MT

Maria A. Tabocchini

Authored

13 records found

Purpose: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...
The authors regret having incorrectly written in equation (7) that the fraction of surviving cells (SF) is obtained using the natural logarithm of the negative value of the number of lethal lesions Lf. The natural logarithm must be replaced by the exponential function as follows: ...