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THE EFFECT OF AIRCUSHION DIVISION ON THE MOTIONS OF LARGE FLOATING STRUCTURES

.J.L.F. van Kessel
Offshore Enginee,ing Depa,tment

Deift University of Technology,
Deift, The Netherlands

ABSTRACT
The effect of aircushion division on the motions of large floating
structures is studied by means of calculations based on a linear
three-dimensional potential method. A linear adiabatic law is
used to describe the airpressures inside the cushions. The water
surface within the aircushlons and the mean wetted surface are
modelled by panel distributions representing oscillating sources.
The behaviour of different types of aircushlon supported
structures is described and compared with that of a rectangular
barge having the same dimensions. Successively, the aircushion
theory, motion characteristics, wave freqUency forces and
moments, mean second order drift forces and surrounding wave
fields are discussed. The results show that aircushlons
significantly Influence the stability and behaviour of large floating
structures.

KEYWORDS
Floating structures; aircushlon; compressibility; stability; motion
behaviour; wave forces; drift forces; wave field; VLFS.

INTRODUCTION
The use of aircushlons to support floating structures has been
known for a long timé in the offshore ¡ndustry. Among the first
large structures which were partially supported by air were the
Khazzan Dubai concrete oit storage units installed in the Persian
Gulf In the early 70's, see Bums et. al (1].
In most applications the draft of the structure was decreased by
pumping compressed air underneath the construction to allow
transportation over a shallow water area as described by Kure et.
al. [3].

At Deift University of Technology, the behaviour of large
alrcushion supported structures in waves has been studIed by
Pinkster et. al. [4-6] . The existing linear three dimensional
diffraction code DELFRAC was modified to take into account the
effect of one or more alrcushions under a structure at zero

IA. Pinkster
Shio Hydromechanics Laboratoiy,

Deift University of Technology,
Deift, The Netherlands

forward speed in Waves. Model: tests were performed by Tabeta
[7] and served to validate the results of the computations.

In the present paper a short review Is given of the main
elements underlying the computational method. The stiffness
coefficients and stability of aircushion supported structures is
described and: a brief discussion is Included of the behaviour of
different cOnfigurations of aircushion supported, structures.
Successively the motion charactéristics, wave frequency forces
and moments, mean second order drift forces and surrounding
wave fields of the different configurationsare presented.

AIRCUSHION THEORY
The volume change in the aircushion is reversible and déscribes
a poiytropic process of the form:

PV" =constant (1)

The pressure in the aircushion due to waves and oscillations of
the structure can be expressed by:

in which:
vo =

V(t) =
=

P(:) =

IC =

Initial volume of the aircushlon

Volúmeof the aircushion (y0 + w)

Initial cushion Pressure (i + p)

Pressure Insidethe aircushion

gas law Index (1.4 for air)

i Copyright © 2007 by ASME

P(t)=PfYP_ (2)

In the above, p ¡s the atmospheric pressure, p isthe pressure

due to the support of the structure and Av Is the volume
variation of the cushion.



The given non-linear expressioñ for the pressure was rewritten
In a linear form as the general calculations are also based on
linear methods. Equation (2) can. be made 'linear by a Taylor
expansion of ((y0 + Av)) around point (Av =o), assuming
that the volume variations are small compared to the total:
volume of the cushion, this results in the following equation as
was shown by Ikoma et. al. [2]:

PQ)=P0x)04-1 (3)

The spring stiffness of all (N) aircushions together Is equal to

the sum of the individual cushions. The total spring coefficient as
given, below is derived from the previous equation with use of
i =h A, in which h Is the cushion height and A, thecushion

area:
N. A

CILC 4KP0 -j-- -

It shoúld be noted that the spring coefficient In Eq. (4) is for
aircushions only, i.e. the spring stiffness of the buoyant part of
the structure is not taken into account in this expression. The
contribution of the structure will be discussed in the next section.

AircusNon supported staicture
The previous section described the heave stiffnessof aircushlons
only Henceforward the buoyant part Of the floating bdy Is also
taken into account.

