PPP–RTK theory for varying transmitter frequencies with satellite and terrestrial positioning applications
P.J.G. Teunissen (University of Melbourne, TU Delft - Mathematical Geodesy and Positioning, Curtin University)
Amir Khodabandeh (University of Melbourne)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this contribution, we generalize PPP–RTK theory by allowing the transmitters to transmit on different frequencies. The generalization is based on the integer-estimability theory of Teunissen (A new GLONASS FDMA model. GPS Solutions, 2019). As the theory and associated algorithms provided are generally applicable, they apply to satellite-based carrier-phase positioning as well as to terrestrial interferometric sensory networks. Based on an identification of the constraints imposed on the admissible ambiguity transformations by PPP–RTK, a fundamental network+user condition is found that determines whether PPP–RTK is possible or not. The discriminating contributions of both the network and user observation equations to this PPP–RTK condition are analysed, followed by a description of PPP–RTK enabling classes of measurement scenarios.