Cold atom gravimetry for planetary missions

Journal Article (2020)
Author(s)

Fabian Müller (European Space Agency (ESA))

Olivier Carraz (European Space Agency (ESA))

P.N.A.M. Visser (TU Delft - Astrodynamics & Space Missions)

O. Witasse (European Space Agency (ESA))

Astrodynamics & Space Missions
Copyright
© 2020 Fabian Müller, Olivier Carraz, P.N.A.M. Visser, Olivier Witasse
DOI related publication
https://doi.org/10.1016/j.pss.2020.105110
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 Fabian Müller, Olivier Carraz, P.N.A.M. Visser, Olivier Witasse
Astrodynamics & Space Missions
Volume number
194
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Cold Atom Interferometry (CAI) is a promising new technology for gravity missions, enabling measurements with a potential error level that is several orders of magnitude lower compared to classical electro-static accelerometers. Whereas the latter typically suffer from high noise at low frequencies, with biases and scale factor instabilities, cold atom interferometers give an absolute measurement and are highly accurate over the entire frequency range. Especially for planetary missions, drift-free cold atom interferometry can be highly beneficial, because it does not need any on-board calibration. In this work we present the improvement of using a CAI instrument, with respect to classic Doppler-tracking technique, to retrieve the gravity field of Venus and Mars. In order to estimate the performances with many parameters (orbit altitude, mission duration, sensitivity) a scalar scale factor is proposed to fit a simulated CAI instrument on Earth orbit to other celestial bodies. The spherical harmonic degree strength of the gravitational field retrieval is estimated and the results presented here agree with Fast Error Propagation Tools.

Files

3379597.3387453.pdf
(pdf | 0.713 Mb)
- Embargo expired in 17-10-2022