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.1 DEFINITIONS

!.1.1 Asymptotic and Order Symbols

f(x) and 85(x) be functions defined on a point set X, and c be a limit point of X.
f(x)/15(x) 1 as x c, then we say that f(x) is asymptotic to 0(x), and write

f(x) 0(x) (x c in X)

Le point c is called the distinguished point of this asymptotic relation; c need not
long to X. The set X may be real or complex; in the latter event it is required
it f(x)/q5(x) approaches its limit uniformly with respect to argx.
it a similar way, if f(x)1¢(x) 0 as x c then we write

f(x)= o f0(x)} (x c in X)

d if f(x)I0(x)I is bounded as x c, then

f(x)= 0 {0(x)} (x c in X)

tly, if I f(x)10(x)1 is bounded in the whole of X, then we write

f(x)= 0 { 0(x)} (x E X)

mples:

shift x x

( 1 1)
sin rirr + = 0nrz

(x 0 in any point set)

throuzh integer values)
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eix 1(1 + x)= 0(x-1) Ereal line)

e-x o(1) 0. in the sector I arg x ( IT - 5 , where 5 > 0)

The last relation is invalid in the open sector larg x I < IT owing to lack of uni-
formity with respect to arg x.
The symbol o(x)} or, more briefly, o(0) may be used to denote an unspecified

function with the property stated in the second paragraph. This use is generic, that
is, o(0) need not denote the same function fat each occurrence. The distinguished
point is understood to be the same, however. Similarly for 0(0). Thus, for example

0(0) + 0(0) = 0(0); 0(0) = 0(0); 0(0)0(0)= 0(00)

Relations of this kind are not necessarily reversible. For example, 0(0)= o(0) is
false. Another instructive example is supplied by

+0(1)}coslix - + o(1)} sinh x

This expression is o(ex), not {1 o(1)}e-x because the o(1) terms may represent
different functions.

12.1.2 Integration and Differentiation of Asymptotic arid Order Relations

Asymptotic and order relations may be integrated subject to obvious restrictions
on the convergence of the integrals involved. Suppose, for example, that in the
interval (a, co) the function f(x) is continuous and f(x) xi' as x where v is a
real or complex constant. Then as x

-ft - + 1

xv-pr
(Re v <-1)

and

a constant (Re v <

f(t)dt lnx (v = -1)

xv +11(v + 1) (Re v> l)

These results are extendible to complex integrals in a straightforward manner.
Differentiation is permissible only with extra conditions. For example, let f(z)

be holomorphic for all sufficiently large I z in a given sector S, and

f(z)= 0(zy) (z .0 in S)

',Except where otherwise stated, proofs of all results quoted in the present chapter will be
found in Olver 1974a.

-1),
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where'', is a fixed real number. Then

fm(z)= 0(z'-'") (z D. in S')

where S' is any sector properly interior to S and having the same vertex. This result
also holds if the symbol 0 is replaced in both places by o.

12.1.3 Asymptotic Solution of Transcendental Equations

Let AO be a strictly increasing function of the real variable in an interval (a
and

f() -

Then for u > f(a) the equation f = u has a unique root (zi) in (a, 0.), and

(u) u (u -4 .0)

As an example, consider the equation

- In x = u

In the notation just given we may take = x2 , f(s) = - and a = 1. Then
(u) u as u 00, implying that

x = {1 +.o(1)} (u 00)

Higher approximations can be found by successive resubstitutions. Thus

= u + ln x = u + ln ['ill' {1 + °WI] = u + u + o(1)

and thence

In u
2 {1 +x - u + o (--

4u
1)}

and so on.
The same procedure can be used for complex variables, provided that the function

f(s) is analytic and the parameter u restricted to a ray or sector properly interior
to the sector of validity of the relation AO

12.1.4 Asymptotic Expansions

Let f(x) be a function defined on a real or complex unbounded point set X, and
E asx-s a formal power series (convergent or divergent). If for each positive

x2

- ln

u1/2

x2 ln
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integer Ti

al a, a_ ( )f(x)= au + + + + 0-71 "(x. -> 69 in X)
x X X X

then E alyx-s is said to be the asymptotic expansion of f(x) as x co in X, and
we write

f(x) 0

It should be noticed that the symbol is being used in a different (but not incon-
sistent) sense from that of 12.1.1.

A necessary and sufficient condition that f(x) possesses an asymptotic expansion ,-
of the given form is that

Xnif(
n-1 a I.

x) - an
s=0 x

as x in X, for each n = O 1, 2, ... . In the special case when, E ax
for all sufficiently large Ix IF, the series is automatically the asymptotic

expansion of its sum in any point set.
In a similar manner, if c is a finite limit point- of a setX then

f(x) b + b (x - + b 2 - + -- (x c in X)

means that the difference between f(x) and the nth partial &um of the tight-hand
side is 0 {(x - } as x c in X.

Asymptotic expansions having the same distinguished point can be added,. sub-
tracted, multiplied,, or divided in the same way as convergent power series. They
may also be integrated. Thus if X is the interval [a, c0) where a> 0, and f(x) is
continuous with an asymptotic expansion of the above form as x co, then

dt +a ox + ailn x - - -
.-3x3

- -+c)
- a2 a4

'where

A =f (t) - a0 - 71 dt ;clog - a In a.
a

al

The last integral necessarily conyerges because the integrand is 0(t-2) as t FaC,

a2
+ + -

x2
(x in X)+

-

con-

verges

0 - c)

-

f(t) -
a3

2x2

-
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Differentiation of an asymptotic expansion is legitimate when it is known that
the derivative f'(x) is continuous and its asymptotic expansion exists. Differentia-
tion is also legitimate when f(x) is an analytic function of the complex variable x,
provided that the result is restricted to a sector properly interior to the sector of
validity of the asymptotic expansion of f(x).

If the asymptotic expansion of a given function exists, then it is unique. On the
other hand, corresponding to any prescribed sequence of coefficients ao, a1 ,a 2 , .

there exists an infinity of analytic functions f(x) such that

f(x) E (x 00 in X)
S=OX

The point set X can be, for example, the real axis or any sector of finite angle in the
complex plane. Lack of uniqueness is demonstrated by the null expansion

0 0
0 + - + + 00 in I arg x I < - 8)x x

where 5 is a positive constant not exceeding Irr.

12.1.5 Generalized Asymptotic Expansions

The definition of an asymptotic expansion can be extended in the following way.
Let { 0,(x)}, s = 0, 1, 2, ... , be a sequence of functions defined on a point set X
such that for every s

ø+(x) = 0 {0s(x)} c in X)

Then {C.(x)} is said to be an asymptotic sequence or scale. Additionally, suppose
that f(x) and fs(x), s = 0, I, 2, . , are functions such that for each nonnegative
integer n

n -1

f(x)= E f(x) + 0 {0(x)} (x c in X)
s=o

Then E f5(x) is said to be a generalized asymptotic expansion of f(x) with respect
to the scale {03.(x)}, and we write

f(x) f (x); {cbs(x)} as x c in X
s=o

"Some, but by no means all, properties of ordinary asymptotic expansions carry
Dyer to generalized asymptotic expansions.
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12.2 INTEGRALS OF A REAL VARIABLE

12.2.1 Integration by Parts

Asymptotic expansions of a definite integral containing a parameter can often be
found by repeated integrations by parts. Thus for the Laplace transform

Q(x)= f- e-xtq(t)dt

assume that q(t) is infinitely differentiable in [0, co), and for each s

q(s)(t)= OW") (0 <t <co)

where a is an assignable constant. Then for x>

Q(x)-q(0) +
(0) q(n -1)(0)

+ +
xn

++ ex)
x x2

where n is an arbitrary nonnegative integer, and

n (X) = I- e-xrq"(t)dt

With the assumed conditions

A f00An
er,(x) < e-xs"' dt = x(x - a) (x> a)

x" 0

An being assignable. Thus en(x)= 0(x-n-1), and

q(s)(0)
Vx)- s+1

s = o

An example is furnished by the incomplete Gamma function:

F(a, x) = e-xx'a- e-xf (1 + tr-' dt - e-xxa-1 7- ( c' - l )(a - 2) - s)Jo s=o xs

as x a being fixed. The - sign is now being used in the sense that

F(a, x)/(e-xxa-1 )

qt

-
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has the sum as its asymptotic expansion, as defined in 12.1.4. In the present case a
straightforward extension of the analysis shows that if a is real and n a- 1, then
the nth error term of the asymptotic expansion is bounded in absolute value by the

first neglected term and has the same sign.

12.2.2 Watson's Lemma

Let q(t) now denote a real or complex function of the positive real variable t having

a finite number of discontinuities and infinities, and the property

q(t) E ast("x-'`)/"` (t 0+)
s=o

where and p are constants such that Re A> 0 and p > 0. Assume also that the
Laplace transform of q(t) converges throughout its integration range for all suf-
ficiently large x. Then formal term-by-term integration produces an asymptotic
expansion, that is

f0e-xt
q(t)dt F

s+X a,
p x X )/i.t )

s=0

This result is known as Watson's lemma, and is one of the most frequently used
methods for deriving asymptotic expansions. It should be noticed that by per-

b

mitting q(t) to be discontinuous the case of a finite integration rangef is auto-
0

matically included.

Example: Consider

J
e-x"shr

e-xt
= e-x dt

o o t
+ 2)112

Since

1 . 3 - l) s-(1/2) (0<t<2)(2t + t2)-i/2 = E( )s s! 22s*(1/2)s=o

the above result is applied with X =1 and p = 1, to give

7r 00 12 32 52 . . (2s - 1)2
I e-x"thr dr e-x (x

2x 3.0 s! (8x) 0°)

)

(2
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12.2.3 Riemann-Lebesgue Lemma

Let a be finite or -co, b be finite or and q(t) continuous in (a, b) save possibly
at a finite number of points. Then

lab
q(t) dt = o(1) (x co)

provided that this integral converges uniformly at a, b, and the exceptional points,
for all sufficiently large x. This is the Rionann-L2besgue lemma.

It should be noticed that if the given integral converges absolutely throughout
its range, then it also converges uniformly, since x is real. On the other hand, it may
converge uniformly but not absolutely. For example, if 0 < 5 < 1 then by inte-
gration by parts it can be seen that

where

converges uniformly at both limits for all sufficiently large x, but converges
absolutely only at the lower limit.

12.2.4 Fourier Integrals

Let a and b be finite, and q(t) infinitely differentiable in fa,b1. Repeated inte-
grations by parts yield

eN(t)dt =
(i)s+1

Xa s=0
fei"e(a)- eibx q4)(b)} + en(x)

=
fb

en(x) el"q(n)(t)dt
x

As x 00 we have e(x)= o(x""), by the Riemann-Lebesgue lemma. Hence the
expansion just obtained is asymptotic in character.

A similar result applies when b = co. Provided that each of the integrals

fe(t) dt (s = 0, 1, )
a



converges uniformly for all sufficiently large x, we have

Whether or not b is infinite, an error bound is supplied by

n(x) I < Ca, b (q("-1)(t)}

where CI is the variational operator, defined by

C' a , b {f(t)} =f I f V)dt I

12.2.5 Laplace's Method

Consider the integral

AX) = f e-xP(t)q(t)dt

in which x is a positive parameter. The peak value of the factor e-xP(t) is located
at the minimum to, say, of p(t). When x is large this peak is very sharp, and the
overwhelming contribution to the integral comes from the neighborhood of to.
It is therefore reasonable to approximate p(t) and q(t) by the leading terms in their
ascending power-series expansions at to, and evaluate 1(x) by extending the inte-
gration limits to -0.3 and +oc, if necessary. The result is Laplace's approximation
to 1(x).

For example, if to is a simple minimum of p(t) which is interior to (a, b) and
q(t 0) 0, then

b
1(X)f e-xt P(t0)+ (1/2) (t 1'0)2 P "(to)}

q(t 0) dt
a

-xP(to) - (112)x (t - 402 p"(to) x- p(to) 27r
q(t 0)e e dt = q(t 0)e

xp"(t 0)

In circumstances now- to be described, approximations obtained in this way are
asymptotic representations of 1(x) for large x.

