Stream Window Aggregation Semantics and Optimization
Paris Carbone (KTH Royal Institute of Technology)
A. Katsifodimos (TU Delft - Web Information Systems)
Seif Haridi (KTH Royal Institute of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Sliding windows are bounded sets which evolve together with an infinite data stream of records. Each new sliding window evicts records from the previous one while introducing newly arrived records as well. Aggregations on windows typically derive some metric such as an average or a sum of a value in each window. The main challenge of applying aggregations to sliding windows is that a naive execution can lead to a high degree of redundant computation due to a large number of common records across different windows. Special optimization techniques have been developed throughout the years to tackle redundancy and make sliding window aggregation feasible and more efficient in large data streams