Due to the fact thatthe air underneath the structure is enclosed
by water instead Of a rigid construction, the heave stiffness of
the cushions will be less than described In Eq. (4). The cushion
height Influences the compressibility of the. enclosed air, the
polytropic process as presented in Eq. (1) can therefore be
written as:

(P(t)
'

h, constant (5)

The air pressure j Is equal to the atmospheric pressure p :in

case the structure Is fully supported by its floaters. The cushIon
pressure can be described as follows:

P(t)=1+pg1 (6)

In which T Is the vertical distance of the free surface in the

cushion below the mean sea level.

When e is defined as a small dimensionless number
representing the compressibility of the aircushion, the aircushiori
itself is compressed by eAT In case the structure moves down.

Substitution of Eq4 (6) ln.Eq. (5) finally resùlts in:
II1+Tl h=j C) C (7)

l/.
[1+.e(T +(I_e)AT)j .(h eAT)

(4)

Stiffness coefficients and stability
The aircushion supported structure can be modelled as a mass
spring system shown in FIg. 1.

1m

Figure 1: Mass spring system of an aircushlon supported
structure.

The structure Is supported by water and air. Air underneath the.
construction is in its turn supported by the surrounding water.
Displacing the structure in anyof the three. vertical modes heave,
roll or pitch will change the volume of an aircushion thus
Inducing pressure changes. In order to determine the heave
spring stiffness of the. structure, both air and water can be
modelled as springs with stiffness Cc,j and C5,1 respectively,

resulting: in.a general expression ofthe heave stiffness:

= pg (A,,. - AC.) + c33,
+ pg A,.

(9)

in which A Is the total waterline area of the structure. The first

term represents the hydrostatic restoring force of the buoyant
part of the structure, the second and third part are contributions
of thealrcushion.

In order to. determine the stability of the floating body with
multiple cushions, the displacement of the centre of buoyancy
(B) .has to be determined, see Fig.2. In case of small heeling
angles () the vertical displacement of B can be neglected.
Both the structure and the cushions are subjected to a buoyancy
force1 the distance BB of thestructure is:

BB0, - 2
.í:- Çn, Ødy,. dXn

(10)

2 Copyright © 2007 by ASME

The right hand side of the expression can be rewritten with use
of a Taylor expansion around AT = O resulting in the

compressibility factor ofthe aircushion:

=
pgh, (8)

K P + pg h,

where P is p(t) as defined in Eq. (6).



V

Yr -

In which:
=

'1 =
=

eZc,i

I Yo

I v.

Yc, min\

( Yr,runx +
(Zr

= 2
tanØ

centre of the cushion in y-direction

Yc, max

,g V
Figure 2: StabilIty of a structure with two aircushions.

The distance B B0 of the cushion can be calculated in a similar

way:

-
BBS,

V

in which:

Zr = mean increase of the cushion height

resulting in an expression of the BM-value for aircushion
supported structures:

Ç fydy,d +{(1_e)í" JJdYrdXr}

BM
=A A, (12)

T V

In order to determine the transverse stability (GM7) the
horizontal components of the air pressure on the skirts of the
structure should also be taken Into account. These air pressures
result In an additional heeling moment around the centre of
gravity of the structure as can be seen in Figure 3. This figure
shows an aircushion supported structure in which the excess air
pressure in each cushion is constant, so P1 = 1,H1 = P1,H2 = P1,113
and P2 = P2,111 = P2,112 = P2,113, the additional heeling moment due
to an angle is:

width of cushion i

length of cushion i

pressure in cushion i minus the

atmospheric pressure
initial draft of cushion i

additional mean daft of cushion i due to

heeling angle 0

B1 B2
Figure 3: Horizontal air pressures inside the cushions of a

structure supported by two aircushions.

With use of Eq. (12) and (13) the GM-value for aircushlon
supported structures with multiple cushions can be calculated as
follows:

(1-e)Í
+y)2

JJdYrdÇ
¼ 2

N -pg41(oe+7)
GMT = (14)

V

The rotational stiffness coefficients are expressed as follows:

Ç, =pg

I

JJy2 ds, +
A,

(i Yrm +
)2

-pgAT (+Tr)

Cj = = pg (& - Ar)X,í + [CiSc

(i _e)[ +
2

Ç1k I
1

(16)2 J ?BGVIAr

pg7(+i)
I J

The non-zero coupled restoring coefficients are:

= = pg (A - Ar) Y.,í + [cii.
r g Ar J Y

(17)

C1. Jt cf
(18)

c +pgA.