By subdivision of the integration range and change of sign of t (if necessary) it

ixte q(t ) at
kiaxi)E s )(a)

x
(x co)

s=o

Asymptotic Methods 653
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can always be arranged for the minimum of p(t) to be at the left endpoint a. The
other endpoint b may be finite or infinite. We further assume that:

pi (t) and q(t) are continuous in a neighborhood of a, save possibly at a.
As t a from the right

p(t)- p(a) - P(t - ; q(t) Q(t - a)x-1

and the first of these relations is differentiable. Here P, p, Q, and X are constants
such that P> 0, p> 0, and Re X >0.

fbC. e-xP(r)q(t)dt converges absolutely throughout its range for all sufficiency
0

large x.

With these conditions

r )b o-xp(a
e-x".) q(t) dt r(-)

p p (Px)x14
co)

Example: Consider

J(x) eXT-(T-1)in 7" dr
Jo

The maximum value of the integrand is located at the root of the equation

x- 1- ln T (l IT) = 0

For large x the relevant root is given by

say; compare 12.1.3. To apply the Laplace approximation the location of the peak
needs to be independent of the parameter x. Therefore we take t 7R- as new inte-
gration variable, giving

I(x) 2J e--P(t) q(t) dt

where

p(t)= t(ln t - 1); q(t)= t

The minimum of p(t) is at t I, and Taylor-series expansions at this point are

=

=

-
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p(t)= -1 + (1 - 1)2 - - 1)3 ; q(t)= 1 + (t - 1)

In the notation introduced above we have p(a)= -1, P = = 2 and Q = X = I.

Hence

112

f- e-U*) q(t) dt

On replacing t by 2 - t, we find that the same asymptotic approximation holds for

the corresponding integral over the range 0 t < 1. Addition of the two contri-
butions and restoration of the original variable yields the required approximation

1(x) (2701/2 e3-2 exp (ex-1) (x -.00)

12.2.6 Asymptotic Expansions by Laplace's Method

The method of 12.2.5 can be extended to derive asymptotic expansions. Suppose
that in addition to the previous conditions

p(t) p(a) + E ps(t - a)s+4; q(t) E qs(t - a)s+k-1
s=o s=o

as t -÷ a from the right, and the first of these expansions is differentiable. Then

(s +X' X) as
fb e-xp(r) q(t) dt e-xP(a) E F

p ) X(s+k)lu
(x

a s=o

where the coefficients as are defined by the expansion

q(t)
E-=

a v(s+k-g)/g (v-- 0+)kr) s0 S

in which v = p(t) - p(a). By reversion and substitution the first three coefficients
are found to bergoa, = x,p; al

Po P
=

f ch (X + OPI qo 1 1

ii2p0 p + 1 VA
11 ' 1

hpi

(x+ 2)Pigi (X + 2)qo 1

a2 - + (X + P + 2)Pi 2PP0P2} 3 2 I (1,4-2VP
il2Po 21/ Po Po

In essential ways Watson's lemma (12.2.2) is a special case of the present result.

(t

-

- -

2

-
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12.2.7 Method of Stationary Phase

This method applies to integrals of the form

1(X) = ebeP(t) q(t)dt

and resembles Laplace's method in some respects. For large x the real and imaginary
parts of the integrand oscillate rapidly and cancel themselves over most of the
range. Cancellation does not occur, however, at (i) the endpoints (when finite)
owing to lack of symmetry; and at (ii) the zeros of pi (t), because p(t) changes
relatively slowly near these stationary points.

Without loss of generality the range of integration can be subdivided in such a
way that the stationary point (if any) in each subrange is located at the left end-
point a. Again the other endpoint b may be finite or infinite. Other assumptions
are:

In (a. b), the functions At) and q(t) are continuous, /AO> 0, and p"(t) and
(t) have at most a finite number of discontinuities and infinities.

As t-÷a+

p(t)- p(a) P(t - a)P; :q(t) - a)"
the first of these relations being twice differentiable and the second being differ-
entiable. Here P, p, and X are positive constants, and Q is a real or complex constant.

q(t)Ip'(t) is of bounded variation in the interval (k, b) for each k E (a, b) if
X < p, or in the interval (a, b) if X

As t b-, q(1.)Ip' (t) tends to a finite limit, and this limit is zero when p(b) =00 .

With these conditions 1(x) converges uniformly at each endpoint for all sufficiently
large x. Moreover,

1(x) ex7ri/(2p) Q r(x)eixP(a)
p (Px)xlu

if X < p, or

Example: The Airy integral of negative argument

1 f 1

cos (-3 v3 xv)dv (x> 0)

00)

if X

1(x)

p.

= - lim (x .3)
q(t)leixP(a) 1+ lirn fq(t)ebql

+ o(-1)p (0 ix t-.b- p, (t) ix x

- Q(t

p.
4.

P

Ai( -x) = -



x112' f
IT J_,

cos (x312 p(t)) di

where p(t)= - 3 +t2 t3. 'With q(t)= I , it is seen that as t -> the ratio
q(t)10t) vanishes and its variation converges. Accordingly, the given conditions
are satisfied. For the range 0 t < co we have p(0) = - 341=2., and P = Q = = 1.

The role of x is played here by x3/2, and we derive

)exp {ix 3/2 p(t)} dt 11.112 '114 'exp
2.

ix 31'2)
2 3

6

The same approximation is found to hold for J, and on taking real parts we arrive.

II at the desired result:.

Ai(-x),= 7T ''1/2 COS' ( x3/2 - 4'7) o(x-1J4 ) (X -+ cc)

As in the case of Laplace's method, the method of stationary phase can be ex-
tended to the derivation of asymptotic expansions; see Erdelyi 1956,, section 2.9,
nd Olver 1974b.

12.3 CONTOUR INTEGRALS

12.3.1 Watson's Lemma

The result of 12..2.2 can be extended to complex values of the large parameter.
Again, let q(t) be a function of the positive real, variable t having a finite number
nr. discontinuities and infinities, and the property

q(t) E ast(s+x-14111 (t -> 0+)
. 1E-0

with Re X> 0 and m> 0. Assume also that the abscissa of convergence (section
1 / .2) of the transform

Q(7) =f e-z q (oat
0

'Asymptotic Methods 657
-

The stationary points of the integrand satisfy u2' - x =0,, and the only root in the

range of integration is To render the location Of the stationary point indepen-
dent of x we substitute v Nri (1 + 0, giving

r::

Ai( -x)

+

X

x-3/4

- +
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is finite or co. Then

s + asQ(z) r
(s+x)h,

S=o z

as z in the sector arg z I <4 it -6 (<4 7r), the power z(s+1')Iii having its
principal value.

When q(t) is an analytic function of t, the region of validity of the last expansion
can often be increased by rotation of the integration path about the origin. The
general result is as follows. In addition to the foregoing conditions, assume that
q(t) is holomorphic in the sector al < arg t < a2 al being negative and a2 positive.
Assume also that for each 6 E (0, I a2 -4 al) the given asymptotic expansion of
q(t) for small It I applies in the sector a, + 5 < arg t < a2 - 6, and q(t)= 0(e".1)
as t in the same sector. Here a is an assignable constant. Then Q(z) can be
continued analytically into the sector -a2 -4 it < arg z < -al +4 it, and the given
asymptotic expansion for large z holds when -a2 - IT + 6 <arg z <.-al + 77 5.

Example: Consider

Q(z)=f e-n 1 (1 + NiF)dt
0

The singularities of q(t) :-E In (1 + Nil) are given by NI/ = - I, hence q(t) is holo-
morphic in the sector arg t < 27r. Within the unit circle

ts/2q(t) = E (--y-i
s=1

With X = g= 2 we derive

r(:s12)Q(Z) (z arg zl < 6)E2z

being any positive constant less than fn.

12.3.2 Laplace's Method

Extensions of the results of I 2.2.5 and 12.2.6 to complex variables necessitate great
care in the choice of branches of the many-valued functions which are used. Let
Y denote the path for the contour integral

I(z) = eq(t)dt

a

,

-

- -

j

fir-
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and assume that the endpoint a is finite. The other endpoint b may be finite or
infinite. Also, let co denote the angle of slope of I at a, that is, the limiting value

of arg (t - a) as t -4- a along T. The functions p(t) and q(t) are assumed to be
holomorphic in an open domain T which contains T, with the possible exception

of the endpoints a and b.
Further assumptions are:

In the neighborhood of a there are convergent series expansions

p(t)= p(a)+ E ps(t - a)s."2; q(t) = E q s(t -
s= 0 s= 0

in which Po * 0, Re X> 0, and p> 0. When p or X is nonintegral (and this can

only happen when a is a boundary point of T) the branches of (t - a)g and (t - a)x

are determined by

(t - a)g - It- ar eiP'); (t - a)x - It - eixw

as t -÷ a along T, and by continuity elsewhere.
The parameter z is confined to a sector or single ray, given by 01 < 0 < 02,

where 0 = arg z and 02 - ei < Ti.
C. 1(z) converges at b absolutely and uniformly for all sufficiently large I z

d. Re {eth p(t)- el° p(a)1 attains its minimum on Tat t = a (and nowhere else).

The last condition is crucial; it demands that the endpoint a is the location of the

peak value of the integrand when I z I is large.
With the foregoing conditions

AZ)e-z
,E r 3 p,

s=o
z (s+

as. z 0, in 01 < arg z < 02. In this expansion the branch of z(s+x)Ig is

Z 1(s
+ eie (s+xvp

and the coefficients as are determined by the method and formulas of 12.2.6, with

the proviso that in forming the powers of Po, the branch of arg Po is chosen to

satisfy

I arg po + + I < 7T

This choice is always possible, and it is unique.

-
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12.3.3 Saddle-Points

Consider now the integral 1(z) of 12.3.2 in cases when the minimum value of
Re izp(t)} on the path Y occurs not at a but an interior point to, say. For simplic-
ity, assume that O(.7- arg z) is fixed, so that to is independent of z. The path may
be subdivided at to, giving

AZ) = e-`1*) q(t)dt -
f

et) q(t)dt
to to

For large lz I the asymptotic expansion of each of these integrals can be found
by application of the result of 12.3.2, the role of the series in Condition (a) being
played by the Taylor-series expansions of p(t) and q(t) at to. If pt(t0)# 0, then it
transpires that the asymptotic expansions of the two integrals are exactly the same,
and on subtraction only the error terms are left. On the other hand, if p'(t0)= 0
then the p of Condition (a) is an integer not less than 2; in consequence, different
branches of plo1"1 are used in constructing the coefficients as, and the two asymptotic
expansions no longer cancel.

Cases in which pi(t0)# 0 can be handled by deformation of Y in such a way that
on the new path the minimum of Re {zp(t)} occurs either at one of the endpoints
or at a zero of p'(t). As indicated in the preceding paragraph, the asymptotic
expansion of 1(z) may then be found by means of one or two applications of the
result of 12.3.2. Thus the zeros ()I-pit) are of great importance; they are called
saddle-points. The name derives from the fact that if the surface I e P(t) I is plotted
against the real and imaginary parts of t, then the tangent plane is horizontal at a

zero of p'(t), but in consequence of the maximum-modulus theorem this point is
neither a maximum nor a minimum of the surface. Deformation of a path in the t-
plane to pass through a zero of p'(t) is equivalent to crossing a mountain ridge via
a pass.

The task of locating saddle-points for a given integral is generally fairly easy, but
the construction of a path on which Re (zp(t)} attains its minimum at an endpoint
or saddle-point may be troublesome. An intelligent guess is sometimessuccessful,
especially when the parameter z is confined to the real axis. Failing this, a partial
study of the conformal mapping between the planes of t and p(t) may be needed.

In constructing bounds for the error terms in the asymptotic expansion of 1(z) it
is advantageous to employ integration paths along which Int {zp(t)} is constant.
On the surface jezP(`)1 these are the paths of steepest descent from the endpoint
or saddle-point. In consequence, the name method of steepest descents is often
used. For the purpose of deriving asymptotic expansions, however,use of steepest
paths is not essential.

Example: Besse] functions of large orderAn integral of Schlafli for the Besse]
function of the first kind is given by

1

Ji,(v sech a) = e-'13(r) dt
2Tri

I

e*".1



where

;I

p(t)= t sech a sinh t

Let us seek the asymptotic expansion of this integral for fixed positive values of

a and large positive values of v_
The saddle-points are the roots of cosh t = cosh a, and are therefore given by

t = ±a, ±a ± 2ni , The most promising is a, and as a possible path we con-
sider that indicated In Figure 12.3-1. On the vertical segment we have t = a +

where -77 < T <ir, and therefore

,{p(t)} = a - tanh a cos T> a- tanh a (T *0)

a +

a - nt

Fig. 12.3-1 t-plane.

