NN

N Nadarajah

25 records found

The real-time kinematic precise point positioning (PPP-RTK) technique enables integer ambiguity resolution by providing singlereceiver users with information on the satellite phase biases next to the standard PPP corrections. Using undifferenced and uncombined observations, rank ...

Multi-GNSS PPP-RTK

From large- to Small-Scale networks

Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence tim ...

IRNSS/NavIC Single-Point Positioning

A Service Area Precision Analysis

The Indian Regional Navigation Satellite System (IRNSS) has recently (as of May 2016) become operational. The system has been developed with the objective of offering positioning, navigation, and timing (PNT) to users in its two service areas, covering the Indian landmass and the ...
The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) reached its full operational capability. In this contribution, we provide the very first L5 attitude determination analyses of the fully operational IRNSS as a standalone system and also in combinatio ...

IRNSS/NavIC and GPS

A single- and dual-system L5 analysis

The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully operational. In this contribution, for the fully operational IRNSS as a stand-alone system and also in combination with GPS, we provide a first assessment of L5 integer ambiguity resoluti ...
The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO) with th ...
The concept of real-time kinematic precise point positioning (PPP-RTK) is to achieve integer ambiguity resolution (IAR) at a single global navigation satellite system (GNSS) user by providing network-derived satellite phase biases (SPBs) in addition to the standard PPP correction ...

PPP-RTK by means of S-system theory

Australian network and user demonstration

The development of an Australian PPP-RTK processing platform is an important component of a multi-GNSS (global navigation satellite system) enabled national positioning infrastructure. The PPP-RTK concept extends the precise point positioning (PPP) concept by providing single-rec ...
A first assessment of GLONASS CDMA L3 ambiguity resolution and positioning performance is provided. Our analyses are based on GLONASS L3 data from the satellite pair SVNs 755-801, received by two JAVAD receivers at Curtin University, Perth, Australia. In our analyses, four differ ...
Knowledge of inter-system biases (ISBs) is essential to combine observations of multiple global and regional navigation satellite systems (GNSS/RNSS) in an optimal way. Earlier studies based on GPS, Galileo, BDS and QZSS have demonstrated that the performance of multi-GNSS real-t ...
Global Navigation Satellite Systems (GNSS) have become ubiquitous in positioning, guidance and navigation. GNSS-based attitude determination and relative navigation are the important and promising applications. In this contribution we explore the potential of Low Earth Orbiting ( ...
The concept of PPP-RTK is to achieve integer ambiguity resolution (IAR) at a single GNSS user by providing network-derived satellite phase biases (SPBs) in addition to the standard precise point positioning (PPP) corrections. These corrections enable recovering integerness of use ...