Temporal Analysis of Reservoirs, Lakes, and Rivers in the Euphrates–Tigris Basin from Multi-Sensor Data Between 2018 and 2022
O.G. Narin (Afyon Kocatepe University, TU Delft - Optical and Laser Remote Sensing)
R.C. Lindenbergh (TU Delft - Optical and Laser Remote Sensing)
Saygin Abdikan (Hacettepe University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Monitoring freshwater resources is essential for assessing the impacts of drought, water management and global warming. Spaceborne LiDAR altimeters allow researchers to obtain water height information, while water area and precipitation data can be obtained using different satellite systems. In our study, we examined 5 years (2018–2022) of data concerning the Euphrates–Tigris Basin (ETB), one of the most important freshwater resources of the Middle East, and the water bodies of both the ETB and the largest lake of Türkiye, Lake Van. A multi-sensor study aimed to detect and monitor water levels and water areas in the water scarcity basin. The ATL13 product of the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was used to determine water levels, while the normalized difference water index was applied to the Sentinel-2 optical imaging satellite to monitor the water area. Variations in both water level and area may be related to the time series of precipitation data from the ECMWF Reanalysis v5 (ERA5) product. In addition, our results were compared with global HydroWeb water level data. Consequently, it was observed that the water levels in the region decreased by 5–6 m in many reservoirs after 2019. It is noteworthy that there was a decrease of approximately 14 m in the water level and 684 km2 in the water area between July 2019 and July 2022 in Lake Therthar.