On the horizontal segments t = a ± in + r where 0 T 'and

Re {p(t)} = a.+ T secho. sinh (a r) + tanh a

Clearly Re {p(0). attains its minimum on the path at a,;as required',
The Taylor series for p(t) at a is given by

p(t) = a - `twill a - (t - a)2 tanh a - (t - a)3 - (t - a)4 tanh a + -

In the notation of 12.3.2, we have p = 2,p =- Itanh a, pi = - 1,132 = - 24 tanh a,
and X = q0 = I. On the upper part of the path co = 7T, and since 0 = 0 the correct
choice of branch of arg pc, is -in. The formulas of 12.2.6 yield

tz0 = (4 coth 0112 = coth2 ia; a.2 =(- coth 2 a) (1 coth a)3/.2

Hence from 12.3:2

s asco 4-iri

e-vP(t) dt e-qa --tanh ck}
2 +1)12"

a 4= 0,
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0

-

.

Re

<

+ a

- - - - - - 214 -

- -

+
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The corresponding expansion for is obtained by changing the sign of i

throughout. Combination of the results yields

tanh a) /
1 51, ).I,(v sech a) + coth a - coth'

(27rv tanh 01' 24

This is Debye's expansion. No expression for the general term is available; the
easiest way of calculating higher terms is via differential-equation theory (12.8.2).

Conformal mapping was not required in this example because a suitable path
was easily guessed. For the corresponding problem with complex v and a, how-
ever, the mapping is almost unavoidable.

12.4 FURTHER METHODS FOR INTEGRALS

12.4.1 Logarithmic Singularities

Watson's lemma, Laplace's method, and the method of stationary phase can be
extended in a straightforward manner to cases in which the integrand has a loga-
rithmic singularity at the saddle-point.

For example, with the conditions of 12.2.2

-
e-xt q(t) In t dt E r +X) a,

- ln x E F + X) asx(s+x)11.,
s=o s=o

p x (s+

In other words, formal differentiation of the general result of 12.2.2 with respect
to the exponent X (or p) is legitimate. Such differentiations may be repeated any
number of times.

12.4.2 Generalizations of Laplace's Method

The underlying idea of Laplace's method may be applied to integrals in which the
parameter x enters in a more general way than in sections 12.2 and 12.3. Consider
the integral

AX) =f exp {-xp(t)+ Kt)) q(t)dt
a

in which p(t) and q(t) satisfy the conditions of 12.2.5, r(t) is independent of x,
and a is a constant. What kind of behavior can be permitted in r(t) at t = a without
changing the result already obtained for the case r(t)= 0? A sufficient condition
is, in fact

R(t - (t -+ a+)

+

-

r(t), -
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where R and v are constants such that R 0, v 0, and v> pa. In the case R> 0

we must also have a< 1.
When v < pa the term xa r(t) may no longer be treated as a negligible perturba-

tion. The case v < pa can be handled simply by interchanging the roles of p(t)

and r(t), and regarding x instead of x as the large parameter.
The case v = pa is more interesting, because 1(x) can no longer be approximated

satisfactorily in terms of elementary functions. The simplest integral having the

same character is Faxen's integral

n;y)= exp(-r4- .y.r).r71-' dr (0 < Re < 1, Re n >
0

This is used as approximant in the following general result.

Let

A.X) =f exp {-xp(t)+ xviP r(t) + s(x,t)}q(x, t)dt

in which b is finite, and

In the interval (0, b] the functions p'(t) and r(t) are continuous and p'(t)> 0.

As t 0+

p(t)= p(0)+ Pt" + 0(t i); p1(t)= pPt-1 + O(t' -1); r(t) = Rtv + 0(t")

where P > 0, > p> 0, and vi > v.
For all sufficiently large x the functions s(x , t) and q(x , t) are continuous in

0< t < b, and

ls(x , Sx" t° ; I ci(x, t)- Qtx-1 < Q ,x1 tx

where S, -y, a, Q, X, Q , (3, and Xi are independent of x and t, and*

a->-0, X> 0; Xi >0; 1-<min(1,0/1-1); 13<(Xi - ?)hl

Then

I(x) = Fi
X R e-xPO) ,( 1 \

11 if P v/4) (Px)x/A 11 +u -xw/P -"°)

where min (pi - p, a - P7, Xi - - PO, vi - v).

*None of 7, d, or X, - X is required to be positive.

t)

-

- -

-
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12.4.3 Properties of Faxen's Integral

Commonly needed pairs of values of the parameters are =r2 = and t = n= For
these cases

Fi y)= \FE e Y214j + erf y)}
Fi y)+ Fi ( A; - y) = 2 .\177 e Y214

Fi y)=32/3 rrHi(3-1/3 y)

and

e-'116 Fi ( A, 4; ye'43) + Ft (1, 1-; ye-"3)= 3213 27r Ai(-3-1/3 y)

Here Hi(x) denotes Scorer's function, defined by

Hi (x) exp (- t3 + xt)dtTr j0

and Ai is the Airy integral.

Example: Parabolic cylinder functions of large orderAn integral representation
for the parabolic cylinder function is supplied by*

1

4 JO.
U (7 + e 2/2) w" dw (n> -1)ro + o

We seek an asymptotic approximation for large positive n and fixed y.
The integrand attains its maximum at w - y + Nity2 + n. Since this is

asymptotic to In for large n we make the substitution w = N/T1 (1 + t); compare
the example at the end of 12.2.5. Accordingly

)n(n+0/2U(n +! y) = exp - -2n - y2
lc(n + 1)

f e-nP(r)-Yf frz dt

where

p(t)= t + - ln (1 + t) = t2 - t3 + 0)

This notation is due to Miller (1955). In the older notation of Whittaker, (An + y) is de-noted by D_0_1 (y).

(4,

(1, 4;

,y)

4t2 -
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, The general result of 12.4.2 iS" applied with .x-=r-gr. r(t)f= -yt, s(z,,t)= 0., and

q(x,t)= I. Thus; p 244 ,= 3,v = l, i= 1,, and

b e-nP(t)- 3" ft; Fl(l' l' -y)dt = i+o 1\1i
2 Niti I (NMI

0 ,

for any fixed value of the positive number b.. Similarly,

pull .

4
e-""-Yt dt ." 11 + 0( r--1)/

2 Nliz v

-b

provided that 0 < b < ,l. The contributions from the tails andf are expo-,
--t

mentially small when n is large, hence by addition and use of Stirling's approxima-

tion (7.2-H) we derive the required result

u Y\ exp.(- + r)
11 + I 1 VI

k 2 .) 5 Arz(n+1)12

t2.4.4 !More General Kernels,

Watson's lemma (12.2.2 and 12.3.1) may be regarded as an inductive relatiOn be-,

tween two asymptotic expansions.; thus

CPO

q (t) E ast(s+x-141)1 (.1 0+)
s=o

'fcff et q(t)dt r + X) a,
(s+

s=o 1,1 x
(x -1'09

(n co)

provided that Re X> 0, p > 0, and the integral converges. Similar induction of
series occurs for integrals in which the factor et is replaced by a more general

kernel g(xt). Thus

ext)q(t)idt
G(s+)

X as
(s+x)IA +°°)

or .sFo 11 x

4

fb

+1

implies

s
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in which G (a) denotes the Mellin transform of g(t):

G (a) = g We-1 "dr

Special cases include

Ai (xt)q(t)dt 3-0-00-2P)/(3/1)r + In (s + X + 21-1
x(sa+sx)Iiia s=o 11 3p

if a =O.

1(a, x)

1 -s°Ko(xt)q(t)dt sE.0
0

Where Ko is. the modified Bessel function. It is assumed 'that for large 1, q(i)is.
0(e0t312) for the Ai kernel and 0(e") for the Ko kernel, a being an assignable
constant.

12.4.5 Bleistein's Method

Let

x) e-xp (a, t) ior, IA- r

where k and A are positive constants (k possibly being infinite), a is a variable
parameter in the interval [0, k), and x is a large positive parameter. Assume that
a2p(a, t)lat2 and q(a, t) are continuous functions of a and t, and also that for
given a the minimum value of p(a, t) in [0, k) is attained at t = a, at which point
ap(a, t)/at vanishes but both a2p(a, t)lat2 and q (a, t) are nonzero. For large x
Laplace's method gives

{4a, x)- e-xp(a,co (a, a) a' X a2pfa, 01
27r 1 at2 jt=a

ifa 0, or

a2 -X/2p(o, t)
i

1

2. (2 \(s+X)/t4ts +?,\
jr 2/1 k

}-3/2'

e-xP(°'()) q (0, 0)r (1-
2 2

x
2 t.,ar2 j

1(a, = q

and



and

w= {2 p (a, 0) - 2p (a, a)}112 ± {2p (a, t) - 2p (a, a)}112

the upper or lower sign being taken according as t> or < a. The relationship be-
tween t and w is one-to-one, and because

dw =+ap (a, t)
dt {2p (a, t) - 2p (a, a)}112 at

the relationship is free from singularity at t = a.
Transformation to w as variable gives

IK
1(a, x)= exp {-x (I - aw)} f(a, w)wx-I dw

2

where

1t)" dt
f(a' w) = t) d-X;

and K = K (a) is the value of w at t = k. The factor f(a, w) is expanded in a Taylor
series centered at the peak value w = a of the exponential factor. This series has the
form

00

f(a, w)= (15s(a)(w -
S= 0

b = p (a, 0);

in which the coefficients 0.,.(a) are continuous at a= 0. The required uniform ex-
pansion is then obtained in a similar manner to Laplace's method: K is replaced by
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Whether or not X = 1, the first of these approximations does not reduce to the
second as a 0. This abrupt change means that the first approximation is nonuni-
form for arbitrarily small values of a.

To obtain a uniform approximation, we introduce a new integration variable w,
given by

p (a, t)= 1,o - aw + b

where a and b are functions of a chosen in such a way that the endpoint t = 0
corresponds to w = 0, and the stationary point t = a corresponds to the stationary
point w = a. Thus

a= 12p (a, 0) - 2p (a, a)}112

q (a,

a)'

w2 -
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D. and the series integrated term by term. Thus with the notation

Fs(y) = f exp 72
+ yr) (7 - y)s TX-1 dT

we derive

-x1(a,0) co Fs(a\rx)
1(a, x)

xxi2
E os(a) xs/2
s=0

in the sense that this series is a generalized asymptotic expansion with respect to an
appropriate scale (12.1.5).

Example: Let

rtI2
ex (cos 0+8 sin a) de

where 0 < a < 17r, and x is a large positive parameter. In the present notation

p (a, 0) = - cos -0 sin a; ap (a, oiao = sin 0 - sin a

The minimum of p(a, 0) in the range of integration is 0 = a. Since this ap-
proaches an endpoint as a -+ 0 we have exactly the situation described above.

The appropriate transformation is given by

cos 0 +0 sin a = 1 + aw - w2

a = (cos a + a sin a - 1)112

w = a ± \if {cos a + (a - 0) sin a - cos 011/2 (0 a)

The new integral is

1(a, x)= f exp -x (-- aw)} d0 dw
2 dw

where

Thus

(-

- -

=

- -

w2



I(a, x)=f q (a, t) dt
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la + Nfl {cos + (a - 7) sin al112

de w - a -
dw

=
sin 0 - sin a

= E Os(a)(w
s=o

In the last expansion the first three coefficients are given by

1 sin a 5- 2 cos2 a
(Po (a) = (cos a)' /2 ; 01(a) = 3 cos 2 a 02(a) = 24 (cos a)7/2

Write

A s(a, x)= r s + + (-- y {-1,5+1,x(cosa-Fasina- 1)} (s = 0,1,...)

where -y (a, x) is the incomplete Gamma function

x
-y (a, x)- f e t dt (Re a > 0)

Then we may express the required asymptotic expansion in the form

ex (cos a+a sin a) / n - 2)42 ( 1

I (cx, x) = E osooxs(«, x) 0(2x)1/2s=o

where n is an arbitrary nonnegative integer. The 0-term is uniform in any inter-
val 0 < a < ao for which ao is a constant less than 7/2.

For fixed a and large x the incomplete Gamma function can be approximated
in terms of elementary functions; compare .12.2.1. Then the uniform asymptotic
expansion reduces to either the first or second Laplace approximation given at the
beginning of this subsection, depending whether a> 0 or a = 0. This is, of course,
to be expected, both in the present example and in the general case.

