The heat equation with rough boundary conditions and holomorphic functional calculus
N. Lindemulder (TU Delft - Analysis, Karlsruhe Institut für Technologie)
Mark C. Veraar (TU Delft - Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper we consider the Laplace operator with Dirichlet boundary conditions on a smooth domain. We prove that it has a bounded H∞-calculus on weighted Lp-spaces for power weights which fall outside the classical class of Ap-weights. Furthermore, we characterize the domain of the operator and derive several consequences on elliptic and parabolic regularity. In particular, we obtain a new maximal regularity result for the heat equation with rough inhomogeneous boundary data.