum distances can be
guaranteed while staying inside the geostationary slot. We show that there are no propel-
lant consumption penalties compared to the case with a single geostationary satellite.

An overview of the key simulation parameters is given in Table 5.3. The leader satel-

Table 5.3: Key simulation settings for the simulations with an inhomogeneous fleet of four satellites

Parameter Unit Value

Satellite L F1 F2 F3
Thruster configuration B REF A B

Thrust force N 0.08 10 0.08 0.08
As m2 90 120 120 120

SPP Yes - - -
Tolerance on e 10−3 - 0.05 0.05 0.05
Tolerance on i mrad - 0.05 0.05 0.05

Tolerance on |∆L| mrad 0.3 0.3 0.3 0.3
Tolerance on final e 10−3 fixed final e 0.025 0.025 0.025
Tolerance on final i mrad fixed final i 0.025 0.025 0.025

Tolerance on final |∆L| mrad fixed final ∆L 0.075 0.075 0.075
Elements constrained Mean Relative Relative Relative

Maneuver cycle days 7 7 7 7
Schedule 6 out 7 6 out 7 6 out 7 6 out 7

Use Wτ No No No No

lite is equipped with an electric propulsion system in configuration B. The follower satel-
lites each have different propulsion systems. The first follower satellite has a chemical
propulsion system in the reference configuration while the other two follower satellites
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have an electric propulsion system in configuration A and B respectively. The leader’s
surface area exposed to solar radiation (90 m2) is smaller than that of the follower satel-
lites (120 m2). Each satellite has a maneuver cycle of 7 days, where maneuvers are al-
lowed 6 out of 7 days, with the 7th day being reserved for orbit determination.

The leader satellite’s eccentricity vector is constrained to follow a circle with the ec-
centricity vector pointing in the direction of the Sun (as per SPP) with a radius of 2·10−4.
Only the final eccentricity and inclination vectors (those at the end of each maneuver
cycle) are constrained for the leader. The mean longitude difference is constrained to
a ±0.3 mrad window around the slot center, while the final mean longitude difference
is constrained to zero. The configuration in the eccentricity and inclination plane was
chosen according to the eccentricity/inclination vector separation strategy, with iden-
tical configurations of relative eccentricity and inclination vectors. The actual configu-
ration is clearly visible from the results that follow shortly. The tolerance windows on
eccentricity and inclination vectors are circular with their radius given in Table 5.3. The
relative mean longitude difference is constrained in a 0.3 mrad window centered on the
leader’s mean longitude difference. The final state is constrained to a smaller window
(half the size for eccentricity and inclination and a factor 4 smaller for relative mean
longitude). Constraining the final state in smaller windows significantly reduces over-
all constraint violations without significant impact on the propellant consumption. In
fact, we observed a slightly positive impact on the propellant consumption, which can
be explained as follows: without the smaller window in final state, the optimizer often
generates a trajectory close to (or on) the constraint boundary. The effect of the various
errors can push the trajectory over the boundary. Now the next maneuver cycle will start
with a state outside of the tolerance windows. Due to the use of the slack variables, the
optimization problem is still feasible, but the optimizer will try to bring the state back
inside the tolerance windows as quickly as possible (since the cost associated to violat-
ing the constraints is rather high). The result is that some small maneuvers might be
made at non-optimal locations. Including a final state constraint with a smaller toler-
ance counters this undesired situation.

The theoretical minimum distance for arbitrary relative eccentricity and inclination
vectors inside the defined tolerance windows can be calculated using Eqs. (3.22) and
(3.35). For the tolerance window definitions in this example, the theoretical minimum
distance between leader and follower satellites (either F1 or F3) is equal to 9.67 km, while
the theoretically achievable minimum distance between two follower satellites (either
F1/F2 or F2/F3) is equal to 6.74 km. To calculate the minimum distance between two
follower satellites we substituted twice the radius of the tolerance window in Eq. (3.35).

The performance results of the simulations are given in Table 5.4. In terms of propel-
lant consumption, all four satellites show excellent performance, very much in line with
the results for a single satellite. Although the differences are small, the obtained results
for the fleet were slightly better than for a single satellite (Table 4.10). The addition of the
final state constraint on∆L made control of the leader satellite slightly more efficient (i.e.
no maneuver cycle started with a longitude outside of the tolerance window). Further-
more, for the follower satellites, the small window on inclination vector allowed for small
variations of the actual inclination vector variations compared to the predicted inclina-
tion vector variations based on Kamel’s theory (which included Earth gravity perturba-
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Table 5.4: Key results for the simulations with an inhomogeneous fleet with four satellites

Parameter Unit Value

Satellite L F1 F2 F3
∆V m/s 67.88 50.98 68.00 67.72

Firings 1248 612 1251 1160
Max. longitude deviation deg 0.062 0.071 0.078 0.064

Max. latitude deg 0.041 0.044 0.043 0.040

tions up to 3rd order and degree and Sun and Moon gravity only). In terms of thruster
firings, all three electric propulsion satellites were behaving as expected, while an in-
crease in thruster firings for F1 is observed compared to a single satellite. This might
have been expected as the trajectory is controlled relative to that of a leader satellite
with an electric propulsion system. Hence the “reference” trajectory has many small
maneuvers inside and maintaining the satellite state inside a tolerance window around
this reference trajectory required more maneuvers than in the single-satellite case. The
maximum longitude and latitude deviations show that all four satellite stayed inside the
geostationary slot with ample margin.

In terms of state trajectories, we choose to show the absolute osculating eccen-
tricity and inclination vectors of the fleet in Figures 5.2 and 5.3, as well as the relative
state trajectories of the eccentricity vector (Figure 5.4), inclination vector (Figure 5.5)
and mean longitude deviation (Figure 5.6). The constraints that were imposed on these
relative state trajectories are given by the dashed lines. From these figures we observe
minor violations of the state constraints over the course of the simulations. This was ex-
pected since we enforce these constraints only every 10th discrete step. In addition, the
errors that we introduced cause orbit prediction errors and the accuracy of control can-
not be better than the orbit prediction accuracy. Such minor violations of the constraints
can be accounted for in the design of the nominal configuration and tolerance window
sizing (in fact, the theoretical minimum distance of 6.74 km provides ample margin for
errors). The important results are 1.) all satellites stayed inside the geostationary slot
(see Figures 5.7 and 5.8), while 2.) the minimum distance in the radial-normal plane
that was observed during the simulation between all pairs of satellites was between F1
and F2 and was equal to 8.61 km, as seen from Figure 5.9, depicting the relative trajectory
of F2 in the radial-normal plane attached to F1.

5.3.2. HOMOGENEOUS FLEET OF SIXTEEN SATELLITES

We intend to show that with the method developed in this work we can safely collocate
many more satellites in a single small slot. We demonstrate the collocation of 16 satel-
lites in a small ±0.05◦ slot. To increase the accuracy of control (or alternatively; to reduce
the orbit prediction errors), we use a maneuver cycle duration of only one day. The 16
satellites are assumed to be of identical build, with an electric propulsion system in con-
figuration B. The satellite characteristics and simulation settings are the same as for F3
in Table 5.3 with some exceptions: the tolerance windows have been reduced by a factor
two compared to the inhomogeneous fleet, the leader no longer follows a SPP strategy
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Figure 5.2: Osculating eccentricity vectors for the simulations with an inhomogeneous fleet with four satellites.
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Figure 5.3: Osculating inclination vectors for the simulations with an inhomogeneous fleet with four satellites.
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Figure 5.4: Relative eccentricity vectors for the simulations with an inhomogeneous fleet with four satellites
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Figure 5.5: Relative inclination vectors for the simulations with an inhomogeneous fleet with four satellites
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Figure 5.6: Relative longitudes for the simulations with an inhomogeneous fleet with four satellites
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Figure 5.7: Latitudes for the simulations with an inhomogeneous fleet with four satellites
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Figure 5.9: Relative motion of F1 and F2 of the inhomogeneous fleet in the radial-normal plane. The achieved
minimum distance is equal to 8.61 km.

and no schedule is imposed. The reason that no SPP strategy is used is that none of the
satellites in the fleet have a chemical propulsion system. The analysis in Section 4.4.2
showed that the SPP strategy is not required for the electric propulsion configurations
studied in this work. A schedule is omitted because the propagation horizon is only one
day.

The actual relative eccentricity and inclination vector configuration follows again the
typical separation strategy and can be seen from Figures 5.10 and 5.11. We have further
reduced the CER to one such that tolerance window violations are a result only of state
prediction errors. Note that since we reduced the maneuver cycle duration to a single
day, we can also significantly reduce the required minimum separation distance, since
the orbit prediction errors are much smaller. We rely only on eccentricity and inclina-
tion vectors to achieve a minimum separation distance. Figures 4.24 and 4.25 show very
small uncertainty in these elements during the first day (for configuration B in this case).
The configuration of relative e/i -vectors gives us a theoretical minimum separation dis-
tance between the leader satellite and any follower satellite in the fleet that is larger than
or equal to 3.57 km and between any two follower satellites it is larger than or equal to
2.13 km (using Eqs. (3.22) and (3.35) with δec = δic = 1.2·10−4 and re = ri = 0.25·10−4 or
re = ri = 0.5·10−4).

