Does reviewer recommendation help developers?

Journal Article (2019)
Author(s)

Vladimir Kovalenko (TU Delft - Software Engineering)

Nava Tintarev (TU Delft - Web Information Systems)

Evgeny Pasynkov (JetBrains)

Christian Bird (Microsoft Research)

Alberto Bacchelli (Universitat Zurich)

Research Group
Software Engineering
DOI related publication
https://doi.org/10.1109/TSE.2018.2868367
More Info
expand_more
Publication Year
2019
Language
English
Research Group
Software Engineering
Bibliographical Note
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.@en
Issue number
7
Volume number
46
Pages (from-to)
710-731
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Selecting reviewers for code changes is a critical step for an efficient code review process. Recent studies propose automated reviewer recommendation algorithms to support developers in this task. However, the evaluation of recommendation algorithms, when done apart from their target systems and users (i.e., code review tools and change authors), leaves out important aspects: perception of recommendations, influence of recommendations on human choices, and their effect on user experience. This study is the first to evaluate a reviewer recommender in vivo. We compare historical reviewers and recommendations for over 21,000 code reviews performed with a deployed recommender in a company environment and set out to measure the influence of recommendations on users' choices, along with other performance metrics. Having found no evidence of influence, we turn to the users of the recommender. Through interviews and a survey we find that, though perceived as relevant, reviewer recommendations rarely provide additional value for the respondents. We confirm this finding with a larger study at another company. The confirmation of this finding brings up a case for more user-centric approaches to designing and evaluating the recommenders. Finally, we investigate information needs of developers during reviewer selection and discuss promising directions for the next generation of reviewer recommendation tools. Preprint: https://doi.org/10.5281/zenodo.1404814.

Files

Revrec_preprint.pdf
(pdf | 5.7 Mb)
License info not available