12.4.6 Method of Chester, Friedman, and Ursell

Let

where

and

+ (x
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be a contour integral in which x is a large parameter. and p (a, t) and q (a, t) are
analytic functions of the complex variable t and continuous functions of the param-
eter a. Suppose that ap (a, ')/at has two zeros which coincide for a certain value
say, of a, and at least one of these zeros is in the range of integration. The problem
of obtaining an asymptotic approximation for 1(a, x) which is uniformly valid for a
in a neighborhood of a is similar to the problem treated in 12.4.5. In the present
case we employ a cubic transformation of variables, given by

p (a, t) = w3 my' + bw + c

The stationary points of the right-hand side are the zeros w1 (a) and w2 (a), say, of
the quadratic w2 + 2aw + b. The values of a = a (a) and b = b (a) are chosen in such
a way that wa (a) and w2 (a) correspond to the zeros of a p (a, 01 a t . The other co-
efficient, c, is prescribed in any convenient manner.

The given integral becomes

11(a, x)= e-xcf exp -x
(-3

+ aw2 + bw)} f(a,w)dw
9

where 2 is the w-map of the original path T, and

dt w2 + 2" + b
f (a, = q (a, = q (a, t)

dw ap (a, t)/at

With the prescribed choice of a and b, the function f(a, w) is analytic at w = w1 (a)
and w =w2 (a) when a a, and at the confluence of these points when a = a. For
large x, 1(a, x) is approximated by the corresponding integral with f(a, w) re-
placed by a constant, that is, by an Airy or Scorer function, depending on the
path 2.

Example: Let us apply the method just described to the integral

CO

A (a, x)= e-x(sech a sinh t-t) dt

in which cit..> 0 and x is large and positive. The integrand has saddle-points at
I = a and - a. The former is always in the range of integration, and it coincides
with the latter when a = 0. We seek an asymptotic expansion of A (a, x) which is
uniform for arbitrarily small values of a.

By symmetry, the appropriate cubic transformation has the form

sech a sinh t t = w3

w3

w)

-



Then,

A (a,x)=

The peak value of the exponential factor in the new integrand occurs at w =
We expand t in a Taylor series at this point, in the form

(a)= a + Ey+ I

S + 1S=0

The coefficients (Ma) can be found, for example, by repeatedly differentiating
the equation connecting t and w and then setting: = a and w = In particular

zq )1/4 '2- {00(a)}3
.0o(a) = 01(a) = -tanh- a 300(a) tanh a

It is easily verified that each of these expressions tends to a finite limit as ce-+
The desired asymptotic expansion is, now obtained by termwise integration,.

Thus

Qi s (x213 0
A ( a x) iE os(a)

x(s+iv3 -*°°)s.0

where

'Qi.s(y) = exp (- t3 + yt)(t - 3,112 y dt (s = 0, 1, .)
rr

These integrals are related to Scorer's function (12.4.3) by

Qio (Y) = (Y); 'Qii (Y)'= Hi(Y); 23,.°

and

(IVY) = (- Y('S -2)12 - 2)1112 CY) - 2) Qis -3 (Y) (s 3)

1

exip {-x e-w3 - 01,)} dt dw
3 . dw

Asymptotic Methods 671 '

The stationary points of the right-hand side are w = . Since they are to
correspond to t = a, the value of the coefficient is determined by

3- I-3/2 = a- tanh a

t

0.

(x

HiV) Qi2(Y)= - Qii (Y)

Qis (s -
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If a is restricted to a finite interval [0, ad, then the error on truncating the
asymptotic expansion of A (a, x) at its nth term is 0 {x-("1)/ 3 Qin(x2/3 0} uni,
formly with respect to a, provided that n is even. For a ranging over the infinite.
interval [0, co) this error is uniformly O{(1 + -)(n + i)/4.x-(n+ 0/3 Qin(x2/3 0} in
this case provided that n is even and nonzero..

12.5 SUMS AND SEQUENCES

12.6.1 Bernoulli Polynomials

The polynomials Bo (x), B . . , defined by the generating function

text
(I ti < 27r)t = Bs(x)

!:

are called the Bernoulli polynomials. Their values at x 0 are the Bernoulli num-
bers Bs= Bs (0).

The first few Bernoulli numbers are given by

Bo =i Bc= 4. B3 =,0, B4

Bs =0 B.6 4 B7 =-0' B9 =

the only nonvanishing. Bs. of odd subscript being, in fact,Bi.. Corresponding poly-
nomials are

B ofiY= B (x)=x-
B,(x)= x2 - + B3 (x)= x(x - 1).(x - 1)

B4(x)=2.4 - 2x3 + L; Bs (x)= 1*2
Bis,(x) = x6 - 3x5 +

'Important properties include

Bs(x)= ) -x1

B;(x)-- sB1_1(x),'. Bs(x)dx (s 0.1" B(l - x) )s: B Ax)

E is= s + 1 {B+1(n + 1)- RS+1.} (s 1)
i= 1

1 (2 ir)2sB2,E =.( r --2(2s)!(s->- 1)

5 4 2
2 +

,

.

1 s=o

=

=

0

x

- - - - - x

- -

= 0 -

1,1



f(f)= f(x)dx + f(a)÷ f(n)
2 2

i=a a

x2s-1 B2sdx (- )3-1 (s 1)e2rx 1 4s

When s a 1, the only zeros of B.,, (x) in the interval [0, 11 are 0, f , and 1, and
the only zeros of B(x)- B in the same interval are 0 and 1. Also,

IB2s(x)1<1.112s1 (O<x< 1)

12.5.2 The Euler-Maclaurin Formula

If a, m, and n are integers such that a <n and m > 0, and f")(x) is absolutely
integrable over the interval (a, n), then
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B
÷ 2s {f(2s-000_ f(2s-')(a)}E

(2,)!

inB2m- B2,,(x - [xi) f(2m)(x)dx
(2m)!

Here [x] denotes the integer in the interval (x - 1, x]; in consequence, as a func-

tion of x, B2n, (X - [XI) is periodic and continuous,with period 1.
The formula just given is the Euler-Maclaurin formula. Its uses include numerical

quadrature, numerical summation of slowly convergent series, and asymptotic ap-

proximation of sums of series. Another version of the formula is furnished by

f Im {f(a + iy)}
f(j)-= f(z)dz + f(a)+ f(n)- 2 dy

2 2 e2" - 1
i=a a

°I B2, ,(2,-0(n) + 2 (- 'm
y'm dyf Im {f (2m)(n OnY)) e27TY _ 1+E

(2172)!s=1 (2s).

being some number in the interval (0, 1). This second form is valid with the

conditions:
f(z) is continuous throughout the strip a < Re z <n, and holomorphic in its

interior.
f(z) is real on the intersection of the strip with the real axis.
f(z),_ 0(e2nit. ) as Im z -±0o in a < Re z <n, uniformly with respect to

Re z.

and

=

m-

-

-
-

+-
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- Im {f(a + iy)}
J e2 - 1

dy converges"
f (2') (z) is continuous on the line Re z = n .

Example: Let us seek the asymptotic expansion of the sum

S(n)= jln j
i=1

for large n. Setting f(x) =x In x, we have

f 1
f (x)dx =

1

- x2 ln x -
-4

x2; f'(x)= ln x + 1; f (x) = (-) (s - 2)!(s 2)2 . xs-1

The first form of the Euler-Maclaurin formula leads to

1 1S (n)= n' Inn-
-4

n2 +
-2

n ln n + 112 In n + C

- 2s(2s - 1)(2s - 2)n2s-2
Rm (n)

m -1

s=2

B2.,

where in is an arbitrary integer exceeding unity,

1 1 1 (x - [xi)
dxC=

4 720 12 x3

and

B2m B2m(x [xl)Rm (n) = dx
2m(2m - 1)x2m-1

The final result in 12.5.1 shows that B2, B2m - [x]) is bounded in absolute
value by B2,, and has the same sign. Hence

IB2rn IIR m(n)1 < (m..., 2)
2m(2m - 1)(2m - 2)n2m-2

Since the last quantity is 0(11n2"1-2) as n 0., the expansion for S (n) is an
asymptotic expansion, complete with error bound.

d.

.e.

'

- -

J1

- -

-



S=I

and ''(2) the derivative of '(z) at z = 2.

-T + ln (27r) -'(2)
C=

12 27r2

where 7 denotes Euler's constant, qz) is the Riemann Zeta function

12.5.3 Asymptotic Expansions of Entire Functions

The asymptotic behavior, for large I z I, of entire functions defined by their Mac-
laurin series

f(z)= z diz1
i=o

can sometimes be found by expressing the sum as a contour integral and applying
the methods of sections 12.2 to 12.4.

Example: Consider the function

trJ\P
Ap,x) =E

J.

for large positive values of x, where p is a constant in the interval (0, 4]. From the
residue theorem it follows that

n-1 (Xi PE = -
xt

j=o 21 ..fe fr(r+i)

(Re z> 1)
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A numerical estimate for the constant C can be found by summing directly the
first few terms of the series/ ln j, and using the bound for IR m(n)I. For ex-
ample, if m = 4 and n 5, then we have

(1/30) 1

IR4(5)1 8 7 6 56 0.6 X 10-8

Direct summation yields S(5) = 18.27449823, and subtracting the values of the
known terms in the expansion of S(5), we find that C = 0.24875449, correct to
eight decimal places.

An analytical expression for C can be derived from the second form of the
Euler-Maclaurin formula given above. The result is expressible as

lp
Cot (7r t) dt

=

'
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-(1/2)

Fig. 123-1 t-plane: contour C.

where C is the closed contour depicted in Figure 12.5-1. Now

cot (rrt) 1 1 1+ 1

2i 2 e-2"" - 1 - 2 e2"" - 1

Hence

where C, and e2 are respectively the upper and lower halves of C.
By means of Stirling's approximation (7.2-11) it is verifiable that the integrals

around the large circular arcs vanish as n -+ oe, provided that p < 4 (which we have
assumed to be the case). Also, I xtP l< 1 when x 1 and Re t 0. Hence

f(px)-JI 1)
dt+0(1) 1)

The asymptotic behavior of the last integral can be found by use of Stirling's ap-

n

j.--o

n-(112)

-1/2
dt -

IC,

dt
F(t + 1) + 1)1

le,

e-2"" - 1

xt dtIP

+ 1) e2'it - 1
2

r(t



(IC
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proximation and Laplace's method in the manner of the example treated in 12.2.5.
The final result is given by

epx
AP x) p 1/2(2,x)(p- 0/2

12.5.4 Coefficients in a Maclaurin or Laurent Expansion

Let At) be a given analytic function and

00

f(t)= E ant" (0<

a Laurent expansion. What is the asymptotic behavior of a, as n approaches or
-.0? More specially, what is the asymptotic behavior of the sequence of coeffi-
cients in a Maclaurin series?

Problems of this kind can be brought within the scope of sections 12.3 and 12.4
by use of the Cauchy formula

1f(t)
an=

1
dt27r t.t

in which e is a simple closed contour encircling t = 0. However, in cases when f(t)
has finite singularities other than t = 0, the method of the next subsection often
yields the required approximation in an easier way.

12.5.5 Method of Darboux

In the complex t-plane let r be the distance of the nearest singularity of f(t) from
the origin, and suppose that a 'comparison' function g(t) can be found with the
properties:

g(t) is holomorphic in 0 < t < r.
f(t)- g(t) is continuous in 0< t r.
The coefficients in the Laurent expansion

00

g(t)= E bt" < Itl<r)

have known asymptotic behavior.

Then by allowing the contour in Cauchy's formula to expand, we deduce that

1
2 7r

- b =
2rri rtI, -

1f(t)- g(t) fan n (reie)- g(reie)} e-nie dOer" 27rr"
i

dt -

< r)

n+1

a.

c.
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Application of the Riemann-Lebesgue lemma (I 2.2.3) to the last integral yields

n = bn o(r) 69

This is a first approximation to an.. Often this result is refinable in two ways. First,
if f (n)(0- g" (t) is continuous on =r then the integral for an - bn may be
integrated rn times by parts to yield the stronger result

=bn +o(r-n n')

Secondly, it is unnecessary for AO- g(t)or f(m)(t) - g(m)(t)to be continuous
on t I = r; it suffices that the integrals involved converge uniformly with respect
to n.,

Example: Legendre polynomials of large orderThe standard generating function for
the Legendre polynomials is given by

1

(1- 2 t COS CC t2)1/2 Pn (COS ex),In Iht I <1)

Let the left-hand side be denoted by f(t). The only singularities of this function are
branch-points at t = etc. To insure that these points do not coincide we restrict
0,< a < TT in what follows.