Table 5.5 presents the simulation results. Instead of listing the individual ∆V and
number of firings for each satellite, we provide the mean numbers and the maximum
numbers. From the table we observe a slight increase in propellant consumption and
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Table 5.5: Key simulation results for the simulations with a homogeneous fleet of 16 satellites

Parameter Unit Value

Mean ∆V m/s 68.23
Max. ∆V m/s 69.36

Mean firings 1468
Max. firings 1504

Max. longitude deviation deg 0.046
Max. latitude deg 0.045

thruster firings as compared to Table 5.4. By decreasing the maneuver cycle duration,
we increased the frequency of feedback and thus we increased the response to errors.
This explains the increased thruster firings and the slight increase in propellant con-
sumption. We further see from Table 5.5 that all satellites managed to stay inside the
geostationary slot. Figures 5.10 and 5.11 show the control of the relative eccentricity and
inclination vectors. We see only small violations of the boundaries, in line with the small
orbit prediction errors that we expect during the one-day maneuver cycle duration. We
further determined the minimum distance between all 120 pairs of satellites over the
simulation duration (one year). We found that in this particular simulation the mini-
mum distance occurred between the leader satellites and F6 and was equal to 3.56 km
(the projected trajectory is given in Figure 5.12). This is noteworthy for two reasons: first,
it is slightly smaller than the theoretical minimum of 3.57 km, and second, the smallest
distance occurred between the leader satellite and a follower satellite and not between
two follower satellites. From Figure 5.10 we infer that the eccentricity window is used al-
most completely over the year, and it is well possible that a close-to-worst-case orienta-
tion of relative eccentricity and inclination vectors occurs. If we include the small errors
it is well possible that we observe a minimum distance that is slightly smaller than the
theoretical worst-case. Another explanation is that the theoretical worst-case calculated
using Eqs. (3.22) and (3.35) ignores a nonzero semi-major axis difference in calculating
the minimum separation distance. Allowing for a small variation in relative semi-major
axis would reduce the theoretical minimum separation distance (we have included the
effect of a nonzero semi-major axis difference in the upcoming application cases based
on the guidance design example from Chapter 3). The observation that the minimum
separation distance occurred between the leader satellite and a follower satellite could
result from the fact that all satellites have similar characteristics and thus the maneuvers
tend to be executed at roughly the same locations in orbit. Each follower satellite gets, as
an input, the same predicted leader state and any errors in this predicted leader state tra-
jectory thus affect each of the follower satellites in a similar way. The resulting follower
state trajectories are very similar to each other, thereby reducing the relative state vari-
ations between the follower satellites. This very similar behavior between the follower
satellites can be seen also from the relative inclination vectors in Figure 5.11.
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Figure 5.10: Relative eccentricity vectors for the simulations with a homogeneous fleet of 16 satellites
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Figure 5.11: Relative inclination vectors for the simulations with a homogeneous fleet of 16 satellites
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Figure 5.12: Relative motion between L and F6 in the radial-normal plane. The minimum distance is equal to
3.56 km
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5.3.3. MANEUVER PLANNING WITH GEOMETRIC CONSTRAINTS
This section integrates the newly developed theory regarding control windows that si-
multaneously satisfy sensor cone avoidance constraints as well as minimum distance
constraints and the convex optimization-based method for controlling the satellites. The
addition of the sensor cone avoidance constraints requires us to actively control the rel-
ative mean longitude difference between the satellites, whereas this was not necessary
to guarantee minimum distances or to stay inside the geostationary slot. The control
methodology developed in this work is a key enabler to achieve simultaneous satisfac-
tion of the various geometric constraints, as it allows also to explicitly constrain the rel-
ative mean longitude difference between the satellites. We setup an application case
based on the guidance design example discussed in Chapter 3.

We investigate the two cases presented in Section 3.7. The first case presented in
this section has its e/i control windows derived from the rectangular rational window.
The satellites are equipped with a chemical propulsion system. Since we observed large
errors in controlling the mean longitude using a chemical propulsion system (Section
4.4.3), we investigate maneuver cycles of one week and 3.5 days. The second case we
investigate has circular e/i tolerance windows. For this case we study a fleet of four
satellites, where all of the satellites carry an identical Earth pointing sensor and a star
sensor. In this case, the satellites carry electric propulsion systems, and the maneuver
cycle duration is set to one week.

RECTANGULAR RATIONAL WINDOW

We first investigate the case with the rectangular rational window. We study a two-
satellite fleet where the leader satellite is equipped with two sensors, an Earth-pointing
payload and a star sensor. Further details on the sensors, as well as the tolerance window
definitions were discussed in Section 3.7. Table 5.6 provides a summary of the relevant
simulation settings. We emphasize that we used the rational orbital elements only for
the design of the tolerance windows and for the analysis of the results. The rational ele-
ments are not used for the maneuver planning itself.

As evident from Table 5.6, we have two satellites of identical build with identical
propulsion systems. The fleet leader flies a SPP strategy. The leader is controlled to
achieve a desired mean longitude difference and desired eccentricity and inclination
vectors at the end of the maneuver cycle. In addition, the absolute mean longitude dif-
ference is kept between bounds. The constraints are defined in terms of mean elements.
The follower satellite aims to achieve its eccentricity and inclination vectors within the
annular sectors defined in Section 3.7, its mean longitude difference between an upper
and a lower bound and the relative mean longitude below an upper bound only (indi-
cated using a lower bound of −∞ in Table 5.6). The constraints on the final states have
the same shape but are made smaller by the factor indicated in the table (similar as done
in the previous two application cases). The simulations have been performed for a ma-
neuver cycle duration of 3.5 days (with 50 Monte-Carlo runs) and a maneuver cycle du-
ration of 7 days (a single run was sufficient to show that the sensor cone avoidance con-
straints were violated). Note that we have chosen 3.5 days because of the synchronicity
with the usual 7-day week (i.e. this would allow an operator to check and command a
maneuver plan always during normal working days and avoid weekends). No schedule
has been enforced in the simulations, but a weight matrix has been used to stimulate the
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Table 5.6: Key settings for simulations with a rectangular rational window

Parameter Unit Value

Satellite L F1
Thruster configuration REF REF

Thrust force N 10 10
A m2 120 120

SPP yes -
Constraint on e 10−3 - annular sector
Constraint on i mrad - annular sector

Window on abs ∆L mrad [−0.175, 0.35] [−0.5, 0.5]
Window on rel ∆L - [−∞, 0.175]

Constraint on final e 10−3 fixed final e 0.5·annular sector
Constraint on final i mrad fixed final i 0.5·annular sector
Window on final ∆L mrad fixed final ∆L 0.25 · [−∞, 0.175] (rel)

Type of elements constrained mean relative
Maneuver cycle days 3.5 and 7 3.5 and 7

Schedule No No
Use Wτ Yes Yes

optimizer to place maneuvers on the first day of the maneuver cycle.
We first present the results of the 3.5 day maneuver cycle and demonstrate that we

were successfully able to satisfy all constraints over the one year simulation. We have
repeated the simulation 50 times. Every single case was successful and the average and
worst-case performance results are presented. We then show that if the follower satellite
were to be equipped with the same sensors as the leader satellite, constraint violations
would occur. We show that this is in line with expectation based on the plots that were
presented in Chapter 3. Lastly we show that for a 7-day maneuver cycle, the orbit predic-
tion (and control) errors in terms of relative mean longitude are so large that the sensor
cone avoidance constraints are violated.

Table 5.7 summarizes the key results of the 50 simulations for a 3.5 day maneuver cy-
cle. The results in terms of∆V are comparable to the numbers we have observed before,
for satellites with a chemical propulsion system in the REF configuration flying a SPP
strategy. In terms of thruster firings we would expect roughly 4 firings per cycle (two NS
and two EW) coming to a total of 416 firings. The achieved results are indeed very sim-
ilar. The achieved minimum distance of 7.97 km is much larger than the requirement
(C2) of 5 km. The achieved minimum off-boresight angles for the Earth sensor (C3) and
star sensor (C4) easily meet the required off-boresight angles of 9◦ and 26◦.

Figure 5.13 shows simultaneously the relative eccentricity and relative inclination,
together with the tolerance windows for one particular Monte-Carlo run. Only some
minor constraint violations of the inclination vector tolerance window are observed. In
terms of the rational constraint window (Figure 5.14) no constraint violations occurred
This demonstrates that the design approach (which uses the minimum relative eccen-
tricity magnitude to scale the tolerance windows) is conservative.



5

190 5. STATION-KEEPING OF COLLOCATED SATELLITES

Table 5.7: Results of the application with rectangular rational windows for a 3.5 day maneuver cycle duration,
over 50 Monte-Carlo cases.

