How To Break the Janus Effect of H 2 O 2 in Biocatalysis? Understanding Inactivation Mechanisms To Generate more Robust Enzymes

Journal Article (2019)
Author(s)

Ze Xin Zhao (South China University of Technology)

Dongming Lan (South China University of Technology)

Xiyu Tan (South China University of Technology)

F. Hollmann (TU Delft - BT/Biocatalysis)

Uwe T. Bornscheuer (Greifswald University)

Bo Yang (South China University of Technology)

Yonghua Wang (South China University of Technology)

Research Group
BT/Biocatalysis
Copyright
© 2019 Ze Xin Zhao, Dongming Lan, Xiyu Tan, F. Hollmann, Uwe T. Bornscheuer, Bo Yang, Yonghua Wang
DOI related publication
https://doi.org/10.1021/acscatal.8b04948
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 Ze Xin Zhao, Dongming Lan, Xiyu Tan, F. Hollmann, Uwe T. Bornscheuer, Bo Yang, Yonghua Wang
Research Group
BT/Biocatalysis
Issue number
4
Volume number
9
Pages (from-to)
2916-2921
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract


H
2
O
2
, is an attractive oxidant for synthetic chemistry, especially if activated as percarboxylic acid. H
2
O
2
, however, is also a potent inactivator of enzymes. Protein engineering efforts to improve enzyme resistance against H
2
O
2
in the past have mostly focused on tedious probabilistic directed evolution approaches. Here we demonstrate that a rational approach combining multiscale MD simulations and Born-Oppenheimer ab initio QM/MM MD simulations is an efficient approach to rapidly identify improved enzyme variants. Thus, the lipase from Penicillium camembertii was redesigned with a single mutation (I260R), leading to drastic improvements in H
2
O
2
resistance while maintaining the catalytic activity. Also the extension of this methodology to other enzymes is demonstrated.

Files

Acscatal.8b04948.pdf
(pdf | 6.35 Mb)
- Embargo expired in 28-08-2019
License info not available