_e).i1 (13) 45 =51 =pg(kA),y,4 +ÍC33r CSr g/
JXY19)

where and are coordinates of the centre of the water

plane relative to the origin of the axis system. The subscripts 'C'
and 's' are for the cushion and structure respectively. In case
both structure and cushions are rectangular shaped then

and can be expressed as:

= (X,,,,, + XflAfl
" = ( Yn-= + Ynn ' (20)

rj 2 j ' 2 )

3 Copyright © 2007 by ASME

=pg Jjx ds, +
A, N,,c



NUMERICALAPPROACH
Tie interaction between the aircushions, the structure and the
surrounding water are based on a three dimensional potential
theory. Thé rigid part of the structure Is modelled in the usual
way by means of panels representing pulsating, sources
distributed over the mean wetted surface' of the construction,
The free surface within each aircushlon is modelled by panels
representing oscillating source distributions laying in the mean
free surface of each cushion. The mean surface level of
Individual cushions may be substantially different from other
cushions and the mean water level. outsidethe structure.
All panels' of the free surface within 'an aircushion are assumed.
to represent a body without material mass but having added
mass, damping, hydrostatic restoring and aerostatic restoring
characteristics. Each free surface panel has one dégree of
freedom being the vertical motion. The total number of degrees
of freedom (DO.,) therefore amounts to:

C

D.O.F. = 6+ Nr

In which:
number of panels in'cushion c

(21)

o-'j

ø)
Thé nUmber 6 represents the six degrees of freedom of the rigid.
part of the structure, The equations of motion can in this case
be written as:
ì).oF.

{_o)(M,,, +a,) -iøb,,, +c,}x, =X,,, n=l,2,..,DO.F. (22)

In which:
= mass coupling coefficient for the force In the n -

mode due to acceleration in the J-mode. Zero
fOr cushion panels.

= added mass coupling coefficient

dampingcoupllng coefficient

spring:coupling coefficient

mode of motion

wave force 'in the n mode

The wave forces X,, the added mass and damping coupling

coefficleilts a,, and b, are' determined In the same way as is

customary for a multi-body system.

The contribution of the total potential due to the discrete
pulsating source distributions over the structure and the free
surfaceof the aircushions can be expressed as:

(A)= ()G()z\s. (23)

In which:
N, = total number of panels of the structure and

free surfaces of all cushions
X = X,, x,, X, = afield point
A = A,A2, A, = locationofasoiirce

G(L) = Green's function of a source in A relative to

a field point
= surface element of the body or 'the mean

free surfaces in the aircushions
= strength' of a sourcé on surfacé element s

dueto 'motion mode j

= potential in point due to j -mode of

motion

The unknown source strengths are determined based on

boundary conditions placed on the normal velocity ofthe fluid at
the centres of the panels:

=L, (24)

BEHAVIOUR OF DIFFERENT TYPES OF FLOATING
STRUCTURES
The behaviour of different types' of aircushlon supported
structures was calculated and compared with that of a

conventional rectangular barge. Both the barge and aircushlon
variants had the following main particulars:

Table 1: main Darticulars of the structures, natural frequencies and stabi ¡

The height of ali cushions is 5 m and the ambient air pressure
was taken equal to 100 kPa. Different configurations of the
structure resulted in different natural frequencies and stability

Structure type / name Cushions CushionSize w4 GM1 GM1

[-1

Length

[ml

Breadth
: [ml Erad/su [radis] [radis]. [ml [ml

1 cushion (lAC) 1 x 1 150 50 0.68 n/a. n/a -2.5 -2.5
2 cushions (2AÇ) ' 2 x 1 75 50 0.68 n/a' 0.65 -2.5 ' 224.5
3 cushions (3AC) 3 x 1 50 50 0.68 n/a 68 -25 2665
4 cushions (4AC) 2 x 2 75 25 0.68 0.73 0.65 22.7 224.5
12 cushions (12AC) 6 X 2 25 25 0.68 0.73 0.71 22.7 291.8
24cushlons '(24AC) 3 x 8 ' 18.8 16.7 '0.69 0.78 ' 0.72 27.4