Let (eia - WO be the branch of this square root which is continuous in the
t-plane, cut along the outward-drawn ray through t = eh and takes the value e-x/2
at t = 0. Similarly, let (e-ia - t)-112 denote the conjugate function. Then (t) can

51

be factorized as

1

(eic" t),-"2 e'" (2 sin a)-11.2 (t e4)
(Cia 0-"2' -* el/4 (2 sin 07". (t

Accordingly, in the notation used above' we: set

g(t)= e-'44 (2 sin oi)-112- (e-ia - t)_42 + el14 (2 sin a)7 (ela - t

The coefficient of t" in the Maclaurin expansion Of g(t) is

f(t)=.(eia - 07112 (e-ia ' t)-312'

If t eia from within the unit circle, them

2 r2 (-1( )
bn =

sin a/
cos 11( 1n+ ) a +

2

71/2

1

+ (n

It

+
- (

-

-

- (It! < 1)

-

- -+ eia)

- -

ir}
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By Darboux's method a first approximation to P, (cos a) is given by

P.(cos a) = + o (1) (n .0)

Since, however, by Stirling's approximation

b= {2/(irtz sin Oil' cos (na+ I a - 4 7r) + 0(n-312)

this estimate for (cos a) reduces effectively to o (1).
An improved result is obtainable by observing that the integral of i(t)- g'(t)

around the unit circle converges uniformly with respect to 11. Accordingly, we may
integrate once by parts and apply the Riemann-Lebesgue lemma to obtain

PA (cos a) = + o (n-1)

By synthesizing a. function g(t) which matches the behavior of f(t) and its first rn.
derivatives at t = e, we can extend this result into

2 )1/2 (4(s_ 0( m+10/2))
pn (cos a) = . L,sin a s.o n (2 sin aY

where an = (n - s + 1)a + (n -4 s - -4)7r, and m is an arbitrary positive integer.

12.5,6 Haar's Method

Let f(t) be given by an inverse Laplace transform (section 11.2)

ic+i-
f(t)= ePr F(p)dp

27ri

and g(t) a comparison function having a known transform

1g(t) =
i ern G (p) dp

and knownknown asymptotic behavior for large positive t. By subtraction

yet ff(t) - g(t)= ei" {F(c + iv) - G(c + iv)} dv
27r

(n

If the last integral converges uniformly at each limit for all sufficiently large t, then
the Riemann-Lebesgue lemma (12.23) shows that

cos

-
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f(t) = g(t) + o(e") (t -0. co)

If, in addition, the corresponding integrals with F and G replaced by their deriva-
tives F(1) and G(1), j = 1, 2, .. . , m, converge uniformly, then by repeated integra-
tions by parts and use again of the Riemann-Lebesgue lemma, we derive

f(t)= g(t)+ o(rm e") (t co)

This method for approximating a given function f(t) is due to Haar, and is
analogous to Darboux's method for sequences. The best results are obtained by
translating the integration contour to the left to make the value of c as small as
possible.

Example: Bessel functions of large argumentFor t > 0 and v> -4, the Bessel func-
tion 4(0 is representable by

1
(i+)

etP dp
2trif_.+i (32 + l)'0/2)

erP dp1

f(t) 0,2 + ov+(ii 2) (c>0)

where f(t)= 7r112 (4 t)v.1(t)lf(v + 4), and (p2 + 1)".(I/2) has its principal value.
To approximate f(t) for large t we deform the path into two loop integrals*

(i+) (-1+)

In the first of these the factor (p2 + 1)-v-(h/2) is replaced by its expansion in as-
cending powers of p - i. Then using Hankel's integral for the reciprocal of the
Gamma function (7.2-9), we derive

1 n -1 I) eit
21,-*-(1/2)e(2v+1)ni/4 E 2

(2i)s f(v + - s)ts-P+(112)S=0

Here n is an arbitrary integer, and

J(+)en(t)= erP 0 {(p - i)flv-(112)} dp
2tri

+ en(t)

the 0-term being uniform on the loop path.

The notation fa(b+) means that the integration path begins at a, encircles the singularity at b

once in the positive sense, and returns to its starting point without encircling any other singu-
larity of the integrand.

-

(-v-
-

-
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If we restrict n> v - 1, then the path in the last integral may be collapsed onto
the two sides of the cut through p = i parallel to the negative real axis. Thence it
follows that en(t) is 0(11t"-"-(112)) as t 00. Similar analysis applies to the other
loop integral, and combination of the results gives the required expansion

2 )0 (-v- F(v + 1) cos ft - (Is+ v + -Dr}
E

r(v+ s) (2 Os2s=0 S

+0( 1 )0+012)

It can be verified that this agrees with the expansion of 7.2.9.
From the standpoint of Haar, the role of F(p) is played hereby 0)2 + 0-v-(1/2)

and that of G (p) by

n -1 1 (-v - (p I 2) (p )s-v-(1/2)

E2"(1/2) s e(2.+07.414 e-(2v+1)/ri/4 e2os
S=0

12.6 THE LIOUVILLE-GREEN (OR WKI3) APPROXIMATION

12.6.1 The Liouville Transformation

Let

cPw = f(x)w

be a given differential equation, and (x) any thrice-differentiable function. On
transforming to t as independent variable and setting

d y/2
W w

dx

we find that

d2 IV [x . 1

= 2de f(x)-
{x'

W

Here the dot signifies differentiation with respect to and tx, is the Schwarzian

derivative

*Y"

tX, -2JP/2 (_O). _ (-12
de 2

dx2

-

+

(2 i)s +
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properties of which include

dxy{x, t} = - {,x}; {x, } = {x,}+

The foregoing change of variables is called the Liouville transformation. If we
now prescribe

ffil2(x)dx

then .Z2 f(x)= 1

d2 W [1 _1 fx, w

de 2

and

fx, 5f'2 (x)- 4f(x)f"(x) 2 c12 I 1 \
8f3 (x) f314 dx2 (f114)

Neglect of the Schwarzian enables the equation in W and to be solved exactly,
and this leads to the following general solution of the original differential equation:

Af-I/4 (x)exp f f112(x)dx} + Bf-114 (x)exp ff 1/2 (x)dx}

where A and B are arbitrary constants. This is the Liouville-Green or LG approxi-
mation, also known as the WKB approximation. The expressions

f-1/4 exp (-± dx)

are called the LG functions.
In a wide range of circumstances, described in following subsections, neglect of

the Schwarzian is justified and the LG approximation accurate. An important case
of failure is immediately noticeable, however. At a zero of f(x) the Schwarzian is
infinite, rendering the LG approximation meaningless. Zeros of f(x) are called
transition points or turning points of the differential equation. The reason for the
names is that on passing through a zero of f(x) on the real axis, the character of
each solution changes from oscillatory to monotonic (or vice-versa). Satisfactory

=



d2 w

dx2
= if(x)+ g (x)} w

It is assumed that in a given finite Or infinite interval! (a1 ,a2), f(x) is a positive,
real, twice-continuously differentiable function, and g(x) is a continuous, real or
complex function.. Then the equation has twice-continuously differentiable
solutions

w i(x)= f-114 (x) exp f fil2 (x) + e (x)}

(X)=f-114 (x) exP {- if112 (x)dx} 1 + e2 (x)}

With the error terms bounded by

ei WI, ;f"2 (x) exp ai,x(F)} = 1, 2)

Here denotes the variational operator defined n 12.2.4, and F(.4 is the error-
control function

Ii d2IF(x) = () -
dx2 fi

The foregoing result applies whenever the 0,/,,(F) are finite.
A similar result is available for differential equations with solutions of oscillatory

type. With exactly the same conditions, the equation

d2w
dx2 = f(x) + g(x)} w

has twice-continuously differentiable solutions

w1 (x) = f -1/4 (x) exp f112 (x)dx} ei(x)}

cir
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approximations cannot be constructed in terms of elementary functions in the
neighborhood: of a transition point; see section 12.8 below.

12.6.2 Error Bounds: Real Variables

In stating error bounds for The LG approximation,, it ls convenient to take the dif-
ferential equation in the form

5

dx}

- 1

i +

g
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w2 (x) = f-114 (x) exp - f112(x)dx} {1 + e2 (x)}

such that

f-112 (x) le;(x)I < exp { a,x(F)} - 1 (j= 1,2)

Here a is an arbitrary point in the closure of (a a2)-possibly at infinity-and the
solutions w1 (x) and w2 (x) depend on a. When g(x) is real, w1 (x) and w2 (x) are
complex conjugates.

12.6.3 Asymptotic Properties with Respect to the Independent Variable

We return to the equation

d2w = {f(x)-i- g(x)} w

The error bounds of 12.6.2 immediately show that

w, (x)- f 14 exp ff112 dx) (x->ai+)

w2(x)f-1/4 exp f1/2 ax (12-)

These results are valid whether or not al and a2 are finite, and also whether or not
f and ig are bounded at a, and a2. All that is required is that the error-control
function F(x) be of bounded variation in (a, ,a2).

A somewhat deeper result, not immediately deducible from the results of 12.6.2,

is that when f "2 dx CX, as x-). a, or a2, there exist solutions w3(x) and

w4(x) with the complementary properties

w3(x)f -1/4 exp (ff1/2 dx) (x-+a2-)

w4(x) f -1/4 exp ff112 dx) (x -*al+)

dx2

(x)i,

(-



f(x)
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The solutions w (x) and w2 (x) are unique, but not 14.3 (x) and w4 (x). At a ,w i(x)
is said to be recessive (or subdominant), whereas w4(x) is dominant. Similarly for
w2 (x) and w3(x) at ar.

Example: Consider the equation

cPw
= (x + In x)w

dx2

for large positive values of x. We cannot take f= x and g = ln x because fgf -1/2 dx

would diverge at infinity. Instead, set f= x + in x and g = 0. Then for large x,f-1/4 (f-1/4 ) is 0(x-512), consequently 0(F) converges. Accordingly, there is a
unique solution w2 (x) such that

w2 (x)(x+ In x)-'14 exp - (x + ln x)"2 dx -+ 00)

and a nonunique solution w3(x) such that

w3 (x) (x + In x)-

These asymptotic forms are simplifiable by expansion and integration; thus

w2 (x) x-(1/0-1-x exp (2x1/2 - ix3/2); w3 (x) x exp (1x3/2 - 2.x1/2)

12.6.4 Convergence of 0 (F) at a Singularity

Sufficient conditions for the variation of the error-control function to be bounded
at a finite point a2 are given by

(a2 - x)22 ; g(x) = 0 {, 1

la2 - x).-R+2
a2--)

provided that c, a, and fi are positive constants and the first relation is twice
differentiable.

Similarly, when a2 = cc sufficient conditions for C(F) to be bounded are

f(x) cx2a-2; g(x) = 0(x2) (x -.00)

1 1i/4 exp (x +ln x)112 dx (x -. 00)

again provided that c, a, and fi are positive and the first relation is twice differentia-

-

-

-
(x
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ble. When a= .,73. we interpret the last condition as f (x)-+ c and f " (x) = 0 (x-1);
when a = 1 we requiref (x) = 0(x-1) and f " (x) = 0(x-2).

12.6.5 Asymptotic Properties with Respect to Parameters

Consider the equation

d2w
= {u2 f(x) + g(x)} w

dx2

in which u is a large positive parameter. If we again suppose that.in a given interval
(a, , a2) the function f(x) is positive and f"(x) and g(x) are continuous, then the
result of 12.6.2 may be applied with u2f(x) playing the role of the previous f(x).
On discarding an irrelevant factor u-112 it is seen that the new differential equation
has solutions

wi(u, =f -114 (x) exp )7-1uf f 112 (x) dx} {1 + ei(u,x)} (1= 1,2)

where

ei (u, x)I ,
1

2 uf112 (x)

a ci(u, x

ax

the function F(x) being defined exactly as before. Since F(x) is independent of u,
the error bound is 0(u') for large u and fixed x. Moreover, if F(x) is of bounded
variation in (a, , a2), then the error bound is 0(u-1) uniformly with respect to x in
(ai , a2). The differential equation may have a singularity at either endpoint with-
out invalidating this conclusion as long as 0(F) is bounded at a1 and a2.