Parameter Unit Value

Satellite L F1
Mean ∆V m/s 50.67 50.47

Max ∆V m/s 50.85 50.80
Mean firings 411 392
Max. firings 416 399

Min. Distance km - 7.97
Min. angle C3 deg - 13.47
Min. angle C4 deg - 45.03

Figure 5.15 is included to show that the assumption that ϕa (which is not con-
strained) stays in a window of ±0.1 is valid, under the settings in these simulations. Fig-
ure 5.16 shows the rational relative mean longitude variations. The figure shows that the
constraint is met over the duration of the simulations. All the constraints in terms of ra-
tional orbital elements are satisfied over the simulation duration. From Table 5.7 we ob-
serve that the underlying constraints (minimum distance, sensor cone avoidance) were
also met for all 50 Monte-Carlo cases. We show the distance in the RN-plane in Figure
5.17. Compared to, e.g., Figure 5.9 we observe that the relative motion in the RN-plane
is no longer approximately circular, instead it is an approximate ellipse. The underlying
reason is that the nominal relative e/i -configuration no longer has parallel e/i -vectors.
Figures 5.18 and 5.19 show the off-boresight angles with respect to respectively Earth
and star sensors over the simulation duration (for a particular MC run) and it is obvious
from these figures that the constraints are met over the complete simulation. Figure 5.20
shows the relative motion in 3D. The figure also shows the two sensor-cones. We observe
from the figure that both sensors “look” in the direction of the same open-end. The rel-
ative trajectory never crosses the sensor cones.

We also included Figures 5.21 and 5.22. These figures show that this design works
only if the sensors are attached to the leader satellite. Figure 5.21 shows the off-boresight
angle with respect to the Earth sensor and Figure 5.22 shows the relative motion of the
leader satellite in the RTN frame attached to the follower satellite. In this case the con-
straint violations are evident. By comparing Figures 5.16 and 5.21 we clearly see the root
cause of these constraint violations, namely, whenever the graph of ϕL shows large vio-
lation of the constraint, the sensor cone avoidance constraint is violated as well. This is
not unexpected; the design was only supposed to satisfy constraints on the leader satel-
lite, and in Chapter 3 we saw that this could be achieved using only an upper bound on
ϕL . If we would like to simultaneously satisfy constraints from sensors on leader and fol-
lower satellites, only a small change to the current guidance strategy would be required.
For example, a symmetric control window on ϕL (with upper and lower bounds of re-
spectively 0.5 and -0.5) would do.
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Figure 5.13: Relative eccentricity and inclination vector state trajectories, rectangular rational window, 3.5 day
maneuver cycle.
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Figure 5.17: Minimum separation distance in the RN plance, rectangular rational window, 3.5 day maneuver
cycle.
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Figure 5.18: Off-boresight angle of satellite F1 with respect to an Earth-pointing sensor attached to the leader,
rectangular rational window, 3.5 day maneuver cycle.
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Figure 5.19: Off-boresight angle of satellite F1 with respect to a star sensor attached to the leader, rectangular
rational window, 3.5 day maneuver cycle.
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Figure 5.20: Sample relative motion (period of 4 weeks) of the follower satellite with respect to the leader satel-
lite, rectangular rational window, 3.5 day maneuver cycle.



5.3. SIMULATIONS, RESULTS AND ANALYSIS

5

195

0 100 200 300

Time [days]

0

50

100

150

O
ff

-b
o

re
si

gh
ta

n
gl

e
E

ar
th

se
n

so
r

[d
eg

]

Figure 5.21: Off-boresight angle of the leader satellite with respect to an Earth-pointing sensor attached to the
follower F1, rectangular rational window, 3.5 day maneuver cycle. Because only an upper bound on the relative
mean longitude was defined we observe constraint violations for an Earth-pointing sensor on the follower
satellite.
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Figure 5.22: Sample relative motion (period of 4 weeks) of the leader satellite with respect to the follower satel-
lite, rectangular rational window, 3.5 day maneuver cycle. The figure clearly shows constraint violations.
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Figure 5.23: Rational relative mean longitude, rectangular rational window, 7 day maneuver cycle. The orbit
prediction errors in mean longitude cause violations of the constraint.

Figures 5.23 and 5.24 show respectivelyϕL and the off-boresight angle of the follower
satellite with respect to the Earth sensor on the leader satellite. These figures correspond
to a maneuver cycle duration of 7 days. From Figure 5.23 we observe that the 7-day
maneuver cycle is too long to achieve the constraints on ϕL (i.e. the orbit prediction
errors simply grow too large). From Figure 5.24 we see that large violations of the window
onϕL correspond to constraint violations of the Earth sensor cone avoidance constraint.

CIRCULAR e/i -WINDOWS

In this section we take the other guidance design from Chapter 3 with circular e/i -windows.
These simulations intend to demonstrate that, although the design in Chapter 3 was de-
rived for a two satellite fleet with a leader satellite carrying two sensors, we can actually
satisfy the constraints simultaneously when all of the satellites carry (the same) Earth-
pointing- and star sensors. We extend the configuration to four satellites, each equipped
with an electric propulsion system in configuration B. A summary of the most impor-
tant settings for this simulation is given in Table 5.8. A key difference with the simula-
tions based on the rectangular rational window is that we now have a symmetric design
in terms of constraining the relative mean longitude, i.e. we employed both an upper
bound and a lower bound.

Table 5.9 shows a summary of the key results. In terms of propellant consumption
and number of thruster firings, the results are very much in line with expectations. The
minimum distance for each satellite is evaluated with respect to every other satellite and
the overall minimum distance (in the RN-plane) occured between the leader satellite
and follower satellite 3. The minimum angles between the boresight of the two sensors
and another satellite in the fleet have also been investigated for all possible combina-
tions of satellites. The results in the table show that the constraints have been met for all
possible combinations.

The relative eccentricity and inclination vector state trajectories are depicted in Fig-
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Figure 5.24: Off-boresight angle of satellite F1 with respect to an Earth-pointing sensor attached to the leader,
rectangular rational window, 7 day maneuver cycle. The constraint violations correspond to violation in ϕL in
Figure 5.23.

Table 5.8: Key simulation settings for simulations with geometric constraints and circular e/i -windows

Parameter Unit Value

Satellite L F1 F2 F3
Thruster configuration B B B B

Thrust force N 0.08 0.08 0.08 0.08
As m2 120 120 120 120

SPP No - - -
Tolerance on e 10−3 - 0.05 0.05 0.05
Tolerance on i mrad - 0.05 0.05 0.05

Tolerance on abs ∆L mrad [−0.175, 0.35] [−0.5, 0.5] [−0.5, 0.5] [−0.5, 0.5]
Tolerance on rel |∆L| mrad - 0.175 0.175 0.175

Tolerance on final e 10−3 fixed final e 0.025 0.025 0.025
Tolerance on final i mrad fixed final i 0.025 0.025 0.025

Tolerance on final |∆L| mrad fixed final ∆L 0.044 (rel) 0.044 (rel) 0.044 (rel)
Elements constrained Mean Mean/Rel. Mean/Rel. Mean/Rel.

Maneuver cycle days 7 7 7 7
Schedule No No No No

Use Wτ No No No No
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ures 5.25 and 5.26. We see that the constraints on relative eccentricity and inclination are
met almost all the time (we can see some tiny violations of the relative eccentricity win-
dows). The combination of having a tight control window on final state, having an elec-
tric propulsion system and considering satellites with identical characteristics greatly
helps to satisfy these constraints. The rational control window (Figure 5.27) shows that
the constraint is satisfied over the complete simulation (as before we have obtained a
conservative design). The rational relative mean longitude in Figure 5.28 show some
minor violations of the constraint, but these violations are so small that the design still
meets the sensor cone avoidance and minimum distance constraints.

Figure 5.29 shows the trajectory of follower 2 relative to the leader satellite. In con-

Table 5.9: Key results for simulations with geometric constraints and circular e/i -windows. Target values for
∆V and # of firings are just an indication, taken from the leader satellite values in Table 5.4.

Parameter Unit Value

Satellite L F1 F2 F3 Target
∆V m/s 67.86 67.98 68.01 67.78 67.88

# of Firings 1298 1318 1320 1316 1248
Min. distance km 9.51 9.63 9.52 9.51 > 5
Min. angle C3 deg 18.11 20.82 23.17 21.41 > 9
Min. angle C4 deg 49.430 50.920 51.170 47.84 > 26

trast to Figure 5.20, the sensors “look” through opposite sides of the tube. This was al-
ready theorized in Chapter 3 since the design point for the circular e/i -windows has
opposite signs of the ϕL that violates the constraints (Figures 3.18 and 3.19) for the two
sensors.

The results in this section have shown that geometric constraints can be dealt with
through relative orbit control. The key difference that these constraints impose on the
control strategy is that (accurate) control of the relative mean longitude becomes manda-
tory to satisfy these constraints. Another impact is a different design in terms of nominal
relative eccentricity and inclination vectors, where the usual (anti-)parallel e/i -vectors
no longer lead to a satisfactory result and an adaption to the conventional eccentric-
ity/inclination vector separation strategy was introduced in order to satisfy all geometric
constraints simultaneously.