-

295.4
-75 cushIons 'j75ACL _1 xS 10 10 - _Q62----- 0._ 0.74 298

-

288
- - fontoon -n/a _nLa _nja 0.69 0.8 0.74 392 _3Z25

Combi 1 1 x 1 140 40 69 0.77 082 . 19.3 128.6

Length 150.0 m KG 5.0 m
Breadth 500 m k,,, 15.0 m
Draught 5.0 rn k 42.0 m
Displacement 38437.5 t 42.0 m

b, =

c'i =

xi =

X' =

4 Copyright © 2007 'by ASME



aspects as given in table 1. A graphical representation of the
lAC and 12AC cushion variants is given in Fig. 8.

All structures, except the 24AC configuration, are modelled by
square panels of 2.5 x 2.5 m. The total number of panels is
equal for all structures. In case of the single cushion variant the
rigid structure was modelled by 320 panels and the cushion itself
by 1200 panels. Due to the deviating length-width ratio of the
24AC the IndividUal cushions were modelled by 25 panels,
resulting in a total of 600 panels for all 24 cushions together.

The whole waterline area of the structures lAC to 75AC is
covered by alrcushions. The negative GM-values result from the
fact that a single cushion covers the whole waterline in
longitudinal or transverse direction. The wall thickness of the
skirts was equal to zero. Due to small heeling angles the centre
of buoyancy will not shift In these cases. Accordingly the
buoyancy force acts through a fixed point at half draught of the
structure and the GM-value corresponds to the distance :beeefl
the centre of buoyancy and the centre of gravity.
The structures with a negative GM-value are unstable, but
nevertheless have been included to show the effect of different
aircushion configurations on the behaviour of the structure. In
these cases additional stability can begalned by giving the skirts
a thickness, this is the case for the structure referred to as
'Combi 1'. The rigid skirts surrounding 'Cambi 1' have a thickness
of 5 m resulting in an aircushion of 140 x 40 m. In general, it can
be seen in table i that the stability of a floating body decreases
when the structure is supported by aircushions,

The motions of the various structures are given in Fig. 4, for
sake of brevity only results for heave, roll and pitch are shown
sincethese motions are. most affected by the aircushions.
A change in the cushion configuration has little effect on the
surge and sway motions of the structure except from the shift of
the peaks at the roll and pitch motions. These local peaks are
the result of the roll-sway and pitch-surge coupling.
The heave motions for all structures are approximately equal.
Heave motions are relatively unaffected by aircushions. There is
one exception when the wave length corresponds to the length
of the cushion, in this case the pressure inside the cushion does
not change and the heave motion approaches zero as can be
seen in Fig. 4,
Roll motions are nearly zero in case a single cushion covers the
total breadth of the structure, this is due to the fact that no
natural roll frequency is present for these bodies. When the
waterline beam is divided by multiple cushions the roll motions
decrease with cushion width and the natural frequency shifts to
the right. In case of small cushions like the 75AC, the roll
motions approach those ofthe pontoon.
The same condusions can be drawn for pitch motions, though in
this case the length of the cushions has to be considered. The
pitch motions of multiple aircushion configurations are larger
than those of the conventional barge. Generally, aircushion
supported structures have a small pitch damping compared to a
conventional barge. For these reasons the pitch motions are
largest for the 2AC and 4AC variants. Additionally, the figure
dearly shows that the natural pitch frequency increases when
the skirts are given a thickness.

Heave forces in head and beam seas are presented in Fig. 5.
The values are approximately the same with the exception of the
results at high frequencies. The small heave forces at low
frequencies are due to compressibility effects of the aircushions.