Thus the LG functions represent asymptotic solutions in the neighborhood of a
singularity (as in 12.6.3), and uniform asymptotic solutions for large values of a
parameter. This double asymptotic property makes the LG approximation a re-
markably powerful tool for approximating solutions of linear second-order differen-
tial equations.

Example: Parabolic cylinder functions of large orderThe parabolic cylinder func-
tions satisfy the equation

d2w
= (-1x, + w

dx2 4

exp ai'x(F1 1

u

a being a parameter. In the notation of 12.6.2, we take f(x) = x2 + a and g(x) = O.
Referring to 12.6.4, we see that 0(F) is finite at x = +.0. Hence there exist solo-
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tions which are asymptotic to f-114 eit for large x, where

1/2

= f (-Ix2 + a) dx
4

On expansion and integration, we find that

= x2 +a In x + constant + 0(x-2)

Hence the asymptotic forms of the solutions reduce to constant multiples of
xa-(1/2)exz/4 and x-a-(1/2)e-x2/4. The principal solution U (a , x) is specified
(uniquely) by the condition

U(a, x) x-a -(112) 214 (x -> 00)

How does U(a,x) behave as a -> +00? Making the transformations a = u and
x = (2u)1'2 t, we obtain

with

d2 w

GIP
= u2(t2 + 1)w

A solution of this equation which is recessive at infinity is given by

w(u, t)= (r2 + 1)-1/4et)fi e(u,

where

t(t)= f (t2 + 01/2 dt =f 412 + 1)112 + In t + + 1)1/2)

The error term is bounded by

I e(u, t) I exp { (F)/(2,4)} - 1

F(t)= (12 + )-1/4 {(.2 1) "1" dt = t3 + 6f
12(12 + 1)3/2

The solutions w(u, t) and U(4 u, N/274 must be in constant ratio as t varies,
since both are recessive at infinity. The value of the ratio may be found by compar-
ing the asymptotic forms at t = +00. Thus we arrive at the required approximation:

u,N / 2 7 t) = 20,1)/4eti/4u-(//+1)/40.2 ÷ 0-1/4e-uio {1 + e(u, t)}

+

-

t)
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This result holds for positive u and all real values: of t, or, on returning to the

original variables, positive a and all real x. For fixed u (not necessarily large) and
large positive t, we have e(u, t) (t-2 ). On the other hand, since CD (F)< oo

we have e(u, t) = 0(tt-') for large u, uniformly with respect to t E (-00, 00). These.
estimates illustrate the doubly asymptotic nature of the LG approximation.

Incidentally, the result of the example in 12.4.3 is obtainable from the present
more general result by ,setting u = 2n + 1, t=y//4n + 2 and expanding t(t) for
small t

12.6.6 Error Bounds: Complex Variables

Let f(z) and g(z) be holomorphic in a complex domain Di in which f(z)is non=
vanishing. Then the differential equation

d2 w = {f(z)+ g (z)} w

has solutions which are holomorphic in D, depend. on arbitrary (possibly infinite
reference points al and a2, and are given by

wi(z)-= f-114(z) exp {(- )1-1E (z)} {1 +-ei(z)} (j= 1,2)

where.

(z) = f'12 (z) dz

and

dz2

(z) if -4/2 (z)<(z)I < exp { Dap (F)}

Here F(z) is defined as in 112.6.2, with x z..

In contrast to the case of real variables, the present error bounds apply only to
subregions Hi(ai) of D. These subregions comprise the points z for which there ex-
ists a path in D linking af with z, and along which Re {(z)} is nondecreasing
j 1) or nonincreasing (j = 2). Such a path is called --progressive. In the bound

exp {0(F)} 1 the variation of F(z) has to be evaluated along a s-progressive
path. Parts of D excluded from H1(a1) are called shadow zones. The solutions w1(z)
'exist and are holomorphic in the shadow zones, but the error bounds do not apply
there.

Asymptotic properties of the approximation with respect to z in the neighbor-
hood of a singularity, or with respect to large values of a real or complex parameter,
carry over straightforwardly from the case of real variables..

- 1

=
-
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12.7 DIFFERENTIAL EQUATIONS WITH IRREGULAR SINGULARITIES

12.7.1 Classification of Singularities

Consider the differential equation

cl2w
+ Az) dw + g(z) W = 0

dz 2 dz

in which the functions f(z) and g(z) are holomorphic in a region which includes the
punctured disc 0 < lz - zo I <a, z0 and a being given finite numbers.

If both f(z) and g(z) are analytic at z0, then .70 is said to be an ordinary point of
the differential equation. In this event all solutions are holomorphic in the disc

zo < a .
If zo is not an ordinary point, but both (z - zo)f(z) and (z - z0)2g(z) are analytic

at zo, then this point is said to be a regular singularity or singularity of the first
kind. In this case independent solutions can be constructed in series involving frac-
tional powers of z - zo and also, possibly, ln(z - 4). The series converge when
Iz- zo I <a; compare 6.4.6.

Lastly, if zo is neither an ordinary point nor a regular singularity, then it is said to
be an irregular singularity, or singularity of the second kind. If an integer r exists
such that (z - zo)'l f(z) and (z - z r+2g(z) are both analytic at zo, then the least
value of r is said to be the rank of the singularity. By analogy, a regular singularity
is sometimes said to have zero rank.

In the neighborhood of an irregular singularity it is usually impossible to find con-
vergent series expansions for the solutions in terms of elementary functions. In-
stead, asymptotic expansions are employed. From section 12.6, especially 12.6.4,*
it can be seen that the LG functions furnish asymptotic approximations at an ir-
regular singularity. The purpose of the present section is to extend these approxi-
mations into asymptotic expansions for singularities of finite rank. We begin with
the simplest and commonest case in applications.

12.7.2 Singularities of Unit Rank

Without loss of generality the singularity is assumed to be at infinity: a finite singu-
larity zo can always be projected to infinity by taking (z - z0)-1 as new indepen-
dent variable. Thus we consider the differential equation of 12.7.1 with

fs1(z)=; g(z)
s=o zss=o

these series converging for sufficiently large izi. Not all of the coefficients fo ,go ,

and g1 vanish, otherwise the singularity would be regular.

The symbols land g are now being used differently.

lz -
-

- -

- -

-



690 Handbook of Applied Mathematics

Formal series solutions in descending powers of z can be constructed in the form

a
w = eAzz'"

s= 0

Substituting in the differential equation and equating coefficients, we obtain in turn

+fo x +g0 = 0

(fo + 2X) P = X +g1)

and

(fo + 2X) sas = (s p)(s - I - p) as-1 + {Xf2 +82 - (s - I - p)fi }as_,

+ {Xf3 +g3 - (s - 11)f2}as-2 +- + {Vs.' +gs+1 + ilfs}ao

The first of these equations yields two possible values

X1 X2 =f0 ± (4- fc? - go)"

for A, called the characteristic values. The next equation determines the corre-
sponding values pi and P2, of p. Then the values of a0, say a0,1 and a0, 2 in the
two cases, may be assigned arbitrarily and higher coefficients as,i and 11s,2,
s = 1, 2, ... , determined recursively. The process fails if, and only if, A1 = A2, that
is,fo2 = 4g0. This case is treated below.

In general the formal series diverge. Corresponding to each, however, there is a
unique solution wi(z), = 1, 2, of the differential equation with the property

a .

w.(z) elVzzhui E
S=O

as z -> 00 in the sector

arg {(X2 - xi )z} I < 4 7r - 5 (j = 1); larg {(X, - X2)z}1 - 5 (1= 2)

5 being an arbitrary positive constant.
In the sector larg {(X2 - XI)z}1 < 7/2, the solution w, (z) is recessive, and the two

branches of w2 (z) are dominant. These roles are interchanged in larg {(A1 - X2)z}1 <
7r/2. Although both w1 (z) and w2(z) can be continued analytically to any range of
arg z, the given sectors of validity of the asymptotic expansions are maximal (unless
the expansions happen to converge).

The case in which the characteristic values Al and A2 are equal can be handled by

-

X2

- - -

-

-

-
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the preliminary transformation

w = Cf."' W; t =

In the new equation either the singularity at t = 00 is regular, or it is irregular with
unequal characteristic values (and therefore amenable to the foregoing analysis).

Example: Bessel's equationBessel functions of real or complex order v satisfy

d2 w 1 dw v2

dz2
-+--+z dz (1 - w = 0

In the present notation ft =go = 1, g2 = -v2, and all other coefficients vanish.
The equations for X and it, yield Xi = -X2 = i, and pi =P2 = - 1. With a01 = ao ,2 =
Lit is found that

as, = isAs(v); a,2 = (-Osils(v)

where

As(v) =(4u2 - 12) (4v2 - 32) {4v2 - (2s - 1)2}/(s! Els)

I / irRenormalizing w1(z) and w2(z) by the factors (217)2 exp (1 , i},
obtain solutions HP )(z) and H(2)(z) with the properties

)1 / 2 A s(v)
HP )(z) E is

7TZ ZSs= 0

/ 2 s(v)HP)(z) (-Os
7TZ

,s.= 0

(z os in -7T + 5 arg z < 27r- 5)

(z in -27 + 5 < arg z < rr - 5)

where 5 is an arbitrary positive constant, and = z - 11)7T - 17. These are the
Hankel functions of order v; HP )(z) is recessive at infinity in the upper half-plane,
or, more precisely when 0 < arg z < rr; H2 )(z) is recessive when - rr < arg z <0.

12.7.3 Stokes' Phenomenon

The functions HP(z) and HP)(z) introduced in the last example can be continued
analytically to any range of arg z. Appropriate asymptotic expansions can be con-
structed by means of the continuation formulas

14')(zem"i)= -cosec (v7r) [sin am - I) HP)(z)+ CI'''. sin (mv7)142)(z)1

HP)(zen"ri)= cosec (v7r) [ev"i sin (mvrr) )(z) + sin am + 1) v7r} fir; 2 )(z)]

-

+

-

-

-

- vrr}
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in which m is an integer. For example, if we take m = 2 in the first formula, sub-
stitute in the right-hand side by means of the expansions of 12.7.2, and then replace
z by ze-2, we arrive at

HiSi)(z)-
1/2 iv\

E s'
7TZ)

(1 + E (_os As(u)l
s=0h Zs js=0

valid when z 0. in + 8 < arg z - 6.
It will be observed that two differentasymptotic expansions are available for

)(z) in the sector 77 ÷ 8 < arg z < 27r - 5, namely, the expansion just given and
the original expansion of 12.7.2. In this sector, however, is exponentially small
at infinity compared with , hence the whole contribution of the series it multi-
plies is absorbable, in Poincare's sense, in any of the error terms associated with the
first series.* Accordingly, there is no inconsistency.

Extensions to other phase ranges may be found in the same manner by taking
other values of m. In each case an expansion of the form

(2 )1/21a . As(v) , A5(v)
(v) e1 E m(v) e E (--

\trz js=0 s= 0

is obtained, where (m - 1) 7r + 5 < arg z < (m + 1) 7T 5, and am(v) and 0,(v) are
independent of z. The need for discontinuous changes in these coefficients as arg z
is continuously increased (or decreased) is called the Stokes phenomenon. It is not
confined to solutions of Bessel's differential equation.

12.7.4** Singularities of Higher Rank

When the differential equation of 12.7.1 has a singularity at infinity of rank k + 1,
the coefficients f(z) and g(z) can be expanded in series

co

f ((Z)=ZkE

gz)= k gs
ZSS= 0 s=0 Zs

which converge for large Izi, at least one of fo , go , and g1 being nonzero.
Provided that g 4g0, formal series solutions of the form

(j = 1, 2)
s=0

*For numerical purposes, however, the second series should be retained when jr < arg z 2tr.
**Proofs of results in this subsection are given in Olver and Stenger 1965.

ir 3ir

-

-

zk ;
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can be constructed. Here

i. I IL,/
k 'Ps 2 is

{(-)1-1. (Pk +1 k+1 1,k} ln zti(z).= z E
(k + 1 - s)

the coefficients Os 'being, defined by the expansion.

1114-f 2 () + k(z)}1/ 2. zic

s= 0

The other coefficients as,/ may be calculated recursively by substituting in the .dif,
ferential equation and equating coefficients, the value of a0,1 being arbitrary.