5.3.4. ROBUSTIFIED IMPLEMENTATION
This section analyzes the robustified implementation of the method for calculating the
station-keeping maneuvers of the follower satellites. The theory from Section 5.2.3 was
used to formulate constraints on relative inclination and eccentricity vectors. The so-
lution of the robustified problem formulation then guarantees that the constraints are
met over the duration of the maneuver cycle. We first perform an analysis using a worst-
case (ROBWC) and a quadratic (ROBQ) implementation of the maneuver errors. Both
methods are implemented with a CER of one (i.e. the constraints are enforced at every
discrete node). The problem formulation no longer includes a tighter constraint on the
final state, as was required in the simulations before. We also show the results of a sim-
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Figure 5.25: Relative eccentricity vectors for simulations with geometric constraints and circular e/i -windows
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Figure 5.26: Relative inclination vectors for simulations with geometric constraints and circular e/i -windows



5

200 5. STATION-KEEPING OF COLLOCATED SATELLITES

2.2 2.4 2.6 2.8

δω [rad]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

ϕ
i

[-
]

F1

F2

F3
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Figure 5.29: Sample relative motion (period of 4 weeks) of the leader satellite with respect to the follower satel-
lite for simulations with geometric constraints and circular e/i -windows

ulation with a quadratic implementation of the maneuver errors, a CER of 10 and a final
state constraint that is tighter than the other constraints (ROBQF). The merits of the dif-
ferent implementations are discussed.

We use the previously introduced case with the geometric constraints and the circu-
lar windows, albeit with a chemical propulsion system in the REF configuration, for a
two-satellite fleet. We have chosen a chemical propulsion system for the demonstration
of the robustified method because of the larger maneuver errors, therefore providing
the most challenging case. We robustify only the constraints on relative eccentricity and
inclination because the uncertainty in mean longitude is generally so large that the ro-
bustified method would only make sense either for very large mean longitude windows
or for very short maneuver cycle durations (otherwise the algorithm would in essence
control the relative mean longitude to the center of the control window for the last part
of the maneuver cycle). We limit the maneuver cycle duration to 3.5 days because, as we
have seen before, control of the mean longitude would be too inaccurate to guarantee
satisfaction of the geometric constraints for longer maneuver cycle durations.

The key simulation settings are given in Table 5.10. The leader satellite is in every
simulation aspect identical to the leader in Table 5.8, with the exception of the thruster
configuration (REF) and the thrust force (10 N). The ROBWC case implements constraints
using a linear addition of the standard deviations of the individual errors, Eq. (5.31),
while the ROBQ case uses a quadratic addition of the standard deviations of errors, Eq. (5.32).
The ROBQF case also uses the same quadratic addition, but enforces a tighter constraint
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on the final states, which is, on purpose, not formulated in a robustified manner. The
leader’s uncertainty is added as well, with thruster uncertainty added quadratically in
ROBQ and ROBQF and linearly in ROBWC. No schedules or weight matrices were used
in these simulations.

All three simulations were successful in achieving the key constraints: the geosta-

Table 5.10: Key simulation settings of application cases with robustified constraint implementation

Parameter Unit Value

Case ROBWC ROBQ ROBQF
Robustified method worst-case quadratic quadratic

Robustified final worst-case quadratic -
Thruster configuration REF REF REF

Thrust force N 10 10 10
A m2 120 120 120

CER 1 1 10
Tolerance on e 10−3 0.05 0.05 0.05
Tolerance on i mrad 0.05 0.05 0.05

Tolerance on abs. ∆L mrad [−0.5, 0.5] [−0.5, 0.5] [−0.5, 0.5]
Tolerance on rel. |∆L| mrad [−0.175, 0.175] [−0.175, 0.175] [−0.175, 0.175]

Tolerance on final e 10−3 0.05 0.05 0.0125
Tolerance on final i mrad 0.05 0.05 0.0125

Tolerance on final |∆L| mrad 0.044 0.044 0.044
Maneuver cycle days 3.5 3.5 3.5

Schedule No No No
Use Wτ No No No

tionary slot boundaries were not violated, the minimum distance was always well above
5 km and the sensor cones constraints were met as well. Table 5.11 shows the perfor-
mance in terms of propellant consumption and number of thruster firings. We first
note that if we implement the constraints in a worst-case manner, the performance is
good, both in terms of propellant consumption and number of thruster firings. From
Figure 5.30 one observes that the constraints are met for the complete simulation dura-
tion. One might argue that the implementation using a linear addition is too conserva-
tive since the state trajectory is relatively far from the boundary. As long as the control
window is large enough, this conservatism is not considered problematic.

Figure 5.31 shows the relative eccentricity and inclination state trajectories for the

Table 5.11: Results of the robustified simulation cases.

Parameter Unit Value

Case ROBWC ROBQ ROBQF
∆V m/s 50.93 50.90 51.02

# of Firings 610 2103 1027
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Figure 5.30: Relative eccentricity and inclination vectors for case ROBWC

ROBQ case. We clearly see that the eccentricity state trajectory remains much closer
to the boundary than for the ROBWC case. The results of the ROBQ case in Table 5.11,
however, reveals a very distinctive and undesired behavior: the number of thruster fir-
ings have increased to an undesired extent. The robustified implementation essentially
shrinks the tolerance windows by the size of the uncertainty (3-sigma value). Now if the
uncertainty due to thruster errors is measured using the `2-norm, the magnitude of the
uncertainty decreases if the same amount of change to an orbital element is spread over
multiple firings. Figure 5.32 shows the thruster firings over the course of one day. From
this figure we observe that the firings are clearly spread over several smaller burns. With
a smaller magnitude of the uncertainty, the optimizer can keep the state trajectory closer
to the boundary. If this happens to be the most propellant-efficient strategy, then the op-
timizer might choose to use several smaller burns instead of one large burn such that the
uncertainty is reduced and the overall propellant consumption for that maneuver cycle
is smaller. This explains also the relative inclination plot in Figure 5.31, namely, many
maneuvers have not been executed at the optimal location for inclination maneuvers,
instead, they have been spread over several smaller maneuvers. As a consequence we
see more variations in the direction perpendicular to that of the natural secular varia-
tions of the mean inclination vector.

Figures 5.33 and 5.34 show the algorithm at work for one maneuver cycle of the
ROBQ case. The light (red) dashdotted line shows the normal tolerance window bound-
ary. The solid lines show the boundaries of the tolerance window on respectively leader,
follower and combined leader and follower. The boundary is reduced by the 3σ errors
arising from orbit determination errors, thruster errors and modeling errors. The orbit
determination error is visible at the start of the maneuver cycle (most pronounced in Fig-
ure 5.34). The modeling errors were approximated as a linear function of time, hence the
slope of the lines (the slope changes steepness, since the errors are added quadratically).
The thruster errors depend on the optimization problem solution and are determined as
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Figure 5.31: Relative eccentricity and inclination vectors for case ROBQ
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Figure 5.33: The tolerance window boundary on relative eccentricity is shrunk with the size of the 3σ errors of
leader and follower satellites, case ROBQ.

part of the problem solution. They appear in the figures at the locations where we ob-
serve sharp corners in the 3σ-bounds. The dashed lines show respectively the planned
and the actual trajectory. As seen from the figures, the planned trajectory stays below
the 3σ error bounds, whereas the actual trajectory may cross these boundaries due to
the impact of the various errors. The actual trajectories do stay below the tolerance win-
dow boundaries, demonstrating that the algorithm works as intended.

In order to counter the undesired behavior observed in the ROBQ case (i.e. the steep
increase in thruster firings) we have added a tighter constraint on the final state (i.e. one
that is relatively far away from the boundary). This additional constraint requires the
optimizer to provide the ∆V to end up far away from the boundary anyhow. Therefore it
cannot “save” propellant by reducing the uncertainty (and thereby the required change
to the orbital elements) by making several smaller maneuvers. This is exactly what we
observe from the results of the ROBQF case in Table 5.11. We see a major reduction in
number of thruster firings. Figure 5.35 shows that the state trajectory for the eccentricity
vector is much closer to the center and the inclination state trajectory looks again simi-
lar to that of Figure 5.30. Furthermore noteworthy is that this has been achieved with a
CER of 10, hence a significant reduction in the number of constraints in the optimization
problem.

The robustified implementation has shown that we can, with very high probabil-
ity, maintain the relative state trajectories inside convex tolerance windows and the key
advantage is the elimination of the tolerance window violations. However, it is possible
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Figure 5.34: The tolerance window boundary on relative inclination is shrunk with the size of the 3σ errors of
leader and follower satellites, case ROBQ.
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Figure 5.35: Relative eccentricity and inclination vectors for case ROBQF
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only at the cost of a much more complex problem formulation and a higher computa-
tional load. Whether or not the elimination of the control window violations is worth the
increased complexity is a question that can only be answered on a case-by-case basis. As
observed in the other simulation cases in this chapter, even with the observed control
window violations, no situations occurred that endangered the underlying constraints
(most importantly the minimum distance constraint). The design approach generally
led to a rather conservative design and minimum distances were far away form the spec-
ified thresholds. A use-case for a robustified implementation could arise when it is de-
sired to significantly reduce the threshold on minimum distance. If the margin for error
is much smaller, it can become of crucial importance to completely avoid control win-
dow violations.

