Micromechanics of liquid-phase exfoliation of a layered 2D material
A hydrodynamic peeling model
G. Salussolia (Queen Mary University of London)
Ettore Barbieri (Japan Agency for Marine-Earth Science and Technology)
Nicola Maria Pugno (Edoardo Amaldi Foundation, Queen Mary University of London, Università di Trento)
L. Botto (Queen Mary University of London, TU Delft - Energy Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We present a micromechanical analysis of flow-induced peeling of a layered 2D material suspended in a liquid, for the first time accounting for realistic hydrodynamic loads. In our model, fluid forces trigger a fracture of the inter-layer interface by lifting a flexible “flap” of nanomaterial from the surface of a suspended microparticle. We show that the so far ignored dependence of the hydrodynamic load on the wedge angle produces a transition in the curve relating the critical fluid shear rate for peeling to the non-dimensional adhesion energy. For intermediate values of the non-dimensional adhesion energy, the critical shear rate saturates, yielding critical shear rate values that are drastically smaller than those predicted by a constant load assumption. Our results highlight the importance of accounting for realistic hydrodynamic loads in fracture mechanics models of liquid-phase exfoliation.