When the wave length corresponds to (a multiple of) the cushion
size the heave force approaches zero for head and beam seas
respectively, this is the case with the lAC variant at 0.65 and
0.90 radIs.
Roll moments in beam seas are smallest in case the cushion
covers the total width of the structure. The moments are almost
similar for structures having cushions of equal breadth, but they
are significantly higher when the waterline beam is divided by
multiple cushions.
Pitch moments in head seas are generally lower for the
aircushion variants, though they significantly increase with
decreasing cushion length.

The mean drift forces in Fig. 6 show that the effect of the
cushion configuration is largest in head seas. For cushion lengths
smaller than 25 m, drift forces are almost equal to those of the
pontoon while other multiple cushion variants with larger
cushions show higher peaks at 0.65 - 0.70 rad/s. In addition, at
higher frequencies the drift force for structures with less than 12
cushions is small compared to that of the pontoon.

Moreover, the drift force reaches a minimum when the
wavelength is equal to the cushion length, this is the case for
the single cushion variant at 0.65 rad/s and for the 2AC and 4AC
at 0.90 rad/s.
The figure also shows that the drift force in head seas is equal
for the lAC, 2AC and 4AC for waves smaller than 75 m (0.90
radis), the wavelength corresponds in this case to the cushion
length of the two and foUr cushion variants. In general it can be
conclUded that for different structures, the mean drift force in a
considered direction is approximately equal for wavelengths
smaller than the length of the smallest cushion, providing that all
bodies have similardimenslons and are totally supported by air.

Figures 7 and 9 show the surrounding wave field as well as the
height of the waves inside the cushions The wave heights are
given for different types of structures in terms of non-
dimensional response amplitude operators (RAOs).
For beam waves with a wavelength equal to the width of the
structure (1.10 rad/s) the waves are transmitted underneath the
structure. The aircushion does not absorb energy from the
waves, i.e. the waves can travel freely underneath the structure
resulting in a small wake behind the floating body. The reflected
waves at the front are also small as could be expected from the
drift forces given in Fig. 6
The difference in the surrounding wave field between the
pontoon and the aircushion variants is even more evident ¡n
head seas. For all wave frequencies, the Incident waves are
more distorted by the pontoon than by the single aircushion
variant. The wave field surrounding the four cushion variant is
similar to the one of the single and two cushion variants,
parenthetically this is the case for all wavelengths smaller than
the cushion length of 75 m.
Less waves are transmitted into the cushion when the skirts are
given a thickness, moreover the front skirt attenuates the waves
resulting in lower values underneath 'Cambi 1' compared to the
single cushion variant.
In addition, the wave field and drift forces in oblique seas are
presented in figures i0a and lob. The wave frequency Is 0.95
rad/s corresponding to a wavelength of 68 m approximately
equal to the diagonal distance between the side skirts of the
structure. Again, the surrounding wave field is less distUrbed In
case the length of the cushions in the considered direction Is
equal to the wavelength.

5 Copyright © 2007 by ASME



CONCLUSIONS
The results shown in this paper Indicate that the behaviour of
large floating structures is significantly Influenced by the use of
aircushions. A single aircushlon supported structure shows the
best results, It has small roll and pitch motions, the wave field Is
less distorted resulting In low second order mean drift forces,
and the wave frequency forces and moments are small. The
effect of the aircushions on the drift force and the surrounding
wave field Is largest In head seas. The presented cushion
configurations showed that the mean drift forces can be reduced
In case the structure is supported by large aircushions. The
advantages of an aircushlon supported structure decrease when
multiple cushions are used.
The results Indicate that the behaviour of large floating
structures partly or wholly supported by aircushlons can be
predicted by means of three dimensional linear potential theory.
Besides, the computational method proved to be a suitable tool
to optimize cushion configurations for a particular application.
Finally, the results have shown that an aircushion supported
structure can be a good alternative for large floating structures.
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Figure 5: Wave frequency forces and moments on a pontoon and aircushlon supported structures
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Figure 7: Wave fields surrounding a pontoon and different types of aircushion supported structures In case of beam waves
with wave frequencies of 1.10 rad/s (A = 50m). Respectively the following cases are presented: lAC, 3AC, 4AC,

12AC, 75AC and a pontoon.
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