VM

Véronique Michaud

Authored

20 records found

Kinematic and mechanical response of dry woven fabrics in through-thickness compression

Virtual fiber modeling with mesh overlay technique and experimental validation

The through-thickness compressive behavior of fabric reinforcements is crucial in liquid composite molding manufacturing processes. Predictive simulations of the compressive response are thus necessary to enable a virtual processing workflow. These are complex however, as the com ...

A life cycle analysis of novel lightweight composite processes

Reducing the environmental footprint of automotive structures

In this study, three novel thermoplastic impregnation processes were analyzed towards automotive applications. The first process is thermoplastic compression resin transfer molding in which a glass fiber mat is impregnated in through thickness by a thermoplastic polymer. The seco ...
Capillarity plays a crucial role in many natural and engineered systems, ranging from nutrient delivery in plants to functional textiles for wear comfort or thermal heat pipes for heat dissipation. Unlike nano- or microfluidic systems with well-defined pore network geometries and ...

Saturated transverse permeability of unidirectional rovings for pultrusion

The effect of microstructural evolution through compaction

The transverse permeability of roving/tow-based fiber reinforcement is of great importance for accurate flow modeling in the pultrusion process. This study proposes an experimental approach to characterize the roving-based fiber beds' permeability under different compaction condi ...
Thermoplastic compression resin transfer moulding coupled with injection moulding is an appealing process for the production of thermoplastic composites. However, its implementation at an industrial scale remains challenging as variotherm injection moulding could prevent solid sk ...

Editorial

ECCM Research Topic on advanced manufacturing of composites

Permeability of fibrous microstructures is a key material property for predicting the mold fill times and resin flow path during composite manufacturing. In this work, we report an efficient approach to predict the permeability of 3D microstructures from deep learning based perme ...
We propose a methodology to monitor the progressive saturation of a non-translucent unidirectional carbon fabric stack through its thickness by means of X-ray radiography and extract the dynamic saturation curves using image analysis. Four constant flow rate injections with incre ...
Direct visualization is often sought to elucidate flow patterns and validate models to predict the filling kinetics during processes whereby a liquid resin infiltrates a textile porous preform. Here, X-ray phase contrast interferometry is evaluated to image in-operando constant f ...
A new model is proposed for the consolidation of hybrid textiles, in which air entrapment and dissolution are considered. One of the key parameters is tow permeability, which is described by the analytical model of Gebart and validated at very high fibre volume fractions by direc ...
In Resin Transfer Molding (RTM), resin precursors of thermoset or, more recently, thermoplastic polymers are generally employed, raising issues related to the chemical reaction taking place during and after part processing. In this study, already polymerized polyamide-6 with low ...
In-plane permeability of small area (100 × 50 mm) alumina fiber woven fabrics grafted with aligned carbon nanotubes (CNT) was quantified by placing them in series with a glass mat of known permeability during a flow experiment. The methodology was first validated on a reference w ...
Radical induced cationic frontal polymerisation (RICFP) is considered a promising low energy method for processing of fibre reinforced polymers (FRPs). Optimisation of the local heat balance between reinforcement, epoxy resin and the surrounding mould is required to pave the way ...
We seek to address how air entrapment mechanisms during infiltration are influenced by the wetting characteristics of the fluid and the pore network formed by the reinforcement. To this end, we evaluated the behavior of two model fluids with different surface tensions, infiltrati ...
Thin-ply composites are recognized as a key solution for the manufacturing of high-performance composite structures due to the unique mechanical properties and the increased design versatility that they offer. They are obtained with state-of-the-art fiber spreading methods where ...
We propose a new modeling strategy based on hybrid elements for virtual fiber modeling (also known as the digital element method) to predict both kinematics as well as mechanics of woven fabrics. In virtual fiber modeling, yarns are modeled consisting of a number of discrete fibe ...
The COVID-19 pandemic resulted in shortages of personal protective equipment and medical devices in the initial phase. Agile small and medium-sized enterprises from regional textile industries reacted quickly. They delivered alternative products such as textile-based community ma ...
Modeling the consolidation of fiber-reinforced thermoplastic composites at the part level presents a formidable computational challenge due to the multi-scale nature of the process. In this article, a method to bypass the multi-scale problem by homogenizing the micro scale and de ...
Radical Induced Cationic Frontal Polymerisation (RICFP) has recently been proposed as a promising strategy for processing of epoxide carbon fibre reinforced polymers. Control of the local heat balance is crucial towards the production of industrial-quality composites, which is ty ...
Knowledge of permeability of fibrous microstructures is crucial for predicting the mold fill times and resin flow path in composite manufacturing. Herein we report a method to rapidly predict the permeability of 3D fibrous microstructures. Our method relies on predicting the perm ...