Instead of formulating a robustified problem, the increased robustness may also be
obtained by simpler means: one could formulate the problem without the robust addi-
tions, while reducing the tolerance windows by a margin. We could then, after solving
the non-robust problem, use the problem solution and the equations in Section 5.2.3 to
verify that the sum of the 3σ errors is smaller than the margin we introduced. If this is
the case, the problem solution is also guaranteed to stay inside the tolerance windows
(now including the margin) and there is no need to solve the more complex robustified
problem. This will also avoid some undesired characteristics of the robustified problem,
such as the steep increase in number of thruster firings observed in the ROBQ case. The
disadvantage of this approach is that it is reactive: only after solving the optimization
problem we can determine whether a solution robustly satisfies the constraints, whereas
the robustified method proactively guarantees that the constraints are met.

5.4. CONCLUDING REMARKS
In this chapter we discussed the definition and solution of the station-keeping problem
of a fleet of collocated satellites. The development of the method for calculating the
station-keeping maneuvers of collocated satellites built strongly on the single-satellite
station-keeping method. A leader-follower hierarchy was used and constraints on the
relative states were defined between a follower satellite and the fleet leader. The key
goals of the method were to minimize propellant consumption, while maintaining ab-
solute and relative orbital elements inside predefined tolerance windows. A robustified
problem formulation was introduced by explicitly accounting for the various errors af-
fecting the (relative) motion in the formulation of the optimization problem.

The collocation control method was tested using a variety of simulation cases, each
highlighting different aspects. Each of the simulations that were performed included er-
rors in modeling, thrust errors and orbit determination errors as per Section 2.8. The
first simulation case demonstrated that the collocation control method could be used
successfully for an inhomogeneous fleet of four satellites. The satellites varied in propul-
sion system configuration and area-to-mass ratio. The results showed no (significant)
increase in propellant consumption compared to single-satellite station-keeping. The
observed minimum distance (8.61 km) was well above the threshold (a minimum dis-
tance of 6.74 km was theoretically possible without violating the control windows). In
terms of the number of thruster firings a significant increase was observed only for the
satellite carrying a chemical propulsion system. This increase resulted mainly from fol-
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lowing a leader satellite with a low thrust propulsion system.
Another simulation case showed that with the collocation control method it is possi-

ble to control a fleet of sixteen identical satellites in a geostationary slot with a longitude
and latitude window of ±0.05◦. In terms of performance, we observed a small increase
in propellant consumption (< 1%) and number of thruster firings (10-20%) compared to
single-satellite station-keeping. To achieve the simultaneous control of sixteen satellites,
the maneuver cycle duration was reduced to one day, necessitating the frequent avail-
ability of orbit determination solutions (possibly obtained through maneuver arcs), of
each satellite in the fleet. This short maneuver cycle was also the reason for the increase
in propellant and thruster firings.

Two sets of simulations were performed to demonstrate that the guidance method
from Chapter 3, paired with the collocation control method, successfully dealt with the
sensor cone avoidance constraints. The key difference with previous simulations was
the necessity to actively control the relative mean longitude, in order to satisfy the sen-
sor cone avoidance constraints. The first set of simulations showed that for satellites
equipped with typical chemical propulsion systems, the impact of maneuver uncer-
tainty on the control of the mean longitude is typically too large for a 7-day maneuver
cycle. The reduction to a maneuver cycle duration of 3.5 days was necessary to simul-
taneously satisfy all geometric constraints (another possibility would be to try to reduce
errors in orbit determination and maneuver execution). We then showed that with a
symmetric relative mean longitude window, for circular eccentricity and inclination win-
dows, satisfaction of the constraints does not only guarantee that a follower satellite does
not enter the field of view of a sensor on the leader satellite, but also that none of the
satellites enter the field of view of a sensor on another satellite, given that the satellites
are equipped with sensors pointing in the same direction. We showed this for a fleet of
four satellites equipped with electric propulsion systems. In this case we achieved satis-
factory results also with a 7-day maneuver cycle.

The last set of simulations investigated the robustified problem formulation. Using
the robustified formulation allowed to eliminate the small tolerance window violations
that were observed in the preceding simulations. We observed a significant increase
in thruster firings when the maneuver errors were treated as statistically independent
events. This behavior was reduced by adding a tighter final state constraint and a suc-
cessful implementation was shown. The real advantages of the robustified formulation
may only arise when the margin for error is small. A trade-off is required to determine
whether the increased complexity and computational power are worth the elimination
of the tolerance window violations, especially when the same robust behavior could be
achieved without solving a robustified optimization problem.
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My entire life consisted of musings, calculations, practical works, and trials.
Many questions remain unanswered; many works are incomplete or unpublished.

The most important things still lie ahead.

Konstantin Tsiolkovsky

I am, and ever will be, a white socks, pocket protector, nerdy engineer.

Neil Armstrong

Abstract
A novel method was developed to deal with the problems of single-satellite station-keeping
and collocation of a fleet of satellites under geometric constraints. This method was en-
abled by the formulation of the equations of motion in the form of a linear, time-varying
system. It is discussed how the development of this method and subsequent analysis relate
to the research questions of this work. The limitations of the method are presented as well
as a number of recommendations for further research.
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This work has treated the advanced guidance, control and dynamics of geostationary
satellites. Both single-satellite station-keeping and collocation of a fleet of satellites were
investigated. The primary motivation for studying the station-keeping of geostationary
satellites was the need to mitigate sensor interference originating from a satellite passing
through the field-of-view of a sensor on another satellite. Secondary motivations arose
from the increased use of solar electric propulsion systems and the availability of an
autonomous (on-board) orbit determination capability.

6.1. CONCLUSIONS
In this section we present the research questions, along with answers to these questions.
In addition, we present conclusions from work that was not directly linked to the re-
search questions. For convenience, each research question is repeated before it is an-
swered.

1. How to do safe and economic guidance and control of geostationary satellites based
on convex optimization?

(a) Can the perturbed equations of motion be described using convex functions only?

(b) Can station-keeping maneuver plans be determined using numerical optimization
methods for convex problems?

(c) How are station-keeping strategies resulting from numeric optimization methods
related to the current state-of-art?

(d) What are benefits and disadvantages compared to conventional methods in terms
of propellant consumption, maneuver frequency, control accuracy, flexibility and
robustness?

The dynamics of a satellite in a geostationary orbit were modeled using nonlinear and
non-convex functions. A convexification of these nonlinear dynamics was achieved us-
ing two simplifying assumptions: both the input matrix and the perturbing accelerations
of a satellite that is controlled to stay inside a geostationary slot can be approximated by
the input matrix and the perturbing accelerations at the center of the geostationary slot.
Using these assumptions the dynamics were formulated as a linear, time-varying system
of first order differential equations, driven by time-dependent but known perturbing ac-
celerations. An analytic investigation was performed to characterize the maximum er-
rors introduced through these simplifying assumptions.

The LTV model was discretized using a Runge-Kutta fourth order method and a zero
order hold on the controlled accelerations. The resulting system of equations formulates
any future state as an affine combination of the initial state and controlled accelera-
tion profile. This discretized model is directly suitable for use in numerical optimization
problems. A numerical analysis was performed to investigate the propagation errors us-
ing the discretized LTV system.

A series of increasingly complex convex optimization problems were formulated that
can be solved to obtain a maneuver plan for station-keeping of a geostationary satellite.
The final optimization problem formulation has a number of desired characteristics: the
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problem is convex, the solution of the problem provides directly the thrust forces that
are delivered by each thruster, the problem was scaled to improve the numerical solu-
tion and the problem was reformulated to guarantee that a solution exists that meets the
constraints.

A comparative analysis of a conventional station-keeping algorithm and the convex
optimization-based algorithm for calculating station-keeping maneuver was presented.
With a conventional method, an analytic calculation of the station-keeping maneuvers
under the assumption of impulsive ∆V ’s is meant. The algorithms were configured to
follow the same strategy in terms of eccentricity control, inclination control and mean
longitude difference control. The results showed that the convex optimization-based al-
gorithm provided almost identical solutions to the conventional scheme, providing an
important validation of the novel method. Both algorithms required exactly the same
number of maneuvers over the course of a one-year simulation. The propellant con-
sumption and state trajectories were also nearly identical.

To study the characteristics of solutions obtained using the novel algorithm, an op-
timization problem was formulated with a horizon of one year. The optimization prob-
lem formulation allows to include bounds on the state and control variables at any de-
sired discrete node. Such investigations were not possible using conventional methods
for calculating station-keeping maneuvers. The solutions to several formulations of the
one year horizon problem further validated the methodology as classic guidance strate-
gies were retrieved: the algorithm came up with a sun-pointing perigee strategy for ec-
centricity control and all inclination maneuver were made in the direction parallel to
the long-term secular variation of the inclination vector. The problem formulation fur-
ther allowed to investigate the influence of certain parameters or design choices on the
station-keeping performance. It was shown that the SPP strategy has no benefits for
typical electric propulsion configurations. Another important conclusion was that the
structure of the solution of the station-keeping problem can be manipulated by choosing
suitable weighting factors in the cost function, allowing indirect control over the number
of thruster firings. Furthermore, the relation between the constraint enforcement ratio
and tolerance window violations was investigated.

