DW

D. Wei

6 records found

Authored

Eukaryotes swim with coordinated flagellar (ciliary) beating and steer by fine-tuning the coordination. The model organism for studying flagellate motility, Chlamydomonas reinhardtii, employs synchronous, breaststroke-like flagellar beating to swim, and it modulates the beating a ...

The swift deformations of flagella and cilia are crucial for locomotion and fluid transport on the micron scale. Most hydrodynamic models of flagellar and ciliary flows assume the zero Reynolds number limit and model the flow using Stokes equations. Recent work has demonstrate ...

The flagella of Chlamydomonas reinhardtii possess fibrous ultrastructures of a nanometer-scale thickness known as mastigonemes. These structures have been widely hypothesized to enhance flagellar thrust; however, detailed hydrodynamic analysis supporting this claim is lacking. ...

Experimental Investigation of Ciliary Flow with C. reinhardtii

Hydrodynamics, Ultrastructure, and Ciliary difference

The microscopicworld is surprisingly busywith swimming micro-organisms. In a droplet of pondwater, there can be tens of thousands of microbes. They are predators and preys, producers and consumers, and they formthe bottom levels of the ecology of our world. The swimming micro-org ...

Optical tweezers-based velocimetry

A method to measure microscale unsteady flows

Abstract: In the study of micro-scale biological flows, velocimetry methods based on passive tracers, such as micro-PIV and micro-PTV, are well established to characterize steady flows. However, these methods become inappropriate for measuring unsteady flows of small amplitude ...

Stokes equations are commonly used to model the hydrodynamic flow around cilia on the micron scale. The validity of the zero Reynolds number approximation is investigated experimentally with a flow velocimetry approach based on optical tweezers, which allows the measurement of ...