MC
M. Cusini
14 records found
1
Authored
A dynamic multilevel method for fully-coupled simulation of flow and heat transfer in heterogeneous and fractured geothermal reservoirs is presented (FG-ADM). The FG-ADM develops an advanced simulation method which maintains its efficiency when scaled up to field-scale applicatio
...
Incomplete mixing in porous media
Todd-Longstaff upscaling approach versus a dynamic local grid refinement method
Field-scale simulation of flow in porous media in presence of incomplete mixing demands for high-resolution computational grids, much beyond the scope of state-of-the-art simulators. Hence, the upscaling-based Todd and Longstaff (TL) approach is typically used, where coarse grid
...
We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous fractured porous media (F-ADM), where fractures are resolved at fine scale with an embedded discrete modelling approach. This fine-scale discrete system employs independent fine-scale comput ...
This paper presents the algebraic dynamic multilevel method (ADM) for compositional flow in three dimensional heterogeneous porous media in presence of capillary and gravitational effects. As a significant advancement compared to the ADM for immiscible flows (Cusini et al., 2016)
...
Accurate numerical simulation of coupled fluid flow and heat transfer in heterogeneous geothermal reservoirs demand for high resolution computational grids. The resulting fine-scale discrete systems--though crucial for accurate predictions--are typically upscaled to lower resolut
...
An Algebraic Dynamic Multilevel (ADM) method for simulations of multiphase flow in heterogeneous porous media with an adaptive enriched multiscale formulation for saturation unknowns is presented. ADM maps the fine-scale fully-implicit (FIM) discrete system of equations to a dyna
...
A dynamic multilevel compositional solver (C-ADM) is introduced for fully- (and sequentially-) implicit systems arising from compositional displacements in natural porous media. The fully (or sequential) implicit system is first described at a fine-scale resolution, where phases
...
An
algebraic dynamic multilevel method (ADM) is developed for fully-implicit (FIM)
simulations of multiphase flow in heterogeneous porous media with strong
non-linear physics. The fine-scale resolution is defined based on the
heterogeneous geological one. Then, ADM constructs a s
...
Contributed
Simulation of multiphase flow in natural subsurface formations include selection of time-step size, i.e., the discrete snapshots (steps) over which the time-dependent nonlinear process is investigated. The simulation results would naturally depend on the size of the discrete time
...
One of the most important challenges facing academic, industrial and policy-making sectors is meeting with the increasing energy demand while preserving the affordability of the energy and maintaining the quality of the planet earth (including the environment, specially by reduci
...
This thesis elaborates on a newly developed Fully Implicit simulation model that captures the full coupling of reaction kinetics and fluid dynamics during carbonate matrix acidizing at an extensive (field) scale. The framework describes the physical processes at reservoir scale,
...