A key benefit of the novel method compared to the conventional station-keeping
method is that the novel method can be used to calculate the station-keeping maneuvers
for a large variety of propulsion systems. The magnitude of the thrust force is explicitly
constrained in the formulation of the problem, allowing to use the method from high
thrust chemical propulsion systems to very low thrust electric propulsion systems. The
conventional method can be used as long as the error made by approximating a maneu-
ver by an impulsive ∆V is small enough, hence, the conventional method fails for very
low thrust-to-mass ratios. Another benefit of the novel method is that the satellite state
can be constrained at arbitrary points in time in the station-keeping cycle, whereas con-
ventional methods can generally deal only with a single constraint per synchronous ele-
ment (usually an input to the algorithm is the orbital element differences to be achieved
during the station-keeping cycle, with no explicit constraints on the orbital elements
themselves). In the novel method it is straightforward to prevent thruster firings during
certain (parts of) orbits, for example, to avoid thruster firings in eclipses. With a con-
ventional scheme such constraints need to be dealt with on a case-by-case basis. If a
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maneuver is calculated to take place in a prohibited zone an operator intervention is
usually required to relocate the maneuver. Such a situation is avoided altogether using
the novel method.

To achieve a high control accuracy, a formulation of the problem in the form of a re-
ceding horizon controller was introduced. The method was shown to be compatible also
with such an implementation scheme. In order for such an implementation to be suc-
cessful in reality, frequent orbit determination solutions are required, possibly through
maneuver arcs. The introduction of GNSS receivers on geostationary satellite can en-
able a receding horizon controller implementation. Using conventional methods it is
difficult to achieve accurate control of the state variables, mostly because the state can-
not be constrained at different locations in the maneuver cycle.

The key disadvantage of the novel method is that no explicit control can be exer-
cised over the number of maneuvers that are executed within a station-keeping cycle.
With the conventional scheme the number of maneuvers is explicitly defined, as well as
the days on which these maneuvers are executed. These characteristics allow routine
operations according to fixed schedules, accounting for the usual five-day work weeks.
Although the novel method lacks this explicit control, some form of control can still be
exercised by making a smart choice of weighting functions, and possibly by enforcing a
schedule upon the algorithm, such as excluding maneuvers on certain days in the cycle.
This applies dominantly to satellites with a chemical propulsion system, since for typical
electric propulsion configurations, the thrust force is so low that maneuvers are required
(almost) every day of the week.

2. How to extend the proposed optimization methods to collocate several satellites
under geometric constraints?

(a) Can the geometric constraints be formulated as a convex constraint?

(b) What is the impact of the geometric constraints on the conventional coordination
and station-keeping strategies?

(c) How to incorporate the geometric constraints and to solve the resulting constrained
optimization problem?

(d) Can the conventional e/i -vector separation strategy be adapted to account for geo-
metric constraints?

Three types of geometric constraints were analyzed in this research. The first con-
straint is to stay within the geostationary slot boundaries, which applies both to single-
satellite station-keeping as well as to collocated satellites. This constraint is already con-
vex. The second constraint was the minimum distance constraint. This constraint ap-
plies to collocated satellites and is non-convex. The third constraint is to avoid the field
of view of a conic sensor attached to another satellite in the fleet. Also this constraint is
non-convex.

The latter two constraints were not directly formulated as convex constraints. In-
stead, an analysis was made to identify the regions in terms of relative orbital elements
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that satisfy these constraints. A linear transformation between a state representation in
terms of Cartesian position and velocity vectors and relative orbital elements was intro-
duced to connect the analysis in Cartesian space to the relative orbital elements. For a
fixed set of relative orbital elements, the relative orbit can be found by tracing out the
Cartesian position for a mean longitude L between 0 and 2π using the transformation
mentioned before. We analyzed the satisfaction of the constraints for any position of
the satellite inside this relative orbit. To deal with the geometric constraints we were es-
sentially looking for a set of relative orbits that satisfied the constraints for any satellite
position inside the relative orbit. A key ingredient of this analysis was the introduction of
rational relative orbital elements. These rational relative orbital elements were helpful in
reducing the dimensionality of the design space and visualize the constraint satisfaction
for the relevant part of the design space in a single figure.

To satisfy the minimum distance constraint, only the radial-normal plane was used.
The reason is that the orbit prediction accuracy in the tangential plane is much lower
than in radial and normal directions, mostly because errors in the knowledge of the
semi-major axis leads to errors in the prediction of the drift in the tangential direction.
These tangential errors are usually an order of magnitude larger than errors in radial
and normal direction. The satisfaction of the minimum distance constraint essentially
becomes a function of the configuration of relative eccentricity and inclination vectors
(with a small contribution from a difference in semi-major axis). Using the rational or-
bital elements, a map was created showing the achievable minimum distance for com-
binations of relative eccentricity and inclination vectors (parametrized using rational
elements). This map was used to select windows on relative eccentricity and inclination
vectors that satisfy the minimum distance constraint. The minimum distance constraint
is taken into account in the conventional coordination strategy, the eccentricity/inclina-
tion vector separation strategy, and hence this constraint alone did not impact the con-
ventional strategy.

The sensor cone avoidance constraints on the other hand had an important impact
on the conventional strategy: they necessitated active control of the relative mean lon-
gitude difference between the satellites in the fleet. Since we investigated those combi-
nations of relative orbital elements that satisfied the constraint for any satellite position
inside the relative orbit, there is always a relative mean longitude difference for which
the constraint is violated. Hence, in addition to tolerance windows on the relative ec-
centricity and inclination vectors, a tolerance window on relative mean longitude differ-
ence was required to satisfy the constraints. When including the sensor cone avoidance
constraints, a combination of relative eccentricity and inclination vectors was deemed
better than another combination if it allowed larger variations of the relative mean lon-
gitude difference. Again, a map was created in terms of rational relative orbital elements,
showing the smallest relative mean longitude difference that would result in a violation
of the constraint. Each sensor, specified by a pointing direction and half-cone angle, re-
quired its own map.

A design process, with an elaborate example, was introduced to select a region in
rational space that simultaneously satisfies multiple geometric constraints. For two spe-
cific examples, a method was introduced to realize a region in rational space using tol-
erance windows on relative eccentricity and inclination vectors. Two types of convex
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tolerance windows on relative eccentricity and inclination vectors and a convex window
on relative mean longitude difference were chosen that could be included directly in the
optimization problem formulation.

The optimization problem formulation developed for single-satellite station-keeping
was extended towards a fleet of collocated satellites. A leader/follower hierarchy was
used and the follower satellites were assigned to relative orbital element tolerance win-
dows with respect to the leader satellite. Tolerance windows were designed that account
for the geometric constraints as introduced before. By maintaining the follower satel-
lites inside these tolerance windows, satisfaction of the geometric constraints was guar-
anteed.

The geometric constraints required changes to the conventional eccentricity/incli-
nation vector separation strategy. Two key changes were identified. The first change was
already discussed: the sensor cone avoidance constraints necessitate control of the rela-
tive mean longitude difference. From the analysis of the minimum distance constraint it
was observed that perpendicular relative eccentricity and inclination vectors are prohib-
ited if a separation distance is to be guaranteed in the radial-normal plane. The typical
configuration with parallel relative eccentricity and inclination vectors was not suitable
for satisfying some sensor cone avoidance constraints, such as an Earth-pointing sen-
sor. A suitable geometry depends on the involved sensors, their pointing direction and
their field of view. The complexity of the strategy to satisfy all constraints simultane-
ously therefore depends on the satellite design. Although it was not investigated what
the most optimal pointing directions are, it can be stated that having identical sensor
pointing directions on different satellites in the fleet can make dealing with these con-
straints significantly easier.

Several simulation studies have confirmed that the method to design tolerance win-
dows on relative orbital elements and the implementation of these tolerance windows in
the optimization-based collocation control method led to the satisfaction of the geometric
constraints. The simulation studies included the minimum distance constraint and two
sensor cone avoidance constraints arising from respectively and Earth sensor and a star
sensor. The various constraints had no (significant) impact on the propellant consump-
tion, confirming the suitability of the approach to deal with the geometric constraints
using relative orbital elements.

3. Can station-keeping and collocation guidance and control of satellites in GEO
be improved with on-board orbit determination and electric propulsion capabilities?

(a) What are suitable sensors and actuators and what are their performance?

(b) Is it realistic to perform autonomous on-board station-keeping using numeric opti-
mization based methods?

(c) What are potential concepts for collocation with increased on-board autonomy?

