Adaptive sampling-based quadrature rules for efficient Bayesian prediction

Journal Article (2020)
Author(s)

L. M.M. van den Bos (Centrum Wiskunde & Informatica (CWI), TU Delft - Wind Energy)

B. Sanderse (Centrum Wiskunde & Informatica (CWI))

WAAM Bierbooms (TU Delft - Wind Energy)

Research Group
Wind Energy
Copyright
© 2020 L.M.M. van den Bos, B. Sanderse, W.A.A.M. Bierbooms
DOI related publication
https://doi.org/10.1016/j.jcp.2020.109537
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 L.M.M. van den Bos, B. Sanderse, W.A.A.M. Bierbooms
Research Group
Wind Energy
Volume number
417
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

A novel method is proposed to infer Bayesian predictions of computationally expensive models. The method is based on the construction of quadrature rules, which are well-suited for approximating the weighted integrals occurring in Bayesian prediction. The novel idea is to construct a sequence of nested quadrature rules with positive weights that converge to a quadrature rule that is weighted with respect to the posterior. The quadrature rules are constructed using a proposal distribution that is determined by means of nearest neighbor interpolation of all available evaluations of the posterior. It is demonstrated both theoretically and numerically that this approach yields accurate estimates of the integrals involved in Bayesian prediction. The applicability of the approach for a fluid dynamics test case is demonstrated by inferring accurate predictions of the transonic flow over the RAE2822 airfoil with a small number of model evaluations. Here, the closure coefficients of the Spalart–Allmaras turbulence model are considered to be uncertain and are calibrated using wind tunnel measurements.

Files

Article.pdf
(pdf | 1.65 Mb)
- Embargo expired in 02-06-2022