Ultrasound Imaging Velocimetry (UIV) is applied to a Taylor-Couette flow, for the case of pure inner cylinder rotation. By imaging a radial-azimuthal plane, two velocity components are obtained simultaneously in a two-dimensional plane. For the single-phase flow studies, Iriodin
...

Ultrasound Imaging Velocimetry (UIV) is applied to a Taylor-Couette flow, for the case of pure inner cylinder rotation. By imaging a radial-azimuthal plane, two velocity components are obtained simultaneously in a two-dimensional plane. For the single-phase flow studies, Iriodin flakes (commonly used for visualizing flow structures) are used as “flow tracers” for the backscatter of ultrasound. This allows for a simultaneous mapping of the flow regime, via flow visualization, as well as extracting quantitative velocity information in the radial gap. After validating UIV against the analytically well-defined laminar Circular Couette flow as well as turbulent Taylor-Couette flow, other regimes are probed as well, in particular, the Wavy Vortex flow. Finally, the application of UIV to a particle-laden Taylor-Couette flow (particle volume fraction, f_0:01) is considered, under the conditions of oscillatory pure inner cylinder rotation. The results presented here serve as a proof-of-concept for the application of UIV to the Taylor-Couette flow and will be applied to denser particle-laden flows (f _ 0:05) in the future. @en