(d) How to transition towards on-board autonomous control within realistic operations
constraints and requirements?
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In terms of sensors for autonomous on-board orbit determination only a GNSS re-
ceiver was discussed briefly. Such receivers are being implemented already on current
and next generation geostationary satellites and the latest results on performance test-
ing of these receivers has shown their potential. The application of GNSS receivers on
geostationary satellites is expected to make a continuous on-board orbit determination
solution available, possibly with significant improvements in performance compared to
current ground-station tracking.

A thorough review of existing and upcoming electric propulsion systems was omit-
ted. Instead, a highly simplified electric propulsion system model was used in this work,
with characteristics derived from two existing electric propulsion systems with ample
flight heritage. The thrust level of such electric propulsion systems is significantly lower
than for chemical propulsion systems. This low thrust-level invalidates the assumption
that a maneuver can be approximated with an impulsive ∆V and hence required a ma-
neuver planning algorithm that appropriately deals with the low thrust . The low thrust-
level further impacted the frequency at which maneuvers were executed. The maneuver
frequency was increased from once every week or fortnight, to several thruster firings
per day.

Another important impact of an electric propulsion system is that the thrusters are
required to point away from the solar panels to avoid contamination. Solar panels are
typically mounted on the North and South facing panels of a geostationary satellite.
Since a geostationary satellite usually requires more than 90% of ∆V in North and/or
South directions a significant increase in required ∆V was observed in comparison to
results with a chemical propulsion system. An investigation was performed to study the
effect of the thrust direction (for a fixed 45◦ off-pointing with respect to the north or
south direction). The investigation revealed that a small component of thrust is required
in the tangential direction, but other than that, the pointing direction had only a mi-
nor influence on the number of thruster firings and required propellant. We did observe
an influence of the pointing direction on the orbit prediction accuracy. Thrusters hav-
ing a large component in radial direction showed smaller orbit prediction errors than
thrusters with a large component in tangential direction, for the thruster errors imple-
mented in this work. This behavior was most apparent for the prediction of the mean
longitude difference and the orbital motion difference.

It was shown that a much higher accuracy of control could be achieved using the
proposed station-keeping method in a receding horizon controller setting. Such imple-
mentation is only possible if frequent orbit determination solutions are available, as is
the case with an on-board GNSS receiver. The maneuver plans resulting from the reced-
ing horizon controller implementation showed an increase in the number of required
maneuvers. An electric propulsion system can usually sustain a much higher number
of maneuvers than a typical chemical propulsion system. Hence, the combination of a
GNSS receiver and an electric propulsion system enables an implementation relying on
receding horizon control. Such an implementation would be most beneficial in a com-
pletely automated manner, to avoid the need for manual inspection of maneuver plans
by an operator. Whether this automation is best achieved on-board or on-ground has
not been investigated.

The remaining research sub-questions have have not been answered in this work
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and provide directions for further research. A discussion is presented in Section 6.3. In
the sequel, several conclusions are presented that were not treated in response to the
research questions.

A method was developed for transforming between mean and osculating orbital ele-
ments. This method relied on a similar assumption as the linear time-varying dynamics:
the (periodic) variations induced by the perturbing accelerations at the slot center pro-
vide a good enough approximation of the periodic variations anywhere else in the slot.
Only a subset of the perturbations were included, namely, the perturbations resulting in
periodic variations of the orbital elements that were small enough to leave uncontrolled.
The orbital element variations were averaged over a one year period, with the exception
of the mean longitude difference. This last element was averaged over a one month pe-
riod, because the yearly variations were too large to tolerate.

The robustified formulation of the collocation problem was introduced to guarantee
satisfaction of the constraints on relative orbital elements. Robustly satisfying such con-
straints allows to reduce the minimum separation distance between the satellites, which
in turn could increase the number of satellites that are collocated in a single slot. The
robustified formulation was achieved by accounting for the various errors affecting the
orbit prediction accuracy in the formulation of the optimization problem. The simula-
tions showed both positive and negative aspects of the robustified implementation: the
tolerance windows were kept for the duration of the simulation, however, for one of the
implementations a significant increase in number of thruster firings was observed as a
result of the robustified implementation.

6.2. CRITICAL REFLECTION
Several new methods were developed for the modeling as well as guidance and control
of geostationary satellites. This section provides a critical reflection upon the developed
methods.

The LTV model developed in this work was successful in covexifying the dynamics,
albeit at the cost of a reduction in orbit prediction accuracy. Under the assumptions used
for other modeling errors, orbit determination errors and actuator errors, the model was
adequate and the contribution of the LTV dynamics to the orbit prediction errors was
only minor. If, however, the other errors are reduced in magnitude, the contribution due
the LTV model becomes more prominent and the LTV model may need to be replaced by
a more accurate model.

In the analysis of the sensor cone avoidance constraints, maps were provided show-
ing what bound on the mean longitude difference was required for combinations of rel-
ative e/i -vectors. These maps might be slightly misleading, which we motivate with an
example. Figure 3.11 presents such a map for an Earth pointing sensor. This map shows
clearly that the typical e/i -configuration with parallel relative eccentricity and inclina-
tion vectors is not ideal for this particular sensor cone avoidance constraint. What it does
not show is that also for parallel relative eccentricity and inclination vectors it is possible
to satisfy the sensor cone avoidance constraint, namely, by separating the satellite by a
large enough distance in mean longitude difference. This design option is certainly vi-
able, however, we focused on other options, because such a design quickly exhausts the
configuration space.
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When transforming from relative to rational orbital elements, information on the ac-
tual size of the minimum distance, or of the relative mean longitude difference is lost,
but only available in units of aδe. In the design stage, the possible values of δe are un-
known. We therefore specified a minimum value δemin and used this minimum value to
ensure satisfaction of the constraints. Although this works well, it leads to a conservative
design since the worst-case combination of relative eccentricity and inclination vectors
with respect to a certain constraint is determined by a combination of δe, δi and δω and
the worst-case value of δe may well be larger than δemin. This was clearly observed from
the results in Chapter 5: even in the presence of errors, the bounds on the rational ele-
ments were satisfied at all times with ample margin, whereas the tolerance windows on
the relative orbital elements were violated at some points in time.

In the formulation of the optimization problem we allowed the thrust level to vary
between zero and Tmax. A maneuver calculated by the optimization problem is realized
by making a burn with Tmax for a duration that achieves the same impulse as the ma-
neuver resulting from the optimization problem. This realization introduces an error
that we can control by choosing the length of the discretization interval. However, when
a maneuver is calculated that has a duration smaller than the minimum on-time of the
thruster, we discard the maneuver altogether. If a maneuver plan includes many small
maneuvers, discarding all small maneuvers can lead to significant errors. Ideally these
minimum on-times are included in the optimization problem formulation. However,
this leads to a non-convex domain for the thrust force vector, which is something the
method developed in this work cannot deal with.

A limitation of the developed method for station-keeping and collocation is that
it provides no explicit control over the number of thruster firings. With conventional
methods, or some other optimization-based methods, the number of thruster firings is
defined explicitly and it is known before calculating a maneuver plan how many maneu-
vers will be executed during a maneuver cycle. Knowing a-priori the number of thruster
firings makes it straightforward to control the number of on/off-cycles of a thruster over
its lifetime. On the other hand, the advantage of a variable number of thruster firings is
that state constraints can be enforced at many more points in time during a maneuver
cycle. In case of conventional method with a fixed number of firings, we can only imple-
ment two constraints per firing (one firing has two unknowns; location in the orbit and
duration/magnitude).

Collocating a fleet of satellites using the method developed in this work keeps the
relative orbital elements of a follower satellite inside a tolerance window with respect
to the leader satellite. The tolerance windows are defined as an offset from the leader
state trajectory. The result of this formulation is that if a leader satellite makes a (large)
maneuver, the follower satellite is required to make a similar maneuver to ensure that it
maintains its relative state inside the predefined tolerance window. This leads to a nat-
ural synchronization of the maneuvers of the satellites in the fleet. From an operational
point-of-view it may not be ideal to have each satellite in the fleet making a maneuver
simultaneously, especially when taking into account that a maneuver on one of the satel-
lites in the fleet may fail. Conventionally, the large inclination maneuvers are executed
either individually or in pairs, with an orbit determination in between the maneuvers
to ensure that the maneuver was executed successfully before commanding a similar
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maneuver to another satellite in the fleet. In terms of the control windows on relative
eccentricity and inclination vectors defined in this work, such a maneuver strategy will
temporarily violate the tolerance windows, without leading to a potentially dangerous
situation. Thus, the specified tolerance windows over-constrain the problem, excluding
some interesting strategies for spreading the maneuvers over the maneuver cycle. Note
that this is true mostly for satellites with a chemical propulsion system. Satellites with
an electric propulsion system make maneuvers on a daily basis, and since each orbit has
only two locations where the NS maneuvers are most efficient, the maneuvers will be
executed at those locations. This synchronization of maneuvers is not so problematic
for electrically propelled satellites as the maneuvers are generally much smaller in terms
of ∆V .