Let the z-plane be divided into 2k + 2 sectors of equal angle, as indicated in Fig- ..

lure 12.7-1 in the case k = 3. In any closed sector lying properly within* the union

Fig. 12.7-1 z-plane, k = 3: =(Tr arg 06)1(k +

of a shaded sector and the two adjacent unshaded sectors there is a solution of the
differential equation having the formal series, with j -= 1, as its asymptotic expan-
sion. This solution is recessive in the shaded sector and dominant in the abutting
sectors. Similarly in any closed sector within the union of an unshaded sector and
the two adjacent shaded sectors there is a solution having the. formal series, With
j = 2, as its asymptotic expansion, and this solution is recessive in the unshaded.
sector and dominant in the abutting sectors.

Again, the exceptional case a = 4g0 is amenable to an appropriate preliminary
transformation of independent and dependent variables.

Except for the common vertex.

0

- -

f (z) =
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12.8 DIFFERENTIAL EQUATIONS WITH A PARAMETER

12.8.1 Classification and Preliminary Transformations
In this section we discuss asymptotic solutions of differential-equations of the form

d2w

dz2
- {u2 f(z) + g(z)}

in which 14 is a large real or complex parameter, and z tinges over a real interval or
complex domain D, say.. Equations of this type occur frequently in mathematical,
physics. The form of the asymptotic solutions depends on the nature of the transittion points in D, that is, points at which f(z) or g(z) is singular, or f(z) vanishes;
,compare 12.6.1.

In the case in which D is free from transition points-which Ave shall ,call hence-forth Case /-it was shown in section 12.6 that the LG functions

f-114(z) exp +_ttff 2(z) dz}

furnish asymptotic solutions with uniform relative error ,0(u-1) as co. In12.8.2 we construct asymptotic expansions in descending powers of u, the initial
terms of which are the LG approximations.

-

Later subsections treat cases in which D contains a single transition point zo , say..If, at zo, f(z) has a pole of order ni 2 and g(z) is either analytic or has a pole oforder less than m + 1, then the LG approximation or the expansions of 12.8.2,
may be used. In Case II, treated in 12.8.4, 20 is a simple zero of f(z) and an ,ana,,.
lytic point of g(z); in Case III, treated in 12.8,.6,, zo is a simple pole of f(2) and
(z - z0)2g(z) is analytic there.

Basically the same approach is made in all cases. First, the Liouville transforma-
tion (12.6.1)is applied., This introduces new variablesW and related by

w =1,-)121,0

the dot ,denoting differentiatibri with respect to t. Then

Where

d2 W
= {u2Pf(z) OW} Wde

4/() pg(0+ ill 2 (i-r/ 2),
de

w

-

+

d2=



d2 W
= {Or + 00} Wde

with m 0 (Case I), m = 1 (Case II), or m = - 1 (Case III).
In Cases I and II approximate solutions of the new equation are obtained by ne-

glecting t/i (). In Case I this is the LG approximating procedure used in section
12.6. In Case II the appro imants are Airy functions. In Case III the basic approxi-
mating equation is

d2 w (u2 p
= + 11Vde e

where p is the value of OW at = 0. The solutions are expressible in terms of
modified Bessel functions of order -1.--\71 + 4p and argument 2/4\TC.

12.8.2 Case I: No Transition Points

The standard form of differential equation is given by

c12 W

de fU2 14i ()1 W
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The transformation is now prescribed in such a way that: (i) and z are analytic
functions of each other at the transition point (if any); (ii) the approximating dif-
ferential equation obtained by neglect of LP (), or part of 0(), has solutions which
are functions of a single variable. The actual prescriptions are as follows:

Case I:

2f(z) = 1, giving t = ff'12 (z)dz

Case II:

z.2 f(z)= giving 3/2 =J f1(t)dt3 2°

Case III:

f (z) = giving 2h12 = f PI2 (t) dt
zo

The transformed differential equation becomes

t,

,

-
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The variable ranges over a bounded or unbounded complex domain A, being the
map of the original z-domain D. The function () is holomorphic in A.

A formal series solution can be constructed in the form

AA)
= Euss= 0

This gives

dW - Aso + A;_i (0 d2 W 2 ut A) + 2A's_1 + 4_2(0e" E u Eus de.s=0 .
s= 01

Satisfaction of the given differential equation requires

2A0 = =4-1() 0(0As-A(0 (5 = 0 ,

Thus A0() = constant, which we take to be unity witho oss of generality, and
higher coefficients are found recursively by

A51 = is () + (),45() = 01, 1, .

the constants of integration being arbitrary. Each coefficient /15() is holornorphicin A.
A second formal solution is obtainable by replacing u by -u throughout. In gen-eral both formal series diverge. However, corresponding to any positive integer

there exist solutions wn,1(11, 0, = 1, 2, which are holomorphic in A, depend on
arbitrary reference points ev, and are given by

n -1 A sa)
W n,V(1C 0 = eu E + end3 , 0'us

Wn,2 (u,)= Cut (-)S
A)

+ e 2(u 0ius n ,
s=

where the error terms are "bounded by

(u
aen

Of,
,i(u,
ua

These bOu.nds apply at each. point t of A which can' be linked to cx1 by a path 2i

s=0

< 2lIef exp
to 0 n),

+ 1, . . .)

f (s . . .)

n

n-1

ly-



ing in A and such that Re(tiv) is nondecrcasing (1= 1) or nonincreasing (j = 2) as v
passes along 91: from c to The variations in the error bounds must be evaluated
along j. The reference points ai can be at infinity, subject to convergence of the
variations.

In the context of the present result, the condition on the path 9/ is called the
monotonicity condition, and admissible paths are said to be (u)-progressive; com-
pare 12.6.6. Again, points of A excluded by the monotonicity condition are called
shadow zones; the zones depend on j, arg U, and the choice of pi.

Example: Modified Bessel functions of large orderThe functions z"Iu(vz) arid,
z1/2Kv,kvz) satisfy

d2w 12 1 1- Z2 1

The preceding theory will now be applied to derive uniform asymptotic expansions
for large positive real values of v.

The appropriate Liouville transformation is given by

, (1 +z2)'2 z'2 vt4
w=

I + z2) '

Then,

d2
2 + OW} w

where

IP(t) 2 l' *z2) (l f

Integration yields

z2,y2) In .z - In {1 + (1 + z2)'21

it being convenient to take the arbitrary constant of integration to be zero. The
mapping between the planes of z and is indicated in Figs. 12.8A and 12.8-2. We
take D to be the sector larg zl< 7/2. Its map A comprises the union of the sector
larg <7r/2 and the strip flm

From the above results it follows, that the transformed differential equation has
solutions

n-1 A,,
W1

{
:(v,1)=ey' E +17n., JP (4),

PSS=0

,
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= v
dz2 z2 4z2

w

d2

= z2)-3

= (1 + + -
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E (

-

Illn,2(v, < 2 exp

Fig. 12.8-1 z-plane: domain D.

(ir/2)

s= 0

I B

( 0)

/ 2)

Fig. 12.8-2 t-plane: domain A.

P1

Wn,2 (v, 71,2 2 (V, 01
-1 As

I.

With the reference points a, and a2 taken to be -Do and +00 respectively, the pres-
ent error terms are bounded by

)74.,,,(v, < 2 exp
12°_,t(Ail,_,E(A)

pot,..(4010,,000,0
I. v j p"

a2
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The condition on the variational paths is that Re E is monotonic; from Figs. 12.8-1
and 12.8-2 it is clear that the whole of A is admissible both for! = 1 and! = 2. In
other words, shadow zones are absent in the present case.*

On reverting to the original variables we find that the recurrence relation for the
coefficients As(t) becomes

dAs1 C z(4 - z2)
As." 2(1 + z2)"2 +

8 (1 + z2)"2
dz

From this equation it can_be-deduced that As is a polynomial in p (1 + z2)-" of
degree 3s. If the integration constants are chosen in such a way that As vanishes at
z = c. when s 1, then we obtain

A0 = 1; A1 = (31' 5p3)124; A2 (81/32 - 462p4 + 385p6)/1152

To identify Iv(vz) and Ku(vz) in terms of the solutions just constructed, we note
that as z 0, that is, t -00, both 1,(vz) and (1 + z2)/ 4 W- ri,10), are recessive;

1

hence their ratio is independent of z. Similarly, by letting z +.0, that is, t +00,

we see that the ratio of K,(vz) and (1 + z2)-1/ 4 W0,2(P, is independent of z. In

both cases the ratio may be found by considering asymptotic forms as z v

being fixed. The final expansions are

1 et As

1 + Tin,' (v, co) (2701/ 20 z2 1f4 2_, vs + (V, t)

11/2 e-`" in-1 As
Kv(vz)=

(2v (1 + z2)4 E - + rIn 2(v, Ei
s..

valid when v> 0,1arg z < rr/2, and n is any positive integer.
If z is restricted to the sector larg z (7/2) - 5 (<7r/2), then the error bounds

show that

AI(vz)
(27rv)1 (1 z2 vs4

S=0

1/2 e

2v +z2)1/4 "s=o

as v uniformly with respect to z.

*This would not be so if v were complex.

z

=
As

-

+

-

et
2

A
Ki.;(vz)-

(1
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12.8.3 Auxiliary Functions for the Airy Functions
For negative values of x, the Airy functions Ai(x) and Bi(x) are of oscillatory
character, the period and amplitude of the oscillation diminishing as x -03. On
the other hand, for increasing positive x both functions are positive and monotonic,
Ai(x) tending rapidly to zero and Bi(x) to infinity. To make a combined assess-
ment of the magnitudes of both functions applicable to both negative and positive
arguments, we introduce a weight function E(x), modulus function 111(x), and
phase function 0 (x).

The weight function is defined by

E(x) = YBi(x)/Ai(x) (c ( x < 0.); F(x) = 1 <x <c)

Here c = -0.36605 ... is the negative root of the equation

Ai(x) = Bi(x)

having smallest absolute value. The function E(x) is continuous and nondecreasing.
The modulus and phase functions are defined by

E(x)Ai(x)= M(x) sin 0 (x); E1 (x)Bi(x) = M(x) cos 0 (x)

where E-1 (x) = 1/E(x). In consequence

M(x) = -N,I2Ai(x)Bi(x); 0(x)=

Or

M(x)= (x) + Bi2(x); 0(x) = tan -I {Ai(x)/Bi(x)} (x < c)

the branch of the inverse tangent being Tr/4 at x = c, and continuous elsewhere.
The modulus is a slowly changing function with the property

Af(x).....,77.-1/21x1-1/4 (x -±00)

The phase is a nonincreasing function.
The following constant is required in the next subsection:

X= sup { M2 (x)} = 1.04...(--,)
12.8.4 Case II: Simple Turning Point

The standard form of differential equation for Case II is

d2 w
{u2 + LP())d2

c)



and

1 1

As+1(0 =
-2

B0 1- J) B() c4

These equations determine recursively sequences of functions which are infinitely
differentiable throughout (a, 0), including = 0.

Again, the formal series diverges in general, but corresponding to each nonnega-
tive integer n there exists an infinitely differentiable solution 1V21 (u, a such
that

AS()
+ Ail(u213 Bs()

w2+i (u, = Ai(u213 E
U2s u413 u2s 62n+1,1(11,

s=0 s=0

with

1E2,1+1 ,1(11,01<2 M("21 exp,{2-AUto3(r"B0)}Ct.a(1 1"2,90E(u213)U2n+1
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For simplicity, it is supposed here that the variabte-ca-re real, u being positive, and
also that 1//() is infinitely differentiable in a finite or infinite interval (a,13) which
contains the turning point t = 0.

The basic approximating equation is

c12 w

de =u241

solutions of which are Ai(t42/3) and Bi(1.12.13 ). A formal series solution of the
given differential equation can be constructed in the form

AA) Air(u2/3 Bs()w = Ai(u2/3 E +
012

E
u s=0 u's

with A0() = 1. Differentiating and equating coefficients, we find that

B
1

00 A 11;00} v 1d1220/2

o du
BA) = (v) A s(v) .4(01

(- v)"
Q<O)A-0" t

> 0)

2

3 t)
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E, M, and X being defined as in 12.8.3. For positive or negative the bound for
(u is essentially Ai(u2/3)0(u-2,7--1,) except near the zeros of Ai(u213).

A second solution is furnished by

ii As() Bi'(u2/3.) B.()
r412 1,201, = B02/30 E u" 413 u2s 2n+1,204,s=0

with

Ic2+1,2(u, < 2E(u21 M(u213) exp {2X0,JVI2B0)1
U2n+1j

Analogous results are also available for complex variables; see Olver 1974a, Chap-ter 11.

