This paper presents a practical study on popular Experimental Dynamic Substructuring topics. A series of substructures is designed of such complexity to fit in right between “real life” structures as often found in industrial applications and “academic” structures which are typically the simplest models to identify a particular phenomenon. The designed benchmark structure comprises an active side with a vibration source, a passive side and a test rig for source characterisation. The connectivity is scalable in complexity, meaning that a single-point, two-point and continuous interface can be established. Substructuring-compatible component models are obtained from impact measurements using the Virtual Point Transformation. The vibration source on the active structure is characterised on the test rig using the in-situ TPA concept. Hereafter the component TPA method is applied to simulate the response on the passive side of the coupled structure, in turn obtained using dynamic substructuring.
@en