The robustified problem formulation introduced additional conceptual and compu-
tational complexity. Using a quadratic addition of the maneuver errors led to a signifi-
cant increase in thruster firings, whereas a linear addition may be deemed too conserva-
tive. Adding a tighter final state constraint, while using a quadratic addition of maneuver
errors provided a compromise between the two options. Nevertheless one should ana-
lyze whether the increased complexity is worth the elimination of small control window
violations.

6.3. RECOMMENDATIONS FOR FURTHER RESEARCH
In the sequel, several recommendations for further research are identified in the fields
of guidance, control and dynamics of geostationary satellites.

The LTV dynamics relies on the assumption that the perturbing accelerations can
be approximated by those accelerations affecting the geostationary slot center. This as-
sumption becomes increasingly erroneous for larger distances from the slot center. In
most realistic scenarios the state of a geostationary satellite is controlled towards some
reference position. A good example is the eccentricity vector, which, in the case of a
SPP-strategy, is controlled to lie on a circle with the perigee pointing towards the Sun. In-
stead of determining the perturbing accelerations with respect to the geostationary slot
center, these accelerations can also be determined with respect to the reference state to-
wards which the satellite is controlled. The deviations of the satellite state with respect
to this reference state are usually smaller than the deviations with respect to the geosta-
tionary slot center and hence, by determining the perturbing accelerations with respect
to this reference position, the accuracy of the LTV dynamics can be improved. If even
higher accuracy is required, a sequential convex programming technique could be used
by approximating the perturbing accelerations using the state trajectory obtained dur-
ing the previous iterate of the maneuver planning algorithm to determine the perturb-
ing accelerations, as well as the input matrix, and iterate until convergence is reached.
This approach will significantly increase computation time since in general more than
one convex programming problem needs to be solved and the perturbing accelerations
need to be evaluated after each successive iteration. The method implemented in this
work has the advantage that the perturbing accelerations can be determined off-line.

The thruster model that was used in this work was over-simplified. We identify sev-
eral possible improvements to the model:

• If the thruster is switched on for short durations, the relative error in thrust force
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is usually larger than for long, stable burns. This characteristic should be reflected
in the error model.

• The thrust direction errors can be separated into errors resulting from attitude
control errors, errors resulting from the thruster plume direction variations, un-
calibrated misalignment errors and errors resulting from plume impingement on
other satellite surface areas (usually containing a deterministic and a stochastic
part). Separating the thrust direction error into different components allows for a
better characterization of these errors.

• The thruster minimum on-time can be taken into account in the formulation of
the maneuver planning problem. Although this leads to a non-convex domain for
the thrust force, other convex optimization techniques may be able to deal with
this, such as mixed integer linear programming techniques.

Conventional methods for satellites with a typical chemical propulsion system usually
place EW maneuvers shortly after NS maneuvers, with an orbit determination in be-
tween. This approach allows to correct for the cross-coupling errors introduced by the
large NS maneuver. A similar idea could be implemented using the method developed
in this work: in a typical scenario with a 7-day maneuver cycle, the NS maneuver can be
forced to be executed on the 6th day of the maneuver cycle with the 7th day reserved for
orbit determination. This approach is worth investigating as it could significantly reduce
the orbit prediction errors (mostly in the tangential direction).

The initial state for solving the maneuver planning problem was obtained from the
real satellite state (which originated from a propagation of the nonlinear dynamics). A
random error was added to the real state from a distribution specified by an orbit de-
termination error covariance matrix. A more consistent approach would be to model
an orbit determination and, in this orbit determination, use the same dynamics model
as used to propagate the state inside the maneuver planning algorithm: the LTV model.
This more consistent approach could reduce the orbit prediction errors of the LTV model.
In addition, to study the impact of orbit determination in a more realistic fashion it is
recommended to simulate an orbit determination using a particular geometry with a re-
alistic choice of ground stations, measurement types and measurement errors.

In the current work it was assumed that every maneuver is executed as it was planned
(albeit with errors in magnitude and directions). In real operations it can happen that
some maneuvers fail to execute altogether. Every strategy that is applied in a real op-
erational scenario shall be able to deal with such thruster failures without putting the
satellites at risk, i.e. a (reduced) minimum distance shall be guaranteed even in the case
of thruster failures. Such thruster failures are one of the key reasons why, for typical
satellites with chemical propulsion systems, the large NS maneuvers are scheduled on
subsequent days, so that a thruster failure can be detected and corrective action can be
applied without endangering the fleet. A study of the impact of maneuver failures is rec-
ommended to be performed for the maneuver strategies developed in this work.

As was discussed in Section 6.2, one result of the current formulation of the collo-
cation control problem is that maneuvers are naturally synchronized between the dif-
ferent satellites in the fleet. For satellites with typical electrical propulsion systems this
cannot be avoided, but for chemical propulsion satellites it is generally possible to avoid
such synchronization. This is usually applied to avoid potentially dangerous situations
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when the execution of a NS maneuver fails. The constraints used in this work are too
restrictive to allow for such subsequent scheduling of (large) inclination maneuvers. It is
recommended to study whether the problem can be reformulated to avoid synchronized
inclination maneuvers.

Instead of solving the collocation control problem using (convex) optimization tech-
niques it would be interesting to study whether conventional methods with analytic ma-
neuver calculations are suitable as well to simultaneously deal with the various geomet-
ric constraints discussed in this work. This is especially worthwhile for typical chemical
propulsion satellites. Since the sensor cone avoidance constraints require active control
of the relative mean longitude difference one idea is to synchronize EW maneuvers be-
tween the different satellites in the fleet so that similar mean longitude difference trajec-
tories are obtained between the different satellites in the fleet, thereby (passively) mini-
mizing the variations of the relative mean longitude difference. The same could be done
for NS maneuvers. However, if operational constraints exist that prohibit synchronized
NS maneuvers, solutions may still exist. Figure 3.21 in Chapter 3 shows that large in-
clination maneuvers are possible as long as they are in the direction of increasing ϕi

without significantly affecting δω. Such maneuvers are usually possible: making a ma-
neuver parallel to the relative inclination vector such that the magnitude of the relative
inclination vector is increased achieves such a desired effect. To guarantee that these
maneuvers also effectively reduce the absolute inclination vector, the relative inclination
vector should point in the direction of the secular variations of the absolute inclination
vector. For a small fleet a possible e/i -configuration can have all satellites on a line. The
maneuver can then be scheduled on different days for the different satellites in the fleet,
as long as they are executed in a specific order. Larger fleets may need maneuvers exe-
cuted in pairs.

The third research question focused on implementing a station-keeping algorithm
in an on-board autonomous fashion. Before studying in detail an on-board autonomous
implementation, the question whether an on-board autonomous maneuver planning al-
gorithm has any significant benefits over an autonomous implementation with ground-
in-the-loop autonomy needs to be answered. The key argument for increasing on-board
autonomy is an improvement in response time. For a geostationary orbit however, a sin-
gle ground station is visible 24/7. Since orbital dynamics are very slow, on time scales of
24 hours, situations where a response time resulting from on-board autonomy has any
significant benefit over a response time achievable with ground-in-the-loop (in an au-
tonomous setting) are rare. Thus before studying on-board autonomous concepts it is
recommended to study what potential benefits can be obtained from on-board auton-
omy and characterize these benefits.

To apply the algorithm in a fully autonomous implementation several recommen-
dations are in order. The processing of a maneuver plan leads to small changes of such
a plan. Several maneuvers are grouped together into a single maneuver and small ma-
neuvers (smaller than the minimum specified on-time) are discarded. A simple check
can be performed to determine whether the state trajectories obtained from a processed
maneuver plan are close enough to those resulting from the unprocessed plan. Another
possibility for undesired behavior of the algorithm occurs when, at some point in time,
the state trajectory is outside of the specified bounds. The slack variables ensure that the
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optimization problem is still feasible. However, since a high weight is generally placed on
the slack variables (i.e. violations of the boundary are heavily penalized), some radical
control action can result to bring the state back to within the boundaries. This behav-
ior is especially obvious when the constraints are enforced at many discrete nodes. If
such behavior is deemed undesired, it should be detected and avoided. An analysis of
the slack variables resulting from the solution of the optimization problem can support
the detection: if these variables are nonzero at some point along the trajectory resulting
from solving the optimization problem, it signifies a control window violation. In prac-
tice (at least in our simulations) such a situation occurred only at the start of a maneuver
cycle. The errors in the previous maneuver cycle were so large that the state trajectory
was pushed over the boundary. To avoid such behavior a tighter constraint on the final
state was implemented. Even though a tight final state constraint reduces the probabil-
ity of such an event from occurring, such behavior should be detected and dealt with
appropriately in any autonomous implementation, and is therefore recommended for
further study.

The current work has omitted detailed quantitative statements on the computational
time required to solve the maneuver planning problems. For an on-ground implemen-
tation, sufficient computational power is available and an optimization-based approach
provides no computational difficulties. If an on-board autonomous implementation
is targeted it is advised to design the algorithm such that it can be tested on flight-
representative hardware and make appropriate tests to quantify the run-time and other
characteristics of the algorithm.
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