12.8.5 Auxiliary Functions for Bessel Functions
For nonnegative real values of v and positive values of x, a weight function E(x) isdefined by

E(x) = Y ,(x)1.1,(x)}1/ 2 (0 <X < Xi,)'; Ex) = 1 (X, x < co)

where x =X, is the smallest root of the equation

J(x) + Y(x) = 0

E(x) is a continuous, positive, nonincreasing function of x.
Corresponding modulus and phase functions are defined by

4(x) = (x) Mx) cos Ox); Y(x) = E(x) M(x) sin O(x)

thus

mv(x)= {21Y(x)14(x)}112; O(x) - (0<x <Xv)

M(x) = {4(x) + Y(x)}1I2 ; O(x) = tar(' {3c(x)/4(x)} X)
the branch of the inverse tangent being chosen to make O(x) continuous everywhere.

12.8.6 Case Ill: Simple Pole

The final form of differential equation to be considered in the present section is

d2W fu2 i,2 - 1 ()1
de tzl.42 Ej

=
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in which u is again a large positive parameter, v is a nonnegative real constant, and
OM is infinitely differentiable in a finite or infinite interval (a, (3) containing t = 0.

For E (0, g) a formal series solution is supplied by

Am) tBs(t)
W = t"24(uV/2) E

U2s
+ /,(uv12) 2_,

U2sUs=0 s=0

where Iv is the modified Bessel function, and the coefficients are determined recur-
sively by A 0(t) = 1

dv
BA) = -AA) + 1 tif(v) A s(v) - + A's(v)}

vi
2V/ 2 2

and

A () = PB() - 0;(t) IP (t) Bs(t) at

Each coefficient tends to a finite limit as t 0.
Corresponding to any nonnegative integer n, there exists a solution IV2"1 ,1(u,

of the given differential equation of the form

= V/2/jutl/ 2) En As()
112

BA)
W2n+1,504, 2s + ) E , +2,,i(u,E)

U25 us=0 s=0

with

le2n+1,1(u,)!< Xi( 2/v(uV / 2) ex
1X1(r)

°°,t(V/ 2B0) c)°,t(V/ 2B,i)
u2n+1

Here X, (v) is the (finite) constant defined by

X, (v) = sup {2x1(x)K(x)}
xE(0,..)

For each n an independent second solution is given by

AA) K (utti 2) ny-' B5(0 4.W2,7+1,2(u, = 1/21(util 2)
' E2n+1,2(14,,,2su K+1 (u"2)

s=0 5=0

n
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where K, is the second modified Bessel function, and

je2n+1,2(u, < A1(,) / 2Kv(u,11 ) exp XI (1)) °t ig1/2/30)}
('2B,i)
2n+1

For negative E the solutions 4'2n.,1(u, and 14,2,,2(u, E) are no longer appro-priate since they have branch-points at E = 0 and become complex when continuedto negative values. The coefficients As(E) and Bs(E) are free from singularity at= 0, however, and may be continued to negative thus

Jo
13 1s() = A'sa) + {v A s(v) + (v)

dv
W1/2 2) s lulu2

and As+,() is related to B() by the same formula as for positive
Solutions of the given differential equation for E E (a, 0) are given by

n s)=1 1"2./,(uNi/ 2)E
23

"-iAa) BA.)4+1041") EU2s U
ss=0 =0

e2n+1,304,

n A sa) 1 1
n-i BA)W2n+l4(U,

= 2 yjuNI v, (up/ 2),
sZ_,2U2S Us=0 s=0

Em +1,4(u, 0
where n is again an arbitrary nonnegative integer, and

le2+1,3(u, < x3(,01/ 2 iliv(uNli jx,(p)
Ep(uNi/ 2n+iexP u CE,o(P/2B-)} (h,0(1112B)

U

1E2,1+1,4 01, 01 <A40)*11/24(141"2)Mv(UP/2)

X exp {X2(0
co, t.(1 11/ 2Bn)

t(N1/ 'BO} 2,17+1

Here and M are defined as in 12.8.5, and X2(v), X3(v), X4(v) denote thesuprema of the functions

rrxAli(x), 77X14(x)!E(x)A1,(x), rxi Y(x)M(x)/E(x)

respectively, for x E (0, co). Each is finite.
Again, analogous results are available for complex u and E.

U

3(u

+

+

0f1
2)



Asymptotic- Methods 705

12.9 ESTIMATION OF REMAINDER TERMS

12.9.1 Numerical Use of Asymptotic Approximations

When a realistic analytical bound for the error term in a given expansion is
able, it is unsafe to infer the size of the error term simply by inspecting the rate of
numerical decrease of the terms in the series. Even in the case of a convergent
power-series expansion this cannot be done: the tail has to be majorized analytically
-for example, by a geometric progression-before final accuracy can be guaranteed.
For a divergent asymptotic expansion the situation is much worse. First, it is im-
possible to majorize the tail. Secondly, the series represents an infinite class of
functions, and the error term depends on which particular member of the class we
have in mind.

In cases where the asymptotic variable .x, say, is real and positive ,and the distin-
guished point is at infinity, the wanted function should be computed by an inde-
pendent (preferably, non-asymptotic) method at the smallest value of x it is in-
tended to apply the asymptotic approximation. If the results are in agreement to
S significant figures, then it is likely (but not certain) that the approximation will
be accurate to at least S significant figures for all greater values of x.

For a complex variable z, both Id and arg z have to be considered in appraising
accuracy. Suppose that an asymptotic approximation is valid as z co in any closed
sector within 01 < arg z <02, but not within a larger sector. Then the accuracy of
the approximation deteriorates severely as the rays arg z = 01,02 are approached.
In consequence, numerical work should be confined to a sector 011, < arg z < 012 ly-
ing well within 01 < arg z <02, and independent evaluations, made at arg z = 0
and 192 for the smallest value of IzI intended to be used.

When the regions of validity in the complex plane are not sectors,error appraisal is
more complicated. Basically, however, the guiding principle is to keep a safe dis-
tance from the true, boundaries of the region of validity..

12.9.2 Converging Factors

t(z) be a fiinctian of z having the asymptotic expansfon

al azf(z) - + --
;

as z -> 00 in a sector S: 0 < arg z <0-2. As a special case S can degenerate into the
positive or negative real axis. Suppose that successive terms in the series diminish in
absolute value until the (n + 1)th term is reached, thereafter they increase. Clearly

n(z), where n(z) is a discontinuous function of Id which is independent of arg z.
Generally the expansion yields its greatest accuracy when truncated at n(z) terms.
We write

Rn(z)= f(z)- nE`.-
s=o, ZS

1

unavail-

Let

+
z

n =
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and call Rn(z)(z) the optimum remainder term, whether or not it is actually theleast.
Now define

C(z) = Rn(z)(z)/{an(z)z-n(z)}

so that

"(z)-1 an(z)f(z) = E + C(z)

If we have a way of assessing C(z) when N is large, then the magnitude of the opti-mum remainder term can be estimated. In some cases it is actually possible to con-struct an asymptotic expansion for C(z) in descending powers of z or ti(z). In thesefortunate circumstances C(z) can be calculated to several significant figures, con-siderably increasing the attainable accuracy in the computed value off(z). For thisreason C(z) is called a convergingfactor.

Example: The exponential integralFrom (7.1-2) we have

Since

Ei(z)=e

.5=0

dt ( arg z < Irr)1 +t

1)" In= 1 t +t2 ( )n-1 zn -1 f
I + t 1+ t

for any nonnegative integer 11, it follows that

n -1
El(z)= e E us(z)+ Ra(z)}

where

us(z)=(-Ys!

and

F e-ztp,
Rn(z)=(-)" dt

1 + t

-



1 + t0

for large n and fixed values of and 0. The saddle.point of the integrand is given by

{t exp (- ei0 t)}

that is, by t = e"0. The path of integration is made to pass through this poinfbY
rotation through an angle -0. Then setting t =re-`° , we obtain

e) rrn
Rn 11{(' ei° ()_(n+1-;e-On+1 )6 r n+

Ja
1 +

dr
JO'

And although this result has been derived on the 'assumption that 101 < 7/2, it is
easily extended to 101 <irby further rotation of the path and appeal to analytic
continuation. The desired asymptotic expansion is then found by Laplace's method
(12.2.6) to be

em} ()fl( - a)e-n--=1,(n+,t.yo
2rr tr2

- + 24 + - 2a + 2a2
X it +

2n

as n co, uniformly with 1-espezt to in any compact set and 0 E [-rr + 5,, -
Here a 11(1 + ) and 5 is an arbitrary positive constant less than rr.

To derive the corresponding expansion for the converging factor

C(z)R(z)/u(z)

We make use of Stirling's series (7.2-11) for ,n1.. In this way we obtain

Ca{01 + e10} r' " (1 - 1.1
a(3' - I + a) ..}
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The series E us(z) is the asymptotic expansion of le:El (Z) for large 14 and the
term of smallest absolute value is uh.zimi(z), unless 114 Ss, an inte,ger in which event
there are two equally small terms (z) and uTzli(z).

We write a = arg z and seek an asymptotic approximation to

RA-an + j-) J _
exp (i? + )leic/Tin'

again as n o0;, uniformly with respect to bounded and. 0 E[-7r + 8, 77 - 6J. To
apply this result for an assigned value of z, we take 0 = arg z = [141-, and -

u1_1

(-)n

d = 0
dt

Rn{(n -

-

- a)

-
n = -
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[1711, so that (n + ei° = z. Truncating the expansion for C{(n +0ei°1 at its
first term, for example, we conclude that if the original expansion for E1(z) is
truncated at its [NI) th term, then the remainder term is approximately equal to the
first neglected term multiplied by 1 - a, that is, 17(1 + e-i°). For positive real z this
becomes .

As a numerical illustration, take z = 5. Then

uo(5) = 0.2; ur (5) = -0.04; u2(5) = 0.016; u3(5) = -0.0096; /44(5) = 0.00768

whence

uo(5) + u, (5) + - + u4(5)= 0.17408

compared with the correct value es Ei(5)= 0.170422176 From the asymp-
totic expansion for the converging factor, we calculate

C5(5) 4. (1- 0.475

on neglecting terms beyond the second. Since u5(5) = -0.00768, the estimate
C5(5)u5(5) for the remainder term is -0.00365 .... Impressively, this equals the
discrepancy between the partial sum it(5) + u, (5) + + u4(5) and es E,(5), to
within one unit of the fifth decimal place.

12.9.3 Euler's Transformation

Another way of increasing the accuracy obtainable from an asymptotic expansion isto transform it into a new series in which the initial terms decrease at a faster rate.Then it is often the case that the optimum remainder term is smaller for the newseries than for the original series. It might even happen that the new seriesconverges.
The most frequently used transformation is due to Euler, and is as follows. Letao, ai , a2, ... be a given sequence and bo, bi, b2, ... a derived sequence, defined

by

k-s[As(aik-f)] j=0

Here k is an arbitrary number and A the forward difference operator: Avi = v1. -
vi, vi = Ay!, - Avi, and so on. Suppose that f(z) isan analytic function of the
complex variable z such that

f(z)-
s=o z"1

as z 00 in a given sector S. Then

f(z) E
- kr1 (z 0. in S)

--
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With k = 1 and z = -1, the transformation reduces to

(_)S
A2ss+a,0.

s=0

Example: Let us consider again the asymptotic expansion of the function e5 El (5) of
12.9.2. Application of Euler's transformation is delayed until the smallest term is
reached; thus as = (-)su,(5). Relevant forward differences are given in units of the
fifth decimal place in the accompanying table.

The first few terms of the transformed series are

Asa()E y 2s+ 10-5 (-384 + 38 - 27+ 12- 9 + 7 - 6 +
15=0

Truncation at the sixth term gives - 0.00363, then addition to tio(5)+ u,(5)+
- - - + u4(5) yields 0.17045, agreeing with the value of e5 E1(5) to within 0.00003;
compare 12.9.2. Even closer agreement is attainable by working with more terms
and more decimal places, and applying a second Euler transformation.

From the analytical standpoint the numerical procedure is equivalent to expand-
ing the remainder term

4
Rs (z)= ezEi(z)- u5(z)

s=o

as an asymptotic series in descending powers of z +5, and truncating the new series
at the optimum stage.
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