Advances in nanofabrication over the past twenty years have enabled the creation and use of ever-more interesting and useful micromachines. Optical micromachines are a particularly attractive subset of these for researchers in biological and soft-matter sciences, due to their pot
...
Advances in nanofabrication over the past twenty years have enabled the creation and use of ever-more interesting and useful micromachines. Optical micromachines are a particularly attractive subset of these for researchers in biological and soft-matter sciences, due to their potential to aid in optical tweezer studies of laser-sensitive samples. However, the development of multi-component micromachines is made difficult due to the dominance of surface forces at this scale, which is made all the more relevant in the high-salt concentrations used for biological studies. This study concerns the design of simple, first-class lever micromachines for use in environments with different salt concentrations, in an attempt to provide a guideline for design requirements of functional optical micromachines for use in physiological conditions.@en